An Effective Approach to Entity Resolution Problem Using Quasi-Clique and its Application to Digital Libraries

ACM/IEEE JCDL 2006

Byung-Won On, Ergin Elmacioglu, Dongwon Lee (Penn State Univ.)
Jaewoo Kang (North Carolina State Univ.)
Jian Pei (Simon Fraser Univ.)

Motivation @ ACM DL

Jeffrey D. Ullman @ Stanford Univ.

The same entities (authors) mistakenly appear under different name variants
Motivation @ DBLP

Each entity (author) has “a list of tuples” associated with it => Grouped Entity

Grouped Entity

Regular Entity

Grouped Entity

ID or Name

Contents or Metadata
Problem Definition

- Entity Resolution (ER) Problem
 - The process of detecting and merging duplicate entities that represent the same real-world object
- Grouped Entity Resolution (GER) Problem

Given a set of entities, \(E \), where each contains a group of elements, for each entity, \(e_c (\in \mathcal{E}) \), identify all variant entities, \(e_v (\in \mathcal{E}) \), such that \(\text{dist}(e_c, e_v) < \delta \)

Limitation to Distance Metrics

- Many previous approaches
 - SVM, Jaccard, TF/IDF
 - Cosine similarity
 => Best accuracy
 - SVM
 => Slow time
 => Training data set is required
- Suffer from false positives
- Need to unearth the hidden relationship beyond distance
False Positive Problem

\[a = \{d, e, k, g, z, y, x\} \]
\[f = \{d, e, k, g, p, r, t, q\} \]
\[c = \{d, e, x, g, z, y, j, t\} \]

\[\text{Jaccard} (a, f) = \frac{4}{11} = 0.36 \]
\[\text{Jaccard} (a, c) = \frac{6}{10} = 0.6 (\leq \text{name variant of } a) \]
Superimposition

Graph(a) Collaboration graph

False Positive Problem

name variant of a

Graph(a) Graph(f) Graph(c)
Idea

- Represent entity e_1 as graph g_1 using common tokens
 - Author: co-author
 - Venue: common venues
 - Title: common keywords

- Superimpose the graph g_1 onto base graph B_1 to get a final graph representation G_1
 - Author: entire collaboration graph as B_1
 - Venue: entire venue similarity graph as B_1
 - Title: entire token co-occurrence graph as B_1

- Measure the similarity of two entities e_1 and e_2 w.r.t G_1 and G_2

Quasi-Clique

- Graph G
 - $V(G)$: set of vertices
 - $E(G)$: set of edges
 - Γ-quasi-complete-graph ($0<\Gamma\leq1$)
 - Every vertex in G has at least Γ degrees
 - $V(S) (\subseteq V(G))$
 - $G(S)$: Γ-Quasi-Clique
 - Γ: Quasi-Clique
 - $G(S)$: Γ-Quasi-Clique
 - If $V(S)$ forms the graph satisfying Γ-quasi-complete-graph
 - $G(S)$: Clique
 - $\Gamma=1$

- Use Quasi-Clique (QC) to measure contextual distances
 - E.g., Function $QC(G(a), G(b), \Gamma=0.3, S=3)$

 (1) $\Gamma=0.3$: each vertex has 2 degrees
 (2) Find cliques shared between $G(a)$ and $G(b)$
 (3) $S=3$: # of vertices appearing in cliques > 3

b is the name variant of a by (1), (2), and (3)
Algorithm 1: distQC

Input: A grouped-entity e, an ER method \mathcal{M}, and three parameters (α, γ and \mathcal{S}).

Output: k variant grouped-entities, e_v ($\in E$), such that $e_v \sim e$.

1. Using \mathcal{M}, find top $\alpha \times k$ candidate entities, e_X.
2. $G_c(e) \leftarrow$ context graph of e;
3. \textbf{forall} e_i ($\in e_X$) \textbf{do}
4. \hspace{1em} $G_c(e_i) \leftarrow$ context graph of e_i;
5. \hspace{1em} $g_i \leftarrow$ QC($G_c(e)$, $G_c(e_i)$, γ, \mathcal{S});
6. Sort e_i ($\in e_X$) by $|g_i|$, and return top-k;

Experimental Validation

- 47 real cases of canonical and variant grouped entities (ACM)
 - Average 24 tuples
- Synthetic cases

<table>
<thead>
<tr>
<th>Data set</th>
<th>Domain</th>
<th># of grouped entities</th>
<th># of tuples in all entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>Computer Science</td>
<td>707,368</td>
<td>1,037,968</td>
</tr>
<tr>
<td>EconPapers</td>
<td>Economics</td>
<td>18,399</td>
<td>20,486</td>
</tr>
<tr>
<td>BioMed</td>
<td>Medical</td>
<td>24,008</td>
<td>6,160</td>
</tr>
<tr>
<td>IMDB</td>
<td>Entertainment</td>
<td>935,707</td>
<td>446,016</td>
</tr>
</tbody>
</table>
Parameter Tuning

- JC: Jaccard similarity
- JC+QC: JC + Quasi-Clique
- TI: TF/IDF Cosine similarity
- TI+QC: TI + Quasi-Clique
- IC: IntelliClean (venue hierarchy)
- IC+QC: IC + Quasi-Clique

ACM Real Dataset

Attributes:
- JC: Jaccard similarity
- JC+QC: JC + Quasi-Clique
- TI: TF/IDF Cosine similarity
- TI+QC: TI + Quasi-Clique
- IC: IntelliClean (venue hierarchy)
- IC+QC: IC + Quasi-Clique
IMDB Synthetic Dataset

Related Work

- Bhattacharya et al., DMKD (2004)
- Malin, LACS (2005)
- RelDC: Kalashnikov et al., TODS (2005)
Summary

- Using contextual distance by using a group of tuples in entity is beneficial in solving GER problem
- Quasi-Clique can be used to estimate the strength of core concepts of two entities
 - Reduce false positives by adjusting the results of distance-based metrics (eg, Jaccard, cosine)
- Extension to other domains (eg, actor with a movie list) to make the proposal generic and robust is underway