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Abstract

Outliers are very common in the environmen-
tal data monitored by a sensor network con-
sisting of many inexpensive, low fidelity, and
frequently failed sensors. The limited battery
power and costly data transmission have in-
troduced a new challenge for outlier clean-
ing in sensor networks: it must be done in-
network to avoid spending energy on trans-
mitting outliers. In this paper, we propose
an in-network outlier cleaning approach, in-
cluding wavelet based outlier correction and
neighboring DTW (Dynamic Time Warping)
distance-based outlier removal. The clean-
ing process is accomplished during multi-hop
data forwarding process, and makes use of the
neighboring relation in the hop-count based
routing algorithm. Our approach guarantees
that most of the outliers can be either cor-
rected, or removed from further transmission
within 2 hops. We have simulated a spatial-
temporal correlated environmental area, and
evaluated the outlier cleaning approach in it.
The results show that our approach can effec-
tively clean the sensing data and reduce out-
lier traffic.

1 Introduction

A sensor network is equipped with thousands of inex-
pensive, low fidelity motes, which can easily generate
sensing errors. The abnormal unreal sensor readings
generated in a temporally or permanently failed sensor
is called outliers. In many cases, outliers introduce er-
rors in sensing queries and sensing data analysis. For
example, a Sum query is less accurate if a large value
outlier is counted. In addition, transmitting outliers to
the sink is useless, adds additional traffic burden to the
network, and consumes precious sensor energy without
any benefit. Outlier cleaning tries to capture the out-
liers, correct or remove them from the data stream.
Outlier cleaning in sensor networks is challenging be-
cause data are distributed among a large amount of

sensors. It is for sure that outlier detection can be
conducted centrally after all the data are collected to
the sink. However, it is not energy efficient to transmit
outliers, especially when the network size is large. For
example, if an outlier is routed through a 15-hop path
to the sink, the energy used to transmit this 15-hop
datum is wasted. Therefore, in-network outlier clean-
ing tries to detect outliers during the data collection
process as early as possible along the routing path of
the data. It either corrects the outlier or removes it
from further forwarding. Eventually, an outlier-free
data stream is provided to the sensor network appli-
cations.

In this paper, we propose an in-network outlier
cleaning approach for data collection over sensor net-
works. We can correct short simple outliers in 0 hop
and remove long segmental outliers within 2 hops. We
adopt wavelet approximation to correct short, occa-
sionally appeared outliers. Since these short outliers
are of high frequency, they can be corrected if we
use the first few wavelet coefficients to represent the
sensing series. An extraordinary advantage of using
wavelet representation is that it can greatly reduce
the dimension of the sensing data, as a consequence,
reduces the energy cost of transmitting these data. If
an outlier is a long segmental outlier, we can detect
it by comparing its similarity with the neighboring
nodes, given the nature that environmental data are
spatially correlated [1]. Similarity is measured by Dy-
namic Time Warping (DTW) distance, which can cap-
ture the shape similarity in the elastic shifting sensing
series [2]. The sensing series are routed as before to
the sink, using a hop-count based routing algorithm
[3]. The detection is conducted within 2 forwarding
hops. A sensing series is not forwarded, if it is dis-
similar with its network neighbors. Outlier cleaning
requires in-network data processing on the individual
sensor mote. In sensor networks, it is admitted that
data processing is more economical than data trans-
mission [4]. The outlier cleaning process adds O(KN)
running time on each sensor. In the erroneous sensor
network, this energy cost is trivial compared to that
of the reduced traffic.



The remainder of this paper is organized as follows:
Section 2 provides the background of outlier cleaning
in sensor network data collection. In Section 3, we
describe our in-network outlier cleaning approach in
detail. Section 4 presents the evaluation results. Sec-
tion 5 discusses the related work, and we conclude this
paper in Section 6.

2 Background and Overview
2.1 Sensor Network

In recent years, wireless sensor networks have been
growing as a platform for environmental monitoring in
agriculture fields, battle fields, wild forests, coal mine
tunnels, and so on [5, 6, 7]. Sensors are massively de-
ployed to cover a wide geographical area. They have
the capability of sensing the area, performing some
computation, transmitting and forwarding the data to
a centralized sink node. However, these small sensors,
also called motes, have their limitations. Two of the
most important ones are the limited battery power and
the high transmission cost. These limitations make the
design of sensor network data processing challenging.
It is commonly recognized that in-network processing
(aggregation) is beneficial [8, 9, 10, 11]. Part of the
data processing is performed earlier, when the data
are still in the network. Notice that the centralized
approach processes the data only after all of them are
collected to the sink. In in-network processing, each
sensor takes up some computation according to the ap-
plications (e.g. query processing, data collection, event
detection, and so on). The sensors try to compute and
send the “aggregated” results to reduce network traf-
fic. Since data transmission is the most costly opera-
tion in sensors [4], compared with it, the energy cost
of in-network computation is trivial and negligible.

2.2 Data Collection

Sensor network applications can be classified into sev-
eral categories. One kind of popular applications is
query processing, which sends out a SQL-like query to
the distributed sensors, and expects them to answer
it by sending back the results to a sink node [§]. An-
other is event detection, in which a sensing report is
triggered not by a query, but by the occurrence of an
event [12]. Such an event can be a fire in a forest, a
gas leakage in a coal mine, or a flood in an agriculture
field. The third kind of applications is data collection,
which is considered in this paper. These applications
collect the entire sensing data over a long time, and
store them centrally in a centralized database. So-
phisticated data processing and analysis, which is not
suitable to be run in sensors, can be carried out in
the central server. Data collection is required in many
scientific applications, where a scientist usually wants
to record the historical monitoring data of the whole
geographical area for his/her research. For example, a
research for the cause of a freshet would need soil PH,
river level, and humidity data over several years. In

this paper, the design of our outlier cleaning approach
is described based on the data collection applications.
However, the idea of using wavelet-based outlier cor-
rection and neighboring DTW distance-based outlier
removal can be modified to apply to query processing
and event detection applications without losing gener-
ality.

2.3 Outlier Definition

In this paper, outliers of sensing data are referred to
as abnormal sensed values that are from out of or-
der sensors. The nature of environmental monitor-
ing shows that sensing series are always temporally
and geographically similar. Thus, outliers are those
weird sensor readings that are dissimilar with the oth-
ers. More specifically, we define two kinds of outliers
based on this observation:

Short simple outlier A short simple outlier is a
high frequency noise or error. It is usually repre-
sented as an abnormal sudden burst and depres-
sion, which is dissimilar to the other part of the
same sensing series.

Long segmental outliers A long segmental outlier
is the erroneous sensed readings that last for a
certain time period. It is unreal and cannot reflect
the environmental change of its monitoring area
during that time period.

2.4 Outlier Cleaning

Outlier cleaning in this paper means both outlier cor-
rection and removal. In outlier correction, each sensor
tries to correct a sensing series that contains outliers.
The outlier value is substituted by a close approxi-
mation of the real value. It then sends the corrected
sensing data to the sink. On the other hand, outlier
removal discards the sensing data that are detected to
have outliers, and are largely damaged or considered
to have little usage. Intuitively, the two outlier clean-
ing approaches should be connected in series. One ap-
proach should correct the sensing data first, and the
other one should then be used to detect long segmen-
tal outliers. It is not valid to simply delete the out-
liers, because many of them, containing only a little,
short, occasionally appeared outliers are still usable af-
ter correction. Every piece of sensing data is valuable
in a data analysis. It is only when the outliers in the
sensing series are too erroneous to correct, then dis-
carding this sensing series becomes the only choice to
save transmission power. Mapping into the outlier de-
finition above, the short simple outlier is much easier
to be corrected, and the long segmental outlier need
to be removed when it is not correctable.

2.5 Temporal and Spatial Similarity
The environmental data collected from widely distrib-
uted sensors are by their nature similar temporally



and spatially [13]. This temporal and spatial simi-
larity has special meaning in outlier cleaning. Given
a sensing series, a short simple outlier is easy to be
identified by human observation because it is shown
as a sudden change and extremely different from the
rest of the data. Theoretically, this sudden burst or
depression is of high frequency in the frequency do-
main. They can be removed by de-noising techniques
that transform the data into another domain where
the high frequency noise and the low frequency true
data can be separated. A long segmental outlier that
lasts for a certain time period is not easy to be de-
tected by only examining one sensing series, because
it is hard to tell whether it is an outlier or the true
data are changing in that pattern. However, making
use of the spatial similarity of the sensing data, the
outlier sensor should stand out when compared with
the other sensors that monitor the same area. Here
we make an assumption that sensors are largely and
redundantly deployed, and each sensing area is moni-
tored by several sensors. Therefore, an environmental
change in an area will have similar, not necessary the
same, effect on all the geographically close sensors.

3 Outlier Cleaning

We propose two outlier cleaning approaches:
1. using wavelet-based approach to correct outliers;

2. using neighboring DTW distance-based similarity
comparison to detect and remove outliers.

These two outlier cleaning approaches are intended
for in-network data processing within sensor networks.
However, they are also applicable to centralized outlier
cleaning.

3.1 Outlier Correction

Wavelet analysis has long been acknowledged as an
efficient de-noising approach. A time series is trans-
formed into the time-frequency domain. The wavelet
coeflicients represent a gradually refined resolution of
the original time series. Most of the energy and infor-
mation of the data are concentrated in a small number
of coefficients, usually the first few coefficients. The
sensing noises and errors are of high frequency and
reside in high-order coefficients. Therefore, the true
data and outliers, which are a kind of noise, can be
separated in the wavelet space.

In outlier cleaning, simple short outliers can be cor-
rected by wavelet de-noising. Figure 1 shows an ex-
ample of using 5, 10, 20, or 30 wavelet coefficients to
represent a sensing series with 128 points, which has
an outlier at the 48" point. We can observe that the
fewer the coefficients used, the smoother and coarser
the wavelet restored sensing series. Choosing an ap-
propriate number of coefficients, 10 or 20, we can re-
move the outlier while keeping a close approximation
of the original sensing series.
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Figure 1: Outlier correction (Using k= 5, 10, 20, or 30
wavelet coefficients to represent the sensing series. The gray
curve is the sensing series with an outlier occurring at the 48th
point. The bold curve is the restored sensing series.)

In addition, wavelet transform also acts as a di-
mension reduction method. Transmitting the selected
wavelet coefficients instead of the original sensing se-
ries can reduce data traffic by more than a magnitude.
Moreover, wavelet transform, like DWT, only takes
O(n) running time, which is a reasonable computa-
tional complexity for small limited devices like sensors.

By a small modification, the outlier correction ap-
proach can be applied to the case that the exact values
of the non-outlier points are required. This means the
raw sensing data should be sent to the sink instead of
the smaller amount of wavelet coefficients. Correction
is done by comparing the original sensing series (with
possible outlier contained) with the wavelet restored
sensing series. An outlier threshold is predefined by
the user. If at a point p, the difference between the
original and restored values is larger than the outlier
threshold, p is counted as an outlier. We then use the
restored value at p to correct the outlier value, and
send out this corrected series. However, transmitting
the raw data is not energy efficient in sensor networks,
which will only be used when a specific application re-
quires so. In the rest of this paper, we will stay with
the preferred approach of transmitting wavelet coeffi-
cients.

3.2 Outlier Removal

Long segmental outlier detection is based on the neigh-
boring similarity measurement. We notice that envi-
ronmental change is not isolated, which means any
change (increasing or decreasing) will affect a close
area instead of only a single point. Since sensors are
always densely and redundantly deployed, nearby sen-
sors will have similar patterns. Here we assume that
each environmental area is monitored by several sen-
sors. The idea of outlier detection is to compare a
sensing series with that of its neighbors. If a sens-
ing series has a similar counterpart among one of its
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Figure 2: Spatially similar sensing series: sensors in the
gray region are monitoring the same environmental area, and
therefore have similar sensing series. The circled sensor is an
outlier sensors, which can be known from its distinct sensing
series.

neighbors, it is not an outlier because the probabil-
ity of two failed sensors to generate similar erroneous
series is very small. If a sensing series does not have
any similar counterpart among its neighbors, it is higly
possible to be an outlier sensor. Figure 2 plots an ex-
ample of a spatially similar region, in which all the
sensors should have similar sensing series. The circled
sensor, which is quite different from the other sensors
around it, is detected as an outlier sensor.

We use Dynamic Time Warping distance (DTW)
to measure the similarity of two sensing series. The
reason for not using the simpler Euclidean distance
is that: (a) first, sensors in a network are loosely syn-
chronized, so the sensing series are not aligned exactly;
(b) second, there are different delays for different sen-
sors to detect an environmental change, e.g. a fire
occurs at one sensor takes a little while to spread to
its neighbors. Due to the above two reasons, Euclidean
distance is not suitable for measuring the similarity of
sensing series.

DTW is a method that can compare two time se-
ries having elastic shifting on the time axis. They are
considered to be similar, although out of phase. In
Figure 3, the two time series are of similar shape, but
not aligned in the time axis. Euclidean distance com-
pares the i*"* point of one series with the i** point of
the other, and reports a dissimilar result. However,
DTW distance compares the dynamic warped points
as shown in the figure, and therefore can capture the
similar shape of the two series. The DTW algorithm
are based on dynamic programming. The classic DTW
algorithm takes O(n?) time to warp two time series
each with n points. This quadratic algorithm is too
much for limited sensing devices. In practice, accu-
rate approximation like FastDTW is installed in the
sensors, which can run in linear time and space [14].

3.3 Centralized Cleaning Process

Centralized outlier cleaning is carried out after all the
data are collected to the sink. Outlier cleaning is done
step by step:

DWT
distance

Euclidean
distance

Figure 3: Euclidean distance and DTW distance

1. transform the sensing series to the wavelet do-
main;

2. reconstruct the sensing series using the first few
coefficients;

3. compare the original series with the restored series
to detect outlier points;

4. use the value in the restored series to correct the
outlier points;

5. compare the sensing series with that of its geo-
graphically close neighbors;

6. detect an outlier sensing series if it is dissimilar
with its neighboring series.

3.4 In-network Cleaning Process

The above outlier cleaning process can be moved down
to the network level. It depends on the underlying data
routing, so that the distributed sensors can clean the
outliers during the data collection process.

3.4.1 Data Routing

In almost all techniques for in-network aggregation,
a routing tree or graph based on hop count is estab-
lished. Data are propagated from sensors to a sink
through a minimum hop-count path [3]. This mini-
mum hop-count based routing is constructed as fol-
lows: The sink broadcasts an initial message to the
sensor network, containing a hop count parameter. All
the sensors receiving this message select the sender
(now is the sink) as their parent. They then increase
the hop count parameter by one, and rebroadcast the
message. Finally, the message is propagated to the en-
tire network, and each sensor is assigned a hop count
number. During the data collection, a current hop
count number is sent with the data message. By this
means, the message is routed through the reversed
path, which is a hop count decreasing path, to the sink
as illustrated in Figure 4(a). For the sake of aggrega-
tion, sensors are loosely synchronized and the data are
collected hop by hop up to the sink. All the sensors
with hop count number N are scheduled to transmit
at a time period. Sensors with hop count number N-1
are scheduled in the next time period after the hop
count N sensors have transmitted their data.

In this routing algorithm, each sensor can obtain
some local topology information. Assume that sen-
sor A has hopcount = N. First, A knows its direct
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Figure 4: Topology of the in-network outlier cleaning

parents, the nodes who propagated the initial message
with hopcount = N — 1 to it. Second, A knows its
siblings, who are the nodes that propagated the ini-
tial message with hopcount = N. Third, A knows
its direct children, the nodes from whom a data mes-
sage was received with hopcount = N + 1. The above
information is obtained defaultly in the routing pro-
tocol. Besides these, the sensor will actively keep a
sibling list for each of its children. The child node at-
taches its sibling list with the first data message sent
to the parents, therefore, the sibling list for each child
is known by the parent.

3.4.2 Neighboring Relation

Unlike the centralized approach, in in-network aggre-
gation, each individual sensor does not know its geo-
graphically nearest neighbors. The neighboring nodes
considered in in-network outlier cleaning are the chil-
dren, one-hop away siblings, and parents.

The parent-sibling-child relation is set up in the
data routing. As illustrated in Figure 4(b), parents,
children, and siblings can cover the four major direc-
tions of a sensor - up, down, left, and right. We can
detect a outlier sensor by comparing it with its net-
work neighbors in the four directions.

3.4.3 Cleaning Process

In the outlier cleaning process, wavelet-based outlier
correction is done by each sensor, and the neighboring
DTW similarity is compared along the routing path of
the data that goes to the sink.
At the sensor level, each sensor

1. transforms the sensing series to the wavelet do-
main, and

2. selects the first few coefficients to transmit.

At the network level, sensor A receives its children’s
sensing series, and decides which to forward and which
to delete. The outlier detection process is as follows”
1. Sensor A reconstructs the children sensing series
from their wavelet coefficients.

2. A calculates the DTW similarity of its children’s
sensing series and itself’s.

(a) If they have similar sensing series, both A
and those similar children are flagged as
Non-outlier.

(b) If all the children series are dissimilar, A is
flagged as Unknown, since other neighbors
need to be compared before making an out-
lier decision for A’s sensing series.

3. When A’s sensing series is transmitted to its par-
ent B. For a child’s sensing series flagged as Un-
known, B compares it first with the series of the
siblings of this child, then with the sensing series
of B itself. Remember that a sibling list for each
child is maintained when the routing paths are set
up.

(a) If there is a similar sensing series to that of
this Unknown child, it is not an outlier and
should be forwarded.

(b) If all the sensing series are dissimilar, this
child is finally detected as an outlier after
comparing with all its network neighbors.
The sensing series of this child is removed
from the forwarding list.

For each sensor, it’s sensing series is compared with
those of its children when it receives the children’s
sensing series. The comparison of siblings and parents
is done by the parent sensors. In the case when a sen-
sor node has multiple parents, each parent would con-
duct its comparison independently. An outlier sensing
series can be detected and removed by all the parents.

4 Evaluation

We have simulated a sensor network of about 900 sen-
sors deployed in a grid topology. The transmission
range of each sensor covers the upper, lower, left, right,
upper and lower left, and upper and lower right sen-
sors. The environmental sensing series of each sensor
is generated from a temporal-spatial model. We have
conducted simulations to evaluation our outlier clean-
ing approach under several evaluation metrics.

4.1 Evaluation Dataset

The evaluation datasets are generated from a model
that simulates an area with temporal-spatial corre-
lated environment. A number of points called event
trigger have been placed in the simulation area. The
sensed value of the event trigger follows a random
walk. The location of the event trigger is also a ran-
dom walk on the 2D simulation area. The value of
a sensor at time ¢ is the weighted combination of the
values of the event triggers, where the weight is the
inverse of the normalized distance between the tar-
get point and the event trigger point. Figure 5 plots
a snapshot of the changing environment on a square
monitoring area at a certain time. The values on the
vertical axis are the current sensing readings. Finally,
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Figure 5: A snapshot of a temporal-spatial correlated area

outliers are added to the dataset as random errors. An
outlier may affect only one data point in the sensing
series, or affect a segment lasting for a certain time pe-
riod. Different amounts of outliers can be introduced,
distributed randomly in the area and in time. These
outliers can be of different lengths. We have adjusted
the model parameters and generated several environ-
mental datasets in the simulation.

4.2 Evaluation Metrics

correction ratio It measures how much the outliers
are corrected in order to be closer to the real value.
Given the error of the outlier value, and the er-
ror of the corrected value, the correction ratio is
calculated as follows:

. outlier error — corrected error
cratio =

outlier error

precision and recall This metric is used to mea-
sure the performance of outlier detection using
DTW based outlier removal. Precision is the ra-
tio of the correctly detected outliers and the total
number of the detected outliers. Recall is the ra-
tio of the correctly detected outliers and the total
number of outliers.

transmission bytes We use the total number of
transmission bytes in the network to measure the
reduced traffic amount. This can represent the
amount of energy saved in data transmission.

4.3 Results

In this section, we will evaluate our in-network outlier
cleaning approach in different scenarios. If not explic-
itly specified, the default parameters listed in Figure
6 are used in the simulation.

4.3.1 Outlier Correction Ratio

We first evaluate the wavelet-based outlier correction
approach when choosing different number of wavelet
coeflicients to represent the sensing series. We have
added different amounts of outliers into the simulation
scenarios - 500, 1000, 1500, and 2000 outliers. Each
outlier was a single burst. The percentage of outliers

network size 30 x 30
the number outlier sensors 300
sensing series length 128
outlier length 10 ~ 100
the number of wavelet coeffi- | 10
cients

DTW threshold 20

Figure 6: Default parameters in the simulation. We test
the change of the parameters in our evaluation.
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Figure 7: Correction ratio of wavelet-based correction

in the dataset was 0.42% ~ 1.74%. Figure 7 plots the
simulation results. The more the wavelet coefficients
used, the finer the granularity. The high order wavelet
coefficients can capture the outlier burst, so the cor-
rection ratio keeps decreasing. On the other hand, if
too few wavelet coefficients are used, the restored sens-
ing series is too coarse to correct the outlier. The best
correction ratio exists at 5 coefficients. Choosing 5 to
12 coefficients can give a correction ratio of over 90%.
To have a good approximation of the original sensing
series, we have chosen 10 coefficients in the rest of the
simulations.

4.3.2 DTW Threshold

In neighboring DTW distance-based outlier removal,
we have used a DTW threshold to decide whether two
sensing series are similar or not. If their DTW distance
is smaller than the DTW threshold, they are regarded
as similar sensing series, and vice versa. We have sim-

— —recall - - - -precision

1009% AT R R o W M Ml e
_ 80% 1 < =
< o
€ 50% =
=]
g 40%
s

20%

0% T T
0 20 40 60
Threshold

Figure 8: Recall and precision in changing DTW threshold
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ulated the different setting of DTW threshold and the
results are shown in Figure 8. The precision of de-
tecting outliers can be very high when using a thresh-
old larger than 10. However, recall keeps decreasing
because when the threshold is high some outliers are
mistakenly counted as valid data.

4.3.3 Outlier Amount

We have also simulate different amount of outliers. As
in Figure 6, the length of these outliers is randomly
chosen from 10 to 100. The number of outliers in-
creases from 100 to 800. We have limited each sensor
to have at most one outlier. Hence, 800 outliers means
8/9 sensors suffer from failure. Figure 9 shows that
both recall and precision are high. They are almost
not affected by the amount of outliers.

4.3.4 Outlier Segment Length

In all the other scenarios, the length of an outlier seg-
ment was randomly chosen in the region [10,100]. In
this part, we have tested how the outlier length would
affect outlier cleaning. We have explicitly set the out-
lier length to be 10 to 100 in different runs of simu-
lations, and compared their results. The simulation
results are plotted in Figure 10. Precision remains
high under different outlier lengths, which means our
algorithm rarely reports non-outlier sensors as out-
liers. However, recall is low when the outlier length
is short, which means many of the true outliers are
not detected. One possible reason is that the shorter
outliers have already been corrected by wavelet ap-
proximation. We have justified this by examining the
missing outliers (undetected outliers) to see how many
of them are corrected by wavelet-based outlier correc-
tion. Figure 11 shows the total amount of detected
and corrected outliers, where an outlier is counted as
corrected if its error after correction is smaller than
1.0.

4.3.5 Traffic Reduction

Finally, we have evaluated the amount of traffic re-
duction in the outlier cleaning process. Since only 10
wavelet coefficients have been used for each 128 point
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Figure 10: Recall and precision in changing outlier seg-
ment length
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Figure 11: The total amount of corrected and removed
outliers

long time series, the traffic reduction in wavelet correc-
tion is about 92.19%. If an outlier is detected, the traf-
fic of transmitting and forwarding this outlier is saved.
Since a sensor is normally routed through a multihop
path to the sink, one outlier detection will save several
hops of transmission. Figure 12 shows that with the
increasing number of outliers, the amount of reduced
traffic in DTW-based outlier removal is also increas-
ing.

5 Related Work

Outlier detection is a fundamental issue in data man-
agement. Hawkins defines outlier as an observation
that deviates a lot from other observations, and is
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very possible to be generated from a different mech-
anism [15]. Thus, outlier detection is also called de-
viation detection. Most of the outlier detection tech-
niques are based on data mining. Hodge and Austin
classified a variety of outlier detection methods into
three categories in their survey paper [16]: Unsuper-
vised clustering based on distance and density, which
determines the outliers with no prior knowledge of the
data [17]; supervised classification that required pre-
labelled data and a machine learning process [18]; and
semi-supervised methods that can tune the detection
model incrementally as new data arrive [19]. Most of
the proposed outlier detection approaches are central-
ized and off-line. They cannot be applied to sensor
network applications directly.

Only a few papers have tried to address in-network
outlier detection in the context of sensor networks.
Palpanas et al. have proposed an in-network approach
for distributed online deviation detection for stream-
ing data [20]. However, this approach highly depends
on the existence of high capacity sensors to manage
groups of other sensors and perform outlier detection.
Another related work proposed by Branch et al. uses
a non-parametric, unsupervised method to detect out-
liers. They also use the distance-based metrics in the
detection [21]. Hida et al. proposed a method to
perform outlier detection in query processing (such
as Max and Avg), so that query aggregation can be
more reliable [22]. These approaches do not combine
the temporal spatial similarity in outlier detection, be-
cause they detect outliers as a single value. However,
in this paper we try to detect outliers in a number
of time series. As a first step, we use wavelet based
outlier correction and DTW distance-based outlier re-
moval, which can be thought of as a distance based
approach. This requires that the data in the whole
area exhibit the same distribution, and the user should
have some knowledge of the data to set an appropriate
threshold. Our future work tries to address the outlier
problem when the data are of different distribution. In
this case, a single threshold may not be appropriate,
and a sophisticated statistical model is required [23].

6 Conclusions

In this paper, we have presented an in-network out-
lier cleaning approach for sensor network data collec-
tion applications, using wavelet based outlier correc-
tion and DTW distance-based outlier removal. We
have considered the spatial-temporal correction of en-
vironmental data; we not only detected but also tried
to correct the outliers; we were able to remove the
outliers within 2 network forwarding hops and reduce
a large amount of the traffic. We have evaluated our
approach under comprehensive simulations.
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