Motivation

- The private record linkage problem ---
 - Alice holds database A
 - Bob holds database B
 - Find common records of A and B, such that A and B remain private.
 - Common records only revealed to Alice and Bob

Applications

- Patient Information
- Cooperation between government agencies
- Sharing of intellectual property
- Outsourcing

Background: Record Linkage

- Heterogeneous data
 - Multiple Object Naming / Representations
 Ex: The Pennsylvania State University vs. Penn State
 Ex: John A. Smith vs. Smith, J. A.
 - Spelling Mistakes
 Ex: were hear vs. where here
 - Object Character Recognition (OCR)
 Ex: 0 (zero) vs. 0, 1 (one) vs. 1.

Record Linkage: Two Steps

1. Blocking
 - Only compare tokens with common features
 Ex: Alphabetic Sort
 Ex: Common tokens

2. Distance Metrics:
 - Assign a score of similarity: \(\text{dist}(r_1, r_2) \)
 - If score > threshold
 Then \(r_1 \) and \(r_2 \) are matched
 Ex: Edit distance.
 Ex: TFIDF

Token Blocking

<table>
<thead>
<tr>
<th>Block id</th>
<th>Patient Database A</th>
<th>Database A Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>John Smith, Alzheimer, Chicago</td>
<td>a1, a2</td>
</tr>
<tr>
<td>a2</td>
<td>Smith John, diabetes, Chicago</td>
<td>a1, a3</td>
</tr>
<tr>
<td>a3</td>
<td>John, Alzheimer, Heart, Chicago</td>
<td>a2</td>
</tr>
<tr>
<td>a4</td>
<td>Smith, Heart, Chicago</td>
<td>a3, a4</td>
</tr>
</tbody>
</table>
Private Record Linkage

- Added Security Dimension
- Steps:
 - Secure Data Mapping
 Ex: Commutative hashing
 - Security-enhanced distance Metric
 Ex: Secure TFIDF
- Propose adding a new step:
 - Secure Blocking
- More Contributions:
 - Definition of protocol
 - Analysis of privacy
 - Experimental validations

Related Work

- Medical Field
- Minimal Information Sharing (Agrawal et al 2003)
- Rivakumar et al 2004
 - Secure distance metrics
 - Secure intersection algorithm

Communication / Threat Model

- Three parties
 - 2 collaborating parties
 - A third party
- All parties semi-trusted
- Follow protocol precisely
 - Provide accurate data
 - Do not collude with other parties
- However, try to find as much other information
 - Dictionary attacks
 - Statistical analysis

Threat Model

- Loose characterization of sharing:
 - Categories:
 - DBsize
 - Vocabsize
 - Reclen
 - Tokfrq
 - Levels of exposure:
 - Yes
 - No
 - inf

Threat Model

![Diagram](image)

Protocol

- Participant:
 - Alice holding db A
 - Bob holding db B
 - Third party Carol
- Protocol:
 1. Negotiate k
 2. Alice & Bob pre-generate blocks. (token blocking)
 3. Carol computes private record linkage problem (secure TFIDF)
 4. Carol forwards results to Alice and Bob

![Diagram](image)
Secure TFIDF

- Based on
 - Token Frequency (TF)
 - Inverse Document Frequency (IDF)

- Per token

\[
TFIDF_{weight} = \log(TF_{weight}) + \log(1/IDF_{weight})
\]

Secure TFIDF

- Hash Signature
 - Normalize size of weight vectors
 - Compact representation

\[
\text{Hash Signature} = 2^t \quad \text{float array}
\]

4 Blocking Schemes

- Phase 1:
 - Baseline
 - Simple
 - Record-aware
 - Frugal Third Party

- Phase 2:
 - Jaccard

Two Phase Blocking

- Phase 1:
 - Baseline
 - Simple
 - Record-aware
 - Frugal Third Party

- Block

Two Phase Blocking

- Phase 1:
 - Baseline
 - Simple
 - Record-aware
 - Frugal Third Party

- Block
Two Phase Blocking

- **Phase 2 Blocking**

\[
\text{Jaccard}(r1, r2) = \frac{|r1 \cap r2|}{|r1 \cup r2|}
\]

4 datasets - Run times

![Run times graph](image)

4 datasets - Precision

![Precision graph](image)

Comparison of Blocking (1/2)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Comparison of Blocking (2/2)

![Blocking comparison graph](image)

Summary

- Private Record Linkage Protocol that supports blocking.
- Secure & efficient representation of TFIDF weight vectors using hash signatures.
- Two phase blocking, characterization of information leakage, and three blocking schemes.

- Future Work:
 - Apply concepts to related algorithms.
 - Specify incremental maintenance policy.
Summary

- Private Record Linkage Protocol that supports blocking.
- Secure & efficient representation of TFIDF weight vectors using hash signatures.
- Two phase blocking, characterization of information leakage, and three blocking schemes.

- Future Work:
 - apply concepts to related algorithms.
 - Specify incremental maintenance policy.

Outline

- What is Web Services?
- Motivation
- Main Idea: MISQ
- Illustration
- Conclusion

Blocking Summary

Example

Example (cont.)

Comparison of Blocking & Matching Time
<table>
<thead>
<tr>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio State</td>
</tr>
<tr>
<td>Penn State</td>
</tr>
<tr>
<td>Pennsylvania State</td>
</tr>
<tr>
<td>West Virginia State</td>
</tr>
<tr>
<td>Michigan State</td>
</tr>
<tr>
<td>Nebraska</td>
</tr>
<tr>
<td>Purdue University</td>
</tr>
<tr>
<td>Wisconsin</td>
</tr>
</tbody>
</table>