
Type-Aware Web Service Composition Using Boolean Satisfiability Solver

Wonhong Nam Hyunyoung Kil Dongwon Lee∗

The Pennsylvania State University, University Park, PA 16802, USA

E-mail: {wnam, hkil, dongwon}@psu.edu

Abstract

The goal of the Web Service Composition (WSC) prob-
lem is to find an optimal “composition” of web services
to satisfy a given request using their syntactic and/or se-
mantic features, when no single service satisfies it. In this
paper, in particular, we study the WSC problem from se-
mantic aspects, exploiting the supertype-subtype relation-
ship among parameters, and propose a novel solution based
on the boolean satisfiability problem (SAT). Given a set of
web service descriptions and a requirement web service, we
reduce the WSC problem into a reachability problem on
a state-transition system, and show that the shortest path
found is amount to the optimal composition. A preliminary
experiment using 7 examples reveals that our proposal can
find optimal compositions of web services efficiently.

1. Introduction

Web services are software systems designed to support
machine to machine inter-operations over internet. Re-
cently, many researches have been carried out for the web
service standard, and these efforts significantly have im-
proved flexible and dynamic functionality of service ori-
ented architectures in the current semantic web services.
However, a number of research challenges still remain; e.g.,
automatic web service discovery, web service composition
and formal verification for composed web services. Given
a set of available web services and a user request, a web
service discovery problem is to automatically find a web
service satisfying the request. Often, the client request can-
not, however, be fulfilled by a single pre-existing service. In
this case, one desires web service composition (WSC) which
combines some from a given set of web services to satisfy
the requirement.

In this paper, we propose a novel technique to find an
optimal composition. Given a set of web services and a re-
quirement web service described in WSDL, our algorithm

∗Partially supported by IBM and Microsoft gifts.

identifies the shortest sequence of web services such that
we can legally invoke the next web service in each step and
achieve the desired requirement eventually. We first reduce
the composition problem into a reachability problem on a
state-transition system where the shortest path from the ini-
tial state to a goal state corresponds to the shortest sequence
of web services. To solve the reachability problem, we em-
ploy a state-of-the-art SAT solver, SATZILLA [13]. An im-
portant property of our algorithm is that the number of SAT
solver invocations required is logarithmic in the size of the
web service set. To the best of our knowledge, there is no
work to employ SAT solvers for this problem setting even
though several approaches [9, 12] use AI planning tech-
niques for web service composition. We report on a pre-
liminary implementation and experiment for our solution,
which demonstrate that our technique finds optimal com-
positions for 7 sample examples for the WSC’07 competi-
tion [4] in 1 minute for each.

2. Type-Aware Web Service Composition

In this section, we formalize the notion of web services
and their composition we consider in this paper. A web ser-
vice is a tuple w = (I,O) where

• I is a finite set of input parameters for w.
• O is a finite set of output parameters for w; each in-

put/output parameter p ∈ I ∪O has a type tp.

When a web service w is invoked with all the input pa-
rameters i ∈ I with the type ti, it returns all the output pa-
rameters o ∈ O with the type to. Given two types t1 and t2,
t1 is a subtype of t2 (denoted by t1 <: t2) if t1 is more in-
formative than t2 so that t1 can substitute for t2 everywhere.
In this case, t2 is a supertype of t1. This relation is reflexive
(i.e., t <: t for any type t) and transitive (i.e., if t1 <: t2 and
t2 <: t3 then t1 <: t3). We assume that the type hierarchy
is given; e.g. specified in OWL. Given two web services
w1(I1, O1) and w2(I2, O2), we denote w1 wI w2 if w2 re-
quires less informative inputs than w1; i.e., for every i2 ∈ I2

there exists i1 ∈ I1 such that ti1 <: ti2 . Given two web ser-
vices w1(I1, O1) and w2(I2, O2), we denote w1 vO w2 if



w2 provides more informative outputs than w1; i.e., for ev-
ery o1 ∈ O1 there exists o2 ∈ O2 such that to2 <: to1 . A
Web service discovery problem is, given a set W of avail-
able web services and a request web service wr, to find a
web service w ∈ W such that wr wI w and wr vO w.

However, it might happen that there is no single web ser-
vice satisfying the requirement. In that case, we want to
find a sequence w1 · · ·wn of web services such that we can
invoke the next web service in each step and achieve the de-
sired requirement eventually. Formally, we extend the rela-
tions, wI and vO, to a sequence of web services as follows.
• w wI w1 · · ·wn (where w = (I,O) and each wj =

(Ij , Oj)) if ∀1 ≤ j ≤ n: for every i2 ∈ Ij there exists
i1 ∈ I ∪

⋃
k<j Ok such that ti1 <: ti2 .

• w vO w1 · · ·wn (where w = (I, O) and each
wj = (Ij , Oj)) if for every o1 ∈ O there exists
o2 ∈

⋃
1≤j≤n Oj such that to2 <: to1 .

Finally, given a set of available web services W and a
service request wr, a type-aware web service composition
problem WC = 〈W,wr〉 we focus on in this paper is to
find a sequence w1 · · ·wn (every wj ∈ W ) of web services
such that wr wI w1 · · ·wn and wr vO w1 · · ·wn. The
optimal solution for this problem is to find a sequence with
the minimum value for n.

3. Solving with SAT Solver

To solve a web service composition problem with a
boolean satisfiability solver, we first explain how this prob-
lem can be reduced into a reachability problem on a state-
transition system. Then, we present our encoding to a CNF
(Conjunctive Normal Form) formula which is true if and
only if there exists a path of length k from an initial state
to a goal state of the state-transition system. Finally, we
propose our algorithm to find an optimal solution for the
problem.

3.1 Reduction to reachability problem

Given a type-aware web service composition problem
WC = 〈W,wr〉, the problem can be reduced into a
reachability problem on a state-transition system. A state-
transition system is a tuple S = (X, Σ, T ) where
• X is a finite set of boolean variables; a state q of S is

a valuation for all the variables in X .
• Σ is a set of input symbols.
• T (X, Σ, X ′) is a transition predicate over X∪Σ∪X ′.

For a set X of variables, we denote the set of primed
variables of X as X ′ = {x′ | x ∈ X}, which repre-
sents a set of variables encoding the successor states.
T (q, a, q′) is true iff q′ can be the next state when the
input a ∈ Σ is received at the state q.

Given a set W = {w1, · · · , wn} of web services where
for each j, wj = (Ij , Oj), we denote as TP a set of types
t such that there exists p ∈

⋃
(Ij ∪ Oj) and t is the type

of p. Then, we can construct a state-transition system S =
(X, Σ, T ) corresponding with W as follows:

• X = {x1, · · · , xm} where m = |TP |; each boolean
variable xj represents whether we have an instance
with the type tj ∈ T at a state.

• Σ = W .
• For each j, T (q, wj , q

′) = true where q =
(b1, · · · , bm), q′ = (c1, · · · , cm) (each bk and ck are
true or false), and wj = (Ij , Oj) iff (1) for every
i ∈ Ij , there exists bk in q such that bk is true and
its corresponding type txk

is a subtype of the type of
i (i.e., txk

<: ti), (2) if bl is true, cl is also true, and
(3) ∀o ∈ Oj : for every variable ck in q′, if its cor-
responding type txk

is a supertype of to, ck is true.
Intuitively, if a web service wj is invoked at a state q
where we have data instances being more informative
than inputs of wj , we proceed to a state q′ where we
retain all the data instances from q and acquire outputs
of wj as well as their supertypes.

In addition, from a given requirement web service wr =
(Iwr

, Owr
), we encode an initial state predicate Init(X)

and a goal state predicate G(X) as follows:

• Init(q) = true where q = (b1, · · · , bm) iff ∀i ∈ Iwr
:

for every variable bj in q, if its type txj
is a supertype

of ti (i.e., ti <: txj
), bj is true.

• G(q) = true where q = (b1, · · · , bm) iff for every
output parameter o ∈ Owr , there exists bj in q such
that bj is true and its type txj is a subtype of to (i.e.,
txj

<: to).

Intuitively, we have an initial state where we possess all
the data instances corresponding to the input of wr as well
as one corresponding to their supertypes. As goal states, if
a state is more informative than the outputs of wr, it is a
goal state. Finally, given a type-aware web service compo-
sition problem WC = 〈W,wr〉, we can reduce WC into a
reachability problem R = 〈S, Init , G〉 where the shortest
path from an initial state to a goal state corresponds to the
shortest sequence of web services. We omit a formal proof
for our reduction due to space limitation.

3.2 Encoding to CNF formula

Now, we study how to construct a formula [[R]]k which
is true if and only if there exists a path q0 · · · qk of length k
for a given reachability problem R = 〈S, Init , G〉. The
formula [[R]]k is over sets X0, · · · , Xk of variables and
W1, · · · ,Wk where each Xj represents a state along the
path and Wj encodes a web service invoked in each step. It

2



Algorithm 1: WebServiceCompositionLinear
Input : a set W of web services and a web service wr .
Output: a sequence of web services.

(S, Init , G) := ReduceToReachabilityProblem(W, wr);1
for (k := 0; k ≤ |W |; k := k + 1) do2

f := ConstructCNF (S, Init , G, k);3
if ((path := SAT(f)) 6= null) then4

return ExtractWSSequence(path);5

essentially represents constraints on q0 · · · qk and w1 · · ·wk

such that [[R]]k is satisfiable if and only if q0 is the initial
state, each qj evolves according to the transition predicate
for wj , and qk reaches to a goal state. Formally, the formula
[[R]]k is as follows:

[[R]]k ≡ Init(X0) ∧
∧

0≤j<k

T (Xj ,Wj+1, X
′
j+1) ∧G(Xk)

Since each Xj is a finite set of boolean variables, Σ and
Wj are finite, and Init , T and G are predicates, we can eas-
ily translate [[R]]k into a CNF formula which is the standard
input format for conventional SAT solvers.

3.3 Algorithm for the optimal solution

Since we can use a SAT solver with [[R]]k to check
whether there exists a path of length k from the initial state
to a goal state, we are able to find a shortest path simply by
increasing the value k from 0 to |W |. In the worst case, we
check the formula until only |W | as k since multiple exe-
cutions of any w ∈ W do not provide more data instances
than a single execution of w.

Algorithm 1 presents the linear version. Given a set W
of web services and a requirement web service wr, the algo-
rithm first reduces them into a state-transition system, and
initial and goal predicates as Section 3.1 (line 1), and it be-
gins with 1 as the value of k. For each loop, it constructs
a CNF formula for k as Section 3.2 (line 3), and checks it
with an off-the-shelf SAT solver (line 4). If the formula is
satisfiable, the SAT solver returns a truth assignment; other-
wise, it returns null. Once the algorithm finds a path of the
length k, it extracts a web service sequence from the path,
and returns the sequence (line 5).

However, we can improve our algorithm from this linear
algorithm based on Proposition 1.

Proposition 1. When there does not exist a path of length
k from the initial state to a goal state, there does not exist a
path of length j < k from the initial state to a goal state. 2

PROOF. (By contradiction) In our problem setting, if there
exists such a path π of length j < k to a goal, then we also

Algorithm 2: WebServiceCompositionLogarithmic
Input : a set W of web services and a web service wr .
Output: a sequence of web services.

(S, Init , G) := ReduceToReachabilityProblem(W, wr);1
low := 0;2
high := |W |;3
path := null ;4
k := pivot ; /* pivot is predefined. */5
while (low ≤ high) do6

f := ConstructCNF (S, Init , G, k);7
if ((tmp := SAT(f)) 6= null) then8

high := k − 1;9
path := tmp;10

else low := k + 1;11
k := (high + low)/2;12

return ExtractWSSequence(path);13

have a path π′ of length k to the goal by invoking any web
service w after π since the invocation of w does not lose any
data instance already acquired. (Q.E.D)

Our algorithm begins with a pivot value as k. If we find a
path of length k, then we again execute the SAT solver with
[[R]](low+k)/2 to check whether there exists a shorter path.
Otherwise, we retry with [[R]](k+high)/2 as binary search
algorithms. Using this manner, we can quickly converge
to the shortest path. Algorithm 2 presents our logarithmic
algorithm to find an optimal solution by only log|W | exe-
cutions of a SAT solver which is the most expensive oper-
ation in our algorithm. Our algorithm first reduces W and
wr into a state-transition system, and initial and goal predi-
cates (line 1), and it begins with a predefined pivot value as
k (line 5). We repeat lines 6–12 until our binary search is
completed. In each loop, we construct a CNF formula for
k, and check it with a SAT solver. Once we find a path of
length k, we again search a shorter path between low and
k − 1. If not, we try to find a path between k + 1 and high .
Finally, after completing the loop, our algorithm extracts a
web service sequence from the shortest path we have found,
and returns it (line 13).

4. Preliminary Experiment

We have implemented an automatic tool for the logarith-
mic algorithm in Section 3.3. Given a type hierarchy in a
OWL file, and a set of available web services and a query
web service in WSDL files, our tool generates a web service
sequence in WSBPEL to satisfy the request. Since public
web service networks have the small world property [8],
we have selected a smaller value for the pivot than the me-
dian (we use 10 as the pivot value). To demonstrate that
our tools efficiently identify an optimal solution, we have

3



Figure 1. Preliminary experimental result

experimented on the sample example for WSC’07 compe-
tition [4] which includes 413 web services and 7 queries.
For an off-the-shelf SAT solver, we employ SATZILLA [13]
which achieved promising success in SAT 2007 competi-
tion [2]. All experiments have been performed on a PC
using a 2.4GHz Pentium processor, 2GB memory and a
Linux operating system. Figure 1 presents the total exe-
cution time1 in seconds for our preliminary experiment of
our logarithmic algorithm.

5. Related Work

A boolean satisfiability (SAT) problem is a well-known
NP-complete problem for which there does not exist a scal-
able solution. Recently, however, many engineering efforts
have achieved promising results for a moderately large size
of problems [14, 2, 13]. In addition, in every two years the
SAT competition [2] is organized to improve the contem-
porary techniques. Based on this success, there are several
researches using SAT techniques to exceed the current limit
in their fields [7, 3, 1]. However, there is no study to em-
ploy SAT techniques for semantic web service composition.
Kautz and Selman [7] adopted SAT techniques for auto-
mated planning. In symbolic model checking, [3] proposed
a new technique to search a counter-example of length k us-
ing a SAT solver. Even though this technique does not pro-
vide completeness, it has dramatically increased the bound
of models we can analyze. To efficiently solve various
games, Alur at el. [1] proposed several techniques using
SAT and QBF solvers and compared them.

For web service composition problems, we have a pre-
vious work [10, 11] with efficient heuristics such as for-
ward/regression search. However, this work is a new ap-

1We exclude the time for reduction to the state-transition system as the
policy of WSC’08 does not include the bootstrap time in the total execution
time.

proach using various heuristic techniques implemented in a
state-of-the-art SAT solver to explore state space.

6. Conclusion and Future Work

In this paper, we proposed a novel solution that finds the
shortest sequence of web services while respecting types of
web service. To identify the optimal solution, our proposal
uses a binary search with a boolean satisfiability solver. A
preliminary experiment reveals promising results where the
tool finds the shortest sequence with logarithmic number of
invocations of a SAT solver.

Ample directions are ahead for future work. First, our
proposal needs to be extended further to consider not only
types of parameters but also true ontologies (in OWL) and
reasoning therein. Second, while our implementation uses
SAT-based state-space exploration, note that it permits to
use other model checking strategies such as BDD-based
model checking [6] and counter-example guided abstraction
refinement [5]. Thus, we plan to investigate the impact of
other model checking strategies in solving the WSC prob-
lem.

References

[1] R. Alur, P. Madhusudan, and W. Nam. Symbolic computational
techniques for solving games. STTT, 7(2):118–128, 2005.

[2] D. Berre, O. Roussel, and L. Simon. The International SAT Com-
petitions. http://www.satcompetition.org/.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model check-
ing without BDDs. In TACAS, pages 193–207, 1999.

[4] M. B. Blake, W. K.-W. Cheung, M. C. Jaeger, and A. Wombacher.
WSC-07: Evolving the web services challenge. In CEC/EEE, pages
505–508, 2007.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV, pages 154–
169, 2000.

[6] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press,
2000.

[7] H. Kautz and B. Selman. Pushing the envelope: Planning, propo-
sitional logic, and stochastic search. In AAAI, pages 1194–1201,
1996.

[8] H. Kil, S.-C. Oh, and D. Lee. On the topological landscape of web
services matchmaking. In VLDB Workshop on Semantic Matchmak-
ing and Resource Retrieval, 2006.

[9] B. Srivastava and J. Koehler. Web service composition: Current
solutions and open problems. In ICAPS Workshop on Planning for
Web Services, pages 28–35, 2003.

[10] S. Oh, D. Lee, and S.R.T. Kumara. Web service planner (WSPR):
an effective and scalable web service composition algorithm. JWSR,
4(1):1–23, 2007.

[11] S. Oh, J. Yoo, H. Kil, D. Lee, and S.R.T. Kumara. Semantic web-
service discovery and composition using flexible parameter match-
ing. In CEC/EEE, pages 533–542, 2007.

[12] E. Sirin, B. Parsia, D. Wu, J.A. Hendler, and D.S. Nau. HTN
planning for web service composition using SHOP2. J. Web Sem.,
1(4):377–396, 2004.

[13] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla-07:
The design and analysis of an algorithm portfolio for SAT. In CP,
pages 712–727, 2007.

[14] L. Zhang and S. Malik. The quest for efficient Boolean satisfiability
solvers. In CAV, pages 17–36, 2002.

4


