
A Flexible Framework for Architecting XML
Access Control Enforcement Mechanisms

Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng Liu

The Pennsylvania State University
University Park, PA, 16802, USA

{bluo,dlee,wlee,pliu}@ist.psu.edu

Abstract. Due to the growing interest in XML security, various ac-
cess control schemes have been proposed recently. However, little effort
has been put forth to facilitate a uniform analysis and comparison of
these schemes under the same framework. This paper presents a first at-
tempt toward a flexible framework that can capture the design principles
and operations of existing XML access control mechanisms. Under this
framework, we observe that most existing XML access control mecha-
nisms share the same design principle with slightly different orderings
of underlying building blocks (i.e., data, query, and access control rule).
Furthermore, according to the framework, we identify four plausible ap-
proaches to implement XML access controls, namely built-in, view-based,
pre-processing and post-processing. Finally, we compare the actual per-
formance of different approaches.

1 Introduction

The eXtensible Markup Language (XML) [2] has emerged as the de facto stan-
dard for storing and exchanging information in the Internet Age. As the distribu-
tion and sharing of information over the World Wide Web becomes increasingly
important, the needs for efficient yet secure access of XML data naturally arise.
It is necessary to tailor information in XML documents for various user and
application requirements, preserving confidentiality and efficiency at the same
time. Thus, it is critical to specify and enforce access control over XML data to
ensure that only authorized users have an access to the data they are allowed to
access. Toward this goal, recently, many research and industrial proposals have
appeared (e.g., [1, 3, 4, 8]).

However, there has been little effort to facilitate a uniform analysis and com-
parison of these proposals. Therefore, in this paper, we made such an attempt to
identify necessary building blocks and operations under the framework. Having
such a framework brings several benefits: (1) Without a uniform view, compar-
ing different XML access control mechanisms is somewhat similar to comparing
apples with oranges. By having a flexible framework that can represent many
proposals, one can easily compare different approaches from the same and “fair”
perspective; (2) The framework can help users see the architectural uniqueness
of an approach in an intuitive manner. That is, once one understands the basic

building blocks of the framework, it is intuitive to view other proposals in terms
of the building blocks; (3) By combining different building blocks in different
orders, one can devise novel approaches (or implementations) of XML access
control mechanisms that are not known before.

In summary, the contributions of this paper are as follows:

– We present a flexible framework that consists of three building blocks (i.e.,
data, query, access control rules) and a set of operations (e.g., evaluate,
merge, etc). Based on these elements, we present different ways of imple-
menting XML access controls with their pros and cons, namely built-in,
pre-processing, post-processing, etc. To our best knowledge, this is the first
attempt to model and compare different XML access control mechanisms
under the same roof (Section 3).

– We demonstrate that the proposed framework can easily capture majority
of the known XML access control mechanisms (e.g., [8, 9, 1, 4]) in a succinct
and consistent way (Section 4).

– Finally, after implementing four representative XML access control mech-
anisms, we present experimental result from a performance study of those
mechanisms (Section 5). In general, the pre-processing approach outperforms
the others.

The rest of the paper is organized as follows: Section 2 presents related works of
this paper. Section 3 presents the main framework that we propose, and Section
4 discusses architectures of some of the existing XML access control mechanisms
under the proposed framework. Section 5 provides a performance comparison
of four representative XML access control mechanisms. Finally, a conclusion is
drawn in Section 6.

2 Related Work

XML access control in general has two aspects: access control models and en-
forcement mechanisms. The focus of this paper is on the latter.

Several authorization-based XML access control models are proposed. In [11],
authorizations are specified on portions of HTML documents, but no semantic
context similar to that provided by XML can be supported. In [5], a specific
authorization sheet is associated with each XML document/DTD expressing the
authorizations on the document. In [4], the model proposed in [5] is extended by
enriching the authorization types supported by the model, providing a complete
description of the specification and enforcement mechanism. Among comparable
proposals, in [1], an access control environment for XML documents and some
techniques to deal with authorization priorities and conflict resolution issues
are proposed. Finally, the use of authorization priorities with propagation and
overriding, which is an important aspect of XML access control, may recall
approaches in the context of object-oriented databases, like [7] and [10]. Although
our proposal is based on existing XML authorization models such as [4], we focus

on how to architect and implement XML access control mechanisms on top of
XML engines without security support.

From the enforcement mechanism perspective, existing XML access control
methods are either view-based or relying on the XML engine to enforce node-level
access control. The idea of view-based enforcement is to create and maintain a
view for each user who is authorized to access a specific portion of an XML docu-
ment. The view contains exactly the set of data nodes that the user is authorized
to access. The view is generated by using the set of authorizations granted to
the user to filter off the nodes that the user should not access. During run time,
each user can simply run his queries against his view. In [5] and [4], a detailed
view-based enforcement mechanism is proposed. Although views can be prepared
offline, view-based enforcement has two serious limitations: (1) not scalable in
managing and maintaining views when there are a large number of roles (or
users), (2) high storage cost. To tackle this problem, [15] proposes a method to
compress XML views. However, view-independent enforcement mechanisms are
sometimes more desirable.

Letting XML engines enforce access control at the node-level is a view-
independent enforcement mechanism, but the complexity of managing and main-
taining authorizations can be too significant to make this enforcement mecha-
nism practical. The idea is to associate an access-control-list with each node of
the XML document. The major complexities are: (1) whenever a user is cre-
ated or removed, or an authorization is granted or revoked, the XML engine
has to “refresh” its access control lists; (2) the query processing overhead can
be substantial; (3) this enforcement mechanism is useless when XML data are
managed by a RDBMS, as many real world applications do; (4) how to manage
the authorization inheritance relationships among data nodes? [3] addresses this
issue by mitigating the problem (2), but cannot solve the other two problems;
(5) when XML documents are huge, using XML engines to enforce access control
may not be cost-effective.

To further reduce the overhead of the XML engine, [9] proposed an automata-
based static analysis that identifies XML queries that are either “entirely” au-
thorized or “entirely” prohibited before the queries are submitted to an XML
engine. Therefore, if a query Q is completely prohibited by access control rules,
then there is no need to submit Q to an XML engine, and Q can be simply
thrown away outright. Conversely, if one is certain that Q does not have any
conflicts with access control rules, Q may be processed as if it is a regular query
without security concern. However, for the “partially” authorized XML queries,
[9] still relies on an XML engine to filter out the data nodes that users do not
have authorizations to read or write. The proposed solution in [8] removes this
problem so that query processing as well as security enforcement are optimized
regardless of the query or access control types. That is, our solution is inde-
pendent of the underlying XML engine or the usage of views, solving the above
enforcement problems naturally.

3 A Framework for XML Access Control Enforcement

3.1 XML Security Model

Since the focus of our framework is on how to enforce access controls, rather
than on how to define a security model itself, the choice of a particular XML
security model that we use in this paper is insignificant. Nevertheless, to simplify
the presentation of the paper, let us first define a model as follows.

In short, we adopt an XML access control model from [4] and incorporate
role-based access control from [12] to make our access control mechanisms more
pragmatic. In this model, users are assigned to roles and thus can exercise certain
access rights characterized by their roles. An XML document can be represented
as a hierarchy of nested nodes (i.e., elements and attributes) so that fine-grained
access controls at node level are established. XPath (or XQuery) is used for spec-
ification of queries as well as identification of nodes. The node-level authorization
is specified via access control rules (ACR), each of which is a 5-tuple: ACR =
{subject, object, action, sign, type}, where (1) subject is to whom an authoriza-
tion is granted (e.g., user or role); (2) object is part of an XML data specified by
an XPath expression; (3) action consists of read, write, and update1; (4) sign ∈
{+, -} refers to either access “granted” or “denied”, respectively; and (5) type ∈
{LC, RC} refers to either local check (i.e., authorization is applied to nodes in
context only) or recursive check (i.e., authorization is applied to current nodes
and propagated to all their descendants), respectively.

In general, all nodes whose authorization is not explicitly specified in ACR
are considered to be “access denied”. It is possible for a node to have more
than one relevant access control rule. If conflicts occur among such rules, denial
takes precedence. When an answer returned from databases does not contain any
security-violating data in it, the answer is called safe answer (SA), and un-safe
answer (UA) otherwise. Similarly, if a query produces only safe answers, then
the query is called safe query (SQ), and un-safe query (UQ) otherwise.

3.2 Building Blocks

We view the XML access control mechanism as the interplay of three building
blocks – data, query , and access control rule as follows:

– Data (D) indicates the XML data (or document) that contains the answers
users are looking for. Often the data are stored in native XML engines or
RDBMS, but the choice of storage system is irrelevant to the discussion of
this paper.

– Query (Q) describes the information that users want, and can be viewed
as a conceptual pointer to the desired data in D. In XML domain, query is
often written in either XPath or XQuery language. When a Q is issued by a
user, Q has the same security role as what the user has.

1 In this paper, we focus on the read action since write/update operations for XML
model are still being designed by W3C.

(a)

(b)

(c)

(d)

(e)

Query ACR Data

Query ACR Data

Query ACR Data

Query Data ACR

Data Query ACR

Fig. 1. Different combinations of building blocks in the framework.

– Access Control Rules (ACR) is a list of 5-tuple access control rule,
describing the security policy of some roles. When a portion of data in D
that does not violate policies of ACR are returned, it is a “safe” answer.

Note that D, Q and ACR are independent components, and thus can be located
independently and processed separately. Figure 1 illustrates various combina-
tions of the three building blocks, where gray box implies that building blocks
in it are (1) co-located (in a spatial sense); and/or co-processed (in a temporal
sense). For instance, (a) can be interpreted as: all three building blocks must be
(1) co-located in a single system; and/or (2) processed at the same time. Below,
we will consider both aspects of the framework.

– (a) indicates a scenario where all three building blocks are co-located in a
single system. For instance, conventional RDBMS supports relational access
control via the embedded support of GRANT/REVOKE. In such a setting,
Q is issued against both D and ACR which are stored together;

– (b) is a slight modification of (a) in that Q can be issued remotely while ACR
must be stored together with D in a system. Typical example of this scenario
includes the client-server model such as web-based database interface. On the
other hand, from the temporal aspect, (b) illustrates the view-based XML
access control mechanism where ACR and D are processed first (yielding a
safe view), and then Q is evaluated against the view. Whichever case it is,
the data provider must be able to support XML access control mechanism;

– In the spatial sense, (c) indicates a scenario where one party holds Q and
ACR, while D is stored elsewhere. For instance, D is provided by a data
provider while ACR is provided by a data mediator who connects end users

with raw data sources with marginal fees. Once acquiring an adequate secu-
rity role from the mediator by paying the fee, end users can issue a query
to D. On the other hand, in the temporal sense, (c) implies that Q and
ACR can be pre-processed prior to D. Therefore, for optimization, one can
“merge” Q and ACR such that new output Q′ can be processed against D
more efficiently;

– (d) shows a scenario where only ACR is stored elsewhere. Since Q and D
are stored together, conventional databases without access control support
can be used to first evaluate Q against D. When ACR itself carries security-
conscious information and has to be stored securely, this approach can be
adopted; and

– Lastly, (e) is a conceptual merge of (b) and (d). Since the final “safe” answers
are those data that can pass through constraints of Q as well as ACR, one
can do intersection of two data sets – one from evaluating Q against D, and
the other from enforcing ACR against D.

3.3 Operators

By viewing the three building blocks of the previous section as “operands”, here,
we present a few core “operators”, thus forming an Algebra in a sense.

– D’ = evalQuery(Q, D). This operator takes a query Q issued by a user
and a data D, and returns a data D′ as the answer. If either input Q is a
“safe query” or D is a “safe data”, then the output D′ is also a “safe data”.

– D’ = evalRule(ACR, D). This operator applies the 5-tuple access control
rules ACR against D, and produce a set of data D′ (i.e., D′

1, ..., D′
n) as

return, one for each role. That is, each returned D′ is a portion of data in
D that a role is entitled to access. Note that D′ can be a virtual concept.
For instance, D′

1 and D′
2 can exist as augmented taggings to D′, instead of

being physically-returned data.

– Q’ = merge(Q, ACR). This operator “re-writes” the input query Q us-
ing ACR such that parts of Q that violate the security policies specified
in ACR are pruned. The output query Q′ is thus a conceptual merge of
Q and ACR. For instance, suppose a manager “John” issues the follow-
ing query Q://dept[@loc=’East’]//salary when ACR has only 1 rule in
it: <manager, //member/salary, +, read, LC> (i.e., managers can read
any member’s salary information). Then, merge(Q,ACR) would generate:
Q’=//dept[@loc=’East’]//member/salary.

Note that the proposed three operators can be nested in an arbitrary manner,
together with the traditional set operators (i.e., ∩, ∪, and −). Now, let us see
how different scenarios of Figure 1 can be captured using the operators.

– Figure 1(a) and 1(b). Since all of our operators are binary, both scenarios
(a) and (b) can be captured as “evalQuery(Q, evalRule(ACR, D))”. Note
that since evalRule(ACR, D) returns a list of D′, instead of a single D′, in
order to use it in a nested fashion, there needs to be another operator that lets
us pick one of the D′ such as “evalQuery(Q, pickOne(evalRule(ACR, D)))”.
However, for simplicity, we omit this operator.

– Figure 1(c). The operation “evalQuery(merge(Q,ACR), D)” captures the
scenario (c). Note that how individual operator is “implemented” in prac-
tice is not discussed yet, and to be explored in Section 4. For instance,
merge(Q,ACR) operator is implemented in two ways in [8], called primitive
and QFilter.

– Figure 1(d). The operation “evalRule(ACR, evalQuery(Q,D))” captures
the scenario (d). Note the potential inefficiency stems from the fact that
evalQuery(Q,D) is processed first so that intermediate (possibly un-safe)
data must be carried to the second step of evalRule(ACR, D). In this sce-
nario, the first evalQuery(Q,D) may need to do extra task of keeping an-
cestor tags or predicates. For instance, after the Q:/a/b returns nodes,
when an access control rule has /a[c]/b, it cannot be checked since neces-
sary tags are already stripped out.

– Figure 1(e). This scenario can be captured as the operation “evalQuery(Q,D) ∩
evalRule(ACR, D)” if the domain compatibility of the ∩ operator is pro-
vided. Consider the following case: Q://a and ACR:<admin, //b, +, read,
RC> (i.e., administrators can read all b elements and their descendants).
Furthermore, suppose the first operator evalQuery(Q, D) returns an answer
{a1, a5, a7}, while the second operator evalRule(ACR, D) returns a subtree
rooted at b2 that contains {a3, a5, a7, a10} as sub-elements. In this case, the
first sub-answer has the type of <a> while the second sub-answer has the
type of , and therefore, their domains are not compatible. However, two
elements of <a> – a5 and a7 – must be returned as the final answer since
they satisfy both constraints of Q and ACR . How to achieve this intelli-
gent intersection is beyond the scope of this paper, and for instance explored
in [8].

4 Current XML Access Control Enforcement Mechanisms
under the Framework

In this section, we discuss the current XML access control approaches, and
show/compare how they are architected under our framework.

4.1 Available Approaches

– RDBMS-style Approach. Typical RDBMS uses the role-based access con-
trol (RBAC) model where users are assigned a certain role which has pre-
determined GRANT/REVOKE privileges. Access control rules are stored

in the access control tables (ACT), along with data. Therefore, architec-
turally, they typically adopt the scenario of Figure 1(a) (although queries
can be issued remotely using database interfaces such as ODBC). To our
best knowledge, there is no commercially available native XML databases
with full access control support at this point.

– Instance-tagging Approach. When ACR and D are available together
like in Figure 1(b), one can traverse entire XML data tree, and tag each
(element and attribute) node by its corresponding security information.
[3], for instance, uses this approach although their focus is on optimizing
the query evaluation, not the access control mechanism itself. With the
two rules <user1, //a//c, read, +, LC> and <user2, //b//c, read,
+, LC>, the <c> elements in the tree would have taggings, specifying that
they are readable by both “user1” and “user2”. Assuming there is some
kind of index on this tagged information, then secure query evaluation can
be provided. That is, when “John” with a “user1” role issues a query “//c”,
databases can retrieve all <c> elements under <a>, but not under using
the index. In some sense, this approach is related to the subsequent view-
based approach.

– View-based Approach. By adopting the architecture of Figure 1(b), view-
based approach takes advantage of the fact that ACR and D are either co-
located or co-processed. By processing evalRule(ACR, D) first, therefore,
this approach produces a set of data, D′

1, ..., D′
n for each role, thus creating

a number of “views”. Since each view contains only “safe” data for that
particular role, query can be processed on this view without any further
special care, making the query processing very efficient. The examples of
view-based approaches recently proposed include [15, 4, 1], and is one of the
most popular XML access control mechanisms. Depending on the details of
the algorithms, the views can be maintained either physically or virtually.

Since the I/O and space costs for constructing views are amount to evaluating
evalRule(ACR, D), it is dependent on the number of roles in ACR and the
size of D. However, often, this view construction is performed off-line, and
thus the cost issue becomes less important. When the space cost becomes
a major issue due to large number of views (e.g., million roles in Internet
environment), then one may mitigate the problem using the compression-
based techniques suggested in [15]. However, this approach still has to take
extra burden to maintain the views. When update occurs to either ACR
or D, synchronization must be performed to views. Overall, the view-based
approach is fast in answering user queries but may have to pay high I/O
and storage cost, and the extra complexity of view maintenance. Another
drawback of this approach is that since ACR must be processed against D
first, the database engines must be aware of the security aspect. That is, one
cannot implement this approach using off-the-shelf databases that do not
have built-in security support.

– Pre-processing Approach. Scenarios depicted in Figure 1(c) allows the
handling of Q and ACR prior to D. Since the D are de-coupled from ACR,
databases do not need to understand ACR. To exploit this property, one
can probe only Q and ACR to do optimization. Known approaches in this
category include two proposals from [8] and a proposal from [9].

In [8], we proposed primitive and QFilter as a pre-processing approach.
The primitive approach simply merges Q and ACR with ∩ operator to con-
struct Q′ = Q ∩ ACR2. This Q′ is then passed to the XML database
capable of handling the set operator. Although simple to implement, its per-
formance is highly dependent on the capability of underlying XML database.
To remedy the problem of the primitive approach, QFilter tries to produce
a more “optimized” Q′ by pruning unnecessary parts as early as possi-
ble. It performs the “intersection” of ACR and Q using the extended non-
deterministic finite automata (NFA). Informally, suppose we have the query
Q://dept[@loc=’East’]//salary when ACR has 2 rules in it: <manager,
//member/salary, +, read, LC> (i.e., managers can read any member’s
salary), and <manager, //member[@proj-type=’secret’]/salary, -, read,
LC> (i.e., managers cannot read member’s salary if they work for a secret
project). Then, the primitive approach would produce an output query Q′

as: “//dept[@loc=’East’]//salary ∩ //member/salary − //member
[@proj-type=’secret’]/salary.” However, the QFilter approach would
instead produce Q′ as:

“//dept[@loc=’East’]//member[@proj-type<>’secret’]/salary”,

which is often processed much faster. More importantly, since the new query
Q′ fully preserves both constraints of Q and ACR, even if Q′ is processed
by normal databases that do not support access controls, the output of
evalQuery(Q′, D) is the “safe” answer. The details of the QFilter algorithm
to achieve this optimization is beyond the scope of this paper, and can be
found in [8].

On the other hand, [9] proposed another approach called static analysis,
which is a hybrid of pre-processing and internal XML database security
check. The idea is to recognize two cases in the pre-processing stage: “access-
fully-granted” and “access-fully-denied”. That is, in our framework, (1) access-
full-granted occurs when evalQuery(Q, D) ⊆ evalRule(ACR, D). Since all
answers returned from Q are fully allowed by ACR, then Q′ = Q holds. This
means that the original user query can be processed by databases without
any special care; and (2) access-fully-denied occurs when evalQuery(Q,D) ∩
evalRule(ACR, D) = ∅. That is, all the answers that the user is asking for
are prohibited to access by ACR. In this case, there is no point of sending
any query to databases, and thus system simply returns null to the user right

2 In reality, the primitive algorithm is a bit more complicated to take care of the subtle
differences in the semantics of “+/−” sign and “LC/RC” type.

away. Compared to the QFilter approach, the static analysis method lacks of
the capability to handle the case: evalQuery(Q,D) ∩ evalRule(ACR, D) 6=
∅, i.e., some parts of the answers that the user is asking for are blocked,
but other parts are accessible. Mainly due to this reason, [8] demonstrated
the QFilter method can outperform the static analysis method by significant
margin.

– Post-processing Approach. Figure 1(d) illustrates the post-processing
scenario, where Q is applied to D first (where no security enforcement is
engaged), and then ACR is examined second. Since the first and second
step may be temporally and spatially far apart, the risk of carrying unnec-
essary intermediate data in the middle can hamper this approach signifi-
cantly. One may use data filter techniques such as YFilter [6] in the second
step to remove the forbidden contents from the unsafe answers. The cost to
construct YFilter depends on ACR only, thus could be performed off-line
efficiently. The final step of data filtering is the major performance bottle-
neck if the intermediate data contains a large volume of forbidden data in
them. In additions, the post-processing filters often require the intermediate
answers (after evalQuery(Q,D)) to retain full path to the nodes that query
requested. However, current XML database engine such as Galax returns
only requested nodes without their ancestors. Therefore, to implement XML
access controls using the post-processing approach, one has an extra burden
to recover all the ancestor tags to the root.

Let us emphasize that all of the aforementioned approaches are well captured in
our framework, usually in a slight different orderings. For instance, note the slight
difference of the view-based, pre-processing, and post-processing approaches:

– View-based: SA = evalQuery(Q, evalRule(ACR, D))
– Pre-processing: SA = evalQuery(merge(Q,ACR), D)
– Post-processing: SA = evalRule(ACR, evalQuery(Q,D))

Note that at the end, users always get the “safe answer” (SA) back. Figure 2
depicts details of three XML access control enforcement mechanisms using our
framework.

4.2 Qualitative Comparison

In this section, let us do a close examination on the three (important) categories:
view-based of Figure 1(b), pre-processing of Figure 1(c), and post-processing of
Figure 1(b). End-to-end processing time of these approaches are illustrated in
Figure 3. We observe that typically an XML access control mechanism involves
three separate operations: (1) off-line service preparation, (2) on-line query pro-
cessing, and (3) service maintenance.

– Off-line Service Preparation. This step is typically devoted on tasks
to help speed-up the subsequent query processing step, and done off-line.

 Access Control

Data &
Access Control

User

Deliverer

Q DBMS A

ACR1

ACR2

ACR3

SA1

SA2

SA3

Q DBMS

SQ

ACR
Q

DBMS
&

SA Access
Control

SA

User Data

(a) (b)

 Access
Control Data Users

(c)

Fig. 2. Illustration of three XML access control approaches under our framework: (a)
view-based, (b) QFilter, and (c) YFilter

Obviously, view-based approach would need to generate views per roles in
this step. Similarly, the pre-processing approach like QFilter or static anal-
ysis method spends this time on constructing needed data structures (e.g.,
NFA). For the post-processing approach, one can build up some kind of in-
dex on ACR (e.g., given a “role”, quickly retrieve all relevant rules from
ACR) so that later post-filtering process can run faster. Note that in this
stage, Q from users are not known, and both ACR and D are the sole re-
sources. Therefore, often the cost for service preparation depends on the size
of ACR and D. Moreover, when the preparation requires non-trivial probing
of ACR such as QFilter case, the complexity of ACR also does affect the
cost. However, overall, since these tasks are done off-line, they do not con-
tribute much to the performance of whole XML access control mechanisms,
and thus omitted in our experimental comparisons of Section 5.

– On-line Query Processing. Once Q is issued, the task of evaluating Q
while ensuring security policies in ACR is done in this step, and must be
done on-line (unless the submitted query is part of batch-process). The end
output of this task must be the “safe answers”. Thus, the end-to-end on-line
query processing time is the time-line between Q and SA in Figure 3.

For the view-based approach, the query processing can be efficient since
there is no need for additional security check (i.e., each view contains only
safe data for the role, after all). For the pre-processing approach, the per-
formance largely depends on the quality of the re-written query from the
pre-processing. For instance, if the primitive method generates a re-written
query Q′ as “s1 ∩ ... ∩ sn − t1...− tm” (n, m � 1), then the evaluation

Overall, view based approach is fast in answering user queries but
it needs high storage cost as a tradeoff. Moreover, the extra
complexity of managing and maintaining views is also high.

3.2 Pre-processing Approach
Pre-processing approach first performs the “intersect” operation
between the query and access control rules to generate a query Q’,
which only remains the access-control-permitted content of Q. In
this way, Q’ could be safely evaluated with an XML engine
without any security enforcement, and the answer set will not
contain any forbidden content. Now we analyze the performance
of two implementation of this approach: the primitive and the
QFilter.

3.2.1 The Primitive Approach
The primitive approach leaves the intersect operation to the
underlying XML engine. Unfortunately, as far as we know, the
XML engines such as Galax are very slow in performing this
operation, especially when there is a relatively large number of
access control rules, where the ACR is a very complicated string
of unions of many path expressions, e.g. { R1 ∪ R2 ∪…∪ Rn }.
Our consideration is these XML engines are probably performing
these set operations on the raw answer sets, obtained by
evaluating each rule and the query on the document. This is
actually the direct approach in section 2.2 equation (0). Although
they may have some optimizations, the performance is still very
low.

3.2.2 The QFilter Approach
QFilter approach conducts the intersect operation via NFA. As we
described in section 2, both Q and ACR are compact path
expressions of raw XML content. The expression size is small, so
that their operations are very fast comparing with their
counterparts on the raw dataset. In additions, as long as Q and
ACR are equivalent expressions of requested and permitted XML
raw data, the intersect operation on path expressions is equal to
operations on the real data set, thus it is also effective.

Practically, in its implementation, QFilter is constructed at
an off-line basis since it depends on ACR only. However, the

construction is very efficient that QFilter could be easily updated
on-line, when ACR changes. At its execution, QFilter operates on
the path expressions with liner complexity, which indicates
efficiency and scalability.

3.2.3 The Static Analysis Method
In [14], Murata et al proposed a static analysis method, which is a
hybrid approach of pre-processing and internal XML engine level
security check. In the pre-processing, it recognizes the “access
fully granted” and “access fully denied” cases. In our framework,
they check if:

Q ⊆ ACR
Q ∩ ACR = φ

In these cases, the intersect query Q’ is represented as:
Q’ = Q ∩ACR = Q
Q’ = Q ∩ACR = φ

respectively.
But, in other cases:

φ ⊂ Q’ ⊂ Q
where Q ⊆ ACR or Q ∩ ACR = φ do not stand, the static analysis
method cannot determine Q’. Then it passes Q to the XML
database engine to enable a engine level security check.

Overall, the performance of pre-processing approach is
highly efficient in both computation and storage. The major
reason is because it works on the path expressions

3.3 The Post-processing Approach
As described in section two, post-processing mechanisms include
three steps: filter construction, original query evaluation and
answer filtering. Performance of original query evaluation highly
depends on the DBMS, which is not a concern here. Filter
construction depends on ACR only, thus could be performed
offline. Answer filtering is the major performance factor of this
approach:
 SA = ACR(A)
In [12], we used YFilter as the access control filtering tool, which
provides fairly fast filtering of the answer set. But this also

Q

XML Data

Merge(Q, ACR)

SA

Q

View XML Data

SA

Q

XML Data

Q’

QFilterACR

SA

Q

XML Data

YFilter ACR

SA

 XML Engine

 Offline Processing

(a) (b) (c) (d)
Figure 2: Processing timeline of XML access control approaches.

Fig. 3. Processing flow of XML access control mechanisms: (a) view-based approach,
(b) primitive pre-processing, (c) QFilter-based pre-processing, and (d) YFilter-based
post-processing.

Table 1. Qualitative comparison of different XML access control mechanisms.

Approach Preparation Processing Maintenance

View-based Medium Good Medium
Pre-processing Good Medium/Good Good
Post-processing Good Bad/Medium Good

of the Q′ can be quite slow. Other pre-processing approaches like QFilter
or static analysis method improve it drastically via early-pruning of access-
full-granted or access-fully-denied cases and via improved query re-writing
in merge(Q,ACR). For the post-processing approach, the security check is
pipelined after the query evaluation, and thus can be disadvantageous in
terms of performance. Post-filtering time is highly dependent on the size of
unsafe answer set.

– Service Maintenance. In general, any service preparations done off-line
need to be maintained when update occurs. For instance, when D is changed
(e.g., new sub-tree is inserted to D), view-based approach needs to (incre-
mentally) re-construct relevant views. However, the changes to D do not
affect the pre-processing or post-processing approach. On the other hand,
when ACR is changed, it affects the pre-processing (e.g., an NFA needs to
be updated) and post-processing approach (e.g., index on ACR needs to be
updated).

The summary of the qualitative comparison of three scenarios of Figure 1 is sum-
marized in Table 1. Note that the query processing cost of the post-processing
approach heavily depends on the size of intermediate un-safe data and/or the
complexity of rules in ACR.

Table 2. Summary of roles and rules.

Role Policy Size (KB) # of + rules # of − rules

#1 Can view all information, except
auction.

1,525 6 0

#2 Can view all category, north Amer-
ica item, and user information ex-
cept for their private ones.

1,279 8 2

#3 Can view all the closed auctions,
basic item and user information ex-
cept for their private ones.

1,256 8 2

#4 Can view all the open auctions and
basic item information.

1,352 6 0

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4
Role #

C
on

st
ru

ct
io

n
Ti

m
e

(m
s)

View QFilter Yfilter

Figure 3 (a) Service preparing time. (b) Query evaluation time (ms)

1

10

100

1000

10000

100000

1000000

Accepted
Queries

Denied Queries Rewritten
Queries

Primitive View QFilter Yfilter

depends on the size of the answer A since filter needs to scan over
the whole set. In some extreme cases, A may contain very large
volume of forbidden data thus requires exceptionally high
filtering cost. As we describe in section 2, both D and A are raw
representations of XML data thus the expression size is larger
comparing with path expressions. Obviously, operations on raw
data set require higher computation. Post-processing approach has
two steps that operate on raw dataset, which is less efficient.

In additions, ACR and post-processing filter requires the answer
set to retain full path to the node that query requested. However,
current XML database engine such as Galax returns only
requested nodes without their ancestors. This brings us extra
burden since we need some external script to recover the ancestor
tags thus reconstruct the fully path to the answer set. However, in
our experiments, we did not include the ancestor recovery time.

4. EXPERIMENTAL RESULTS
In the experiments, we compare the following methods: QFilter
and Primitive of pre-processing approaches, post-processing and
view-based approaches. Figure 2 shows the processing timeline of
each approach.
We consider two steps of each approach: offline service
preparation and online query processing. They are also indicated
in Figure 2.
We use Galax 0.3.1 [18] as XML engine, and the XMark [17]
schema and XML data set. We apply XML access control of four
different roles on a 2.5MB XML document.
We do not really implement the view based approach. Instead, we
simulate it by evaluating ACR on the document to create answer
set as views, and then evaluate queries on these views. Same as
the situation in the YFilter approach, answer set of evaluating
ACR on the document do not have ancestor tags. We also need to
trace back the ancestor axis to recover full path.

4.1 Offline service preparing
Service preparing including view creation of view based approach,
QFilter construction of QFilter approach and YFilter construction
of post-processing approach. They can be conducted at an offline
basis, unless there is a change in ACR rules.

We evaluate ACR of each role to create views. Description of
roles, number of rules defined for each role, as well as the size of
view is shown in the following table.

Role definition
Size of
views

(Bytes)

of
accept
rules

of
deny
rules

Costumer Advertisement Administrator:
allowed to browse all the category, item
and user information, but not auction
information.

1525 K 6 0

North America Advertisement Manager:
allowed to see all the category
information, north America item
information, user information except for
their privacies.

1279 K 8 2

Auction Review Administrator: allowed
to browse all the closed auctions, basic
item information and user information
except for their privacies.

1256 K 8 2

Online Reviewer: allowed to see all the
open auctions and basic item information. 1352 K 6 0

In pre-processing and post processing approaches, QFilter and
YFilter are constructed using ACR. Actually, their construction
times are less than 1 ms. In figure 3-A, we show the construction
time of views, QFilter and YFilter of the above roles. Obviously,
view based approach takes the longest time while both QFilter
and YFilter approaches are fast enough that even suit online
construction.

4.2 Online query evaluation
Online query evaluation of XML documents with access control
indicates the whole process from input of the original query until
output of the safe answer. We evaluate this end-to-end query
evaluation time, which is shown in Figure 2 as the timeline
between Q and SA. Using each approach, we processed 200
synthetic queries (randomly generated XPath expressions) for the
first role listed in the above table. The query evaluation times are
shown in Fig. 3 (b) in logarithmic scale, for accepted, denied and
rewritten queries, respectively. We can clearly observe:

Fig. 4. Performance comparison: (a) Service preparation time (ms); and (b) Query
evaluation time (ms).

5 Performance Evaluation

Now we validate the analysis of Section 4 with the experimental results. We use
Galax 0.3.1 [14] as the underlying XML engine, and XMark [13] schema and data
set. Overall, we experimented with: (1) for Q, user-denied and synthetic XPath
queries. Depending on the complexities of queries, we identified 8 categories; (2)
for ACR, user-defined and synthetic access control rules in the range of 0 – 500
rules ; and (3) for D, the sizes range from 500KB – 2.5MB. Among all these,
here we present a simple case of: 32 rules (of 4 roles) in ACR and 200 synthetic
queries against 2.5MB data. Note that other results not shown here are still
consistent with the presented case, and are available in [8].

We did not really implement the view-based approach. Instead, we simulate
it by evaluating ACR on data to create answer set as views, and then evaluate
queries on these views. Same as the situation in the YFilter approach, answer
set of evaluating ACR on the document do not have ancestor tags and special
care was taken to trace back the ancestor axis to recover full path. However, this
step is not included in the comparison below.

Figure 4(a) shows the service preparation time of view-based, QFilter, and
YFilter. The view-based approach takes the longest time while both QFilter and
YFilter approaches are quite fast (appears to be 0 in the graph). The end-to-end
query processing time is shown in Figure 4(b) (in logarithmic scale) for the 200
synthetic queries of the role #1. One can clearly observe:

– The primitive pre-processing approach performs the slowest since the under-
lying XML engine (i.e., Galax)’s performance degrades as the number of set
operators such as ∩ or ∪ in the re-written query Q′ increases when it evalu-
ates Q′ = merge(Q, ACR). On the contrary, YFilter-based post-processing
approach turns out to be faster than the primitive pre-processing since the
intermediate data after evaluating evalQuery(Q,D) was significantly small,
incurring little cost to post-processing task. However, when the size of inter-
mediate (unsafe) data increases, the post-processing approach often becomes
slower than the primitive pre-processing.

– The view-based and QFilter pre-processing approaches are the fastest. For
fully-accepted queries (i.e., evalQuery(Q,D) ⊆ evalRule(ACR, D)), “Q′ =
Q” holds, and thus the view-based approach is faster than even the QFilter
approach, as it evaluates the query on a smaller data set of “views”. For
fully-denied queries (i.e., evalQuery(Q,D) ∩ evalRule(ACR, D) = ∅), the
QFilter approach takes almost no time since the query is rejected outright
without being sent to databases for evaluation. For re-written queries (i.e.,
evalQuery(Q,D) ∩ evalRule(ACR, D) 6= ∅), the QFilter approach exhibits
a better performance mainly due to its good query rewriting algorithm uti-
lizing pre-constructed NFA. Often, QFilter rewrites general paths having
“*” or “//” into more specific paths, which tend to be processed faster in
evaluation. In additions, due to the existence of “*” and “//” in both Q and
ACR, Q′ may include some paths which are not allowed by the schema, and
those can be easily detected and ruled out by the underlying XML engine.
As a result, while evaluating evalQuery(Q′, D) and evalQuery(Q, V) yields
the same safe answers, the former tends to perform faster.

6 Conclusion

In this paper, we proposed a flexible framework that can capture most of the
current XML access control enforcement mechanisms using the same set of
building blocks (query Q, access control rules ACR, and data D) and opera-
tors (evalQuery(Q,D), evalRule(ACR, D), merge(Q, ACR)). Using the frame-
work, we have identified various architectural settings of access control scenarios.
Especially, by focusing on three representative approaches – view-based, pre-
processing, and post-processing, we showed and compared the pros and cons
of each scenario. Furthermore, by examining many existing XML access con-
trol mechanisms, we identified which belongs to which category, providing easy
and intuitive platform to understand and compare different proposals. Finally,
experimental validations to confirm our qualitative comparison are presented.

In short, pre-processing approach such as QFilter or static analysis method is
promising due to its low maintenance cost and high performance.

Acknowledgment. Authors would like to thank Yanlei Diao and Michael
Franklin for providing the YFilter software package.

References

[1] E. Bertino and E. Ferrari. “Secure and Selective Dissemination of XML Docu-
ments”. ACM Trans. on Information and System Security (TISSEC), 5(3):290–
331, Aug. 2002.

[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds). “Extensible Markup
Language (XML) 1.0 (2nd Ed.)”. W3C Recommendation, Oct. 2000.
http://www.w3.org/TR/2000/REC-xml-20001006.

[3] S. Cho, S. Amer-Yahia, L. V.S. Lakshmanan, and D. Srivastava. “Optimizing the
Secure Evaluation of Twig Queries”. In VLDB, Hong Kong, China, Aug. 2002.

[4] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. “A
Fine-Grained Access Control System for XML Documents”. ACM Trans. on
Information and System Security (TISSEC), 5(2):169–202, May 2002.

[5] E. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. Samarati. “De-
sign and Implementation of an Access Control Processor for XML Documents”.
Computer Networks, 33(6):59–75, 2000.

[6] Y. Diao and M. J. Franklin. “High-Performance XML Filtering: An Overview of
YFilter”. IEEE Data Eng. Bulletin, Mar. 2003.

[7] E. Fernandez, E. Gudes, and H. Song. “A Model of Evaluation and Administration
of Security in Object-Oriented Databases”. IEEE Trans. on Knowledge and Data
Engineering (TKDE), 6(2):275–292, 1994.

[8] B. Luo, D. Lee, W.-C. Lee, and P. Liu. “QFilter: Fine-Grained Run-Time XML
Access Control via NFA-based Query Rewriting”. Technical report, Penn State
University, Jan. 2004. (Submitted for publication).

[9] M. Murata, A. Tozawa, and M. Kudo. “XML Access Control using Static Anal-
ysis”. In ACM Conf. on Computer and Communications Security (CCS), Wash-
ington D.C., 2003.

[10] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. “A Model of Authorization for
Next-Generation Database Systems”. ACM Trans. on Database Systems (TODS),
16(1):89–131, 1991.

[11] P. Samarati, E. Bertino, and S. Jajodia. “An Authorization Model for a Dis-
tributed Hypertext System”. IEEE Trans. on Knowledge and Data Engineering
(TKDE), 8(4):555–562, 1996.

[12] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. “Role-Based Access Control
Models”. IEEE Computer, 29(2), 1996.

[13] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey,
and R. Busse. “The XML Benchmark Project”. Technical Report INS-R0103,
CWI, April 2001.

[14] J. Simeon and M. Fernandez. “Galax V 0.3.5”, Jan. 2004. http://db.bell-
labs.com/galax/.

[15] T. Yu, D. Srivastava, L. V.S. Lakshmanan, and H. V. Jagadish. “Compressed
Accessibility Map: Efficient Access Control for XML”. In VLDB, Hong Kong,
China, Aug. 2002.

