Parallel Linkage

Hung-sik Kim1 hungsik@psu.edu
Dongwon Lee1,2 dongwon@psu.edu
1Computer Science and Engineering
2Information Sciences and Technology
The Pennsylvania State University
University Park, PA, 16802, USA

Record Linkage

- **Record Linkage**: Identify all matching records between two collections of records
 - Citations in digital libraries
 - Addresses in customer relationship management
 - Patient records in health information system
- Different from Database Join
 - Whole record vs. a few short attributes
 - Match vs. Match & Merge

Technical Landscape

- Abundant research in many disciplines
- Also relevant to:
 - DB: approximate join, merge/purge
 - DL: citation matching, de-duplication, author name disambiguation
 - AI: identity matching
 - NLP: word sense disambiguation
 - IR: web query results clustering
 - LIS: name authority control

Related Work

- SERF project @ Stanford Univ.
 - Blackbox approach
 - Distributed and parallel record linkage
- Febrl project @ Australia National Univ.
 - Open source GUI based record linkage tool
- Data Linkage project @ Penn State Univ.
 - New applications
 - Group Linkage, Video Linkage
 - New aspects
 - Adaptability
 - http://pike.psu.edu/linkage/

Data Set

- **Set characteristic**
 - Clean set
 - A is clean iff \(r, s \in A, r \neq s \)
 - Dirty set
 - A is dirty iff \(r, s \in A, r = s \)
- **Input data sets**
 - Clean vs. Clean
 - Dirty vs. Clean
 - Dirty vs. Dirty

O(|A||B|)

Type of Matching & Merging

- **match(r, s)** returns
 - \(r = s \)
 - \(r \neq s \) → no merge
Iterative Linkage Framework

- `match()`, `merge()` and iteration

![Diagram showing iterative linkage framework]

Proposed Algorithms

- Sequential Linkage: six variants
 - Clean-Clean: S-CC
 - Dirty-Clean: S-DC, S-DC\(_{self}\)
 - Dirty-Dirty: S-DD\(_1\), S-DD\(_2\), S-DD\(_3\)

- Parallel Linkage: five variants
 - Clean-Clean: p-CC
 - Dirty-Clean: p-DC, p-DC\(_{self}\)
 - Dirty-Dirty: p-DD\(_1\), p-DD\(_2\)

Sequential Linkage

- s-DC (Dirty vs. Clean)
 - Simple diagram
 - Iteration will stop when `dirty set = \(\Phi\)`

- s-self (one dirty set)
 - Same as s-DC, but start with empty clean set

Sequential Linkage

- s-CC (Clean vs. Clean)
 - Iteration will stop when `C = \(\Phi\)`

 - `s-DC_{self}(A,B) = s-CC(s-self(A),B)`
 - `s-DD1(A,B) = s-DC(A,s-self(B))`
 - `s-DD2(A,B) = s-CC(s-self(A),s-self(B))`
 - `s-DD3(A,B) = s-self(A \cup B)`

Parallel Linkage

- p-CC
 - Put all clean sets into a buffer
 - Partition one clean set, B, and send subsets
 - Send the other clean set, A, to all processors

![Diagram showing parallel linkage p-CC]

- p-DC: partition data sets and apply s-DC
- p-DC\(_{self}\): partition data sets and apply s-DC\(_{self}\)
- p-DD\(_1\): partition data sets and apply s-DD\(_1\)
- p-DD\(_2\): partition data sets and apply s-DD\(_2\)

Similar implementation to p-CC (but much more complicated)
- Details omitted in the presentation
Experimental Setup
- Evaluation metrics
 - sequential linkage
 - number of comparisons (NC)
 - running time (RT)
 - parallel linkage
 - speedup_{NC} / efficiency_{NC}
 - speedup_{RT} / efficiency_{RT}
- Data set
 - size: up to 5,000 records
- Environment
 - distributed Matlab in PC cluster at Penn State
 - 1~32 nodes

Sequential Linkage
- Running time and Number of comparisons

Parallel Linkage
- Efficiency and Normalized RT/NC

Comparison against Others
- Efficiency_{RT} and Efficiency_{NC}
Conclusion

- Conclusion
 - Sequential linkage methods can be selected according to input data characteristics
 - Parallel linkage methods are shown to be efficient and scalable
 - Any distance function can be used in sequential or parallel linkage methods

Any Questions?

- Data/Codes are downloadable at:
 - http://pike.psu.edu/download/cikm07/

Thank You!