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Abstract. Clustering high dimensional data with sparse features is chal-
lenging because pairwise distances between data items are not informa-
tive in high dimensional space. To address this challenge, we propose two
novel semi-supervised clustering methods that incorporate prior knowl-
edge in the form of pairwise cluster membership constraints. In partic-
ular, we project high-dimensional data onto a much reduced-dimension
subspace, where rough clustering structure defined by the prior knowl-
edge is strengthened. Metric learning is then performed on the subspace
to construct more informative pairwise distances. We also propose to
propagate constraints locally to improve the informativeness of pairwise
distances. When the new methods are evaluated using two real bench-
mark data sets, they show substantial improvement using only limited
prior knowledge.

1 Introduction

Clustering is one of the most important and fundamental techniques in data
mining, information retrieval, and knowledge management. Most clustering tech-
niques rely on the pairwise distances between data items. However, it is com-
monly believed that pairwise distances in the high-dimensional space is not infor-
mative, and the nearest neighborhood is not meaningful either [2]. As a result,
many learning algorithms (including clustering methods) lose their algorithm
effectiveness for high dimensional cases.

Recently, semi-supervised clustering has shown effectiveness in improving
clustering accuracy by exploring “weak” supervision in the form of pairwise
“must-link” or “cannot-link” constraints [1, 3, 5, 9]. That is, if data items a and
b are must-linked/cannot-linked, then a and b belong to the same/different clus-
ter(s). Two basic semi-supervised approaches are metric learning that learns
a distance measure based on constraints, and constraint enforcement that en-
forces constraints by modifying the objective function of a clustering method.
However, most existing semi-supervised clustering methods have difficulties in
handling data with high-dimensional sparse features. For example, in order for a



metric-learning method [4, 10] to train a distance measure, the number of inde-
pendent variables to be learned is proportional to the dimension of the feature
space. For data with hundreds or thousands(e.g., text data) features, metric
learning is computationally expensive. Besides, due to the sparseness, only a
small portion of total features are covered by constrained data items. Therefore,
training a distance measure for sparse features is not effective. For another exam-
ple, graph-based methods can usually handle high-dimensional data better since
they work on the low-dimensional representation (affinity matrix) of the high
dimensional data. However, the performance of a graph-based method partially
relies on the affinity matrix, which is built upon pairwise distances. Since the
pairwise distances in high dimensional space is not informative, the performance
of graph-based method is impaired.

In this paper, toward these challenges, we propose two methods to tackle
the high-dimensional sparse feature space problem with the help of pairwise
constraints. User-provided constraints reflect user’s expectation of how the data
set should be clustered. Therefore, constraints define a rough clustering struc-
ture to a data set. The first method seeks a low-dimensional representation of
the data through orthogonal factorizations. The clustering structure defined by
prior knowledge is kept and strengthened in the subspace. Metric learning is
then performed in the subspace. The second method does space-level generaliza-
tion of pairwise constraints by local constraints propagation. Both methods can
construct more informative pairwise distances for high-dimensional data. Our
proposed schemes of exploiting constraints can be applied to any unsupervised
clustering model and any high-dimensional data set. We apply the schemes to
the widely used Normalized Cut method (NC), and the document data sets to
demonstrate the idea and concept. Experimental results base on real data verify
the effectiveness and efficiency for our proposals.

2 Main Proposal

2.1 Metric Learning in Structure-Preserving Subspace

This approach is to construct more informative distances between data items
through metric learning in the reduced-dimension subspace. The motivation
is obvious. In the much reduced-dimension subspace, features are not sparse.
Therefore, metric learning is more effective. In addition, since the number of vari-
ables to be learned is significantly reduced, metric learning is also more efficient.
Most importantly, we argue that user-provided constraints define a clustering
structure that best satisfies the user’s requirement. If we find a low-dimension
representation of data where the clustering structure is more evident, we can
expect more informative distances metric to be learned in the subspace.

We now introduce how to find such a structure-preserving subspace. Suppose
we have n data items in the full space described by a matrix of column vectors
W ∈ Rf×n, where the feature space is of f dimensions (f � n). Given pairwise
constraints, we first do transitive closure to the constraints and generate d small
data groups, where the i-th group with m data items represented by matrix



Wi ∈ Rf×m. Then a matrix C ∈ Rd×n is generated by using the centroids of
each groups as column vectors. The above two steps incorporates constraints
information into the data representation C. We now seek a data projection by
splitting the feature space of C, which is the same as the feature space of W
into two parts, attributes and noise. That is, we seek a projection matrix P =(
U V

)
∈ Rf×f , U ∈ Rf×r and V ∈ Rf×s, such that PT C =

(
Ĉ

Ĉ⊥

)
=
(

UT
r C

V T
s C

)
,

where r+s = f . Suppose Ĉ is the r-dim attribute part, and Ĉ⊥ is the s-dim noise,
a desired projection satisfies that Ĉ is orthogonal to Ĉ⊥ and Ĉ⊥ = V T

s C = 0,
which means that the structure-irrelevant noise that existed in the full space is
now removed by the projection, and only relevant dimensions are kept in the
reduced space. Since we only care about the attributes part, all we need to find
is the projection U . This projection can be found by computing the orthonormal
basis U ∈ Rf×r for the column space of C, where rank(C) = r. It is easy to
see that V is in fact the orthonormal basis of the left null space of C. The
subspace data representation is then derived by projecting data using U , that
is, Ŵ = UT W ∈ Rr×n is the reduced r-dim representation of data. We then do
metric learning in the reduced space Ŵ for informative distances.

Note that, the idea of using centroid to represent a group of data originates
from work [7]. However, [7] solves the classification problem, where the number
of data groups is fixed to the number of classes and each data group contains
a large amount of training data such that the centroid of a group is the rank-1
approximation with less noise. On the contrary, we solve the clustering problem.
The number of data groups generated by transitive closure is not fixed and is
usually large. Due to the nature of pairwise constraints and the small amount of
available constraints, most of the data groups only contain a very small amount
of data items (i.e., 1 or 2). The centroids for such data groups may contain
spurious information.

It is easy to see that the sparse-feature problem is solved in the subspace.
This is because that U is a full rank matrix and rank(U) = rank(C) = r,
rank(Ŵ ) = r < n � f . The subspace thus provides a more compact data
representation than the original full dimensional space. The number of variables
to be learned is also greatly reduced. Now, we use the following two Lemmas1

to show that the clustering structure defined by constraints is more evident in
the subspace Ŵ . Proofs are straightforward and thus skipped.

Lemma 1 (Group Volume Shrinkage Property). Given any data item wi

and its corresponding centroid ci, the following holds: ‖ŵi − ĉi‖2 ≤ ‖wi − ci‖2.
Since data items in the subspace Ŵ get closer to their corresponding centroid
than in the full space W , the volume of any given data group shrinks to its
centroid.

1 We only show the Lemmas in the L2 norm measure to save space. It is easy to prove
that the corresponding theorems still hold for the cosine similarity.



Lemma 2 (Constant Center-to-Center Distance). The pairwise distance
between any two given centroids ci and cj of the full space W is strictly preserved

in the subspace Ŵ : ‖ci − cj‖2 = ‖ĉi − ĉj‖2.

According to Lemma 1, data items in the subspace Ŵ move towards their cor-
responding centroids. According to Lemma 2, any data group Wi keeps constant
distance away from any other group Wj in the sense of constant center-to-center
distance. Geometrically, the volume of a data group Wi shrinks and groups are
still well separated in the subspace. Therefore, the projection in fact strengthens
the clustering structure defined by constraints.

2.2 Constraint-Guided Local Propagation

Graph-based methods are well known for clustering high-dimensional data with
better accuracy. For example, the representative Normalized Cut (NC) method
has been successfully applied to image segmentation and document clustering
problems. However, as we mentioned in section 1, the performance of a graph-
based method can be impaired by noninformative pairwise distance. We propose
a simple yet effective method to directly enforce and propagate constraints on
the affinity matrix K. The idea is to do space-level generalization of pairwise
constraints based on triangle geometry.

Our idea is the following. Given
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Fig. 1. The two bands data set (The true classifi-
cation is indicated by marker shape, and the unsu-
pervised K-means clustering results are indicated
by marker color. Real line: must-link; Dotted line:
cannot-link).

pairwise constraints that data item x
and y must belong to the same cluster
(i.e., must-link), we set the distance
between the two items as 0, that is
dist(x, y) = 0. For any other data
item z, we set dist(z, x) = dist(z, y) =
min(dist(z, x), dist(z, y)). Symmetri-
cally, given pairwise constraints that
data item x and y belong to differ-
ent clusters (i.e., cannot-link), we set
dist(x, y) = 1, where 1 is the largest
value for a normalized distance mea-
sure. Since constraints are propagated
to at most one-hop neighbors of the constrained data items, we consider this
method local. After local propagation, the matrix K contains more informative
pairwise distances, which enable better clustering performance. The following
Lemma justifies our idea. Again, proof is straightforward and thus skipped.

Lemma 3 (Distance propagation property). Given three data items x, y,
and z, suppose dist(z, x) ≤ dist(z, y). If data items x and y get closer, the
3rd item z is equally far away from x and y, That is, dist(x, y) ; 0, then
dist(z, y) ; dist(z, x).

The effectiveness of this method can be illustrated by Figure 1. Unsuper-
vised clustering methods ignore the band structure of the data. If we know that



data item a and b belong to the same cluster, and set dist(d, a) = dist(d, b),
dist(c, b) = dist(c, a), data items in the upper band will get closer to each other
and the band effect is reduced. That is, constraints on data items a and b are
generalized to the whole space. The local propagation method has the time com-
plexity of O(nq), where n is the number of data items and q is the number of
constrained data items. It is faster than the related global propagation method
[6], which is based on all-pairs-shortest-path and has the O(n2q) time complexity.

3 Experimental Validation

3.1 Set-Up

Data Sets. We have evaluated the performance of our clustering algorithms
using two public available data sets: the Reuters-21578 document corpus and
the 20-Newsgroups 18828 version document corpus. For the Reuters corpus, we
included only documents with a single label to ensure unambiguous results.We
pre-processed each document by tokenization, stop-words removal, and stem-
ming. Terms that appear in only one document are removed.

12 data sets were generated from the two corpora as summarized in Table 1.
Without the lose of generality, we first generated data sets of different number
of clusters ranging from 2 to 6. For each given cluster number k, 5 test sets were
created by first randomly picked k topics from one corpus, and then 40 docu-
ments of each of the picked topics were randomly selected and mixed together
(Table 1, Reu-2∼6, News-2∼6 report the statistics of the data sets randomly
chosen from the pool of 5 data sets for each cluster number k). We also created
two challenging data sets from 20-Newsgroups corpus. News-Mediocre contains
3 related topics {talk.politics.misc, talk.politics.guns, and talk.politics.mideast},
and News-Difficult contains 3 very similar topics {comp.windows.x, comp.os.ms-
windows.misc, and comp.graphics}.
Evaluation Metrics. In addition to the running time (RT) as a metric to
evaluate the speed of algorithms, to avoid biased accuracy result using a single
metric, we evaluate clustering accuracy by employing three widely-used evalu-
ation metrics, which are (1) Normalized Mutual Information (NMI), (2) Rand
Index, and (3) F-measure. All the three metrics take values between zero and
one, with one meaning best accuracy.

We also implemented four state-of-the-art semi-supervised clustering meth-
ods: (1) L-NC method does metric learning in the full feature space [10], then
uses NC as the unsupervised clustering model; (2) MPCKmeans combines met-
ric learning and constraint-enforcement into K-means through an EM process
[3]; (3) C-NC is a graph-based constraint-enforcement method that has been
shown effective in clustering documents [5]; and (4) Glo-NC method globally
propagates constraints to adjust pairwise distances [6]. Table 2 summarizes the
baseline method and seven variations of semi-supervised clustering methods that
we have evaluated. Our three proposals – RL-NC, RLC-NC, and Lo-NC –
are bold faced.



Table 1. Summary of data sets.

20-Newsgroups Reuters

Data set name # data items # features # cluster Data set name # of data items # features # cluster

News-2 80 2,422 2 Reu-2 80 1,213 2
News-3 120 3,895 3 Reu-3 120 2,028 3
News-4 160 4,520 4 Reu-4 160 2,347 4
News-5 200 6,203 5 Reu-5 200 2,343 5
News-6 240 5,991 6 Reu-6 240 2,952 6

News-Difficult 300 3,570 3 News-Mediocre 300 4,457 3

Table 2. Summary of all the experimented algorithms.

Type Algorithm Description

Baseline NC Normalized Cut [8]

State-of-the-art

MPCKmeans learning feature weights & enforce constraint through EM [3]
L-NC learning feature weights in the original feature space [10], followed by NC
C-NC Constrained Normalized Cut [5]

Glo-NC NC with globally adjusted affinity matrix [6]

Our proposals

RL-NC learning feature weights in reduced space (Section 2.1), followed by NC
RLC-NC hybrid of RL-NC and C-NC
Lo-NC NC with locally-adjusted affinity matrix (Section 2.2)

3.2 Experimental Results

Metric Learning. We reported the experimental results based on two challeng-
ing data sets News-Mediocre and News-Difficult. We controlled the experiment
by varying the amount of constrained data items ranging from 2.5% to 15% of the
total documents. Constraints were generated by paring constrained documents
based on ground truth.The final performance score was obtained by averaging
the scores from 10 test runs.

We compared our sub-space metric learning method (RL-NC) with the full-
space learning method (L-NC). Performance comparisons are reported in Table
3. For both data sets and various amount of constraints, RL-NC achieves higher
and more stable learning accuracy. Metric learning in the subspace is also much
faster than in the full feature space. When the amount of constraints increases,
the learning time of both methods increases too, with the subspace learning
method scales much better than the full space learning method. Last, note that
although the three accuracy metrics (i.e. NMI, RI, and F) show quite different
absolute values, they show overall similar patterns for different algorithms. For
simple presentation, we will only use NMI as the evaluation metric from here
forward.
Integrating Metric Learning with Constraint Enforcement. Metric learn-
ing and constraint enforcement are two basic schemes of exploiting constraints
to improve clustering performance. In this experiment, we combined the two
schemes and expected to generate better clustering performance. We compared
the subspace metric learning method (RL-NC), with the graph-based constraint
enforcement method (C-NC), and with the hybrid approach (RLC-NC). Fig-
ure 2 shows that both RL-NC and C-NC individually improved upon the reg-
ular NC method, and both show similar accuracy given the same amount of
constraints. However, the hybrid algorithm, RLC-NC, always significantly out-
performs the individual ones. These results empirically validate our hypothesize



Table 3. Running time and accuracy for subspace metric learning.

Algorithm Metric
News-Mediocre News-Difficult

2.5% 5% 7.5% 10% 15% 2.5% 5% 7.5% 10% 15%

NC
NMI

0.5568 0.1016
RL-NC 0.5865 0.6003 0.6164 0.6405 0.6374 0.1134 0.104998 0.1142 0.1151 0.1404

L-NC 0.5220 0.5362 0.4656 0.5246 0.5756 0.1084 0.1077 0.1060 0.1060 0.1271

NC
RI

0.7432 0.5098
RL-NC 0.7693 0.7689 0.8029 0.8409 0.8387 0.5427 0.5242 0.5380 0.5624 0.5550

L-NC 0.7311 0.7674 0.7112 0.6786 0.8316 0.5398 0.5478 0.5397 0.5559 0.5363

NC
F

0.6629 0.4401
RL-NC 0.6834 0.7072 0.7222 0.7666 0.7593 0.4423 0.4490 0.4424 0.4436 0.4636

L-NC 0.6484 0.6770 0.6455 0.6191 0.7298 0.4425 0.4436 0.4418 0.4443 0.4555

RL-NC
RT

0.6129 1.0875 5.3013 9.1093 20.4659 0.6209 2.2153 5.2884 9.2359 17.2411
L-NC 2.0133 7.9069 18.9226 32.6786 77.0943 0.8736 6.4430 11.2585 26.5236 60.2636
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Fig. 2. Accuracy of combining subspace metric learning (RL-NC) and constraint enforcement (C-
NC) (% of constraints = 15%).

that the hybrid method, RLC-NC, more comprehensively utilizes available con-
straints.
Constraint-Guided Local Propagation. We compared the effectiveness of
the local propagation method (Lo-NC) with the global adjustment method (Glo-
NC). The regular NC approach was adopted as the unsupervised clustering
model for both methods. Figure 3 shows the clustering results on the two rep-
resentative Newsgroups data sets. Lo-NC made sizable improvement over the
unconstrained version of NC even with a small amount of constraints. Glo-NC is
less effective and its performance for the News-Difficult data set is worse than the
unconstrained method when the number of constraints increases. Both the local
and the global methods exploit the triangle geometry. But the global method
also propagates constraints based on the pairwise distances among all the data
points, which may decrease the discriminative power of the constraints. Detailed
results on multiple Reuters and Newsgroups data sets are shown in Table 4.

4 Conclusion

Two novel semi-supervised clustering techniques are proposed for high dimen-
sional and sparse data. The first method projects data onto a reduced-dimension
subspace such that clustering structure defined by constraints is strengthened.
Metric learning is then applied to the subspace to generate informative pair-
wise distances. The second method exploits the triangle geometry to generalize



Table 4. Lo-NC, Glo-NC on Reuters and Newsgroups corpora (C: % of constraints).

Algorithms C
Reuters corpus Newgroup corpus

NMI for different # of clusters NMI for different # of clusters
2 3 4 5 6 2 3 4 5 6

Lo-NC
5%

0.4474 0.7462 0.7159 0.7399 0.742 0.6179 0.6724 0.5959 0.58347 0.5972
Glo-NC 0.4402 0.713 0.7112 0.7421 0.7397 0.7068 0.6573 0.5789 0.5819 0.5692

Lo-NC
10%

0.4809 0.7202 0.7651 0.7649 0.7886 0.6767 0.6845 0.6056 0.6045 0.6188
Glo-NC 0.4557 0.7109 0.7500 0.7716 0.7638 0.6169 0.7031 0.6074 0.5645 0.6014

Lo-NC
15%

0.5005 0.7275 0.7508 0.777 0.7817 0.667 0.694 0.6433 0.6154 0.6384
Glo-NC 0.4913 0.7038 0.7564 0.7783 0.7701 0.6371 0.66 0.6033 0.5789 0.6027
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Fig. 3. Local vs. global propagation

pairwise constraints by “local” propagation. The validity of our proposals are
empirically validated using extensive experiments.
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