
MISQ: A UML-based Analytical Modeling Methodology
for Optimizing Web Service Composition

Seog-Chan Oh
IE / Penn State University IST / Penn State University

sxo160@psu.edu

Dongwon Lee

dongwon@psu.edu

Soundar Kumara
IE / Penn State University

skumara@psu.edu

Abstract

A novel UML-based analytical modeling

methodology, named MISQ, is presented for
optimizing web service composition in Business
Service Networks. MISQ enables functional and
temporal analyses at a high-level design stage so that
web service composition can be systematically
optimized. Furthermore, MISQ provides an automatic
generation of web service implementations for
improving productivity and reliability.

1. Introduction

In Business Service Networks (BSN’s), by
combining multiple, heterogeneous “services,” one can
establish new value-added business processes for
further applications. In particular, web services have
emerged as a popular means to describe the “services”
that each vendor provides. In such a setting, one of the
key issues is how to generate, discover, compose, and
optimize web services that are of interest.

In this paper, we especially focus on the problem of
optimizing web service composition and propose a
novel methodology, MISQ, as a solution. That is, we
use UML to design agent based business processes,
and two formal modeling schemes, Stochastic Process
Algebra (SPA) and Generalized Stochastic Petri Nets
(GSPN) [5], to analyze initial business processes
design and to obtain optimized parameters. Finally, we
propose to use the Business Process Execution
Language for Web Service (BPEL4WS) [7] as
implementation artifacts for expressing the optimized
business processes.

Example. 1 (Motivation)

Consider a scenario in a BSN’s where the
optimization of composed web services is a crucial
issue.

Suppose Bill opens an Internet-based auto loan
brokerage company, FirstBroker, where he locates a
loan with low interest rate for customers who pays a
nominal fee as a return. FirstBroker uses web services
from three loan companies, StarLoan, UnitedLoan, and
BestLoan. Once FirstBroker gets customer’s inquiry, it
sends bid requests to three loan companies using their
web services, and forwards the lowest interest rate
among returned to the customer. Whenever
FirtstBroker sends loan rate requests to the loan
companies, FirstBroker has to pay a fee to each. That
is, FirstBroker is a business adapter and three loan web
services are software vendors in the BSN’s.

customercustomer FirstBrokerFirstBroker

Star loanStar loan

United loanUnited loan

Auto loanAuto loan
RequestRequest

Bid Bid
requestrequest

How many loan companies are
appropriate?

How much charge to customers
is appropriate?

(Business Adopter)(Business Adopter)

(Software Vendor)(Software Vendor)

(Software Vendor)(Software Vendor)

Figure 1. Use case of FirstBroker example

Furthermore, a customer pays a fee to FirstBroker

only if she is satisfied with the proposed rate and
decides to make a contract with FirstBroker. In
summary, Bill’s profit model is the following:

Profit model = (# of accepted proposals by customers
× charge per customer) – (# of loan rate requests × #
of loan companies × charge per loan rate request)

Suppose Bill agrees to pay $1 for each loan rate
request to loan companies, while charging $10 to
customers who eventually accept the proposed rate.
The business is initially booming, attracting large
number of customers due to the fact that customers do

not have to pay for initial inquiries, and pay $10 only
afterwards. However FirstBroker eventually files a
bankruptcy despite many customers submitting
inquiries.

The scenario presented often occurs in combining
and composing new services in BSN’s where a
decision for parameters must be made to maximize
profits. If Bill has chosen a correct number of web
services (i.e., loan companies) and proper service
charge to customers, possibly he would have been still
in business.

Like the case of FirstBroker, early identification of
optimal values through formal analyses is particularly
desirable since the costs of changing the design at a
later stage are much higher [4]. However, identifying
optimal ones when multiple web services are
complicatedly inter-related is a challenging task, since
in real applications, such parameters to consider can be
many and non-trivial.

Therefore, there is an imminent need for the
methodology that systematically and mechanically
helps to model, analyze, and optimize web service
compositions. For this solution, we propose MISQ in
this paper.

2. Overview of MISQ

SPA

Simulation

GSPNFormal Model
& Analysis

High-Level
UML

(Sequence, State)

High-Fidelity
UML

(Class, Activity)

Implementation
(BPEL, WSDL)

6

7

1

2 3

45

Figure 2. Overview of MISQ

As illustrated in Figure 2, MISQ consists of

analysis and implementation stages. Informally, the
analysis stage runs as follows:
1. Design high-level UML diagrams such as state and

sequence diagrams.
2. Transform high-level UML designs into a formal

model in Stochastic Process Algebra (SPA) model.
3. Transform SPA into Generalized Stochastic Petri-

Net (GSPN) model using steps in [5].
4. Perform analysis via simulation.

5. Based on simulation results, identify optimal
parameters and design. If needed, 2~4 steps may be
repeated.

The implementation stage is adopted from [2]
similar to waterfall model of software development. It
runs as follows:
6. Based on the optimized high-level design, produce

high-fidelity such as class and activity diagrams.
7. From high-fidelity model, generate implementation

artifacts.
MISQ contributes the following:

• A Petri-Net model for analyzing initial high level
UML based designs, and the temporal and
functional analysis for optimization can increase
productivity and reliability of web service based
software systems in BSN’s

• A methodology for seamless integration of several
languages or modeling tools (e.g., UML, SPA,
GSPN, WSDL and BPEL): and a detailed example
with a simulation result to illustrate the
effectiveness of the proposed methodology.

3. Related work

Our research integrates three different streams of
work: deriving analysis model from UML, deriving
implementation artifacts from UML and transforming
models from SPA to GSPN.

To remedy lacks of verification and validation
inherent in UML, some researches [3, 5] tried to
translate UML into process algebra. In [3], focus is on
a sequence diagram where objects of sequence
diagram are considered as π-calculus processes and
messages are represented as actions among these
processes.

Despite the inherent semi-formality, UML has a
strong descriptive power for high-level modeling as
well as high-fidelity modeling [2]. Among UML
diagrams, state diagrams and sequence diagrams are
sufficient to represent the high-level model. On the
other hand, a high-fidelity model is capable of
representing the details of implementation artifacts.
Usually, a high-fidelity model can be expressed with
class and activity diagrams of UML. In [2], the
mapping from high-fidelity model to corresponding
implementation artifacts is provided using UML 1.4
profile and BPEL4WS [7] as implementation artifacts.

In [6], comparisons between GSPN and SPA with
different perspectives are given. In our proposal, we
use both GSPN and SPA as an analysis model to
optimize web service composition.

4. MISQ Methodology

MISQ is based on various models (i.e., UML, SPA,
GSPN, BPEL, WSDL) and transformation procedures
between models. In the interest of space, here we only
present brief overview of SPA and GSPN.

Definition 1 (SPA)

Stochastic Process Algebra (SPA) is described by
the following grammar, [6]

P::= Stop | (a, λ).P | a.P | P+P | P||sP | P＼S | Q
where a variable P, Q, … denotes process variables,

while S is a set of synchronization actions. The
intuitive meaning of these elements is:
• Stop denotes the halting process.
• The process (a, λ).P models a delayed process that

performs the action a with delayed rate λ and then
behaves as process P.

• The process a.P models an immediate process that
performs the action a without any delay and then
behaves as process P.

• The choice operator ‘+’ is used to model alternative
behavior.

• The parallel operator ‘||s’ models the parallel
execution of two processes which have to
synchronize in actions within the set of
synchronizing actions S.

• The hiding operator ‘＼ ’ is used for declaring
actions as internal, and often used to abstract away
from internal events.

Definition 2 (GSPN)

Generalized Stochastic Petri-Net (GSPN) [6] is
defined as a 5-tuple (PL, T, W, M0, L), where:
• PL is a finite set of places.
• T is a finite set of transitions partitioned into two

sub-sets TI (immediate) and TD (delayed) transitions,
where, transitions, t ∈ TD are associated with
delayed rate λ.

• W ∈ (PL × T) » (T × PL) is a set of directed arcs
(i.e., flow relation).

• M0: PL → {0, 1, 2, …} is the initial marking.
• L: T → Λ is a labeling function where Λ is a set of

operation names.

Example. 2 (SPA & GSPN)

Consider the example scenario of Example 1 again.
A customer checks the proposal of FirstBroker and
either accepts or reject the proposal. Since the

customer chooses one behavior between two choices,
we represent this process with choice operator of SPA,
‘+’, as follows:

choice_decision := (accept + reject).
Similarly, we can map choice_decision into GSPN

model as shown in Figure 3. Here, the place,
choice_start with a token enables both accept and
reject transition. If accept transition is fired, the token
switches places from choice_start to accept_decision.
On the contrary, if reject transition is fired, the token
switches places from choice_start to reject_decision.

accept_decision reject_decision

accept reject

choice_start

 Figure 3. The process choice_decision

Definition 3 (MISQ Model)
A MISQ Model is an 8-tuple (DSequence, Agent,

Protocol, DState, DClass, DActivity, SPA, GSPN)
where:
• DSequence is a sequence diagram with objects,

behaviors and messages between objects.
• Agent is a set of objects of DSequence. We denote

each element of Agent as a(i) with i being the
position of the element (i.e., if |Agent| = n, a(1) and
a(n) are the leftmost and rightmost objects in
DSequence).

• Protocol is a set of protocols. Individual protocols is
a set of messages between a(i) and a(j) ∈ A where i
< j and denoted as prot(i, j).

• DState is a set of state diagrams. We denote each
element of DState as ds(i) which is the state diagram
of a(i) ∈ A.

• DClass is a set of stereo-typed class diagrams such
as DClass-dependency, DClass-datatype, DClass-
interface, DClass-protocol, DClass-process.
DClass-dependency defines the dependency
relationship between each element in Agent. DC-
datatype defines message contents and data classes
as well as the relationship between message contents
and data classes. DC-interface defines operations.
DC-protocol defines roles of corresponding port
type. DC-process defines internal variables and its
ports connected to each element in Agent.

• DActivity defines activity diagrams for element in
Agent.

Next, we present several transformation procedures
from one model to another in MISQ. Due to the limited
spaces, correctness proofs of the procedure are omitted.
Let us first lay down a few assumptions.
1. a(i) ∈ A (i > 1) has communication with the

left and right objects, that is, prot(i-1, i) ≠ ∅ and
prot(i, i+1) ≠ ∅. For example, a(1) has prot(1, 2) ≠
∅, and a(n) has prot(n-1, n) ≠ ∅.

2. For prot(i, j), |i – j| ≤ 1. That is, each object commu
nicates only with its immediate neighbors.

3. |A| ≥ 2. That is, there are at least two objects.
Now, we present three transformation procedures: (1)
UML to SPA, (2) SPA to GSPN, and (3) UML to
Implementation.

Procedure 1 (UML to SPA)

In this procedure, the given UML is re-captured
into SPA model. It has two steps.
1. Building Atomic processes

1.1 Prepare DSequence, Agent, Protocol, DState.
1.2 Create APset ={x | x ∈ SPA } = ∅.
1.3 Set i = 1 and choose an a(i) ∈ A.
1.4 Create an atomic process, p(i) ∈ SPA.
1.5 Start transforming ds(i) into p(i). Transitions of d

s(i) are transformed to either delayed or immediat
e actions. If a transition does not have any tempo
ral information, it becomes immediate action. ‘a’.
Otherwise, λ is added and becomes the delayed a
ction (a, λ).

1.6 If any action branch exists, it is expressed by a no
n-deterministic choice; ‘+’.

1.7 A sequence of transitions in ds(i) corresponds to t
he sequence of actions in p(i).

1.8 APset = {p(i)} » APset.
1.9 If |APset| = |Agent|, that is, all ds(i) ∈ DState is tr

ansformed, then the procedure stops. Otherwise, i
ncrease i by 1 and go to step 1.3.

2. Building a Composite process
2.1 Create a process, System ∈ SPA and System :=

p(1). Increase i to 2.
2.2 Choose p(i) ∈ APset.
2.3 System = System ||S P(i)＼S, where S ≡ prot(i-1, i).
2.4 If i = |APset|, that is, all the p(i) get combined

into System, then stop. Otherwise, increase i by 1
and go to step 2.2.

Procedure 2 (SPA to GSPN)

In this procedure, the SPA model is transformed
into Petri-Net based GSPN graphical model for easier
manipulation. As shown in Figure 4, It is generally
known that any SPA model can be represented as a

GSPN model and details of such translations can be
found in [3, 6]. In our proposal, the approach
introduced in [5] is used, for instance. Due to lack of
space, the entire procedure cannot be described.

Procedure 3 (UML to Implementation)

Once the high-level UML design has been
optimized in the GSPN model, finally, web service
implementation can be generated in this procedure. We
use the methods in [2], but can use other
implementation-specific method for this procedure
(e.g., from UML to CORBA)
1. Based on optimized system specification obtained

in Procedure 2, DClass-dependency, DClass-dataty
pe, DClass-interface, DClass-protocol, DClass-p
rocess, and DActivity are drawn.

2. DClass-dependency maps to an XML namespace i
mport in WSDL. DClass-datatype maps to message
types and data types in WSDL. DClass-interface m
aps to operations types in WSDL. DClass-protocol
maps to port and service link types in WSDL. DCla
ss-process and DActivity map to process definitions
in BPEL.

(α, λ) (α, λ)

(α, λ1)

(α, λ2)

(α, λ)

(α, λ1)

(α, λ)
(α, λ2)

(α, λ) (τ, λ)

α ∉ S α ∈S

α ∈Sα ∉ S

Basic Elements Prefix Choice Recursion

Parallel Synchronization Hiding

Figure 4. Mapping SPA operations into GSPN

5. Illustrative example

In this section, let us demonstrate how to optimize

web service composition using the MISQ methodology.
Table 1 summarizes notations used in this example.

Table 1. Notations for the example

Notation Meaning

C Customer, C’s inter-arrival time follows
exp(λ).

B Brokerage web service.

WS A set of auto loan web services, wsj ∈ WS,
1 ≤ j ≤ n. We assume that 1 ≤n ≤=4.

Rate(ws) A loan rate returned from ws ∈ WS,
uniform(5, 6) is followed.

t_o Time-out until which B waits for Rate(ws)

WS(S) A set of web services, WS(S) Õ WS, that
successfully send a loan rate before t_o

WS(F) A set of web services, WS(F) Õ WS, that fail
to send a loan rate before t_o

Min(Rate) Smallest Rate(wsj), ∀ wsj ∈ WS(S)
Fee(wsj) Service fee that B pays to wsj∈ WS(S)
Fee(B) Service fee that C pays to B

AR
Accept rate1, AR = exp{-σ × (Min(Rate) -
5)} - 2(Fee(B)-10)/210, where σ is a preference
parameter

PT Profitable throughput PT = |C|×AR

PT is exponentially decreased as Min(Rate)

increases (i.e., customers will not accept the offer if the
rate is high), and also decreased in proportion of
2(Fee(B)-10)/210 as Fee(B) increases (i.e., customer will
not accept the offer if the service charge to B is high).

C B WS

call for proposal

request-interest

propose-interest

n

inform-interest

1

n-k

X
k

[timeout] not-understand

Inform-accept

send-decision

t_o

Figure 5. Sequence diagram of the example

5.1. Scenario
Consider the following scenario:

1. C seeks for an auto loan with minimum interest rate,
sends an inquiry to B (C has no direct access to WS).

2. B relays the C’s request to each wsj ∈ WS.
3. ws calculates and returns its Rate(wsj) to B.
4. The communication between B and wsj is

asynchronous with the time-out, t_o. After t_o, B
does not wait for Rate(wsj s) anymore. B must pay
Fee(wsj) to successful wsj who returns Rate(wsj)
within t_o.

5. B sends Min(Rate) to C.
6. If C accepts Min(Rate), C pays Fee(B) to B.

Otherwise B cannot charge Fee(B) on C.

1 AR expresses C’s purchasing intention whose parameters
could be selected based on real market surveys. Here,
however, we simply use parameters, exp and 2, in the interest
of time.

Figure 5 illustrates the sequence diagram of the
scenario.

5.2. Applying MISQ to the example

We want to “maximize” the expected profit of B
who is a business adopter in the context of BSN’s.
Thus, the objective function, Z, representing the
expected profit of B can be: Z = Fee(B) × (PT) –
Fee(ws) × |WS(S)| × T. If Z ≥ 0, B makes a profit. Z is
directly proportional to PT. If |WS| increases, PT is
likely to increase because C has a better chance to
obtain lower Min(Rate) but B has to pay more fees to
increased |WS(S)|. Meanwhile, if Fee(B) decreases, PT
may increase since low service charge can attract more
C to accept the offer but B’s profit decrease.

Note that there are two trade-off relations we need
to find the optimal values as followings:

 |WS| = n: How many web services of loan
companies are economical for B to use?

 Fee(B): How much service charge on customers
are appropriate?

Since we assumed 1 ≤ n ≤ 4, we apply MISQ
analysis starting with n = 1 and can repeat the analyses
by increasing n by 1. If n = 1, Agent = {a(1), a(2),
a(3)} where a(1) is C, a(2) is B and a(3) is each wsj of
WS. Similarly, DSequence = {ds(1), ds(2), ds(3)}
where ds(1), ds(2) and ds(3), and is shown in Figure 6.
Protocol = {prot(1,2), prot(2,3)} where prot(1,2)
={call for proposal, propose-interest, send-decision,
inform-accept} and prot(2,3) = {request-interest, not-
understand, inform-interest}.

5.2.1. Building atomic and composite processes. We
can first build the following atomic processes:

 customer:= call-for-proposal; propose-interest;
(accept + reject); send-decision; inform-accept;
throughput.

 broker:= call-for-proposal; request-interest; (not-
understand + inform-interest); propose-interest;
send-decision; inform-accept; broker.

 loan:= request-interest; ((timeout, t_o);not-
understood + (service-done, µ);inform-interest);
loan.

In addition to original atomic processes, we can add
two more processes; arrival and buffer, for collecting
analysis data as follows:

 arrival := (gen, λ); call-for-proposal; arrival.
 buffer(i):= (gen, λ); buffer(i+1) + inform-accept;

buffer(i-1), where i ≥ 1

call-for-
proposalbroker request-

interest

not-
understood

inform-
interest

waiting-
decision

approve-
decision

request-interest

not-understood inform-interest

propose-interest

send-decisioninform-accept

call-for-
proposal

loan

time-
start

start-
service

not-
understand

end-
service

request-
interest

timeout

service-done

not-understand

Inform-interest

customer

waiting-
proposal

call-for-proposal

decision-
making

decision

decisionpropose-interest
reject

accept inform-accept

waiting-
Inform

through
put

send-decision

timeout

service-
done

ds(1)

ds(2)

ds(3)

Figure 6. State diagrams of the example

exp(µ) t_o

arrival

broker

buffer, i=0..n

exp(λ)

call-for-
proposal

customer

waiting_
proposal

propose_
interest

call-for-
proposal

request_interest

request-interest

loan

time_
start

start_
service

timeout

not_understand

service_
done

end_service

not- understandinform_ interest

propose_
interest

inform_accept

throughput

accept

reject

decision_
making

decision

send_ decision

waiting_ inform

approve_
decision

wait_ decision

Figure 7. GSPN of System

Next, based on the aforementioned atomic
processes, we build the composite process of System as
follows:

 System’ := customer ||prot(1,2) broker||prot(2,3) loan ＼
(prot(1,2) » prot(2,3))

 System := (System’ ||S1 arrival) ||S2 buffer ＼(S1 »
S2) where S1 = {call-for-proposal}, S2 = {gen ,
propose-interest}

5.2.2. Transforming SPA into GSPN. Through the
SPA to GSPN procedure, the composite process
System, in SPA is transformed into GSPN as shown in
Figure 7.

5.2.3. Simulation of GSPN

0

500

1000

1500

2000

2500

3000

3500

4000

12 13 14 15 16 17 18

Z

Service charge, Fee(B)

n=1

n=3

n=2

n=4

Figure 8. Profit according to |WS| and Fee(B)

We conducted simulations for four experimental

cases; |WS| = 1, 2, 3, and 4. We assumed that 1/λ = 1/µ
= t_o = 4 hours, σ = 5, and Fee(wsj) = $1. GSPN
model simulation was done using HPSim [1] and the
result analysis was conducted with MS Visual Basic
and Excel. Simulation time was set to same as B’s life
cycle, 10,000 hours.

As shown in Figure 8, The optimal setting for the
scenario occurs when |WS| = 4, Fee(B) = $16 with the
expected profit of B being $3,373.

5.2.4 High fidelity UML and implementation

Loan1

Broker

Definitions

<<import>>

Loan2 Loan3 Loan4

Customer

<<import>>

<<import>>

<<import>>

Figure 9. Dependency Diagram of the example

<<data>>
CFP

+Name:string
+Car_Model:string
+Loan:double

<<data>>
Propose

+Loan_Interest:double

<<message Content>>
Message1

<<message Content>>
Message2

<<message Content>>
Message7

<<data>>
Confrim_Proposal

+Accept:Boolean

<<message Content>>
Message8

<<data>>
Inform

+Inform:string

Definitions

<<interface>>
Interface CB

CFP ([in] Message1)
Confirm_Proposal ([in] Message7)

<<protocol>>
Protocol_CB

<<use>>

<<use>>
Interface CB

Interface CB_Callback

<<role>> <<role>>

BrokerCustomer

<<interface>>
Interface CB_Callback

Propose ([in] Message6)
Inform ([in] Message8)

<<message Content>>
Message6

Figure 10. Definitions package of the example

Broker

Definitions

<<import>>

<<process>>
Broker

+Message1:Message1
+Message2:Message2
+Message3:Message3
+Message4:Message4
+Message5:Message5
+Message6:Message6
+Message7:Message7

<<role>>
Protocol_CB::Customer

<<role>>
Protocol_BL1::Loan1

<<role>>
Protocol_BL2::Loan2

<<role>>
Protocol_BL3::Loan3

<<role>>
Protocol_BL4::Loan4

<<port>>

<<port>> <<port>> <<port>>

+ Customer

+ Loan1 + Loan2 + Loan3 + Loan4

Figure 11. Broker package of the example

Once we acquire optimal parameters for the auto-
loan example, we can build DClass-dependency as in
Figure 9. Similarly, we also can generate DClass-
datatype, DClass-interface and DClass-protocol as in
Figure 10. Those models maps into a WSDL file.
Furthermore, we can also build, DClass-process in
Figure 11, and DActivity (omitted due to space
limitation), and those models map into a BPEL file.
Due to lack of space, the entire diagrams and codes of
WSDL cannot be presented. Instead, some part of
implementation codes of WSDL and BPEL are
illustrated in Figure 12 and 13 respectively.

<?xml version="1.0"?>
<definitions name=“Broker“ ... >

<types>
 <element name = “CFP">
 <seqeunce>
 <element name=“Name” type=“string”>
 <element name=“Car_Model” type=“string”>
 <element name=“Loan” type=“int”>
 </sequence>
 <element>
...
</types>
<message name=“Message1">
 <part name="parameters“ element="CFP"/>
</message>
...
<portType name=“Interface CB">
 <operation name=“CFP">
 <input message=“Message1"/>
 </operation>
 <operation name=“Confirm_Proposal">
 <input message=“Message7"/>
 </operation>
</portType>
...
<serviceLinkType name=“Protocol_CB">
 <role name=“Customer">
 <portType name=“Interface CB_Callback"/>
 </role>
 <role name=“Loan">
 <portType name=“Interface CB”/>
 </role>
</serviceLinkType>
...
</definitions>

Figure 12. WSDL of the example

<process name =“Broker“ … >
<partners name=“Customer” serviceLinkType=“Protocol_CB”
 partnerRole=“Protocol_CB:Customer”
 myRole=“Protocoal_CB:Broker”/> </partners>
...
<receive name=“customerInput” partnerLink=“Customer"
portType=“Interface CB" operation=“CFP" variable=“Message1" ... />
<flow>
<sequence>
<invoke name=“Loan1Invoke” partnerLink=“Loan1” portType=“Interface
BL1"
operation=“CFP" variable=“Message1" ... />
<recevie name=“Loan1Invoke” partnerLink=“Loan1” portType=“InterfaceBL1
Callback" operation=“Propose" variable=“Message3" ... />
</sequence>
...</flow>
<assign name=“InterestAssign” >
<copy>
<from variable=“message2” portion=“LoanInterest” />
<to variable=“message6” portion=“LoanInterest” ><copy/>
</assign>
<switch>
<case condition=“message6/LoanInterest > message3/LoanInterest”>
<assign name=“Loan2Assign” >
<copy><from variable=“message6” portion=“LoanInterest” />
<to variable=“message3” portion=“LoanInterest” ><copy/>
</assign>
<otherwise><empty /></switch>
...
<invoke name=“Propose” partnerLink=“Customer” portType=“Interface CB
callback "
operation=“Propose " variable=“Message6" ... />
<receive name=“ConfirmProposal” partnerLink=“Customer"
 portType=“Interface CB“ operation=“ConfirmProposal "
variable=“Message7" ... />
<invoke name=“Inform” partnerLink=“Customer”
portType=“Interface CB callback“ operation=“Inform " variable=“Message8" ...
/>
</process>

Figure 13. BPEL of the Broker

Figure 13 illustrates the BPEL of the example
which imports the WSDL and orchestrates web
services including customer and four loan web services.
The main body of the BPEL is <process> which can be
divided into two parts such as the process type
definition and the process activity definition.

6. Conclusion

The MISQ systematically optimizes web service

composition to identify the optimal values such as the
number of ideal web services, maximum throughput,
etc. There are several future research directions. In
addition to simple value optimization, more functional
analysis (e.g., deadlock detection or security flaw
detection) can be greatly benefited by MISQ. Also,
considering real-time IT provisioning and adoption
enabled by BSN’s, more “dynamic” optimization is a
challenging goal. For instance, optimizing the dynamic
workflow [8] of web service components can greatly
benefit both software vendors and business adopters.
Toward this scenario, discovering, dynamically
composing, and optimizing large-scale (e.g., in the
range of 1,000 - 10,000) web services is a challenging
problem. In EEE05 [9], we approached the problem by
viewing web services composition as a graph search
problem. What has presented in this paper is thus
complementary to [9].

In the near future, we plan to combine the ideas of
[9] and that of MISQ to accomplish truly dynamic web
service composition methodology.

7. References

[1] H. Anschuetz, “HPSim Copyright © 1999-2001”,

Available:
http://www.winpesim.de/petrinet/e/hpsim_e.htm.

[2] J. Amsden, T. Gardner, C. Griffin, and S. Iyengar,
“Draft UML 1.4 Profile for Automated Business
Processes with a mapping to BPEL 1.0”, IBM, June
2003.

[3] K. Korenblat, and C. Priami “Extraction of π-calculus
specifications from UML sequence and state diagrams”,
Technical Report DIT-03-007, Informatica e
Telecomunicazioni, University of Trento. 2003.

[4] M. Marzolla, “Simulation-Based Performance
Evaluation of Software Archiecture described in UML”,
Universita Ca Foscari di Venezia, November 2002.

[5] M. Ribaudo, “Stochastic Petri Net Semantics for
Stochastic Process Algebra” Proceeding of the 6th Int’l
Workshop on Petri Nets and Performance Models, 1995.

[6] S. Donatelli, H. Hermanns, J. Hillston, and M. Ribaudo,
“GSPN and SPA compared in Practice”, Quantitative
Modelling in Paralle Systems, Springer, 1995.

[7] T. Andrews et al, “Business Process Execution
Language for Web Services (BPEL) 1.1”, OASIS, May
2003.

[8] J. Kim et al, “Web Services and BPEL4WS for
Dynamic eBusiness Negotiation Processes”, Proceeding
of the Int’l Conf. on Web Services, 2003.

[9] S. Oh, B. On, E. J. Larson, and D. Lee, “BF*: Web
Services Discovery and Composition as Graph Search
Problem”, Proceeding of IEEE Int’l Conf. on e-
Technology, e-Commerce and e-Service (EEE), Hong
Kong, China, March 2005.

