
Semantic Web-Service Discovery and Composition
Using Flexible Parameter Matching

Seog-Chan Oh, Jung-Woon Yoo, Hyunyoung Kil, Dongwon Lee, and Soundar R. T. Kumara
The Pennsylvania State University, University Park, PA 16802, USA

{seogchan, jwyoo, hkil, dongwon, skumara}@psu.edu

Abstract

When there are a large number of web services
available and no single service satisfies the given
request, one has to compose multiple web services to
fulfill the goal, considering syntactic and semantic
aspects. To address the web service composition issue,
in this paper, we present a new composition algorithm
by extending our previous work, WSRP (Web-service
Planner) so as to determine relations between different
parameter types during the process of service
composition.

1. Introduction

This paper is intended for the 4th CEC/EEE07 WS-

Challenge [1] where participants are required to
address syntactic and semantic composition of web
service chain based on the Web Services Description
Language (WSDL) as well as the usage of OWL
ontologies and XML Schema. The syntactic
composition assumes that matching of services is
based on the string equivalence of parameter names of
the input and output messages of a service. Meanwhile,
the semantic composition incorporates the use of OWL
ontologies and XML Schema to define services and
their relationships to each other. For example, the
semantic competition will offer a type hierarchy
defined in XML Schema or a class inheritance graph
in OWL in order to provide the type definitions about
the input and output parameters of the web services
considered. Consequently, the semantic composition
extends the matching of parameter names to the
matching of parameter types defined in the type
hierarchy information during the process of service
composition.

This paper extends our previous work WSPR [3]
which narrowly focused on the syntactic web-service
composition so as to conform to requirements and
specifications of this semantic-focused competition.

2. Flexible matching framework

Suppose that a web service w , has two sets of
parameters: ,...},{ 21 IIwi = for SOAP request (as
input) and ,...},{ 21 OOwo = for SOAP response (as
output). When w is invoked with all input parameters,

iw , it returns the output parameters, ow . We assume
that in order to invoke w , all input parameters in iw
must be provided (i.e., iw are mandatory). Suppose
that P denotes a set of parameters and W denotes a set
of web services.

When the “meanings” of two parameters, p1∈P
and p2∈P, are interchangeable, in general, they are
said to be “matching” each other. The simplest way to
check this is if two parameters have the same name
and type: (p1.name = p2.name) ∧ (p1.type = p2.type).
Since web services are designed and created in
isolation, however, this naive matching is often too
rigid and thus misses cases like p1 = (“password”,
string) and p2 = (“passwd”, string). To deal with this
issue, we propose a generic Boolean function, match
(p1, p2), that determines if two parameters p1 and p2 are
matching or not. Formally,

Definition 1 (type-match) A boolean function,

type-match (p1.type, p2.type), returns True if: (1)
p1.type = p2.type, or (2) p1.type is derived from p2.type
in a type hierarchy.

Definition 2 (match) A boolean function, match

(p1, p2), returns True if: p1.name = p2.name, and type-
match(p1.type, p2.type) = True or if: p1.name ≠
p2.name, but type-match(p1.type, p2.type) = True

Definition 3 (Parameter Matching) When a

boolean function, match(p1, p2), returns True, it is said
that a parameter p1 matches a parameter p2.

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

Throughout this paper, we will consider that if p1
matches p2 then p1= p2. Therefore, in the process of
finding applicable web services in certain information
status, the value of output parameter p2 is considered to
satisfy the required value of input parameter p1 as long
as p1 matches p2.

Example: Let us consider two type examples as
shown in Figure 1. For Www ∈21, , we can assume

that ow1 ={customerAddress} and iw2
={clientAddress} where customerAddress.type = “US-
Address” and clientAddress.type=“Address”. In this
scenario, 1w can invoke 2w according to our flexible
parameter-matching framework because (1)
customerAddress.name ≠ clientAddress.name but (2)
type-match (customerAddress, clientAddress) = True

<complexType name="Address">

 <sequence>

 <element name="name" type="string"/>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 </sequence>

</complexType>

<complexType name="US-Address">

 <complexContent>

 <extension base="Address">

 <sequence>

 <element name="state" type="US-State"/>

 <element name="zip" type="positiveInteger"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Figure 1. “Address” and its subtype “US-Address”

With this flexible parameter matching framework,

we can define the web-service composition problem
formally.

Definition 4 (Semantic Web-Service Composition)

Suppose that a request r has initial input parameters
ir and desired output parameters or . Semantic Web

Service Composition (WSC) is defined as to find a
finite sequence of web services, nwww ,...,, 21 such that
(1) iw can be invoked sequentially from 1 to n, using
the flexible parameter-matching framework (2)

oo
n

oi rwwr ⊇)(1 ∪…∪ , and (3) the total cost ∑
=

n

i
iwc

1
)(

is minimized.

3. Semantic Web-service composition

We can define the semantic WSC problem as a AI

planning problem in a state
space >Ω=<Ψ cSsS G (.),,,, 0 [2] where:
(1) The states Ss ∈ are collection of parameters in P
(2) The initial state Ss ∈0 is such that irs =0

(3) The goal state SSG ∈ is such that G
o Sr ⊆

(4))(sΩ is the set of web services Ww∈ such that

swi ⊆ . That is, w can be invoked or applicable in the
state s using the flexible parameter-matching
framework.
(5))(wc is the invocation cost of w

The basic concept of the semantic WSC algorithm
comes from our previous work WSPR [4], but
additionally we extend it from using the simple
parameter name matching to the flexible parameter
matching framework as presented in the section 2.

Input: ir , or Output:)(pPDsyn

ws

1:)\(oi rrs = ; φ=C ; d=1

2: while)(ors ⊇¬ do

3: }),(|{ Cwsww ∉Ω∈=δ

4: for each p in ow (δ∈w)

5: if ∞=)(pg ir

6:)(pg ir = d;)(pPDsyn
ws = w ; }{pss ∪=

7: δ∪CC = ; d++
Figure 2. Forward search for composition

According to the competition description [1], all
requests can be satisfied by chaining web services in
such a way that a predecessor web service can fully
match the successor web service. This fact enables a
highly specialized planning algorithm such as forward
searching algorithm characterized by)(pg ir – the cost

of achieving Pp ∈ starting from a state ir .

)]'(max)([min)(
')(

pgwcpg i
i

i rwppOwwr ∈∈
+= (1) ,

where,)(wc is an invocation cost of a web service and
it is assumed to be 1.)(pOw is a set of web services,

Ww ∈ such that owp ∈ . At first,)(pg ir are

initialized to 0 if irp ∈ and to ∞ otherwise. Then, the

current information state s is set as ir . For
)(sw Ω∈∀ , each parameter owp ∈ is added to s and

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

)(pg ir is updated until for orp ∈∀ ,)(pg ir are
obtained. If φ=Ω)(s , no solution exists. We name a
web service w as a predecessor web service of Pp ∈
if w is the first web service to generate p. We denote

)(pPDsyn
ws to be an inverted index that contains the set

of predecessor web services of p (i.e., token is p and
documents are web services in the context of database
community). Once we obtain)(pPDsyn

ws by the
procedure described in Figure 1, we can trace a
sequence of web services from or to ir backward with
guidance of)(pPDsyn

ws .

4. Implementation

WSDL
DB

Type
Hierarchy

WSDL Parser Parser

Memory Handler

Composition Discovery

WSDL OWL/XSD
Test
File

Test File
Parser

Human Interface Machine Interface

JSP WSDL

Web Application Server

Web service
Extension

Figure 3. Overview of Implementation

Figure 3 illustrates the overview of our
implementation for the 4th CEC/EEE07 WS-Challenge.
Our implementation is based on our previous work,
WSRP as shown in Figure 4. However, we extend
WSPR based on the lessons we had learned from the
last-year competition, where we experienced that the
algorithm is required to efficiently handle I/O,
memory, and computational resources. Therefore, we
decide to build an adaptive memory DB and handler
which can parses all the XML files including WSDL,
XSD, OWL only once, and stores them in memory,
considering the resource limitation.

In addition to the efficient recourse handling, we
use the Python language for resolving the heavy set
operations (comparing and inserting web-service
parameter sets) which happens frequently during
composition processes, because Python provides high-
performance functions to deal with this issue.

Besides, our implementation is designed to use
SAX rather than DOM when it parse XML files
because SAX is more efficient than DOM and runs

really fast at runtime, in the situation where no need
exist to build up a tree of elements and attributes.
Finally, our implementation encompasses a module
specific to this challenge that is the test file parser with
aims to read test XML files.

Another feature of our implementation is the
extension for providing the machine interface through
the web-service interface. For the web-service
interface, we provide a WSDL file which contains
specification for operations, through which remote
machines are allowed to access our core
implementation via the Web. In addition to the
machine interface, we also provide a java servlet page
(JSP) for human users. Both interfaces are installed on
a web application server, which deliver requests to our
core algorithms such as web-service composition and
discovery.

5. Related work and future directions

Several latest works are found in the web-service
composition related literature. Preist et al. [4]
presented a demonstrator system which applies
semantic web-services technology to B2B integration,
focusing specifically on a logistics supply chain. Their
demonstration system is able to cope with all stages of
the service life cycle – discovery, service selection and
service execution. The proposed demonstrator system
allows a requestor to discover logistics service
providers, select appropriate logistics services,
coordinate the services to form a composite service
chain, and communicate with the service providers
using arbitrary protocols through dynamic mediation.

Michalowski et al. [5] presented a running
application, titled in Building Finder that integrates
satellite imagery, geospatial data, and structured and
semi-structured data from various online data sources
using semantic-web technologies. Users can query an
integrated view of these sources and request Building
Finder to accurately superimpose buildings and streets
obtained from various sources on satellite imagery.
Building Finder is a real example that promises
seamless integration of heterogeneous data from
distributed sources, letting agents perform
sophisticated and detailed data analysis. We plan to
extend our approach by encompassing agent and
semantic query techniques presented in [4] and [5], so
that our system can deal with anonymous business
partners on the fly, and search for the multiple
heterogeneous distributed service information to
accomplish the concept like dynamic supply chain.

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

Parsing
WSDL files Parsing a test

file

Parsing
a XSD file Starting

WSPR

Start

End

Start

End Start

End

Figure 4. GUI of WSPR

6. Conclusion

A semantic web-service composition algorithm is
presented to address the situation when the flexible
parameter-matching framework is required. In practice,
majority of public web services do not have annotated
semantics yet, so that this flexible parameter-matching
framework is evidently useful. In the future work, we
will extend the current algorithm to adopt more
complex methods (e.g., tree isomorphism, tree
mapping, and approximate tree matching using Edit-
distance).

7. References

[1] IEEE Joint Conference on E-commerce Technology
(CEC’07) and Enterprise Computing, E-Commerce and E-
Services (EEE’07). http://www.ws-challenge.org/wsc07/
[2] S. J. Russell and P. Norvig. “Artificial Intelligence: A
modern approach”, Prentice-Hall, New Jersey, USA, 2002.
[3] S.-C. Oh, D. Lee and S. Kumara. “Web Service Planner
(WSRP): An Effective and Scalable Web Service
Composition Algorithm”, International Journal of Web
Services Research, 4(1), pp.1-22, 2007.
[4] C. Preist, J. Esplugas-Cuadrado, S. Battle, S. Grimm, and
S. Williams. “Automated business-to-business integration of
a logistics supply chain using semantic web services
technology”, Proceedings of 4th International Semantic Web
Conference, pp. 987-1001, 2005.
[5] M. Michalowski, J.L. Ambite, S. Thakkar, R. Tuchinda,
C.A. and Knoblock, S. Minton. “Retrieving and semantically
integrating heterogeneous data from the web”, IEEE
Intelligent Systems, 19(3), pp. 72–79, 2006.

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

