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Abstract—We study how to improve the accuracy and running
time of top-N recommendation with collaborative filtering (CF).
Unlike existing works that use mostly rated items (which is only a
small fraction in a rating matrix), we propose the notion of pre-
use preferences of users toward a vast amount of unrated items.
Using this novel notion, we effectively identify uninteresting items
that were not rated yet but are likely to receive very low ratings
from users, and impute them as zero. This simple-yet-novel zero-
injection method applied to a set of carefully-chosen uninteresting
items not only addresses the sparsity problem by enriching a rating
matrix but also completely prevents uninteresting items from
being recommended as top-N items, thereby improving accuracy
greatly. As our proposed idea is method-agnostic, it can be easily
applied to a wide variety of popular CF methods. Through
comprehensive experiments using the Movielens dataset and
MyMediaLite implementation, we successfully demonstrate that
our solution consistently and universally improves the accuracies
of popular CF methods (e.g., item-based CF, SVD-based CF,
and SVD++) by two to five orders of magnitude on average.
Furthermore, our approach reduces the running time of those
CF methods by 1.2 to 2.3 times when its setting produces the best
accuracy. The datasets and codes that we used in experiments
are available at: https://goo.gl/KUrmip

I. INTRODUCTION

The Collaborative Filtering (CF) technique, one of the
most popular and effective techniques in recommender sys-
tems, has been extensively studied in recent years (e.g., [1],
[11], [19], [24], [16], [4]). By and large, CF can be applied
to address two settings: (1) rating prediction and (2) top-
N recommendation. In this paper, in particular, we focus on
the setting of top-N recommendation for its practical usage
in real-world applications [7]. For the top-N recommendation
setting, CF predicts relative preferences on unrated items, and
recommends top-N items with the highest preferences.

Due to the popularity of CF techniques in practice and im-
portance of recommender systems in businesses, improving the
results of CF can lead to huge positive business ramifications.
In this paper, as such, we strive to improve CF techniques
with respect to its accuracy and running time. Our proposal is
method-agnostic so that it can be applied to a wide variety of
CF techniques seamlessly, improving their results universally.
Our proposal is based on the following hypothesis in CF:

Hypothesis 1. Filling values into empty cells (i.e., unrated
items) in a rating matrix can improve the accuracy and running
time of the top-N recommendation by CF methods.

Below, first, we develop several key ideas that are crucial
to develop a solution based on the hypothesis.

Idea 1 (Exploit uncharted unrated items) Existing CF
methods in general attempt to exploit the ratings that users
have provided, yet the fraction of known ratings in a rating
matrix is in general quite small. Suppose, for a rating matrix
R with m users and n items, on average, a user rates k items.
Then, the fraction of rated items in R is: m×k

m×n
= k

n
. As it is

often common for an e-business to sell millions of items with a
very long tail and a user on average rates only a small number
of items, asymptotically, such a fraction of rated items in R
becomes extremely small (i.e., k ≪ n). As such, we believe
that exploiting the vast number of uncharted “unrated” items in
R can lead to a significant improvement in CF.

Several existing works assume that items are not evaluated
(i.e., unrated) when a user is not interested in them. Nan Hu
et al. [8] and Nilesh Dalvi et al. [5] pointed out that most
rated items have either 4 or 5 rating scores out of [1 ... 5], 5
being the best. In other words, users tend to evaluate only those
items that they are likely to like (thus high ratings among rated
items), while ignore items that they dislike in advance. Similar
to this finding, Harald Steck [22] presumed that unrated items
are less likely to be preferred by users. However, we emphasize
that users are able to know only some of unrated items, not
all of them.

Idea 2 (Some unrated items are uninteresting) We
observe that unrated items in R can be categorized into
several types: (1) unrated items that users were not aware of
their existence, (2) unrated items that users knew and purchased
but did not rate, and (3) unrated items that users knew but did
not like and thus did not purchase. In particular, we note that
the unrated items of the third type, named as uninteresting
items (Iun), clearly indicate users’ latent “negative” preference.
Therefore, we believe that it is better not to recommend those
uninteresting items. Challenge is however that it is not easy to
identify Iun in R.

Idea 3 (Uninteresting items have low pre-use preferences)
In order to identify Iun in R, we first have to understand a
user’s pre-use preference to items–i.e., a user’s impression
on items before purchasing and using them. Then, based on
this novel notion, we can rephrase Iun as those items whose
pre-use preferences are not high. Unfortunately, ratings that
users leave in R do not indicate pre-use preferences but



the preferences “after” using the items, named as post-use
preferences. However, also note that users must have had high
pre-use preferences to all rated items (otherwise, users would
have not purchased them in the first place). Therefore, we
believe that we can utilize the pre-use preferences of rated
items to infer the latent pre-use preferences of unrated items,
and finally identify Iun with low pre-use preferences.

With Iun in R found, next, we propose to improve top-N
recommendation via two strategies: (1) excluding Iun from the
top-N recommendation results, and (2) exploiting both Iun and
ratings to predict the relative preferences of items better. The
first strategy is likely to improve top-N recommendation. As
Iun with low pre-use preferences are by definition the items
that users were aware of their existence but did not like in
the first place, they are likely to be false positives if included
in top-N recommendation. Therefore, proactively, we exclude
Iun from the top-N recommendation results.

Our second strategy is also likely to improve top-N recom-
mendation by recommending preferred items more accurately.
We can explain the effect of second strategy through the
concept of typical memory-based CF methods that depend on
the fact that a user u is more likely to prefer items that her
neighbors also like. Suppose a few neighbors rated an item
i highly but most neighbors considered i as an uninteresting
item (thus left i unrated in R). In this situation, existing CF
methods are likely to recommend i to u as her a few neighbors
rated them high. On the other hand, if we consider the fact that
many more neighbors actually viewed i as uninteresting, we
could avoid recommending i to u.

Based on the three ideas and two strategies, now, we
propose a novel solution to apply the notion of uninteresting
items to the framework of any existing CF methods. To the
best of our knowledge, ours is the first work to exploit the
notion of uninteresting items in improving CF methods. Our
proposed solution consists of three steps: (1) it infers the
pre-use preferences of unrated items by solving the one-
class collaborative filtering (OCCF) problem [15], [20], (2)
it assigns zero ratings to the found uninteresting items in R
whose pre-use preferences are not high, yielding an augmented
matrix Z , and (3) it applies any of existing CF methods to
Z , instead of R. This simple-yet-novel imputation not only
addresses the sparsity problem by enriching a rating matrix
but also completely prevents uninteresting items from being
recommended as top-N items, thereby improving the overall
accuracy greatly.

To summarize, our main contributions are as follows:

• We introduce a new notion of uninteresting items, and
divide a user’s preference into pre-use and post-use
preferences to identify uninteresting items.

• We successfully identify uninteresting items via the
pre-use preferences inferred by solving the OCCF
problem and show its implications and effectiveness.

• We propose to exclude uninteresting items by means
of zero-injection, and improve the prediction of rela-
tive preferences by considering uninteresting items.

• We conduct comprehensive experiments using the

TABLE I. NOTATIONS USED IN THIS PAPER

Notation Description

pui User u’s pre-use preference on item i

qui User u’s post-use preference on item i

rui A rating given to item i by user u

P A pre-use preference matrix whose entry is pui

Q A post-use preference matrix whose entry is qui

R A rating matrix whose entry is rui

Iunu A set of uninteresting items for user u

Iinu A set of interesting items for user u

Ipreu A set of preferred items for user u

real-world Movielens dataset and show that our so-
lution improves the accuracy of baseline CF methods
(e.g., item-based CF, SVD-based CF, and SVD++) by
2.5 to 5 times on average, and reduces the running
time of those CF methods by 1.2 to 2.3 times when
its setting produces the best accuracy.

The organization of this paper is as follows. In Section 2,
we explain the preliminaries of our approach. In Section 3,
we present our approach in detail. In Section 4, we evaluate
our approach in comparison with existing ones via extensive
experiments. In Section 5, we present the related work. In
Section 6, we finally conclude our work and discuss future
research directions.

II. PRELIMINARIES

In this section, we introduce the details of uninteresting
items by contrasting them to interesting items, rated items, and
unrated items. Furthermore, we clarify the difference between
pre-use preferences and post-use preferences.

A user u’s pre-use preference to an item i is a different
notion from a rating given to i in a rating matrix, which really
represents u’s post-use preference to i. Existing CF methods
mainly attempt to exploit ratings (thus post-use preferences).
Let us first introduce a few basic notations used throughout
this paper. Let U = {u1, . . . , um} be a set of m users, I =
{i1, . . . , in} be a set of n items, and rui be the rating given
to item i by user u. A corresponding rating matrix is referred
to as R = (rui)m×n, and pui (resp. qui) indicates user u’s
pre-use (resp. post-use) preference on item i. In theory, both
types of preferences pui and qui exist on a user-item pair (u, i)
although in reality they are not always computable or available.
Table I summarizes key notations used in this paper.

Note that u has pre-use preference on i based on its
external features that u could obtain without actually using i
(e.g., genre or director information, in case of a movie). After
using i, based on the level of her satisfaction, u then assigns
a specific rating to i, indicating her post-use preference for i.
The post-use preference is therefore determined by the inherent
features that u had not known before using i (e.g., storyline
or choreography of a movie). Let us contrast two preference
types in a more detail using the following example.

EXAMPLE 1 (TWO PREFERENCE TYPES). Figure 1 illustrates
the pre-use and post-use preferences of a user u for three
movies. Initially, u has a high pre-use preference for Movie #1



Fig. 1. Pre-use, post-use preferences, and ratings for three movies.
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Fig. 2. Venn diagram for the preferences and interestingness of items.

and Movie #2. On the other hand, u does not have high pre-use
preference for Movie #3. In that case, Movie #1 and Movie
#2 are to be called as interesting items to u while Movie #3
as an uninteresting item. Thus, u would decide to watch only
two movies with high pre-use preferences. After watching the
movies, u likes Movie #1 as she expected but is disappointed
at Movie #2. Therefore, u assigns a high rating to Movie #1
and a low rating to Movie #2. In contrast, u does not watch
Movie #3 as it is an uninteresing movie to her. Her post-use
preference to Movie #3 remains unknown (i.e., empty in a
rating matrix).

Figure 2 further depicts how a user u thinks about an entire
set I of items with the Venn diagram. Let interesting items Iinu
denote items with high pre-use preferences while uninteresting
items Iunu denote u’s items with not-high pre-use preferences.
The two item sets are disjoint, i.e., Iinu ∩ Iunu = ∅, Iinu ∪
Iunu = I . (In Section III-B, we will explain how to identify
uninteresting items from entire item set I .) We formally define
them as follows:

DEFINITION 1 (UNINTERESTING ITEMS). For a user u, a set
of uninteresting items Iunu is defined as: (1) Iunu = I − Iinu
and (2) pui ≤ puh (∀i ∈ Iunu , ∀h ∈ Iinu ).

Among interesting items Iinu , user u buys/uses some items
and evaluates them by assigning ratings. A set of items that are
likely to get high ratings are called preferred items, denoted
by Ipreu , which is a subset of interesting items as shown in
Figure 2 (i.e., Ipreu ⊆ Iinu ).

In a real scenario, u would be able to evaluate only a small
fraction of interesting items. This item set, denoted by Ievalu ,
is only a subset of Iinu (i.e., Ievalu ⊆ Iinu ). For this reason, if
we understand the uninteresting items of each user, we can
understand the users’ taste more accurately.

Based on this viewpoint, our goal is to identify top-N
preferred items to user u by considering the uninteresting
items for each user. Specifically, user u’s pre-use and post-
use preferences for item i ∈ Ievalu are known while both
types of preferences for item j ∈ I − Ievalu are unknown.
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Fig. 3. Overview of our approach.

If u has evaluated item i, its pre-use preference pui can be
considered high. Based on known pre-use preferences, we infer
the pre-use preferences of the remaining unknown items j. In
addition, its post-use preference qui can be directly indicated
by the score of rui. We formally define our problem for top-N
recommendation as follows:

PROBLEM 1 (TOP-N RECOMMENDATION) For user u, iden-
tify top-N items J = {j1, ..., jN} such that: (1) J ⊆ Iinu −Ievalu

and (2) quj1 ≥ ... ≥ qujN ≥ quy (∀y ∈ I − Ievalu − J).

III. PROPOSED APPROACH

Existing CF methods employ user u’s preferences only
on evaluated (rated) items i ∈ Ievalu . On the other hand,
our approach identifies uninteresting items Iunu and exploits
them to enrich the rating matrix with additional user ratings.
In addition, CF methods equipped with our approach could
exclude those uninteresting items explicitly from top-N recom-
mendation. We carefully analyze the benefits of our approach
in Section III-D.

The main challenges of our approach are two-fold: (1)
how to identify uninteresting items among unrated items and
(2) how to exploit uninteresting items thus discerned in CF
methods. To address the first challenge, we need to infer the
pre-use preferences for all of the unrated items, and to find
those unrated items whose pre-use preferences are not high.
For the second challenge, we build the zero-injected matrix
whose some entries are set as 0 if their corresponding items
are considered uninteresting. This augmented matrix can be
applicable to any CF methods (thus making our approach
method-agnostic), which enables those CF methods to benefit
from uninteresting items in their predictions.

Figure 3 depicts the overall process of our proposed
approach. First, we build a pre-use preference matrix P =
(pui)m×n by examining a rating matrix R = (rui)m×n.
Specifically, we set the pre-use preference, pui, of a user u on
an item i as 1 when rui ∈ R has been already rated (i.e., u must
have liked i so that she bought i) (Step 1). The value 1 is the
highest pre-use preference because we represent pui as a real
value in [0, 1]. Next, we infer (unknown) pre-use preferences
on “unrated” user-item pairs (u, i) (i.e., puj = null) based
on other observed pre-use preferences (i.e., pui = 1) and add

them in P , which becomes P̂ (Step 2). We define uninteresting

items for each user based on P̂ , and build a zero-injected
matrix Z = (zui)m×n (Step 3). That is, zui is set as rui



when user u has actually evaluated item i and is set as 0
if i is an uninteresting item for u. In our approach, an item j
is an uninteresting item for a user v if j’s pre-use preference

score p̂ui is ranked within the bottom θ% in P̂ . Thus, Z is
an augmented matrix that contains u’s original ratings as well
as “0”, inferred and injected by our solution. We then apply a
CF method to Z to predict the post-use preferences of empty
entries (dotted circles) in Z (Step 4). Finally, we recommend
top-N items to an active user. In the following subsections, we
explain each step in detail.

A. Inferring Pre-Use Preferences

It is straightforward to determine a pre-use preference pui
when a user u has already rated an item i (i.e., rui 6= null)
because i must be interesting to u in the beginning, i.e.,
Ievalu ⊆ Iinu . As such, we set the pre-use preference pui as 1 in
this case. When u has not rated i (i.e., rui = null), determining
pui becomes non-trivial. Therefore, our main challenge is to
accurately infer pre-use preferences pui when unrated.

To address our challenge, we propose to borrow the frame-
work of the one-class collaborative filtering (OCCF) prob-
lem [15], [20]. The OCCF problem occurs when a rating score
is unary such as clicks, bookmarks, and purchases so that either
a cell in a matrix has null value or a single value indicating
“yes.” Meanwhile, ambiguity arises in the interpretation of
unrated items. That is, it is difficult to differentiate negative
and positive examples that co-exist among unrated items [15].
Some unrated items could be positive as the user was not aware
of the existence of the items but if she knew she would have
liked them. On the other hand, some are negative as the user
knew about the items but decided not use them as she did not
like them.

This problem setting happens when we infer pre-use prefer-
ences for unrated items. That is, known pre-use preferences for
rated items have a value of 1 (i.e., pui = 1), and missing pre-
use preferences for unrated items are ambiguous. In Figure 2,
we observe that both unlabeled positive examples (Iinu −Ievalu )
and negative examples (Iunu ) co-exist in the set of items whose
pre-use preferences are unknown (I − Ievalu ). We thus employ
the OCCF method [15] to infer pre-use preferences. 1

The basic idea of the OCCF method is to treat all unrated
items as negative examples, and assign weights to quantify
the relative contribution of these examples. In our situation,
it assigns 0 to pui whose value is null in P and determines
weight wui by three schemes: uniform, user-oriented, and item-
oriented schemes. In this paper, we employ the user-oriented
scheme that was the best performer in [15]. The intuition of
the user-oriented scheme is essentially as a user rates more
items, she is more likely to dislike unrated items. That is, it
computes the weight wui in proportion to the number of items
rated by u: wui =

∑
i pui. The OCCF method finally updates

the value of pui whose value is 0 using all entries in P and
their corresponding weights. We treat the updated values as
the inferred pre-use preference scores.

To update the values, the OCCF method employs the
weighted alternating least squares (wALS) method [21] in

1Note that if there was a method better than the OCCF method, it would
only improve our result further.

building an SVD model with a matrix and weights. It infers
the preference scores for each user’s unrated items via the
SVD model. The wALS method decomposes a matrix P into
two low-rank matrices X and Y while optimizing an objective
function £(X,Y ). The matrix P represents observed pre-use
preferences in our case, i.e., P = (pui)m×n. The matrices
X and Y represent the features of users and items for latent
factors, respectively. The objective function is represented as
follows:

£(X,Y ) =
∑

u

[∑

i

wui{(pui −XuY
T
i )2

+ λ(‖Xu(·)‖
2
F + λ‖Yi(·)‖

2
F )}

]
(1)

where pui and wui are the entries in the observed pre-use
preference matrix P and the weight matrix W , respectively.
The vector Xu is the u-th row of matrix X , and the vector
Yi is the i-th row of matrix Y . The two vectors represent the
features of user u and item i. In addition, ‖·‖F denotes the
Frobenius norm and λ is a regularization parameter.

In order to factorize the matrix P , the OCCF method first
assigns random values to elements in the matrix Y , and updates
elements in the matrix X as in Eq. (2) by optimizing the
objective function. ∀1 ≤ u ≤ m:

Xu(·) = pu(·)w̃u(·)Y (Y T w̃u(·)Y + λ(
∑

i

wui)L)
−1 (2)

where w̃u(·) is a diagonal matrix with elements of wu(·) on
the diagonal, and matrix L is an identity matrix. After that,
the OCCF method updates elements in the matrix Y while
fixing the matrix X as in Eq. (3). ∀1 ≤ i ≤ n:

Yi(·) = pT(·)iw̃(·)iX(XT w̃(·)iX + λ(
∑

u

wui)L)
−1 (3)

We optimize the objective function by repeating Eq. (2) and
Eq. (3) until matrices X and Y converge to a local optimum.

Finally, we approximate matrix P̂ by calculating an inner
product of X and Y as in Eq. (4) where an entry p̂ui in the

matrix P̂ represents a pre-use preference score of user u for
item i.

P̂ ≈ P = XY T (4)

B. Identifying Uninteresting Items

Once pre-use preferences of unrated items are inferred,
next, we attempt to identify uninteresting items. Based on the
pre-use preference scores inferred by the OCCF method, a user
u’s uninteresting items are defined as follows:

Iunu (θ) = {i|ρ(p̂ui) ≤ θ, rui = null} (5)

where ρ(p̂ui) indicates the percentile rank of p̂ui among all
user-item pairs whose ratings are missing in R. For instance,
Iunu (20) indicates that we assign all unrated items whose
percentile ranks of pre-use preference scores are at the bottom
20% as uninteresting items.

In Eq. (5), we do not use an absolute cut-off value for pre-
use preference scores because the OCCF method is originally
designed for computing users’ relative preferences. In addition,
we adjust the parameter θ to obtain the best accuracy for top-
N recommendation. If θ is set high, a large number of zero
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Fig. 4. A Pre-use preference matrix P̂ .

ratings are injected to Z , leading a less sparse rating matrix at
the cost of some zeros being false set. On the hand, if θ is set
low, we may not be fully utilizing the benefit of uninteresting
items as only a small number of zero ratings are injected. Our
simple use of relative cut-off based on percentile rank works
well, at the end, as we will demonstrate in experiments.

EXAMPLE 2. Figure 4 illustrates a pre-use preference matrix

P̂ , where the cells with 1 and with decimal numbers are
originally derived from the rated and unrated items in R,
respectively. As a larger θ is set, more items are determined
as uninteresting items. For example, when θ = 20, only light-
colored cells become uninteresting items. If θ = 80, both
light and middle-colored cells become uninteresting items.
Finally, when θ = 99, all colored cells become uninteresting
items. Note that the number of uninteresting items could be
different per user. For instance, when θ = 80, the numbers of
uninteresting items for u1 and u2 are 1 and 4, respectively.

It is worthwhile to emphasize that our approach identifies
uninteresting items more broadly than what a user herself
would have recognized. In a real setting, even if asked, users
are able to review only a small fraction of (millions of)
unrated items to identify truly uninteresting items. In contrast,
our approach finds uninteresting items that users have not
recognized yet but are likely to consider uninteresting when
presented.

C. Zero-Injection

This paper proposes a novel approach to fill a part of
missing ratings, named as zero-injection, which assigns a zero
value to rui in R if an item i is determined as a user u’s
uninteresting item. We inject zeros for missing ratings because
a user would not be satisfied with her uninteresting items even
when recommended.

By augmenting a rating matrix R with zeros, the zero-
injection method builds a new matrix that contains zero ratings
as well as actual user ratings. We call this augmented matrix
as zero-injected matrix Z = (zui)m×n, where entry zui can be
represented as follows:

zui =





rui if u has evaluated i;

0
if (1) u has not evaluated i, and

(2) i is an uninteresting item to u;

null otherwise

Note that zui is set as rui if user u has rated item i. On the
other hand, if i has not been rated by u (rui = null) and its

pre-use preference pui is not high, zui is set as 0. Otherwise,
zui is set as null, indicating “unknown.” Entry zui indicates a
user u’s rating for an item i. When the value of zui is zero, it
implies that user u is very unlikely to love item i even though
i is recommended to u. When the value of zui is the rating
given by user u, it indicates that user u is satisfied with item
i to the extent that its rating score indicates.

Note that our proposed approach works regardless of the
choice of underlying CF methods as we can simply replace the
original rating matrix R by the zero-injected matrix Z . In other
words, our approach is orthogonal to existing CF methods,
which is one of strengths in our approach. Businesses and
recommender systems can choose any appropriate CF methods
suiting their particular settings, yet still use our proposed idea
for improving accuracy and running time.

Our proposed approach can improve the CF methods in
two aspects. When CF methods are applied, the zero-assigned
items for a user are excluded from her recommendation list (as
ratings are zero). We note that existing CF methods consider
all items whose ratings are missing as recommendation can-
didates. Therefore, the zero-injected matrix prevents a user’s
uninteresting items2 from recommendation. In addition, the
zero-injected matrix provides a much more number of ratings
(including ratings with zero values) than the original rating
matrix. Thus, the CF methods equipped with our approach are
able to understand relative users’ preferences more accurately
when they are applied to the zero-injected matrix. Moreover,
as the number of recommendation candidates reduces, the
computational cost also decreases because the CF methods
have only to compute the relative preferences for a small
number of items.

Similar to our approach, PureSVD [4] also assigns zero
values to missing ratings. Unlike our approach, however,
PureSVD has no regard for identifying users’ uninteresting
items, and fills zero to “all” missing ratings (items i ∈ I−Ievalu

for each user in Figure 2). PureSVD regards user’s favorite
items as the items with low preferences (Iinu ⊆ I − Ievalu in
Figure 2). Unlike this approach, our zero-injection selectively
fills only the items in Iunu of low pre-use preference scores
with zeros, recognizing a user u’s taste more precisely. More-
over, PureSVD cannot explicitly prevent uninteresting items
from being recommended. In experiments, we demonstrate the
superiority of our approach over PureSVD.

D. Why Does Zero-Injected Matrix Help?

We argue that the zero-injected matrix helps improve the
accuracy of any CF methods. To present the ground for our
argument, we discuss the effect of our approach when applied
to two popular CF methods: the item-based collaborative
filtering (ICF) [19] and the SVD-based method (SVD) [24].

ICF predicts a rating ẑui for a target item i of a user u by
referencing her ratings on those items similar to the item i as
follows:

ẑui =

∑
j∈Si

{zuj ∗ sim(i, j)}
∑

j∈Si
sim(i, j)

(6)

where Si is a set of (up to) k items that have users’ rating
patterns most similar to that of i and u’s rating is known

2We note that the user is highly unlikely to use those items.
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for. If there are less than k users who have evaluated i, Si

includes this number of items only instead of k. In addition,
sim(i, j) denotes the similarity between items i and j in
terms of users’ rating patterns. This paper adopts Pearson’s
correlation coefficient as a similarity metric, which is widely
used in recommendation field [1], [3].

Figure 5 illustrates the difference between a rating matrix
R and its corresponding zero-injected matrix Z built by our
approach. We observe that, unlike R, Z has extra zero ratings
(in boldface) implying users’ uninteresting items.

Suppose that ICF predicts the rating r11 of a user u1 for an
item i1 when its parameter k is set as 3. With the rating matrix,
it refers to only r14 for prediction3 because u1 has not rated
i2 and i3 (i.e., r12 and r13 are nulls). Therefore, its predicted
rating would be inaccurate due to the sparsity problem. On
the other hand, thanks to zero-injection, ICF considers more
ratings, z12 and z13, in addition to z14 with Z . This is because
item set Si now contains a more number of ratings, including
two uninteresting items.

In addition, our approach helps find the items that are
truly similar. With R, ICF may conclude that i1 and i3 are
highly similar because u4 gives 1 to both of them. However,
the similarity can be inaccurate because it is based on only
a single user’s opinion. With Z , the two items are regarded
less similar because u2 rated two items as quite different. As
such, the zero-injected matrix is useful to compute a more
accurate similarity because it enables CF to reflect more users’
opinions. In particular, we note that the zero-injection makes
it possible for ICF to successfully find truly similar users who
have a set of “uninteresting” items in common, which has been
overlooked in existing CF methods.

In Figure 5, we only show the accuracy improvement owing
to a more number of items in Si. Moreover, even when the
number of items in Si is the same, the accuracy could increase
because Si with our zero-injected matrix contains those items
more similar to item i than Si obtained with R.

Next, we also explain how the zero-injected matrix makes
existing SVD-based methods [24] more accurate. Given Z ,
SVD factorizes it into an inner product of two low-rank
matrices X and Y with a dimension f . That is, one low-rank
matrix is an m-by-f user-factor matrix and the other is an

3Otherwise, the items whose similarity to i1 is less than i2 and i3 need to
be included in Si.

n-by-f item-factor matrix. Each user u is thus associated with
an f -dimensional vector xu ∈ Z

f . Each item i is involved
with an f -dimensional vector yi ∈ Z

f . The rating prediction
for ẑui is computed by Eq. 7:

ẑui = xuy
T
i (7)

With the original rating matrix R in Figure 5, SVD cannot
recognize that u2 is related to u1 or u3 because they have no
common items rated. In contrast, using Z , it now successfully
observes the relationship between those users, i.e., both u2

and u1 are not interested in i3, and have different opinions
on i2. Similarly, it also misses items’ relationships such as
i2 and i3 with R while it is able to find the relationships
with Z . Therefore, SVD can build a better model representing
more latent relationships among users and items with our zero-
injected matrix, which helps improve the overall accuracy of
top-N recommendation.

IV. EVALUATION

In this section, we evaluate the effectiveness and efficiency
of our proposed approach with a real-life dataset and an open-
source implementation of existing CF methods. Specifically,
we first validate the accuracy of the OCCF method [15] to
infer users’ pre-preferences in comparison with other methods
and also verify our assumption that users are unlikely to use
uninteresting items with low pre-use preferences. In addition,
we perform the sensitivity analysis on parameter θ that is
crucial to determine uninteresting items. Finally, we show
the accuracy and running time of the modified CF methods
equipped with our approach compared with the original ones.

A. Experimental Set-Up

We use the MovieLens 100K dataset [16], widely used for
evaluating recommender systems [15], [22], [13], [23]. This
dataset consists of 943 users, 1,682 items, and 100,000 ratings.
The ratings are integer values from 1 (i.e., worst) to 5 (i.e.,
best). The minimum number of ratings per user is 20.

For evaluating the accuracy of top-N recommendation, we
vary the value of N from 5 to 20 in an increment of 5 (default
value = 5). Only the items with the rating score of 5 are con-
sidered as relevant, i.e., ground truth, as correctly predicting
items with high ratings has more business ramifications (than
predicting items with low ratings), as argued in [22].

We adopt four metrics to measure the accuracy such as pre-
cision, recall, normalized discounted cumulative gain (nDCG),
and mean reciprocal rank (MRR). For a user u, precision

Pu@N and recall Ru@N can be computed by
|Relu∩Recu|

|Recu|

and
|Relu∩Recu|

|Relu|
, respectively, where Recu denotes a set of N

items that each method recommends to u, and Relu denotes
a set of items considered relevant (i.e., ground truth). We also
use nDCG to reflect ranked positions of items in Recu. Let
yk represent a binary variable for the k-th item ik in Recu.
If ik ∈ Relu, yk is set as 1. Otherwise, yk is set as 0. Then,
nDCGu@N is computed by DCGu@N

IDCGu@N
, where DCGu@N =∑N

k=1
2yk−1

log
2
(k+1) , and IDCGu@N means an ideal DCGu@N

where yk is set as 1 for every item ik ∈ Recu. MRR shows the
average inversed rankings of every item ik ∈ Recu. MRRu

can be computed by 1
|Relu|

∑|Relu|
i=1

1
ranki

. All measurements

are averaged using 5-cross validation.
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Fig. 6. Error rate comparison of five inference methods.

To show the effectiveness of our approach, we first aug-
ment a rating matrix R to a zero-injected matrix Z using
our proposed method, and feed Z as input to existing CF
methods such as an item-based CF (ICF) [19] and SVD-
based CF (SVD) [24], well known methods in memory-based
and model-based approaches, respectively. Further, we use
the ICF and SVD methods implemented in the open-source
MyMediaLite [6] using their default parameter settings in
our experiments. All datasets and codes that we used in
experiments are available at: https://goo.gl/KUrmip.

Our empirical study is to answer the following questions
via comprehensive experiments.

• Q1: Is the OCCF method (most) effective to infer
users’ pre-use preferences?

• Q2: Are users really not satisfied with uninteresting
items that our approach determines?

• Q3: How does the accuracy of our approach vary over
different θ? How sensitive is θ?

• Q4: How much does our approach improve existing
CF methods with respect to accuracy? Is Hypothesis
1 valid (with respect to accuracy)?

• Q5: How much time our approach spends compared
to existing CF methods? Is Hypothesis 1 valid (with
respect to running time)?

B. Q1: Inference of Pre-Use Preferences

As the gist of our approach to identify uninteresting items
depends on the effectiveness of the OCCF method to infer
users’ pre-use preferences, first, we test how effective the
OCCF method is, against four other candidates (Q1): user-
oriented method (UOM), binary item-based method (BIM),
item-based method (IM), and random method (RM). UOM
borrows the idea from the user-oriented scheme that determines
the weights in the OCCF method (mentioned in Section III-A).
UOM determines user’s pre-use preference scores to be in-
versely proportional to the number of her rated items. BIM
uses the “observed” (binary) pre-use preference matrix P
(introduced in Section III-A) and infers the pre-use preference
scores exploiting the item-based CF [19]. IM is identical to
the original item-based CF, which produces pre-use preference
scores based on the original rating matrix R. RM is a baseline
that does not infer pre-use preference scores but randomly
selects uninteresting items among unrated items. We also
employ the same parameter settings as in [15] for wALS in
the OCCF method.

TABLE II. ACCURACY (i.e., P@5) OF CF METHODS EQUIPPED WITH

OUR APPROACH WITH FIVE INFERENCE METHODS.

OCCF BIM IM UOM RM

30% 0.199 0.155 0.123 0.062 0.085

60% 0.199 0.165 0.130 0.021 0.035

90% 0.201 0.154 0.134 0.004 0.009

0.200 0.158 0.129 0.029 0.043

30% 0.177 0.137 0.110 0.062 0.067

60% 0.189 0.150 0.144 0.034 0.039

90% 0.207 0.192 0.144 0.011 0.008

0.191 0.160 0.133 0.036 0.038Average

Inference MethodParameter

Θ

CF

method

ICF

SVD

Average

As the accuracy measure for Q1, we especially define an
error rate, which captures how many rated items are selected
as uninteresting items (i.e., mis-classified) for each user by an
inference method. The idea behind this notion is that as user’s
pre-use preferences should have been relatively high for her
rated items, an inference method that does a less number of
mis-classification is deemed as a better solution. A user u’s
error rate is defined as: errθu =

|Iun
u (θ)∩Itest

u |
|Itest

u | , where Itestu is

a set of items rated by u in a test set, and Iunu (θ) is a set of
items determined as uninteresting (i.e., ranked in the bottom
θ% according to the inferred pre-use preference scores) by the
particular inference method. The lower a user’s error rate gets,
the better an inference method is.

Figure 6 shows the changes of error rates of five inference
methods, averaged over all users with varying θ. In general,
as θ increases, error rates of five methods increase as well.
In particular, the error rates of UOM, IM, and RM increase
more rapidly than those of the OCCF method and BIM. The
OCCF method and BIM have relatively small error rates until
θ reaches to 90%, implying that their accuracy is fairly good
when θ is smaller than 90%. Above 90%, their error rates grow
rapidly. This is because at this point there are only a relatively
small number of unrated items left among which a substantial
amount of interesting items exist. Among five methods, the
OCCF method shows the best error rates, regardless of θ.
Therefore, we conclude that it is the most effective in correctly
inferring pre-use preferences.

So far, we validate that pre-use preferences inferred by the
OCCF method are most accurate. Next, we examine if pre-use
preferences inferred by the OCCF method indeed yield the
best accuracy when used in real CF methods, i.e., the end-to-
end performance. We build the zero-injected matrix Z using
pre-use preferences inferred by five inference methods, and
apply Z to two CF methods–the item-based CF (ICF) and
SVD-based CF (SVD). In this experiment, we vary θ as 30%,
60%, and 90%. As all accuracy metrics of Section IV-A show
similar tendencies, we only report the results for P@5 here
(More detailed analysis on the effect of θ will be given in
Section IV-D).

Table II shows the precision@5 scores of ICF and SVD
using a zero-injected matrix, inferred by five different inference
methods. Similar to Figure 6, the OCCF method shows the best
accuracy in all cases (19%–26% higher than BIM, the second
best one) while UOM shows the worst accuracy (even lower
than RM). Therefore, as the answer to Q1, we conclude that
the OCCF method is the most effective for inferring pre-use
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Fig. 7. Users’ error rates according to items’ pre-use preference scores.

preferences, and, in subsequent evaluation, employ only the
OCCF method for inferring pre-use preferences.

C. Q2: User’s Satisfaction on Uninteresting Items

One of main assumptions of our proposal is that a user
would not be satisfied with her uninteresting items. If our
assumption does hold in practice, then a user is unlikely to
purchase or use the uninteresting items recommended to her,
and even if she does, she is more likely to assign low ratings to
these items. To validate this assumption, we examine whether
users are going to be satisfied with items in proportion to
their pre-use preference scores. Recall that an item is likely
to be selected as uninteresting if its pre-use preference score
is relatively low.

First, we observe what portion of items are rated according
their pre-use preference scores. For this observation, we first
hide some ratings (i.e., a test set), and compute the pre-use
preference scores for all unrated user-item pairs by using
the remaining ratings (i.e., a training set). Next, we divide
the unrated user-item pairs into 100 bins according to their
percentile rank ρ of pre-use preference scores. We calculate the
error rates for the j-th subset, Iunu (βj , βj+1), instead of Iunu (θ)
to show the ratio of those user-item pairs that are really rated
in the test set. Iunu (βj , βj+1) includes u’s unrated items whose
rank ρ is between βj and βj+1 (i.e., βj ≤ ρ(p̂ui) < βj+1 for
∀i ∈ Iunu (βj , βj+1)).

Figure 7 depicts the distribution of error rates over ρ. As
ρ increases, the error rate increases rapidly. Moreover, the test
set verifies that users have evaluated only a few items whose
ρ is low. For example, among all the rated items, 90% items
(resp. 95% items) have ρ higher than 74% (resp. 79%) (marked
in Figure 7). This result indicates that users hardly ever use the
items whose pre-use preference scores are not high, thereby
supporting out assumption.

Next, we investigate users’ given rating scores according
to their pre-use preference scores. For this analysis, we build
training and test sets, and make the OCCF method infer pre-use
preferences for unrated user-item pairs by using the training
set. After that, we divide those user-item pairs into 10 bins
according to their percentile rank ρ of pre-use preference
scores. By referring to the test set, we compare the number
of items rated as 1 or 2 and that of items rated as 4 or 5 in
each bin. For a fair comparison, we need to note two important
observations: users leave 4 or 5 ratings (i.e., 55% of all ratings)
much more often than 1 or 2 ratings (i.e., 17% of all ratings)
in the MovieLens dataset; In addition, the numbers of “rated”
items in the test set differ significantly depending on the bins.
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Fig. 8. Distribution of users’ pre-use preference scores for rated items.

For example, 0.1% of user-item pairs have ratings in the first
bin while 86.8% of pairs does in the 99-th bin. Considering
these inequalities, we compute the relative ratio of items rated
as 1 or 2 (resp. 4 or 5) for each bin as follows:

ratiou(j, s) =
|Itestu (s) ∩ Iunu (βj , βj+1)|

|Itestu ∩ Iunu (βj , βj+1)|
÷

|Ievalu (s)|

|Ievalu |
(8)

where Itestu is a set of items evaluated by a user u in the test
set, and Itestu (s) indicates a set of items rated as s in Itestu .
Ievalu indicates a set of items rated by u among all items (i.e.,
the test as well as the training set). Ievalu (s) presents a set of
items rated as s in Ievalu . The fraction before the division sign
in Eq. 8 means the ratio of items rated as s to all rated items in
a bin. In addition, the fraction after the division sign in Eq. 8
(i.e., the ratio of items rated as s to the whole rated items) is
necessary for normalization. A higher relative ratio indicates
that more items rated as s exist in a bin.

Figure 8 shows the distribution of relative ratios. When ρ
is smaller than 0.3, the relative ratio of items rated as 1 or
2 stagnates as ρ gets higher. This is because there are only a
few rated items whose ρ is less than 0.3. When ρ is higher
than 0.3, the relative ratio of items rated as 1 or 2 decreases
as ρ gets higher. When ρ is smaller than 0.9, the relative ratio
of items rated as 4 or 5 is smaller than 1. Only when ρ is in
the range of 0.9 and 1, the relative ratio is higher than 1. In
short, the items whose ρ is smaller than 0.9 are likely to be
rated as 1 or 2 rather than 4 or 5. On the other hand, the items
whose ρ is higher than 0.9 are more likely to be rated as 4 or
5. Therefore, we know that users are less likely to be satisfied
with the items whose ρ is less than 0.9.

Based on the results of two experiments above, as the
answer to Q2, we conclude that users are rarely satisfied
with the items whose pre-use preferences are not high. In
addition, we found that users tend to be unsatisfied with most
of items in R (e.g., 90%), suggesting that there are many items
uninteresting to a user.

D. Q3: Effect of Parameter θ

As the parameter θ controls the amount of values imputated
with zero-injection, it greatly affects the accuracy in recom-
mendation. To verify the effect of θ, therefore, we conduct the
sensitivity test. We first build different zero-injected matrices
with varying θ and apply them to two CF methods, ICF [19]
and SVD [24].
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Fig. 9. Accuracy of ICF and SVD equipped with our proposed approach with varying parameter θ.

Figure 9 shows the accuracy of top-N (N = 5) recom-
mendation with ICF and SVD with varying θ. We increase
θ in an increment of 10% for the range of 10−90%, while
increase θ in an increment of 1% for two extreme ranges,
0−10% and 90−99.7%. Note that we do not report the result
with θ = 100% because CF methods with our approach
recommend nothing in this case. For this reason, we set θ
up to 99.7% in order to leave only 5 items whose pre-use
preference scores are the highest for each user. In this case,
these 5 remaining items are thus all recommended (as top-5) to
each user without requiring further CF methods. In summary,
the result with θ = 0% indicates the accuracy of original ICF
and SVD methods without using our approach, while the result
with θ = 99.7% indicates the accuracy of the OCCF method
without using ICF or SVD.

In Figure 9, we observe that the results of precision,
recall, nDCG, and MRR show similar patterns. All these
accuracy values of CF methods increase as θ increases up
to around 95%. Moreover, accuracies in general grow rapidly
until θ reaches 10%. All results clearly show that our idea of
using zero-injection dramatically improves the accuracy of two
original CF methods. ICF using our approach with θ = 96%
shows the best precision, 5.2 times higher than ICF without our
approach. When θ = 95%, similarly, our approach improves
the precision of SVD by 3.4 times.

As mentioned earlier, the OCCF method can be used to
produce top-N recommendation without using ICF and SVD
(i.e., θ = 99.7%). The method, however, shows accuracy
much lower than ICF and SVD equipped with our approach.
This implies that the OCCF method is quite effective in
finding uninteresting items. However, it is not that effective in
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Fig. 10. Accuracy of SVD with five uninteresting item sets defined by
percentile rank ρ.

recommending the final items because it ignores rating scores.

The accuracy changes greatly when θ is less than 10%
or more than 90% while it changes little when θ is between
10% and 90%. We can interpret this phenomenon as follows:
(1) as θ increases up to 10%, more user-item pairs (i.e., highly
likely to be uninteresting) are filled with zeros (giving accurate
and useful information to CF methods) and are also correctly
excluded from top-N recommendation. (2) When θ ranges
between 10% and 90%, accuracy changes little because filling
unrated user-item pairs in the case of (1) has already alleviated
most of the data sparsity problem. Filling more zero ratings
no longer gives useful information to CF methods although
user-item pairs whose θ is between 10% and 90% are highly
likely to be uninteresting (See Section IV-C). (3) When θ
is larger than 90%, the accuracy decreases significantly. As
θ reaches 99.7%, more user-item pairs having high pre-use
preferences (i.e., could be interesting to users) are incorrectly



filled with zeros (giving inaccurate and less useful information
to CF methods) and could be incorrectly excluded from top-N
recommendation.

To understand this phenomenon more clearly, we define
five sets of uninteresting items according to the percentile
rank ρ of pre-use preference scores. Figure 10 shows the
accuracy of SVD with the five sets of uninteresting items
including those items whose ρ is 0−20, 20−40, 40−60,
60−80, and 80−99.7%, respectively. In the results, all ac-
curacy metrics show similar tendencies. The four results of
0−20, 20−40, 40−60, 60−80% produce good accuracies,
while that of 80−99.7% shows significantly worse accuracies.
This implies that, among the items whose ρ is 0−80%, there
are only a few interesting items (errors) as we explained above.
However, among the items whose ρ is 80−99.7%, there are
many interesting items. This phenomenon is also observed in
Section IV-C.

As to Q3, finally, we conclude that accuracies increase
greatly when θ is less than 10% while it decreases significantly
when θ is more than 90%. In addition, accuracies remain quite
high and changes little for a large interval of 10% ≤ θ ≤
95%, indicating that we can obtain a high accuracy even if
we arbitrarily set θ within that interval, making our approach
parameter-insensitive (with respect to θ).

E. Q4: Accuracy of CF Methods with Our Approach

We apply our approach to four existing CF methods (i.e.,
ICF [19], SVD [24], SVD++ [2], [10], and pureSVD [4]), and
validate its effectiveness in improving accuracy. SVD++ uti-
lizes both ratings and binary ratings (whether a user evaluates
an item or not). PureSVD fills all missing ratings with zeros,
and then produces recommendation based on the SVD model.
Based on the findings in Section IV-D, we set the parameter
θ as 90%.

Table III shows the accuracy of all CF methods with and
without our approach. We denote a CF method equipped with
our approach as name ZI (i.e., zero-injection) such as ICF ZI,
SVD ZI, SVD++ ZI, and PureSVD ZI. The numbers in bold-
face indicate the highest accuracy among all CF methods with
and without our approach.

Among existing CF methods, PureSVD has the best accu-
racy while ICF shows the worst accuracy. In literature, both
PureSVD and SVD++ are known to provide a better accuracy
than SVD and ICF. We confirmed that our finding is consistent
with [4]. We observe that our approach dramatically improves
the accuracy of all the existing CF methods. For example,
our approach improves P@5 of ICF, SVD, and SVD++ by 5,
3.3, and 2.5 times, respectively. When our approach is applied
to PureSVD, its improvement is the smallest. The reason is
that PureSVD already assigns zeros to all missing ratings,
which is an idea similar to the zero-injection in our approach.
However, PureSVD fills zeros even for the items that could be
interesting to users, which could affect the accuracy adversely.
Furthermore, our approach employs another strategy of ex-
cluding uninteresting items from top-N recommendation, that
contributes to the slight accuracy improvement over PureSVD.

Among the CF methods equipped with our proposed ap-
proach, SVD ZI performs the best, followed by ICF ZI. Our

approach improves both SVD and ICF greatly because they
consider all unrated items as unknown ones. For this reason,
SVD ZI and ICF ZI adopt additional information correctly
by regarding zero ratings as uninteresting ones and null values
as unknown ones. Meanwhile, our approach cannot improve
SVD++ and PureSVD as much as SVD and ICF because
SVD++ and PureSVD originally have a positive view on rated
items and a negative view on unrated items. SVD++ builds a
SVD model by considering whether a user rates an item, but
SVD++ ZI cannot distinguish the uninteresting items and rated
items because all of them have rating values. PureSVD ZI fails
to discriminate zero ratings and null values in our zero-injected
matrix. Specifically, since it assigns zero ratings again to all
unrated items in our zero-injected matrix, in view of rating
scores, unrated interesting items (determined by our approach)
are also regarded as uninteresting.

We note that SVD ZI (the most accurate CF method
equipped with our approach) has an accuracy about 2 times
higher than PureSVD on average, the best one among existing
CF methods, found in our experiments and also reported in [4].
Furthermore, PureSVD ZI, the least accurate CF method
equipped with our approach, still outperform all existing CF
methods without using our approach.

In summary, our approach significantly improves the accu-
racy of all four CF methods used in our experiments via zero-
injection while the degrees of improvement vary. As the answer
to Q4, therefore, we conclude that our approach improves the
accuracy of existing CF methods by 2.5 to 5 times on average,
which is significant in comparison with the results obtained by
other state-of-the-art methods reported in literature [4], [7].

F. Q5: Running Time of CF Methods with Our Approach

In this section, we compare the execution times of CF
methods with and without our approach. Our approach has
both strengths and weaknesses in terms of execution times.
We note the weaknesses happen at the pre-computation stage
(offline) while the strengths happen at the recommendation
stage (online). The CF methods build a model or computes
similarities of item pairs during the pre-computation stage;
they compute relative preferences and find top-N items during
the recommendation stage.

Our approach reduces the recommendation time because
it significantly reduces the number of candidate items whose
relative preferences need to be predicted. Meanwhile, our
approach may require more pre-computation time because it
has to infer pre-use preference scores for all missing ratings
by exploiting the OCCF method. In this section, therefore, we
study the trade-off of our approach by examining the running
time when our approach is applied to both ICF and SVD.

Figure 11 shows both recommendation and pre-
computation times of SVD ZI, SVD, SVD++, and pureSVD.
Specifically, the recommendation time indicates those for
predicting users’ ratings and providing the items to users; the
pre-computation time indicates the time for building a SVD
model with a rating matrix R (SVD, SVD++, and PureSVD)
and a zero-injected matrix Z (SVD ZI). In Figure 11(a),
the recommendation time of SVD ZI decreases rapidly as θ
increases because there remain fewer candidate items as θ
increases. In addition, SVD ZI takes a shorter time at the



TABLE III. ACCURACY OF FOUR CF METHODS EQUIPPED WITH OUR APPROACH (θ = 90%).

Original Ours Gain Original Ours Gain Original Ours Gain Original Ours Gain

@5 0.039 0.201 413.8% 0.063 0.207 229.7% 0.076 0.193 153.3% 0.100 0.106 16.7%

@10 0.041 0.161 292.6% 0.056 0.166 196.9% 0.069 0.154 123.9% 0.082 0.089 19.1%

@15 0.040 0.137 243.7% 0.053 0.142 169.9% 0.063 0.134 112.0% 0.071 0.078 11.3%

@20 0.039 0.121 211.7% 0.048 0.125 159.1% 0.058 0.118 102.3% 0.063 0.071 13.7%

@5 0.030 0.207 600.3% 0.052 0.218 316.0% 0.063 0.194 209.6% 0.112 0.120 16.9%

@10 0.059 0.305 412.7% 0.089 0.325 265.9% 0.109 0.288 163.1% 0.175 0.191 19.3%

@15 0.085 0.375 341.4% 0.121 0.394 226.3% 0.150 0.361 141.2% 0.220 0.245 11.4%

@20 0.111 0.428 285.4% 0.144 0.450 213.5% 0.184 0.415 125.3% 0.254 0.293 15.4%

@5 0.043 0.268 527.9% 0.076 0.274 260.7% 0.087 0.256 196.0% 0.135 0.143 16.0%

@10 0.053 0.285 436.0% 0.084 0.297 252.0% 0.099 0.272 175.6% 0.151 0.162 17.6%

@15 0.062 0.303 390.7% 0.094 0.315 234.8% 0.110 0.291 163.7% 0.164 0.178 18.9%

@20 0.071 0.319 351.7% 0.101 0.332 227.3% 0.121 0.306 153.5% 0.174 0.193 10.9%

0.106 0.426 303.0% 0.165 0.428 159.2% 0.181 0.416 129.3% 0.262 0.274 14.7%MRR
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recommendation stage. It takes about 1.54 seconds when it
has the highest accuracy (θ=90%), which is 17% shorter than
that of SVD.

In Figure 11(b), SVD ZI takes more time to pre-process
items with larger θ, and is slower than SVD and PureSVD.
This is because SVD ZI builds two models, one built based
on the pre-use preference matrix P and the other based on
the zero-injected matrix Z while both SVD and PureSVD
build only a single model. SVD ZI, however, needs less pre-
computation time than SVD++ that has a more complicated
process for building a model.

Figure 12 shows both recommendation and pre-
computation times of ICF ZI and ICF. The pre-computation
time indicates the time for computing the similarities of all
pairs of items. In Figure 12(a), when θ is smaller than 20%,
the recommendation time of ICF ZI increases as θ increases.
This is because a more number of ratings are used for
predicting a rating. It decreases linearly as θ increases when
θ is higher than 20%. This is because the number of ratings
used for prediction is fixed as k (explained in Section III-D)
from this point while there remain a fewer items whose rating
is null as θ is set larger. Compared with ICF, ICF ZI requires
less recommendation time when θ is larger than 70%. As we
know that the accuracy of ICF ZI gets higher as θ increases,
a user would be satisfied with ICF ZI when θ is set larger
than 70% in terms of both accuracy and recommendation
time.

Figure 12(b) shows the pre-computation time for comput-
ing similarities between items [19]. The pre-computation time
of ICF ZI increases as θ increases because a more number of
ratings need to be compared to compute similarities of a pair of
items. Therefore, ICF ZI requires more pre-computation time
than ICF does.

In summary, our approach reduces the recommendation
times of SVD and ICF with θ > 70% while it needs more pre-
computation time. Considering that online recommendation
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time is more crucial than offline pre-computation time, we
strongly believe that our approach improves those CF methods
in terms of running times. As the answer to Q5, therefore,
according to Figures 9, 11, and 12, the CF methods equipped
with our approach produce more accurate results in a shorter
time when θ is set higher than 70%.

V. RELATED WORK

In general, CF methods are categorized into two types:
memory-based and model-based [1]. First, memory-based
methods [3], [16], [19] predict the ratings of a user using
the similarity of her neighborhoods, and recommend the items
with high ratings. Second, model-based methods [11], [24]
build a model capturing a users’ ratings on items, and then
predict her unknown ratings based on the learned model.

Most CF methods, despite their wide adoption in practice,



suffer from low accuracy if most users rate only a few
items (thus producing a very sparse rating matrix), called the
data sparsity problem [9]. This is because the number of
unrated items is significantly more than that of rated items.
To address this problem, some existing work attempts to infer
users’ ratings on unrated items based on additional information
such as clicks [12] and bookmarks [14]. While reporting
improvements, however, these works require an overhead of
collecting extra data, which itself may have another data
sparsity problem. Compared to [12], [14], our proposal does
not require any extra data and solely work using an existing
rating matrix.

In addition, to improve the accuracy of recommenda-
tion, other works attempted to leverage both ratings and the
fact whether a user evaluates an item or not. For instance,
SVD++ [2], [10] builds an extended SVD model exploit-
ing both information. The conditional restricted Boltzmann
machine (RBM) [17] and constrained probabilistic matrix
factorization (PMF) [18] also account for both of information
in learning their models. However, these approaches have a
rather simplistic assumption such that a user would dislike
all unrated items. On the other hand, we strive to discern
a sebset of unrated items that users truly dislike. As such,
as demonstrated in experiments, our proposal yields several
orders of magnitude improvements in accuracy, compared to
these appraoches (e.g., SVD++).

Finally, several CF methods (e.g., [4], [22]) have proposed
to fill missing ratings with a particular value in order to
improve the accuracy. They also simply assume that a user
would dislike all unrated items. Based on this assumption,
for instance, PureSVD [4] fills all missing ratings with zeros,
and then makes prediction using both known ratings and zero
ratings. Steck [22] assigns a low value to all missing ratings,
and then makes recommendation by learning a multinomial
mixture model. By filling all missing ratings with low values,
however, this approach could mistakenly assign low values to
the items that users might like, thereby hurting an overall ac-
curacy in recommendation. While the idea of “zero-injection”
in our approach is analogous to these works, our approach
selectively applies the zero-injection to only uninteresting
items with low pre-use preferences, maximizing the impact
of filling missing ratings.

VI. CONCLUSION

While existing CF methods mainly focus on using only
rated items in a rating matrix, we observe that some unrated
items could be also used to predict users’ ratings if they
are successfully recognized as uninteresting items. Based on
this observation, we proposed a novel approach to unearth
such uninteresting items by using a new notion of pre-use
preferences in the borrowed OCCF framework and assigns zero
ratings to those items. This approach not only significantly
augments a rating matrix with many zeros, which alleviates
the data sparsity problem, but also prevents those uninteresting
items from being recommended. Our approach is method-
agnostic and thus can be easily applied to a wide variety
of known CF methods. Through comprehensive experiments,
we successfully demonstrated that our proposed approach is
effective and practical, dramatically improving the accuracies
of existing CF methods (e.g., item-based CF, SVD-based CF,
and SVD++) by 2.5 to 5 times. Furthermore, our approach

reduces the running time of those CF methods by 1.2 to 2.3
times when its setting produces the best accuracy.
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