
Computational Complexity of Web Service Composition
Based on Behavioral Descriptions

Hyunyoung Kil Wonhong Nam Dongwon Lee∗

The Pennsylvania State University, University Park, PA 16802, USA

E-mail: {hkil, wnam, dongwon}@psu.edu

Abstract

The Web Service Composition (WSC) problem on behav-
ioral descriptions deals with the automatic construction of
a coordinator web service to control a set of web services to
reach the goal states. As such, WSC is one of the fundamen-
tal techniques to enable the Service Oriented Architecture
on the Web. Despite its importance and implications, how-
ever, very few studies exist on the computational complexi-
ties of the WSC problem. In this paper, we present two novel
theoretical findings on WSC problems: (1) Solving the WSC
problem with “complete” information is EXP-hard, and (2)
Solving the WSC problem with “incomplete” information is
2-EXP-hard. These findings imply that more efforts to de-
vise efficient approximate solutions to the WSC problem be
needed.

1. Introduction

Web services [7] are software systems designed to sup-
port machine to machine interoperation over the Internet.
Given a set of web services and a user request, the Web Ser-
vice Composition (WSC) problem is to find a composition
of web services satisfying the request. In this problem, a
coordinator web service controls the involved web services
to achieve the given goal, while the involved web services
do not know the composition. The focus of this paper is,
given a set W of (behavioral descriptions of) web services
and a reachability goal G, to synthesize a coordinator web
service, c, that controls W to satisfy G.

There are abundant researches on the WSC problem
(e.g., [6, 1, 3, 4]). However, to the best of our knowl-
edge, only a few (e.g., [6, 1]) underlie realistic models (i.e.
with incomplete information). Moreover, few studies exist,
which have investigated the computational complexity (i.e.,
lower bound) of the WSC problem. Therefore, in this paper,
we present two complexity results of the WSC problem.

∗Partially supported by IBM and Microsoft gifts.

Travel Agency
System

Reserve/Cancel

Accept/Refuse

Offer/NotAvail

In/Out dates
Location

Accept/Refuse

Reserve/Cancel

Offer/NotAvail

AR

HRReserve both
or Cancel

Dates
From/To Cities

Dates
From/To Cities

User

Figure 1. Travel agency system

2. Web Service Composition

As an example, consider that clients want to make reser-
vations for both of a flight ticket and a hotel room for a par-
ticular destination and a period. However, only an airline
reservation (AR) web service and a hotel reservation (HR)
web service have been built separately. Clearly, we want to
combine these two web services rather than implementing
a new one. One way to combine them is to construct a co-
ordinator web service (Travel agency system) which com-
municates with AR and HR to book up a flight ticket and a
hotel room together. Fig 1 illustrates this example.

A web service w is a tuple (X , XI , XO, Init ,T) where
• X is a finite set of variables that w controls; a state

s of w is a valuation for every variable in X , and we
denote a set of all the states as S .
• XI is a finite set of input variables which w reads from

its environment; X ∩XI = ∅, and every variable x ∈
X ∪ XI has a finite domain (e.g. Boolean, bounded
integers, or enumerated types). A state in for inputs is
a valuation for every variable in XI , and we denote a
set of all the input states as S I .
• XO ⊆ X is a finite set of output variables that its

environment can read.
• Init(X) is an initial predicate over X ; Init(s) = true

iff s is an initial state.

• T (X , XI ,X ′) is a transition predicate over X ∪XI ∪
X ′. For a set X of variables, we denote the set of
primed variables of X as X ′ = {x′ | x ∈ X}, which
represents a set of variables encoding the successor
states. T (s, in, s ′) is true iff s ′ can be a next state
when the input in ∈ S I is received at the state s .

Given a state s over X and a variable x ∈ X , s(x) is the
value of x in s . For a state s overX , let s[Y] where Y ⊆ X
denote the valuation over Y obtained by restricting s to Y .
Note that the process model for most web services described
in Semantic Web languages (e.g. OWL-S or WSBPEL) can
be easily transformed into our representation above without
any information loss.

In the WSC problem, given a set of available web ser-
vices, W , every web service in W communicates only with
their coordinator but not with each other. Based on this as-
sumption, given a set W = {w1, · · · ,wn} of web services
where each wi = (Xi, XI

i , X
O
i , Init i,Ti), W also can be

represented by a tuple (X , XI , XO, Init ,T) where

• X =
⋃
iXi, X

I =
⋃
iX

I
i , XO =

⋃
iX

O
i .

• Init(X) =
∧
i Init i, T (X , XI ,X ′) =

∧
i Ti.

Since a coordinator web service is also a web service,
it is a tuple c = (Xc , X

I
c , X

O
c , Initc ,Tc). Although Tc

can define a non-deterministic transition relation, in this
problem we want only a deterministic transition relation
for c; i.e., for every s and in , there exists only one s ′

such that Tc(s, in, s ′) = true . Then, given a set W =
(X , XI , XO, Init ,T) of web services and a coordinator
c = (Xc , X

I
c , X

O
c , Initc ,Tc) (in what follows, we assume

that XI = XO
c and XO = XI

c), we can define an execution
tree, denoted by W ||c, which represents the composition of
W and c as follows:

• Each node in W ||c is in S×Sc . The root node is (s, sc)
such that Init(s) = true and Initc(sc) = true .
• For each node (s, sc), it has a set of child

nodes, {(s ′, s ′c) | T (s, in, s ′) = true, in =
sc [XI],Tc(sc , inc , s ′c) = true, inc = s ′[XO]}. Intu-
itively, the web services W , by receiving the input in
from the current state sc of the coordinator, proceeds
from s to the next state s ′, and then the coordinator,
by receiving the input inc from the new state s ′ of the
web services, proceeds from sc to the next state s ′c .

A goal G ⊆ S is a set of states where we want to
reach. Given a set W of web services, a coordinator c,
and a goal G , we define W ||c |= G if for every path
(s0, s0

c)(s1, s1
c) · · · in the execution tree W ||c, there exists

i ≥ 0 such that si ∈ G ; namely, every path from the initial
node (s0, s0

c) reaches a goal state eventually. Finally, a web
service composition (WSC) problem that we focus on in this
paper is, given a set W of web services and a goal G , to
construct a coordinator web service c such that W ||c |= G .

The problem size is the number of Boolean variables when
we encode all variables in X into Boolean variables.

To study the computational complexity, we define two
WSC problems as follows:
• WSC with complete information: a special case of

WSC problems where W = (X , XI , XO, Init ,T)
such that X = XO; W has no internal variable.
• WSC with incomplete information: a general WSC

problem where there is no restriction for XO. That is,
a coordinator can read only the output variables for W .

3. Alternating Turing Machine

3.1 Definition

An alternating Turing machine (ATM) [5] is a tuple A =
(Q ,Σ, q0, δ, l) where
• Q is a finite set of states, Σ is a finite tape alphabet,

and q0 ∈ Q is the initial state.
• δ : Q×Σ→ 2Q×Σ∪{#}×{L,N ,R} is a transition func-

tion where {L,N ,R} represents the R/W head move-
ment (i.e., it moves left, stays, or right).
• l : Q → {∀,∃, accept} is a labeling function for

states.
A configuration of an ATM A(Q ,Σ, q0, δ, l) is a tuple

(q , σ, σ′) where q ∈ Q is the current state, σ ∈ Σ∗ is the
tape contents left of the R/W head with the rightmost sym-
bol under the R/W head, and σ′ ∈ Σ∗ is the tape contents
strictly right of the R/W head. Given an ATM A with an
input string aσ, the initial configuration is (q0, a, σ).

Given an ATM A and its input string σ, to see if A ac-
cepts σ (i.e. σ ∈ L(A)), we define n-accepting for config-
urations in its computation tree by a bottom-up manner:
• (q , σ, σ′) is 0-accepting if l(q) = accept .
• (q , σ, σ′) such that l(q) = ∀ is n-accepting if all the

successor nodes are m-accepting for some m < n and
max (m) = n−1.
• (q , σ, σ′) such that l(q) = ∃ is n-accepting if at least

one of its child nodes is m-accepting for some m < n
and min(m) = n−1.

Finally, A accepts σ if the initial configuration is n-
accepting for some n ≥ 0. For the detail of ATMs, see [5].

3.2 Computational complexity

In this paper, we consider the following complexity
classes [5]. DTIME(f) is a time consumption complex-
ity on deterministic Turing machines, and DSPACE(f) is
a space consumption complexity on deterministic Turing
machines. Similarly, we have ATIME(f) and ASPACE(f)
as time and space consumption complexities on alternating
Turing machines (ATMs), respectively.

P =
⋃
k≥0 DTIME(nk)

EXP =
⋃
k≥0 DTIME(2n

k

)

2-EXP =
⋃
k≥0 DTIME(22nk

)
APSPACE =

⋃
k≥0 ASPACE(nk)

AEXPSPACE =
⋃
k≥0 ASPACE(2n

k

)

Then, the class APSPACE (resp. AEXPSPACE) is the
set of decision problems that can be solved by an ATM us-
ing a polynomial (resp. exponential) amount of memory,
respectively. Chandra et al. [2] have proved interesting con-
nections between time complexities on deterministic Turing
machines and space complexities on ATMs:

Theorem 1. EXP = APSPACE, and 2-EXP = AEXP-
SPACE [2].

In Section 4, we will show the space complexities for the
WSC problems. Then, by the connections above, the space
complexities imply the time complexities of the problems.

4. Lower Bounds

In this section, we study the computational complexities
(lower bounds) for two WSC problems we defined in Sec 2.

4.1 WSC with complete information

Theorem 2. The WSC problem with complete information
is EXP-hard (i.e. APSPACE-hard).

The proof is to simulate an ATM with a polynomial tape
length. That is, for any ATM A and an input string σ, we
can construct a WSC problem in polynomial time such that
A accepts σ iff there exists a coordinator to satisfy a goal.

Lemma 1. Given an ATM A = (Q ,Σ, q0, δ, l) with poly-
nomial space bound p(n) and an input string σ = a1 · · · an,
we can construct a WSC problem instance.

PROOF. We can construct a set W (X , XI , XO, Init ,T) of
web services and a goal G which have a polynomial size in
the size of the description of A and σ as follows. The set X
of variables includes the following variables:

• state represents the current state of A; so, it has the
domain, {q | q ∈ Q}.
• For 1 ≤ i ≤ p(n), cl i has the contents of the ith tape

cell; its domain is Σ ∪ {#}.
• hd describes the R/W head position; its domain is
{1, · · · , p(n)+1}.
• label represents the label of the current state; it has the

domain, {∀,∃, accept}.

The set XI is {input} where the domain of input is
{A(q,i,a) | q∈Q, l(q)=∀, 0≤i≤p(n), a∈Σ} ∪ {E(q,i,a,j) |
q∈Q, l(q)=∃, 0≤i≤p(n), a∈Σ, 0≤j≤|δ(a, q)|}. The set
XO equals to X since this problem is the complete infor-
mation problem. As the initial configuration of A, the ini-
tial state predicate Init(X) is (state=q0) ∧

∧
1≤i≤n(cl i=

ai) ∧
∧
n<i≤p(n)(cl i=#) ∧ (hd=1) ∧ (label=l(q0)). Note

that the input string is σ = a1 · · · an. The transition pred-
icate T (X , XI ,X ′) is ((hd=p(n)+1) → TV) ∧ ((label=
∀) → T∀) ∧ ((label =∃) → T∃) with the following sub-
formulae:

• TV ≡ (state ′=state) ∧ (hd ′=hd) ∧ (label ′=label)
• T∀ ≡

∧
q∈Q,1≤i≤p(n),a∈Σ(((state=q)∧(hd=i)∧(cl i=

a)∧(input=A(q,i,a)))→
∨

1≤j≤k((state ′=qj)∧(cl ′i=
aj) ∧

∧
m6=i(cl

′
m=clm) ∧ (hd ′=hd + ∆) ∧ (label ′=

l(qj))))
• T∃ ≡

∧
q∈Q,1≤i≤p(n),a∈Σ,1≤j≤k(((state=q) ∧ (hd=

i) ∧ (cl i=a) ∧ (input=E(q,i,a,j))) → ((state ′=qj) ∧
(cl ′i=aj)∧

∧
m 6=i(cl

′
m=clm)∧(hd ′=hd+∆)∧(label ′=

l(qj))))

where (qj , aj ,mj) is obtained from δ(q, a) =
{(q1, a1,m1), · · · , (qk, ak,mk)}, and ∆ =−1 if mj =L,
∆=0 if mj=N and ∆=1 if mj=R. Note that the value for
the variable input is provided by a coordinator c. Finally,
we have a goal, G = {s∈S | s(label) = accept}.

If the ATM A violates the space bound, hd has the value
p(n) + 1, and after this point we cannot reach goal states
since W stays the same state forever by TV . (Q.E.D)

Lemma 2. If σ ∈ L(A), then there exists a coordinator
c = (Xc , X

I
c , X

O
c , Initc ,Tc) such that W ||c |= G .

PROOF. σ ∈ L(A) means that the initial configuration of
A with respect to σ is m-accepting. When A accepts σ, we
can define an accepting computation tree ACT (A,σ) of A
with respect to σ from its computation tree Υ as follows:

• For each configuration cf = (q, σ1, σ2) ∈ Υ such that
l(q) = ∀, all the successor configuration are also in-
cluded in ACT (A,σ). Note that if cf is m-accepting,
each successor is at most (m−1)-accepting.
• For each cf = (q, σ1, σ2) ∈ Υ such that l(q) = ∃ and

cf is m-accepting, only one successor configuration
cf ′ which is (m−1)-accepting is included in ACT (A,σ).

When A and σ are clear from the context, we drop the
subscript (A,σ) and write ACT . Let σ[i] be the i-th sym-
bol of the string σ. Now, we show that there exists a co-
ordinator c such that for every path (s0, s0

c)(s1, s1
c) · · · in

the execution tree W ||c, there exists si ∈ G . The coor-
dinator to be constructed is c = (Xc , X

I
c , X

O
c , Initc ,Tc)

where Xc = {input}, XI
c = X , and XO

c = {input}.
Also, we can define Tc with a conjunction of two cases:
∀-state and ∃-state. That is, if l(q) = ∀, the transition

predicate is
∧
q∈Q,1≤i≤p(n),a∈Σ(((state = q) ∧ (label =

∀) ∧ (hd = i) ∧ (cl i=a)) → (input ′=A(q,i,a))). Other-
wise,

∧
q∈Q,1≤i≤p(n),a∈Σ(((state=q) ∧ (label=∃) ∧ (hd=

i) ∧ (cl i=a)) → (input ′=E(q,i,a,j))) where j is the index
of the transition by which the ATM proceeds from the cor-
responding ∃-configuration to the next in ACT (A,σ). Simi-
larly with Tc , we can define the initial predicate Initc as
((l(q0) = ∀) → (input = A(q0,1,a1))) ∧ ((l(q0) = ∃) →
(input =E(q0,1,a1,j))) where a1 is the first symbol of the
input string σ and j is obtained as the above.

Then, ACT (A,σ) is mapped into an execution tree W ||c.
For this mapping, we have two mapping functions, α and
β; α maps a configuration cf in ACT to a state s of web
services W , and β maps cf to a state sc of the coordinator
c. First, for each cf = (q, σ1, σ2), we have a corresponding
state s = α(cf) of W such that

• s(state) = q.
• For 1 ≤ i ≤ |σ|, s(cl i) = σ[i] where σ = σ1σ2, and

for |σ| < i ≤ p(n), s(cl i) = #.
• s(hd) = |σ1|.
• s(label) = l(q).

Next, for each configuration cf = (q, σ1, σ2), we have a
corresponding state sc = β(cf) of c such that

• If l(q) = ∀, then sc(input) = A(q,i,a) where i = |σ1|
and a = σ1[i].

• In the case of l(q) = ∃, let cf ′ be the
only successor of cf in ACT , which is ob-
tained by a transition (qj , aj ,mj) among δ(q, a) =
{(q1, a1,m1), · · · , (qk, ak,mk)} where a = σ1[|σ1|].
Now, if l(q) = ∃, sc(input) = E(q,i,a,j) where
i = |σ1| and a = σ1[i].

According to α and β, we have an execution tree of
W ||c where each node is (α(cf), β(cf)). Now, we can
show by induction, that if cf in ACT is m-accepting, every
path from the corresponding node (α(cf), β(cf)) in W ||c
reaches a goal state eventually. We, however, omit the in-
duction for the sake of space. Finally, since the initial con-
figuration is m-accepting, every path from the initial node
of W ||c reaches a goal state; i.e., W ||c |= G . (Q.E.D)

Lemma 3. If there exists a coordinator c such that W ||c |=
G , then σ ∈ L(A).

PROOF. As shown in Sec 2, the fact that there exists a co-
ordinator c such that W ||c |= G means that every path
(s0, s0

c)(s1, s1
c) · · · from the initial node in the execution

tree W ||c reaches a goal state eventually. Now, we show
that an ACT for A corresponding to W ||c can be con-
structed and the initial configuration is m-accepting.

We denote as ST , a finite subtree of W ||c which in-
cludes, for every path (s0, s0

c)(s1, s1
c) · · · of W ||c, its pre-

fix ending at a goal state (i.e. (s0, s0
c) · · · (sk, skc) such that

sk ∈ G). We construct an ACT for the ATM A from the
subtree ST . For the mapping, we have a mapping function
γ which maps a state s of web services W to a configuration
cf of A. For each state s such that s(state)=q, s(cl i)=bi
where 1≤i≤p(n), s(hd)=i and s(label)=l(q), we have a
corresponding configuration cf = γ(s) = (q, σ1, σ2) such
that σ1 = b1 · · · bi and σ2 = bi+1 · · · bk−1 where k is the
index of the first appearance of #.

Now, we claim that if among every path from a node
(s, sc) to a goal in ST , the length of the longest one is m,
the corresponding configuration γ(s) is m-accepting. We
can show by induction onm that our claim is correct, but we
omit it for space. Finally, since the initial node (s, sc) of ST
has m (for some m ≥ 0) as the length of the longest path
to a goal, the corresponding configuration γ(s), namely the
initial configuration of A, is m-accepting. (Q.E.D)

4.2 WSC with incomplete information

Theorem 3. The WSC problem with incomplete informa-
tion is 2-EXP-hard (i.e. AEXPSPACE-hard).

The proof is to simulate an ATM with exponential tape
length. As Theorem 2, we prove it by the following lemmas.

Lemma 4. Given an ATM A = (Q ,Σ, q0, δ, l) with expo-
nential space bound e(n) and an input string σ = a1 · · · an,
we can construct a WSC problem instance.

PROOF. An important difference with the complete infor-
mation problem is that we are not allowed to have a vari-
able for each tape cell since the number of tape cells is ex-
ponential. Instead of including an exponential number of
variables cl i, we have one variable cl and its index idx .
The trick is to establish that if the index matches the cur-
rent head position, W should simulate the ATM A, and
to force the above to be satisfied universally for every in-
dex idx . Given an ATM A with σ, we construct a set
W (X , XI , XO, Init ,T) of web services and a goal G as
follows. The set X of variables includes the following ones:

• state; its domain is {q | q ∈ Q}.
• idx ; its domain is {1, · · · , e(n)}.
• cl represents the contents of the cell of which index is

idx ; its domain is Σ ∪ {#}.
• hd ; its domain is {1, · · · , e(n)+1}. For idx and hd , we

need only dlog2(e(n)+1)e bits.
• label ; it has a domain, {∀,∃, accept}.
• lsb represents the symbol written by the head in the

last step; it has a domain, Σ ∪ {#}.
The set XI is {input} where the domain of input is

{A(q,a) | q∈Q, l(q)=∀, a∈Σ}∪{E(q,a,j) | q∈Q, l(q)=∃, a∈
Σ, 0≤ j≤|δ(a, q)|}. The set XO is {state, cl}. Init(X)

is (state = q0) ∧ ((idx ≤ |σ|) ⇔ (cl = aidx)) ∧ ((idx >
|σ|)⇔ (cl=#))∧ (hd=1)∧ (label = l(q0)). The transition
predicate T (X , XI ,X ′) is ((hd=e(n)+1)→ TV)∧((label=
∀) → T∀) ∧ ((label =∃) → T∃) with the following sub-
formulae:
• TV ≡ (state ′=state) ∧ (hd ′=hd) ∧ (label ′=label)
• T∀ ≡

∧
q∈Q,a∈Σ(((state=q) ∧ ((hd =idx) → (cl =

a)) ∧ (input =A(q,a))) →
∨

1≤j≤k((hd = idx) →
((state ′=qj) ∧ (cl ′=aj) ∧ (hd ′=hd + ∆) ∧ (label ′=
l(qj)) ∧ (lsb′=aj))))
• T∃ ≡

∧
q∈Q,a∈Σ,1≤j≤k(((state=q) ∧ ((hd=idx) →

(cl = a)) ∧ (input =E(a,q,j))) → (((hd = idx) →
(state ′=qj) ∧ (cl ′=aj) ∧ (hd ′=hd+∆) ∧ (label ′=
l(qj)) ∧ (lsb′=aj))))

where (qj , aj ,mj) is obtained from δ(q, a) =
{(q1, a1,m1), · · · , (qk, ak,mk)} and ∆ = −1 if mj = L,
∆=0 if mj=N and ∆=1 if mj=R. Finally, we have a
goal, G = {s∈S | s(label) = accept}.

If the ATM A violates the space bound, the variable hd
has the value e(n) + 1, and after this point we cannot reach
goal states by TV . (Q.E.D)

Lemma 5. If σ ∈ L(A), then there exists a coordinator c
such that W ||c |= G .

PROOF. Given A such that σ ∈ L(A), we can construct
a coordinator c = (Xc , X

I
c , X

O
c , Initc ,Tc) where Xc =

{input}, XI
c = {state, lsb}, and XO

c = {input}. Like
the proof of Lemma 2, we can define Tc with a conjunc-
tion of two cases: ∀-state and ∃-state. That is, if l(q) = ∀,
the transition predicate is

∧
q∈Q,a∈Σ(((state = q) ∧ (cl =

a)) → (input ′=A(q,a))). Otherwise,
∧
q∈Q,a∈Σ(((state=

q) ∧ (cl =a)) → (input ′=E(q,a,j))) where j is the index
of the transition by which the ATM proceeds from the cor-
responding ∃-configuration to the next in ACT (A,σ). Sim-
ilarly with Tc , we can define the initial predicate Initc as
((l(q0)=∀)→ (input=A(q0,a1)))∧((l(q0)=∃)→ (input=
E(q0,a1,j))) where a1 is the first symbol of the input string
σ and j is obtained as the above.

Now, we can show that ACT (A,σ) is mapped into an
execution tree W ||c by two mapping functions, α and β
like Lemma 2. Then, we claim that if cf in ACT is m-
accepting, then for every 1 ≤ i ≤ e(n) every path from the
corresponding node (α(cf , i), β(cf)) reaches a goal state
eventually. By using the property that T and Tc strictly fol-
low the transition function δ of A, we can prove the claim
by the induction on m. We omit the mapping functions, α
and β, and the induction for the space limit. Finally, since
the initial configuration of ACT is m-accepting, every path
from the initial node of W ||c reaches a goal state; that is,
W ||c |= G . (Q.E.D)

Lemma 6. If there exists a coordinator c such that W ||c |=
G , then σ ∈ L(A).

PROOF. For the finite subtree ST of W ||c, we construct
ACT (A,σ). However, unlike Lemma 3, we are not able to
construct a configuration directly from a state of W since
W does not have all the tape contents, but only cl and
lsb. Now, our trick is to construct the computation tree
by a top-down manner. Even though the initial state of W
has only cl and lsb, we can construct the initial configura-
tion as cf = (q0, a, σ

′) where the input string σ = aσ′.
Given a predecessor configuration cf 1 = (q1, σ1, σ

′
1) and a

state s of W such that s(state)=q, s(cl)=a1, s(idx)=i,
s(hd)=h, s(label)=l(q), and s(lsb)=a2, our mapping func-
tion γ maps s to a configuration cf 2 = (q, σ2, σ

′
2) where

|σ2| = h and for σ2 and σ′2, σ2σ
′
2 is copied from σ1σ

′
1 ex-

cept (σ2σ
′
2)[|σ1|] = a2.

Now, we claim that if among every path from a node
(s, sc) to a goal in ST , the length of the longest one is m,
the corresponding configuration γ(s) is m-accepting. By
using the property that our T and Tc strictly follow the
transition function δ of A, we can prove the claim by in-
duction on m. We omit the induction. Finally, since the
initial node (s, sc) of ST has m (for some m ≥ 0) as the
length of the longest path to a goal, the initial configuration
of A is m-accepting. (Q.E.D)

5. Conclusion

In this paper, we have studied the computational com-
plexity for two WSC problems on behavioral descriptions.
The first one is the WSC problem with complete informa-
tion where a coordinator to be constructed knows the exact
state of a given set of web services. The second is the WSC
problem with incomplete information where the coordina-
tor knows only the values of output variables of web ser-
vices. The main findings of this paper is that (1) the WSC
problem with complete information is EXP-hard, and (2)
the WSC problem with incomplete information is 2-EXP-
hard. These findings imply that it is needed to devise sound
lower-complexity approximations for the WSC problem.

References

[1] P. Bertoli and M. Pistore. Planning with extended goals and partial
observability. In ICAPS, pages 270–278, 2004.

[2] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, 1981.

[3] R. Hull and J. Su. Tools for composite web services: a short
overview. SIGMOD Record, 34(2):86–95, 2005.

[4] W. Nam, H. Kil and D. Lee. Type-aware web service composition
using boolean satisfiability solver. In CEC/EEE, pages 331-334,
2008.

[5] C. M. Papadimitriou. Computational complexity. 1994.
[6] P. Traverso and M. Pistore. Automated composition of semantic

web services into executable processes. In ISWC, pages 380–394,
2004.

[7] W3C. Web services activity. http://www.w3.org/2002/
ws/.

