Group Linkage

Byung-Won On, Penn State University, USA
Nick Koudas, University of Toronto, Canada
Dongwon Lee, Penn State University, USA
Divesh Srivastava, AT&T Labs, USA

ICDE 2007

Motivation

- Data quality problem is increasing in DB applications
 - Dedicated venues: IQIS, CleanDB, IQ
- Reasons
 - Transcription errors
 - Lack of standards for recording fields
 - Errors due to poor design: eg, update anomalies, missing key constraint
Record Linkage

- Determining if two (record) entities are similar
- Eg
 - Address in CRM
 - #1: Dongwon Lee, 110 E. Foster Ave. #410, State College, PA, 16802
 - #2: LEE Dong, 110 East Foster Avenue Apartment 410, University Park, PA 16802-2343
 - Citation in Digital Library
 - #2: [SM83] G. Salton et al. 1983

Landscape

- Abundant research in many disciplines
- A.K.A.
 - DB: approximate join, merge/purge, record linkage
 - DL: citation matching, author name disambiguation
 - AI: identity matching
 - NLP: word sense disambiguation
 - IR: web query results clustering
 - LIS: name authority control
Group Linkage

- Often, “entity” is represented as a group of relational records (sharing a group ID).
- Eg,
 - An author with a group of publication records
 - A household in a census survey with a group of family members
 - An image with a group of sub-images in a grid

Group Linkage Problem: to determine if two entities represented as groups are approximately the same or not

Group Linkage Example

Collateral, 04
The Last Samurai, 03
Minority Report, 02
Vanilla Sky, 02

T. Cruise

V. F. Xu

Sofa-Jumping
Vanilla Sky
The Last Samurai
Mission Impossible
Mission Impossible 2

TX204
PPQ03
Popular Group Similarity

- Jaccard
 - Intuitive, cheap to run
 - Error-prone
 \[
sim(g_1, g_2) = \frac{|g_1 \cap g_2|}{|g_1 \cup g_2|}
\]

Q: Can we combine Jaccard and Bipartite Matching for Group Linkage?

- Bipartite Matching
 - Cardinality
 - Weighted
 - Rich
 - Expensive to run

Intuition for Better Similarity

- Two groups are similar if:
 - A large fraction of elements in the two groups form matching element pairs
 - There is high enough similarity between matching pairs of individual elements that constitute the two groups
Group Similarity

- Two groups of elements:
 - $g_1 = \{r_{11}, r_{12}, \ldots, r_{1m_1}\}$, $g_2 = \{r_{21}, r_{22}, \ldots, r_{2m_2}\}$
 - The group measure BM is the normalized weight of the maximum bipartite matching M in the bipartite graph $(N = g_1 \cup g_2, E = g_1 \times g_2)$

$$BM_{\text{sim}, \rho}(g_1, g_2) = \frac{\sum_{(r_{i1}, r_{i2}) \in M} (\text{sim}(r_{i1}, r_{i2}))}{m_1 + m_2 - |M|}$$

such that $\text{sim}(r_{i1}, r_{i2}) \geq \rho$
- $BM(g_1, g_2) \geq \theta$

User-set Parameters

Example ($\rho = 0.3, \Theta = 0.9$)

$BM_{\text{sim}, \rho}(g_1, g_2) = \frac{0.9 + 0.7}{3 + 2 - 2} = \frac{1.6}{3} = 0.53 < \Theta$

Therefore, $g_1 \not\sim g_2$!
Challenge

- **Each BM group measure uses the maximum weight bipartite matching**
 - Bellman-Ford: $O(V^2E)$
 - Hungarian: $O(V^3)$
- **Large number of groups to match**
 - $O(NM)$

Solution: Greedy matching

- Bipartite matching computation is expensive because of the requirement
 - No node in the bipartite graph can have more than one edge incident on it
- Let’s relax this constraint:
 - For each element e_i in g_1, find an element e_j in g_2 with the highest element-level similarity $\equiv S_1$
 - For each element e_j in g_2, find an element e_i in g_1 with the highest element-level similarity $\equiv S_2$
Upper/Lower Bounds

\[BM_{\text{sim}, \rho} (g_1, g_2) = \frac{\sum_{(r_i, r_j) \in M} \left(sim(r_i, r_j) \right)}{m_1 + m_2 - |M|} \]

\[UB_{\text{sim}, \rho} (g_1, g_2) = \frac{\sum_{(r_i, r_j) \in S_1 \cup S_2} \left(sim(r_i, r_j) \right)}{m_1 + m_2 - |S_1 \cup S_2|} \]

\[LB_{\text{sim}, \rho} (g_1, g_2) = \frac{\sum_{(r_i, r_j) \in S_1 \cap S_2} \left(sim(r_i, r_j) \right)}{m_1 + m_2 - |S_1 \cap S_2|} \]

- Properties:
 - Numerator of UB is at least as large as that of BM
 - Denominator of UB is no larger than that of BM
 - \[\Rightarrow \] UB is the upper-bound of BM
Theorem & Algorithm

\[BM_{\text{sim}, \rho}(g^1, g^2) \leq UB_{\text{sim}, \rho}(g^1, g^2) \]

Theorem 1

- IF \(UB(g^1, g^2) < \theta \rightarrow BM(g^1, g^2) < \theta \rightarrow g^1 \neq g^2 \)

\[LB_{\text{sim}, \rho}(g^1, g^2) \leq BM_{\text{sim}, \rho}(g^1, g^2) \]

Theorem 2

- ELSE IF \(LB(g^1, g^2) \geq \theta \rightarrow BM(g^1, g^2) \geq \theta \rightarrow g^1 \approx g^2 \)
- ELSE, compute \(BM(g^1, g^2) \)

Goal:

\[BM(g^1, g^2) \geq \theta \]

MAX Heuristics

\[MAX_{\text{sim}, \rho}(g^1, g^2) = \max_{(r_{i}, r_{j}) \in g^1 \times g^2} sim(r_{i}, r_{j}) \]

- Two groups with high BM will share at least one pair of very similar elements
 - Use MAX to quickly identify those
 - No guarantee of avoiding false identification
- We proposed 4 group similarity measures:
 - BM, UB, LB, and MAX
Evaluation

- Evaluated Search version (vs. Join version)
- Use bibliography data set from ACM and DBLP digital libraries
 - Authors with his/her publication lists
- Various cases
 - Real vs. Synthetic
 - Uniform vs. Skewed
 - Jaccard vs. 4 proposals (BM, UB, LB, and MAX)
 - Hybrid as blocking method
- Main evaluation metric: AVG recall

BM vs. Jaccard

S1: Left: 300 DBLP groups
Right: 700,000 ACM groups + 1/3 or 3 dummy groups

Jaccard gets confused easily
BM vs. Jaccard

S2:
- Left: 100 ACM groups
- Right: Left + 100 erroneous groups (30%, 45%, 60%)

![Bar chart showing average recall comparison between Jaccard and BM methods with different error rates.]

MAX vs. UB

R2Net:
- Left: 100 DBLP groups on AI topics
- Right: 700,000 ACM groups

![Bar chart showing average recall comparison between MAX and UB methods with different values.]

ICDE 2007 / Group Linkage
ACM Dataset

R2Net: Left: 100 DBLP groups on AI topics
Right: 700,000 ACM groups

![Graph](image)

UB(10)|BM(k)

Conclusion

- When entities have a group of elements in them, group linkage is useful and efficient
- Directions
 - More efficient implementation => Approximate Group Linkage
 - Hierarchical Group Linkage: OLAP
 - Group => Tree, Graph
 - Application to Image Retrieval