
Semi-Supervised Dimensionality Reduction for Analyzing High-Dimensional
Data with Constraints

Su Yan∗∗

IBM Almaden Research Center, 650 Harry Rd San Jose, CA 95120, USA

Sofien Bouaziz

Ecole Polytechnique Fédérale de Lausanne, Switzerland

Dongwon Lee

The Pennsylvania State University, University Park, PA 16802, USA

Jesse Barlow

The Pennsylvania State University, University Park, PA 16802, USA

Abstract

In this paper, we present a novel semi-supervised dimensionality reduction technique to address the problems of inefficient
learning and costly computation in coping with high-dimensional data. Our method named the Dual Subspace Projections (DSP)
embeds high-dimensional data in an optimal low-dimensional space, which is learned with a few user-supplied constraints and the
structure of input data. The method projects data into two different subspaces respectively the kernel space and the original input
space. Each projection is designed to enforce one type of constraints and projections in the two subspaces interact with each other
to satisfy constraints maximally and preserve the intrinsic data structure. Compared to existing techniques, our method has the
following advantages: (1) It benefits from constraints even when only a few are available; (2) It is robust and free from overfitting;
and (3) It handles nonlinearly separable data, but learns a linear data transformation. As a conclusion, our method can be easily
generalized to new data points and is efficient in dealing with large datasets. An empirical study using real data validates our claims
so that significant improvements in learning accuracy can be obtained after the DSP based dimensionality reduction is applied to
high-dimensional data.

1. Introduction

High-dimensional data are prevalent in a wide variety of
areas and have become a significant challenge for data min-
ing, archiving, indexing and downstream analysis. There are
two major difficulties in analyzing or learning from high-
dimensional data. First, the learning accuracy is low due to
the redundancies in high-dimensional feature spaces and the
relatively small amount of training available compared to the
dimensionality [12]. Second, the computational cost is so high
that many techniques are not readily applicable to handle large
amount of high-dimensional data [28].
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Dimensionality reduction is a technique that helps solving
the high dimensionality problem and has been extensively stud-
ied and widely applied in text analysis [10], face recognition
[3], and microarray gene expression analysis [8] where data are
usually expressed as vectors of high dimension. Dimension-
ality reduction is also the key technique for data compression
that enables efficient information storage and retrieval [15], as
well as for data visualization, where high-dimensional data are
mapped to 2D or 3D spaces helping the user gain a qualitative
understanding of the information [24].

A dimensionality reduction technique finds low-dimensional
structures of data hidden in high-dimensional observations.
Feature selection[16] and feature reduction[18][17] are two di-
mensionality reduction solutions. Feature selection reduces di-
mensionality by selecting a subset of existing features. Thus,
the physical interpretation of each feature is preserved in the
reduced space. However, in removing many features prior to
learning from the data, information about the underlying data
may be lost. Feature reduction reduces dimensionality by com-
bining features with linear or nonlinear transformations. A fea-
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ture reduction approach can greatly reduce the feature space
dimensionality while still preserve discriminative information,
although it does not retain feature’s physical interpretations. In
general, the choice between feature reduction and feature se-
lection depends on the application domain. In this work, we
focus on the feature reduction technique because for many web-
related data analysis problems (such as web data clustering,
indexing, collaborative filtering etc.), efficient data representa-
tion that preserves discriminative information is more critical
for fast similarity comparison and search.

Recently, semi-supervised dimensionality reduction has
stirred many research interests [2][14][1][13][25][30][5][6].
This is due to the fact that supervision in the form of pairwise
constraints is often easier to get than labeled data, and is natu-
rally available in many real application domains. For example,
it may be difficult, tedious or costly for users to label thousands
of images into pre-set class labels. However, when users are
presented with a few simple binary questions of the form “are
objects in image a and b the same?”, answering Yes/No to the
questions is a lot easier. Moreover, for the task of web docu-
ment clustering, documents which share large number of simi-
lar hyperlinks, or a group of documents with strong co-citation
(i.e., co-reference) patterns can be viewed as similar in content.

Constraints take two general forms: the must-links are pairs
of points that originate from the same class and thus should
be grouped together, and the cannot-links are pairs of points
that should be put into different groups. Compared to super-
vision in the form of labeled data, constraints are more gen-
eral, because labeled data can be represented in the form of
pairwise constraints but the inverse does not hold. The goal
of semi-supervised dimensionality reduction is to embed high-
dimensional data into a lower dimensional subspace with the
help of pairwise constraints. If the dimensionality reduction
process can indeed benefit from constraints, the data embed-
ded in the subspace will show more evident clustering structure
than without using constraints. For this reason, the performance
of semi-supervised dimensionality reduction can be measured
by the clustering performance achieved on the embedded low-
dimensional data.

To incorporate constraints in dimensionality reduction, [2]
introduces relevant component analysis (RCA) that exploits
must-links only. [14] introduces discriminant component anal-
ysis (DCA) that extends RCA by also exploring cannot-links.
Recently, [1] proposes to incorporate constraints using a modi-
fied locality preserving projection (LPP) [13] cost function. All
these methods exploit constraints only and do not consider the
usefulness of abundant unconstrained data. With limited con-
straints, the methods face the overfitting problem. That is, the
subspace that best satisfies a few pairs of constraints does not
necessarily reveal the structure of the entire dataset. To this
end, [30] and [5] propose semi-supervised dimensionality re-
duction methods that exploit both constraints and the structure
of unconstrained data. However, both methods need users to
intuitively set parameters to balance the constrained and the un-
constrained data.

Besides, all the aforementioned existing methods for semi-
supervised dimensionality reduction have their kernel-space

equivalents to deal with nonlinearly separable data. However,
because the projection is done implicitly in the kernel space, the
transformation matrix that maps high-dimensional data to low
dimensions is not explicitly learned. The mappings are defined
only on the training data points. As a result, these methods do
not generalize well to new data points. To be specific, in order
to compute the projection of test points all the training points
need to be stored, and the inner product between the test points
to all the training points need to be calculated and stored. Such
extra storage and computational cost limit their application to
large datasets.

In this paper, we propose a novel semi-supervised dimen-
sionality reduction technique named as DSP (Dual Subspace
Projections) which can simultaneously preserve the structure
of original high-dimensional data and the pairwise constraints
specified by users. Thus, the method does not overfit. Further-
more, the method has a closed-form solution of an generalized
eigenvalue problem, and therefore can be solved efficiently in
the training phase. Moreover, the method uses kernel trick to
handle nonlinearly separable data, yet the learned mapping is
still linear. Therefore, generalizing to test data is efficient.

2. Background and Related Work

Dimensionality reduction is the technique that extracts low
dimensional structure in high dimensional data. The algo-
rithms for dimensionality reduction can be broadly categorized
as global vs. local methods, and linear vs. nonlinear methods.

2.1. Global vs. Local

Representative global methods include principal component
analysis (PCA), multidimensional scaling (MDS), and linear
discriminant analysis (LDA). PCA is an unsupervised method
that maximally preserves the variance of data; Classical MDS
finds an embedding that preserves the inter-point distances;
LDA is a supervised method that achieves maximal class sepa-
ration by maximizing the ratio of between-class variance to the
within-class variance. The principal advantage of global ap-
proaches is that they tend to give a more faithful representation
of data global structure. However, the local geometry of data
maybe lost.

To overcome the drawbacks of global methods and their vari-
ants, a number of local dimensionality reduction methods have
been proposed, such as locality preserving projections (LPP)
[13], locally linear embedding (LLE) [20], Laplacian eigen-
maps [4]. These methods embed data in a low-dimensional
space such that nearby data points in the original space are still
near to each other in the embedded space.

Global structures and local structures of a dataset are both
important for learning from high-dimensional data. This leads
to work that combine the advantages of global approaches with
the advantages of local methods to get the best of both worlds
[9][23]. The dimensionality reduction approach introduced in
this paper falls into this category and preserves both the global
and local structures of data.
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2.2. Linear vs. Nonlinear
Classical dimensionality reduction methods such as PCA,

MDS, LDA are linear methods. They are simple to implement,
efficiently computable, and perform well in general. However,
when sever nonlinearity is involved in data, linear methods are
less effective. Nonlinear dimensionality reduction methods,
such as ISOMAP [26], LLE, Laplacian eigenmaps are proposed
based on spectral techniques.

Another common and effective solution to the nonlinearity
problem is to use the popular kernel technique [21]. Kernel
technique is based on the idea that nonlinearly separable data
can be separated linearly in some high-dimensional space. Data
are first mapped to a high-dimensional feature space by nonlin-
ear transformations, then can be separated in the kernel-space
with simple linear methods. Most dimensionality reduction
methods have their kernel space equivalents to deal with non-
linearities in data, for example, kernel PCA, kernel LDA, kernel
LPP etc.

Given the ability to handle nonlinear data, nonlinear methods
also have certain drawbacks compared to linear methods. For
example, the mapping defined by nonlinear spectral methods
are defined only on the training data points and it is difficult, if
not impossible to evaluate the mapping for new test points. The
same observation holds for kernel-based methods. Moreover,
kernel machines easily overfit. Given pairwise constraints, it
is always possible to find a data partition that satisfies all the
constraints in certain high-dimensional space. Therefore, ker-
nel machine will overfit with limited constraints, since the non-
linear mapping that satisfies a few pairs of constrains does not
necessarily best reveal the structure in data.

3. Method Overview

The motivation in this paper is to enforce a set of pair-
wise constraints in dimensionality reduction such that the in-
trinsic structure of data in the reduced space can be easily
captured by following data analysis phases, such as cluster-
ing and classification. Without loss of generality, we evalu-
ate our dimensionality-reduction technique for clustering tasks,
although the technique is equally applicable to classification
problems too.

The two types of constraints often lead to conflicting data
partitions, even if constraints by themselves are consistent. This
is because data are not linearly separable in the input space.
The problem can be solved by using the kernel technique. It
is always possible to find a data partition that satisfies all the
constraints in the high-dimensional space. However, kernel ma-
chine will overfit with limited constraints.

Our proposed method alleviates the conflicting constraints
problem by exploiting two types of constraints separately in
two different subspaces. First, data points are projected to a
high-dimensional kernel space, where we further embed data to
a subspace such that two data points constrained by a must-
link will be mapped to a single point. This idea originates
from [27], where must-link constraints are explored to improve
kernel Mean Shift clustering performance. Second, the pair-
wise distances of embedded data are further explored in the

original input space. In particular, we enforce the cannot-
link constraints and the intrinsic structure of the input data at
this step. We embed data into the second subspace such that
nearby/far-away data points in the original input space are still
near-to/far-from each other. Besides, cannot-linked data points
are also projected to be well separated. The second subspace
is therefore a desirable projection direction since it embodies
both types of constraints as well as the original data structure.
The proposed method exploits kernel techniques to handle non-
linearly separable data. However, the learned transformation
is still linear, and thus can be easily generalized to new data
points.

Through the paper, we use the following notation conven-
tions. A matrix is represented by a capitalized boldface letter;
a vector is represented by a lowercase boldface letter; a scalar
is represented by an italic lowercase letter, and a function is
represented by an italic letter. In particular, Table 1 lists major
symbols and their meaning.

4. Main Proposal

4.1. Problem Setting

We therefore consider the following problem. Given a high
dimensional dataset X = (x1, · · · , xn) of input patterns where
xi ∈ R f , how can we compute n corresponding output patterns
yi ∈ Rr, r � f , that provide a faithful low dimensional repre-
sentation?

Let X be the input space containing n data points in f di-
mensions, {xi}

n
i=1 ∈ X. We are given two types of pairwise

constraints organized in two sets. Let ΩM = {(xi, x′i)}mi=1 be the
set of m pairs of must-link constraints, and ΩC = {(xi, x′i)}ci=1 be
the set of c pairs of cannot-link constraints. Let r be a desired
subspace dimensionality. We want to embed the f -dimensional
data in an r-dimensional subspace, s.t. r � f by learning a
linear data transformation Z ∈ R f×r, such that y = ZT x where
y is the low-dimensional embedding of x. The Euclidean dis-
tance between two points y1 and y2 in the reduced space can be
expressed as

d(y1, y2) =
√

(x1 − x2)T ZZT (x1 − x2) (1)

which only depends on the original data points and the learned
transformation matrix.

4.2. Integrating Must-link Constraints

Given a pair of must-link constraint (x, x′), following the idea
presented in [27], we can project the input space onto the null
space of the difference vector (x − x′)T , which is the direction
orthogonal to the difference vector. Hence, x and x′ will be
mapped to the same point, and the must-link constraint is max-
imally satisfied. This method does not scale well with the in-
creasing number of must-links. For data with f -dimensional
features, if the number of must-link constraints exceeds f − 1
all the data points will collapse to a single point. For this rea-
son, we first map data to an enlarged feature space, and then
apply the same technique to exploit must-link constraints. We
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Table 1: Major Symbols and Meaning
symbol meaning

T matrix transpose
# matrix pseudo-inverse
I identity matrix

ΩM the set of must-links
ΩC the set of cannot-links
X matrix of input data
xi the ith data point
Y matrix of embedded data
Z transformation matrix to be learned

d(xi, x j) distance between xi and x j in the input space
d̂φ(xi, x j) distance between xi and x j after kernel null space projection
φ(·) implicit nonlinear mapping function

K(xi, x j) kernel function
K̂(xi, x j) kernel function after kernel null space projection

M must-link constraint matrix
S adjacency matrix
R disjoint matrix
R̃ disjoint matrix after incorporating cannot-links
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Figure 1: Illustration of must-link constraints enforcement. (a) Input space. 36 one-dimensional data points originated from two clusters (18 points each, differen-
tiated by markers) that are not linearly separable. Black crosses mark the must-link constraint pair (m1,m2). (b) The input space is mapped to the 2-dimensional
feature space via quadratic mapping φ(x) = [x x2]T . The blue arrow is the difference vector (φ(m2) − φ(m1))T . The dotted line is the null space. (c) The feature
space is projected to the null space of the difference vector. Constrained points collapsed to a single point and a clustering algorithm trivially groups them together.

call this method kernel null space projection. Figure 1 illus-
trates this idea using a one-dimensional dataset.

Formally, let K : X × X 7→ R be a positive definite kernel
function satisfying for all x, x′ ∈ X

K(x, x′) = φ(x)Tφ(x′) (2)

where φ is a nonlinear mapping function

φ : X 7→ H

that maps input space X into the fφ-dimensional feature space
H . Define the m × fφ must-link constraint matrix M as follows

M =


(φ(x1) − φ(x′1))T

...
(φ(xm) − φ(x′m))T

 (3)

Then, the projection matrix

P = I fφ − U (4)

where
U = MT (MMT )#M

projects data in H to the null space of M, and is the desired
projection. # stands for the pseudo-inverse. One can prove that
in the null space of M, every pair of must-linked data points
collapse to a single point, and thus the must-link constraints are
maximally satisfied (see Appendix).

Given the data points and must-link constraints, the kernel
null space projection maps the data points in the feature space
to the null space of the must-link constraint matrix by

φ̂(x) = Pφ(x) (5)

Since the implicit nonlinear mapping function φ(·) is unknown,
the projection can not be performed explicitly. A closer look at
the kernel function after the kernel null space projection reveals
that the projection can be performed implicitly in the kernel
space. That is, the kernel function after subspace projection has
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Figure 2: Illustration of a must-link enforcement error on unconstrained data points. Same set-up as Figure 1 with a different pair of must-link constraint. The null
space projection result in (c) clearly demonstrates that although the constrained points are mapped to a single point, points from different clusters are mixed together
too and leads to clustering mistakes.

the form

K̂(x, x′) = φ̂(x)T φ̂(x′)
= φ(x)T PT Pφ(x′)
= φ(x)T Pφ(x′)
= φ(x)T (I −MT W#M)φ(x′)
= K(x, x′) − K(φ(x),M)T W#K(φ(x′),M) (6)

The identity PT P = P follows from the fact that P is a projection
matrix. K(φ(x),M) denotes the m-dimensional vector

K(x, x1) − K(x, x′1)
...

K(x, xm) − K(x, x′m)

 (7)

and

Wi, j = K(xi, x j) − K(xi, x′j) − K(x′i , x j) + K(x′i , x
′
j) (8)

Since all the computations of K̂(x, x′) can be expressed in terms
of K(x, x′), the subspace projection is performed implicitly in
the kernel space.

Note that, the null space projection P is the optimal projec-
tion in the sense that it preserves the variance along the orthogo-
nal directions to the projection direction. Therefore, the original
distance measure is best preserved.

4.3. Integrating Cannot-link Constraints and Data Structure
The kernel null space projection introduced in the last section

guarantees the enforcement of must-link constraints by pulling
data from the same class close to each other. Thus, the pairwise
distances of the embedded data d(φ̂(x), φ̂(x′)) fit the intra-class
structure better than the pairwise distances in the original space
d(x, x′). However, the kernel null space projection can also mis-
takenly pull data points from different clusters close to each
other, thus leading to clustering mistakes. Figure 2 illustrates
this issue using the same data as in Figure 1 but with a different
pair of must-link constraint. As a result, the pairwise distances
of embedded data d(φ̂(x), φ̂(x′)) do not capture the inter-class
structure well.

This problem can be solved by further exploiting cannot-
link constraints based on the kernel null space projection result.

The goal of adopting cannot-link constraints is to embed data
in a subspace where data points from different classes are fur-
ther pushed away from each other while the intra-class distance
measure is still best preserved. Before presenting how to find
such a subspace, let us first make the following declaration and
define a few concepts.

Without loss of generality, we assume all the distances have
been normalized to [0, 1] in our discussion. Then the similarity
between any two points xi and x j is evaluated as 1 − d(xi, x j).
Let N(xi) denotes the set of k-nearest neighbors of point xi for
a given k. Let S be the adjacency matrix, such that

Si, j =

{
1 − d̂φ(xi, x j) xi ∈ N(x j) ∨ x j ∈ N(xi)
0 otherwise

(9)

where d̂φ(xi, x j) is the kernel distance defined as

d̂φ(xi, x j) = d(φ̂(xi), φ̂(x j))

=

√
K̂(xi, xi) + K̂(x j, x j) − 2K̂(xi, x j) (10)

and satisfies d̂φ(xi, x j) = 0, if (xi, x j) ∈ ΩM . We adopt the kernel
distances in the adjacency matrix because they fit the intra-class
structure better.

Let N(xi)⊥ be the set of k points that are farthest from xi for
a given k. In consequence, points in N(xi)⊥ tend to originate
from a different class than xi. Let R be a matrix which is called
the disjoint matrix, such that

Ri, j =

{
1 − d(xi, x j) xi ∈ N(x j)⊥ ∨ x j ∈ N(xi)⊥

0 otherwise (11)

Because the disjoint matrix mostly encodes the inter-class
structure, the distance measure of the original input space pre-
serves the structure better.

Let Z =
[
z1 · · · zr

]
be the matrix containing r transforma-

tion vectors zi|
r
i=1 that embeds data points in the f -dimensional

input space in the r-dimensional subspace by yi = ZT xi, xi ∈

R f , yi ∈ Rr. In order to preserve both the intra and inter-class
structures, we minimize the following objective function

min
∑

i, j(yi − y j)2Si, j∑
i, j(yi − y j)2Ri, j

(12)
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The numerator incurs heavy penalties if nearby data points (i.e.
Si, j is big) are mapped far apart. Therefore, minimizing it is an
attempt to ensure that if xi and x j are close then yi and y j are
close as well. The denominator assigns big rewards if nearby
data points from different classes (i.e. Ri, j is big) are mapped
far away. Therefore, maximizing the denominator has the effect
of pushing different classes farther away. Overall, minimizing
Eq. (12) both preserves the structure of data and makes the
structure more evident.

Similarly, the goal of pushing apart cannot-linked data points
is achieved by maximizing the following objective function

max
∑

(xi,x j)∈ΩC

(yi − y j)2(1 − d(xi, x j)) (13)

If we modify the disjoint matrix R to incorporate cannot-link
constraints as

R̃i, j =


1 − d(xi, x j) xi ∈ N(x j)⊥ ∨ x j ∈ N(xi)⊥

∨ (xi, x j) ∈ Ωc

0 otherwise
(14)

then the two objectives in Eq. (12) and Eq. (13) can be inte-
grated into a single optimization problem as

z∗ = arg min
z

∑
i, j(zT xi − zT x j)2Si, j∑
i, j(zT xi − zT x j)2R̃i, j

= arg min
z

zT XLSXT z
zT XLR̃XT z

(15)

where LS = DS − S and LR̃ = DR̃ − R̃ are the graph Lapla-
cians [7] related to the adjacency matrix S and the disjoint ma-
trix R̃ respectively, and DS and DR̃ are diagonal matrices with
DS

i,i =
∑

j Si, j and DR̃
i,i =
∑

j R̃i, j. For dimensionality reduction,
we pick the r optimal transformation vectors z∗i |

r
i=1 to compose

the transformation matrix Z ∈ R f×r.
Note that Eq. (15) is the expression of the generalized

Rayleigh quotient [11]. The solutions can be found by solving
a generalized eigenvalue problem. To see this, let us denote

g(z) =
zT XLSXT z
zT XLR̃XT z

=
zT Az
zT Bz

(16)

where
A = XLSXT B = XLR̃XT (17)

The construction of matrices XLSXT and XLR̃XT ensures both
are symmetric and positive semi-definite. We determine the ex-
tremum points of g(z), i.e., the points z∗ satisfying ∇g(z) = 0.
The gradient ∇g(z) is calculated as

∇g(z) =
2Az(zT Bz) − 2(zT Az)Bz

(zT Bz)2 (18)

=
2Az − 2g(z)Bz

zT Bz
(19)

By setting ∇g(z) = 0, we have

Az = g(z)Bz (20)

Algorithm 1: Dual Subspace Projections (DSP)
Input :

a set of n data points in f dimensions: {xi}
n
i=1 ∈ X;

two sets of constraints:
must-links: ΩM = {(xi, x′ i)}mi=1;
cannot-links: ΩC = {(xi, x′ i)}ci=1;
desired subspace dimension: r;

Output:
optimal transformation matrix Z ∈ R f×r that maps

f -dimensional features to r-dimensional subspace;
embedded data points: y = ZT x,

1 Kernel null space projection:
2 Compute K(x, x′) by Eq. (2);
3 Compute K(φ(x),M) by Eq. (7);
4 Compute W by Eq. (8);
5 Compute K̂(x, x′) by Eq. (6);
6 Dual subspace projection:
7 Compute kernel distances by Eq. (10)
8 Normalize the kernel distances
9 Compute S by Eq. (9);

10 Compute R̃ by Eq. (14) ;
11 Compute Z∗ by solving GeneralizedEigenProblem(S, R̃, X, r)

(Eq. (21));
12 Embed input data by Y = ZT X.

Output: Transformation matrix Z;
embedded data Y.

which is the form of the generalized eigenvalue problem. Thus,
the extremum points z∗ (with the corresponding extreme values
g(z∗)) of Eq. (15) are obtained as the eigenvectors (eigenvalues)
of the corresponding generalized eigenproblem

XLSXT z = λXLR̃XT z (21)

In particular, the r eigenvectors related to the r smallest nonzero
eigenvalues are the solution.

Obviously, the performance of the above optimization prob-
lem strongly depends on the pairwise distances of data points,
which are encoded in matrices LS and LR̃. By adopting the
kernel distance d̂φ(xi, x j), and distances d(x, x′) of the original
input space, the modification to the feature space in the kernel
null space projection step is incorporated. Therefore, the final
optimal projection direction is determined by both types of con-
straints as well as the intrinsic structure of data.

The details of the DSP method is listed in Algorithm 1.

4.4. Computation
Like many other dimensionality reduction algorithms (i.e.

LPP, LDA etc.), the DSP method is formulated as a generalized
eigenvalue problem, as shown in Eq. (20). Well-established
algorithms in numerical linear algebra have been developed.
The generalized eigenvalue problems usually take O(n3) flops
(1 “flop” corresponds to 1 floating-point multiplication and ad-
dition), where n is the number of data points in DSP method.
Depending on the special structure of the matrices A and B,
the order constant varies in a large range. The DSP problem is
solved as a symmetric positive definite generalized eigenvalue
problem [22], which has a modest order constant.
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For our DSP problem, both A and B are positive semi-
definite. The simultaneous diagonalization algorithm [19] [29]
is adopted to solve the DSP problem efficiently. In particular,
we starts the algorithm by diagonalizing B. If B is nonsingular,
the algorithm proceeds with no modifications. If B is singular,
after B is diagonalized, the 0 (or close to 0) eigenvalues and cor-
responding eigenvectors should be discarded for the algorithm
to proceed. The effect of this step is to discard the null space
of B 1 to make it nonsingular. The reason to discard the null
space of B is that the null space of B = XLR̃XT carries no dis-
criminative information, but the the null space of A = XLSXT

carries most of the discriminative information, and therefore
should be preserved. To see this, for a projection direction z, if
Az = 0, and Bz , 0, Eq. (16) is minimized since all solutions
are non-negative. Detailed explanation to the simultaneous dig-
italization algorithm for singular matrices can be found in [29].

Moreover, in DSP, the transformation matrix Z is learned of-
fline. During the online reduction phrase, the number of data
points n does not impact the performance of dimensionality re-
duction.

4.5. Subspace Kernel K-means (SKK-means)

In this section, we present a novel semi-supervised clustering
method, subspace kernel K-means (SKK-means), which incor-
porates must-link constraints in the kernel space by adopting
the kernel null space projection method introduced in Section
4.2. The objective of presenting SKK-means is twofold. First,
the performance of SKK-means can validate the effectiveness
of kernel null space projection in exploring supervision in the
form of must-links. Second, since DSP further explores can-
notlinks as well as the intrinsic structure of the input data on
top of kernel null space projection, comparing DSP to SKK-
means allows us to check whether or not dual subspace projec-
tions provide a better data representation than kernel null space
projection alone.

SKK-means is a simple extension to kernel K-means, which
enhances the standard K-means clustering algorithm to identify
nonlinearly separable clusters by the use of a kernel function.
Let πi denote the ith cluster of the total k clusters, and a parti-
tioning of data points be {πi}

k
i=1. Kernel K-means generates a

data partition by minimizing the following objective function

D({πi}
k
i=1) =

k∑
i=1

∑
x∈πi

‖φ(x) −mi‖
2 (22)

where

mi =
1
|πi|

∑
t∈πi

φ(t) (23)

represents the centroid of cluster πi in the kernel space, and |πi|

is the size of cluster πi. With the same idea of the standard
K-means, kernel K-means assigns a data point to the nearest
cluster, where the point to cluster distance is measured as the
point to cluster centroid distance in the kernel space.

1Null space of B = {x|Bx = 0, x ∈ Rn}

To assign a data point to a cluster at each iteration, the Eu-
clidean distance from the point φ(x) to centroid mi needs to be
calculated and is given by

‖φ(x) −mi‖
2 = K(x, x) −

2
|πi|

∑
t∈πi

K(x, t)

+
1
|πi|

2

∑
t,t′∈πi

K(t, t′)

The evaluation of the right-hand side of the above equation only
involves the kernel function K(·, ·) and the input data points, and
thus can be solved in the kernel space.

In SKK-means, in order to incorporate must-links, the objec-
tive is to assign a data point after kernel null space projection
φ̂(x) to the nearest cluster, and the cluster centroid m̂i is also
evaluated in the projected subspace. By simple algebra formu-
lation, the SKK-means objective function is given by

D({πi}
k
i=1)|S KK means =

k∑
i=1

∑
x∈πi

‖φ̂(x) − m̂i‖
2 (24)

and the Euclidean distance from a point to a cluster centroid
after the kernel null space projection has the following form

‖φ̂(x) − m̂i‖
2 = K̂(x, x) −

2
|πi|

∑
t∈πi

K̂(x, t)

+
1
|πi|

2

∑
t,t′∈πi

K̂(t, t′) (25)

where K̂(·, ·) is given by Eq. (6), and m̂i denotes the cluster cen-
troid of cluster πi in subspace. As the above equation shows, the
evaluation of the point to cluster distance only involves K̂(·, ·)
which is the kernel function after null space projection and the
input data points, and thus can be solved implicitly in the kernel
space.

5. Experiment

5.1. Datasets
We use multiple real datasets from different domains to eval-

uate our proposal. Datasets are summarized in Table 2. The
datasets used are very diverse in terms of size of data, size of
feature space and number of clusters. In particular, 11 datasets
are gathered from the UCI machine learning database 2 because
of their popularity in the field of machine learning. We use the
COIL-20 database 3, which is widely used in 3D object recog-
nition research. This database contains gray-scale images of 20
objects. Each object has 72 images taken at different orienta-
tions. Thus, the entire database contains 1,440 images. Each
image is of size 128×128 = 16, 384 pixels. We further perform
bicubic interpolation to downsize every image to 16×16 pixels.
This is a commonly used technique to achieve tradeoff between

2http://archive.ics.uci.edu/ml/
3http://www.cs.columbia.edu/CAVE/software/softlib/

coil-20.php
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complexity and accuracy. Thus, each image is represented as a
vector of dimension 256. Samples of the COIL-20 database are
listed in Figure 3. Moreover, we evaluate our proposals with the
KDD-Cup-99 4 data for intrusion detector learning. Detailed
processing of this dataset is introduced later for easy reference.

Figure 3: COIL-20 database. Left: 6 random samples, right: 6 orientations of
one object

5.2. Competitive Techniques

The standard K-means clustering method is adopted as the
baseline. K-means results show the clustering performance one
can achieve in the original input feature space without dimen-
sionality reduction and without exploring supervision in the
form of constraints. SKK-means is evaluated to show how ef-
fective the kernel null space projection in exploring must-links.
Our main proposal, DSP, is then evaluated to show its ability
of exploring both must-links and cannot-links, as well as the
intrinsic structure of the input data to achieve better data repre-
sentation in a much reduced subspace.

Our proposal has been compared to four state-of-the-art and
representative semi-supervised and unsupervised dimensional-
ity reduction techniques. LPPSI [1] is a recent semi-supervised
dimensionality reduction method that has been successfully ap-
plied to solve face recognition problem. We compare to the
kernel version of LPPSI since it is reported to have better per-
formance than the non-kernel version. LPP [13] is an unsu-
pervised dimensionality reduction technique that preserves the
local structures of data, and has been widely adopted in visu-
alization and text indexing. SLPP is the supervised version
of LPP. PCA is the classical unsupervised dimensionality re-
duction technique. We test the dimensionality reduction per-
formance achieved by each method in a clustering setting. A
better dimensionality reduction technique should reveal the in-
trinsic structure of the data, and thus leads to higher clustering
accuracy. The standard K-means is used as the underlying clus-
tering model for all the dimensionality reduction techniques.

5.3. Evaluation

We use two metrics, F-score and rand index (RI) to evaluate
clustering accuracy. Let T denote the set of pairs of data items
that belong to a same cluster according to ground truth and R
denote the set of pairs of data items that have been assigned to
a same cluster by the clustering algorithm. Then, precision and

4http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

recall are defined as

precision =
|R ∩ T|
|R|

recall =
|R ∩ T|
|T|

F-score is a harmonic mean of precision and recall defined as

F−score =
2 × precision × recall

precision + recall
(26)

The Rand Index (RI) measures the degree of similarity in
terms of pairwise co-assignments between the cluster member-
ship C from the ground truth and the solution Ĉ generated by a
clustering algorithm. It is defined as

RI(C, Ĉ) =
|ci = c j ∧ ĉi = ĉ j| + |ci , c j ∧ ĉi , ĉ j|

n(n − 1)/2
(27)

where ci and ĉi are the cluster membership of item i according
to C and Ĉ, and n is the number of data items being clustered.
Obviously, RI penalizes both the false positive and false nega-
tive decisions during clustering.

Both F-score and RI take value in the range of [0, 1], where 1
means 100% clustering accuracy. We also define the “clustering
error rate” is as 1 − F-score. All the reported results are based
on the average of 20 independent runs.

5.4. Parameter Setting
For all the kernel methods, we use the RBF kernel, which is

defined as

K(x, x′) = exp(−
‖x − x′‖2

2δ2 ) (28)

The parameter δ often significantly influences the performance
of kernel methods. With the help of constraints, we choose the
δ value by a simple grid search. For a given δ, we perform the
kernel null space projection only, and cluster the projected data
using SSK-means. Since the kernel null space projection guar-
antees that all must-linked data points will be trivially clustered
together, we pick the δ value that achieves the maximal cluster-
ing accuracy on cannot-link constraints. Empirical results show
that this method works very well even with a few pairs of con-
straints. The δ values chosen for each dataset are listed in Table
2. The number of nearest neighbors used in constructing the
adjacency and disjoint matrices is set to 5 and is kept the same
for all the methods and all the datasets.

5.5. Exploiting Constraints
In this experiment, we evaluate how effective the proposed

subspace projection methods in exploring different types of
constraints and data structures. The real-world intrusion de-
tection data of KDD-Cup-99 is used for this experiment. The
dataset was originally provided for supervised classification
tasks. We use the provided labels of training data as ground
truth to generate pairwise constraints and to evaluate the per-
formance of dimensionality reduction techniques.

In particular, we use the 10% subset of labeled data provided
by KDD-Cup, which contains 494,021 data items. This subset

8



Table 2: Datasets summary (n: # samples; f : # features; k: # clusters; δ: kernel parameter )
dataset n f k δ

wine 178 13 3 0.6
vehicle 846 18 4 0.9

iris 150 4 3 0.3
balance 625 4 3 0.7

ionosphere 351 34 2 1
glass 214 9 6 0.3
breast 682 10 2 1
sonar 208 60 2 0.8

Multiple Features 2,000 649 10 0.2
isolet 7,797 617 26 7

Pendigit 10,992 16 10 46
COIL-20 1,440 16,384 20 0.4

Intrusion Detection 494,021 41 23 0.7

Table 3: Performance on intrusion detection data (r = 10)
unsupervised 20 pairs constraints 5 pairs

K-means PCA LPP SSK-means SLPP LPPSI DSP SSK-means SLPP LPPSI DSP
F 0.6793 0.7170 0.6475 0.7156 0.6186 0.2955 0.8183 0.6404 0.6148 0.2838 0.7880
RI 0.9335 0.9449 0.9177 0.9396 0.9184 0.6778 0.9645 0.9251 0.9139 0.6694 0.9575

has 23 unique intrusion types. The distribution of the intrusion
types is highly uneven, with the most common type of intrusion
observed 280,790 times while the most uncommon intrusion
observed 2 times only. Clustering imbalanced data is beyond
the scope of this paper. We pick intrusion types that have more
than 200 observations and for types that contain more than 300
hundred observations, we randomly sampled 300 observations
for our experiment. This end up with 3,195 data items from 11
distinct intrusion types. Note that the purpose of this experi-
ment is not to propose and evaluate an accurate intrusion detec-
tor, but to use the real-world dataset to evaluate semi-supervised
dimensionality reduction techniques.

Table 3 lists the results achieved by each algorithm on the
intrusion detection dataset. For each cluster, we run the ex-
periments by alternatively generating 5 and 20 random pairs of
must-link and cannot-link constraints each based on class la-
bels. This end up with 2 × k × 5(20) pairs of constraints in
total for the dataset, where k is the number of clusters. For easy
reference, we refer to them as “5(20) pairs” of constraints here-
after.

As shown in the table, SSK-means is able to improve cluster-
ing performance, compared to the baseline K-means, by using
must-links constraints when 20 pairs of must-links are avail-
able. This means that the kernel null space projection is effec-
tive in exploring must-links. However, when only 5 pairs of
must-links are available, the performance of SSK-means is in-
ferior to K-means. This may due to the overfitting of this kernel
method given small amount of constraints. On the other hand,
DSP significantly improves the clustering accuracy in all the
cases, and no overfitting is observed with 5 pairs of constraints.
These results empirically validate that DSP is able to further ex-

plore cannot-link constraints as well as the intrinsic data struc-
ture to learn a robust optimal low-dimensional embedding with
even a very small amount of supervision. Furthermore, DSP no-
tably outperforms other competitive dimensionality reduction
methods for this dataset.

Figure 4 shows the visualization of 11 types of intrusion in
a 3D space with PCA and DSP projections, where 20 pairs of
constraints are generated. As the figure shows, compared to
PCA, DSP puts data points from the same class closer to each
other and pull different classes farther apart.

5.6. Fixed Subspace Dimensions

In this experiment, we test the dimensionality reduction per-
formance on datasets with moderate sizes. The purpose is to
learn the best projection direction by using all the available data
and evaluate the performance. Follow the experiment design in
the last experiment, 5 and 20 pairs of constraints are alterna-
tively generated for each cluster and each dataset. We fix the
subspace dimension to be half of the original dimension. Ta-
ble 4 shows the evaluation result measured in F-score. We ob-
served that although F-score and RI have different absolute val-
ues, they show overall similar patterns for different algorithms,
as evidently shown in Table 3. We thus only report results in
F-score for clean presentation. On 6 out of 8 datasets, DSP
achieves the best F-scores. For the remaining 2 datasets, DSP
still shows satisfactory F-scores. Most importantly, when the
number of constraints is small (i.e. the 5 pairs case), the perfor-
mance of DSP is still robust and is better than or similar to the
performances of the two unsupervised method PCA and LPP.
This means that DSP does not suffer from overfitting, unlike
competing methods.
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Table 4: F-score on half-size feature spaces
unsupervised 20 pairs 5 pairs

PCA LPP SLPP LPPSI DSP SLPP LPPSI DSP
wine 0.9415 0.9541 0.9563 0.8198 0.9588 0.5962 0.7381 0.9322

vehicle 0.3070 0.3383 0.6024 0.4092 0.6042 0.3417 0.3306 0.3604
iris 0.8112 0.7716 0.8920 0.6982 0.9498 0.8471 0.6244 0.9405

balance 0.5075 0.4754 0.5789 0.5800 0.6068 0.5749 0.5845 0.5693
ionoshpere 0.6050 0.6050 0.7061 0.6205 0.7211 0.6108 0.5992 0.7145

glass 0.3950 0.3903 0.4032 0.4023 0.3833 0.3849 0.3058 0.4131
breast 0.9307 0.9307 0.9027 0.9352 0.9202 0.7478 0.9292 0.9288
sonar 0.5012 0.5423 0.5293 0.5379 0.5873 0.5364 0.5472 0.5493
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Figure 4: Intrusion detection data are mapped to a 3-dimensional space. (20 paris; Colors for each cluster were randomly generated)

5.7. Various Subspace Dimensions

In this experiment, we evaluate the dimensionality reduction
techniques for various subspace dimensions. For each dataset
5/10/20/30 pairs of constraints per cluster are generated follow-
ing the same experiment design in previous experiments. The
reduced dimensions range from 2 to 200. Figures 5 and 6 show
the results on the COIL-20 database for 3D object recognition
and the Multiple Features dataset for handwritten digit recogni-
tion respectively. The rest datasets show similar patterns. DSP
significantly outperforms other dimensionality reduction tech-
niques for both datasets under all experiment settings. The sta-
ble performance of DSP given a few constraints and very low
subspace dimensionality is particularly impressive. It is inter-
esting to notice that although LPPSI and SLPP perform well for
the COIL-20 dataset, their performances on the digit dataset are
worse than the unsupervised LPP for low dimensions and small
number of constraint pairs. This effect could be the result of
overfitting due to few training data.

5.8. Generalization

In this experiment, we evaluate how well DSP handles new
data points on four large scale datasets. For each dataset, we
do 5-fold cross validation. Four folds of data are used for train-
ing, which includes generating 20 pairs of constraints and learn-
ing the best subspace embedding. Then the one fold test data
points are projected to the learned subspace for further cluster-
ing evaluation. Table 5 shows the generalization performance,

Table 5: F-score for Generalization (r: subspace dimensionality)
full feature DSP-generalize(r)

Multiple Features 0.7101 0.9459(20)
isolet 0.5311 0.4740(20)

Pendigit 0.5502 0.5873(5)
COIL-20 0.5732 0.7872(20)

compared to the clustering result of test data without dimen-
sionality reduction. Because the subspace dimensions are sig-
nificantly smaller than the dimensions of the full feature space,
clustering in the subspace will most of the time sacrifice accu-
racy for efficiency. With the help of constraints, for three out
of four datasets, the clustering accuracy after DSP reduction is
in fact being improved. This indicates that DSP is effective in
exploiting constraints and generalizing to new data points.

6. Conclusion

We present a novel semi-supervised dimensionality reduc-
tion technique, named Dual Subspace Projections (DSP), to
cope with the learning deficiencies and computational difficul-
ties incurred by high-dimensional data. We study two types
of constraints that indicate whether or not pairs of data points
originate from the same class. The method projects data into
two different subspaces, one in the kernel space and one in the
original input space, each is designed for enforcing one type
of constraints. Projections in the two spaces interact and data
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Figure 5: Error Rate vs. Reduced Dimensions for 3D object recognition

are embedded in an optimal low-dimensional subspace where
the intrinsic structure of data is more evident, and thus eases
the subsequent data analysis. The method handles nonlinear-
ity of data using kernel techniques, but is able to learn a linear
transformation matrix. Thus, generalization to new data points
is straightforward and efficient. This method is also robust to
overfitting and can benefit from constraints when only a few
are available. We also present a new semi-supervised cluster-
ing technique, named Subspace Kernel K-means (SSK-means),
which extends traditional kernel K-means by exploring must-
link constraints as an intermediate step. Experiments on real
datasets from multiple domains clearly demonstrate that signif-
icant improvement in learning accuracy can be achieved after
our dimensionality reduction technique is employed with only
a few user-supplied constraints.

7. Appendix

We prove that in the null space of M, every pair of must-
linked data points collapse to a single point, and thus the must-
link constraints are maximally satisfied.

Proof. Let (φ(xi), φ(x′i)) be the i-th pair of must-link data
points in the kernel space H . For any data point φ(x) ∈ H ,
its embedding in the null space of M is given by:

φ̂(x) = Pφ(x) (29)

Given P as defined in Eq. (4), we then have

φ̂(xi) − φ̂(x′i) = P(φ(xi) − φ(x′i))

= (I − U)(φ(xi) − φ(x′i))
= (φ(xi) − φ(x′i)) − U(φ(xi) − φ(x′i))
= (φ(xi) − φ(x′i)) − (φ(xi) − φ(x′i))
= 0 (30)

The identity U(φ(xi)− φ(x′i)) = (φ(xi)− φ(x′i)) follows from
the fact that (φ(xi)− φ(x′i)) is in the row space of M. Since P is
not null, we get

φ̂(xi) = φ̂(x′i) (31)

Thus the two points are mapped to the same point. (q.e.d)
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