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ABSTRACT 
An extensive bibliometric study on the db community 
using the collaboration network constructed from DBLP 
data is presented. Among many, we have found that (1) the 
average distance of all db scholars in the network has been 
stabilized to about 6 for the last 15 years, coinciding with 
the so-called six degrees of separation phenomenon; (2) In 
sync with Lotka’s law on the frequency of publications, the 
db community also shows that a few number of scholars 
publish a large number of papers, while the majority of 
authors publish a small number of papers (i.e., following 
the power-law with exponent about -2); and (3) with the 
increasing demand to publish more, scholars collaborate 
more often than before  (i.e., 3.93 collaborators per scholar 
and with steadily increasing clustering coefficients).  

1. INTRODUCTION 
Social network analysis is an active research field in the 
social sciences where researchers try to understand social 
influence and groupings of a set of people or groups.  Its 
origin is in general believed to be due to S. Milgram [7] in 
1967 who identified the so-called “six degrees of 
separation” phenomenon based on an experiment – any 
two people in the United States are connected through 
about 6 intermediate acquaintances, implying we live in a 
rather small-world. Since then, sociologists and 
psychologists have found evidence for a wide range of 
small-world phenomena arising in other social and physical 
networks (e.g., power grids, airline time tables, food chain, 
World-Wide Web, Erdos number). Inspired by some of the 
recent attempts to apply social network analysis to our own 
db community [8, 11], in this paper, we analyze the 
collaboration network made of by database researchers, 
and see if there exists any interesting patterns underlying 
the db community and their publication behavior.  

2. SETUP 
Since DBLP [3] is a high-quality citation digital library that 
has a near complete coverage on database literature, we 
chose to use DBLP as the data set for our analysis of the db 
community. In particular, we examined citation data in 
DBLP from 1968 to 2003, and hand-picked publication 

venues (19 journals and 81 conferences, symposiums and 
workshops) that we believed to be closely-related to the db 
community (shown in Table 1). Note that we intentionally 
excluded venues related to Information Retrieval or Digital 
Library, but included ones related to Data Mining. We also 
did not include venues that have some database papers as 
well as papers from many other fields (e.g., J. ACM, 
Comm. ACM, and WWW). Hereafter, we will refer to this 
collection as DBLP-DB. DBLP-DB contained 32,689 
authors and 38,773 papers. 

Table1: The list of publication venues in DBLP-DB from 1968 to 2003. 

Conferences/Symposiums/Workshops (81) 
ADB, ADBIS, ADBT, ADC, ARTDB, Berkeley Workshop, BNCOD, 
CDB, CIDR, CIKM, CISM, CISMOD, COMAD, COODBSE, CoopIS, 
DAISD, DANTE, DASFAA, DaWaK, DBPL, DBSEC, DDB, DDW, 
DEXA, DIWeB, DMDW, DMKD, DNIS, DOLAP, DOOD, DPDS, DS, 
EDBT, EDS, EFIS/EFDBS, ER, EWDW, FODO, FoIKS, FQAS, Future 
Databases, GIS, HPTS, IADT, ICDE, ICDM, ICDT, ICOD, IDA, IDC(W), 
IDEAL, IDEAS, IDS, IGIS, IWDM, IW-MMDBMS, JCDKB, KDD, KR, 
KRDB, LID, MDA/MDM, MFDBS, MLDM, MSS, NLDB, OODBS, 
OOIS, PAKDD, PKDD, PODS, RIDE, RIDS, RTDB, SBBD, SDM-
SIAM, Semantics in Databases, SIGMOD, SSD, SSDBM, SWDB, TDB, 
TSDM, UIDIS, VDB, VLDB, WebDB, WIDM, WISE, XP, XSym 

Journals (19) 
ACM TODS, ACM TOIS, DKE, Data Base, DMKD, DPD, IEEE Data 
Eng. Bulletin, IEEE TKDE, Info. Processing and Management, Info. 
Processing Letters, Info. Sciences, Info. Systems, J. of Cooperative Info. 
Systems, J. of Database Management, JIIS, KAIS, SIGKDD Explorations, 
SIGMOD Record, VLDB J. 

The collaboration network (or graph) consists of nodes 
of authors and edges connecting any two authors if they co-
authored one or more papers. Note that DBLP itself does 
not have a notion of “unique key” such as DOI (Digital 
Object Identifier). Instead, DBLP depends on the name of 
authors to distinguish them. Therefore, the classical name 
authority control problem may arise (i.e., same author with 
various spellings or different authors with the same 
spelling). We could minimize this problem as Newman 
[10] did by conducting two experiments – one with full 
names (``John Doe'') and the other with the first initial of 
the first name followed by the last name (``J. Doe'') – and 
use these as the upper and lower bounds. However since it 
is known that their effect on the quality of citation analysis



 

is negligible [10], we did not do any special pre-processing 
to handle such cases. For the visualization of our network 
analysis, we used Pajek [2] and NetDraw [9]. 

3. STATISTICS ABOUT AUTHORS 
First, we do various statistical analysis related to authors of 
papers. Figure 1 shows the number of “new authors” (ones 
who publish a paper in DBLP-DB for the first time) as a 
function of year. As shown, the db community steadily 
grows each year by the addition of new authors (at the 10% 
rate after 1985). In 2003 alone, there are more than 3,000 
new authors who joined the db community, some of whom 
are novice graduate students or veteran scholars from 
similar fields. 

Figure 1. Number of new authors who joined the network each year. Inset: 
cumulative number of authors up to the year indicated. 

Next, we examine how active the db community is. The 
“active authors” are those who publish at least one paper in 
a given year. Figure 2 illustrates the number of active 
authors each year. For instance, in 2003, there are only 
about 6,000 active authors (out of 32,689 authors). 
Interestingly, almost half of the active authors in any given 
year are “new authors”. Moreover, new authors are steadily 
contributing to about 60% of papers each year (since 
1982). 

Those could be new graduate students entering into the 
community for the first time by collaborating with their 
advisors. The remaining 40% of the publications is 
contributed purely by the existing authors or co-authors, 
which increases the density of the collaboration network. 

Figure 3 illustrates the average number of papers per 
author for a given year (i.e., # of papers / # of authors). 
After 1980, the value starts to stabilize around 0.3 paper 
per author ratio, implying that the productivity rate of the 
db community as a whole remains intact over time. This 
makes sense since only small fractions of the community 
(about 18%-20%) are active each year and they can publish 
only a limited number of papers.  

Figure 2. Number active authors each year. Inset: percentage of the papers 
published by new authors each year 

Lotka's Law describes the frequency of publications by 
authors by “the number of authors making n contributions 
is about 1/n² of those making one; and the proportion of all 
contributors, that make a single contribution, is about 60 
percent” [6]. He showed that such a distribution follows a 
power law with an exponent approximately -2. Figure 4 
shows the distribution of numbers of papers per author on 
log-log scales for our database.  

Figure 3. Average number papers per author each year. Inset: cumulative 
number of papers/author up the year indicated. 

Consistent with Lotka’s Law, 20849 authors (64%) 
have only one paper whereas a small number of authors 
publish a large number of papers (the fat tail on the right 
hand side indicates this). In fact, in DBLP-DB, there are 
only 18 authors who published more than 100 papers. 
Furthermore, the exponent of the graph is -2.15 which is 
very close to that found by Lotka. Top-10 authors with the 
highest number of publications in DBLP-DB are shown in 
Table 4.  

Now, we examine the number of collaborators of 
authors. Figure 5 illustrates the results of this measure. The 
average number of collaborators per author (from 1968 to 
2003) is 3.93 and tends to increase steadily. Compared to 
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Figure 4. Distribution of numbers of papers per author, as of 2003.  

other scientific communities that involves large-scale 
experimentation (e.g., high-energy physics), this average 
number of collaborators is rather small.  
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Figure 5. Average number of collaborators per author each year 

The steady increase of the average number of 
collaborators can be hypothesized as follows: (1) the so-
called “Publish or Perish” pressure drives scholars to seek 
more effective ways to increase the number of publications 
such as collaborative research; and (2) the rapid 
development and deployment of new communication 
mediums (email, messenger, web board, or web camera) 
makes remote collaborations much easier than before.   
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Figure 6. Distribution of number of collaborators per author, as of 2003. 

The distribution of number of collaborators per author 
is shown in Figure 6. It also exhibits the power-law tail 
with exponent -2.3. The second column of Table 4 shows 
the authors with the largest number of collaborators. Many 
of these authors are ranked high in the centrality measures 
described in section 8. 
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Figure 7. Percentage of the active single authors per year 

Finally, we analyzed if there are authors with no 
collaborators in DBLP-DB. There are 3,073 such authors 
which constitute 9.4% of the db community. However, 
84% of all these single authors have only one paper. There 
are also a few scholars who have written more than 10 
papers just by themselves without any collaboration. One 
particular author, “Levent V. Orman”, has written 14 papers 
alone, shown in Table 2. However, due to the pressure for 
increased productivity, such single authors are diminishing. 
Figure 7 shows the percentage of single authors to active 
authors each year, clearly decreasing over time, and more 
interestingly, it exhibits the symmetric pattern from the 
increasing pattern of the number of collaborators in 
Figure5. 

 
Table 2: Publications of the most productive author with no collaborators. 

Year Title 
1982 A familial model of data for a multilevel schema framework. 
1984 A Multilevel Design Arct. for decision support systems 
1984 Nested set languages for functional databases. 
1985 Functions in Information Systems. 
1985 Design criteria for functional data bases. 
1986 Functional data model design. 
1986 Redundancy in functional databases. 
1991 Complexity of database languages. 
1991 A visual data model. 
1993 Knowledge Management by Example. 
1996 Queries = Examples + Counterexamples. 
1998 Differential Relational Calculus for Integrity Maintenance. 
1998 Storage and Retrieval of Database Constraints. 
2001 Transaction Repair for Integrity Enforcement. 



 

4. STATISTICS ABOUT PAPERS 
In 2003 alone, there are more than 3,000 db papers 
published (Figure 8), and at the end of 2004, there will be 
roughly 10% more db papers published. This is largely due 
to the increased number of authors. Since the average 
number of papers per author is fixed to 0.3 per year (Figure 
3), the number of db papers is approximately in sync with 
the number of db authors, especially active ones (Figure 2).  

Figure 8. Number of papers per year. Inset: cumulative number of papers 
published up to the year indicated. 

The average number of authors per paper in the db 
community tends to increase each year, yielding almost 2.8 
co-authors per paper as of 2003 (Figure 9). Although there 
are a significant number of papers with only a single 
author, there are more papers written by two authors 
(13557 papers). This can be seen in the distribution of this 
measure in Figure 10, which has a power law tail with an 
exponent -3.68.  The largest number of authors on a single 
paper is 27.  The figure clearly shows that there is an 
increasing tendency for collaboration among authors which 
also causes papers to have more co-authors.  
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Figure 9. Average number of authors per paper each year 

Next, we looked at how publication venues in DBLP-
DB are inter-related to each other using co-authorship 
information. By examining the pattern where the db 
scholars publish their papers, one can see, for instance, 
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Figure 10. Distribution of number of authors per paper (2003). 

which publications venues have a similar theme or taste. 
Figure 11 is a graph where (1) a node is a publication 
venue in DBLP-DB, the size of which is proportional to the 
number of papers in it, and (2) an edge between venues X 
and Y reflects the Jaccard distance, |||| BABA ∪∩ , 
where A and B are author sets of venues X and Y. The 
higher the Jaccard distance is (i.e., more authors are 
common between venues), the thicker the edge becomes.  
Table 3 lists top-10 pairs of database publication outlets.  

 
Figure 11: Venue relations (only venues with at least 100 papers and 
edges with at least 0.1 Jaccard distance are shown. The size of a node is 
proportional to the number of papers in the venue, while the thickness of 
edge is proportional to the overlap of authors between venues). 

Table 3:  Top-10 pairs of venues with the highest Jaccard distances 

Similar venue pair Distance 
SIGMOD - VLDB 0.2229 
ICDT - PODS 0.1971 
ICDE - VLDB 0.1948 
ICDE - SIGMOD 0.1817 
SIGMOD - IEEE Data Eng. Bulletin 0.1736 
VLDB - IEEE Data Eng. Bulletin 0.1559 
PODS - TODS 0.1557 
SIGMOD Rec. - IEEE Data Eng. Bulletin 0.1502 
ICDE - TKDE 0.1498 
TODS - IEEE Data Eng. Bulletin 0.1441 
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Table 4: The top-10 db authors with the highest number of papers, number of co-authors, and clustering coefficients (Clustering coeff. I with  60 as the 
threshold number of co-authors and clustering coeff. II with 60 as the threshold number of papers). For the number of papers and co-authors columns, values 
in the parenthesis are for the whole DBLP data set.  

Number of papers Number of co-authors Clustering coeff. (I) Clustering coeff. (II) 
151 (293) H. Garcia-Molina 163 (192) M. Stonebraker 0.1627 J. F. Roddick (60) 0.2019 A. Segev (68) 
147 (201) J. Han 152 (181) M.J. Carey 0.1534 M. L. Brodie (65) 0.1498 D. B. Lomet (102) 
146 (207) M. Stonebraker 150 (206) D. Maier 0.1441 R.  Rastogi (60) 0.1441 R. Rastogi (74) 
142 (326) P.S. Yu 139 (200) H. Garcia-Molina 0.1384 T. Milo (60) 0.1275 Y. Manolopoulos (62) 
128 (293) E. Bertino 134 (165) D.J. DeWitt 0.1378 B. G. Lindsay (85) 0.1240 J. Widom (90) 
115 (150) R. Agrawal 125 (155) J. Han 0.1336 D. Florescu (63) 0.1206 J. D. Ullman (82) 
111 (163) E. Rundensteiner 124 (222) E. Bertino 0.1321 S. Sudarshan (68) 0.1173 P. A. Bernstein (72) 
109 (192) D. Agrawal 120 (178) C. Faloutsos 0.1279 J. Hellerstein (73) 0.1159 M. Lenzerini (64) 
109 (153) M.J. Carey 119 (180) G. Wiederhold 0.1271 H. Pirahesh (84) 0.1117 C.S. Jensen (79) 
108 (147) D.J. DeWitt 119 (148) U. Dayal 0.1240 J.  Widom (73) 0.1112 J.F. Naughton (89) 

 

5. THE GIANT COMPONENT 
The giant component of a graph is the largest subset of 
interconnected nodes in the graph. The rest of the nodes 
usually form much smaller components, typically of size 
O(log n), where n is the total number of nodes [10]. In 
order to determine if such a component exists in our 
collaboration graph, we measured the relative size of the 
largest component which is simply the ratio of the nodes in 
the component to the all nodes in the graph. The growth of 
the giant component of our graph is shown in Figure 12 as 
a function of time.    
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Figure 12: Relative size of the giant component, determined for the 
cumulative data up to the year indicated. 

In the initial years, the size of the giant component of 
the graph is much smaller compared to the total number of 
nodes available in the graph, covering only about 5% of the 
whole graph although new authors keep joining to the db 
community. Yet, those authors help cluster other large 
components in the graph. In 1980, those clusters started to 
form larger components. After the size of the giant 
component exceeds 30%, it constantly increases up to the 
end of the period analyzed.  

Although tendency for more collaboration in the 
community helps the smaller components to be connected 
to the giant component, the main increase stems from the 

new authors.  In recent years the db community grows 10% 
by the addition of new authors, who tend to collaborate 
with existing authors (e.g., graduate students collaborating 
with their advisor) to write a paper instead of making a 
contribution alone. (Figures 1 and 7: the number of new 
authors, the number of single authors).   

As of 2003, the size of the giant component is 18542, 
57% of the whole db community. This is a rather low 
figure since the db community is expected to be a tight one. 
In addition, the second largest component is much smaller; 
it includes only 51 authors, who work on very particular 
subjects and publish mostly in ‘Information Sciences’ 
journal. The collaboration graph has 424 “isolated” 
components with 5-9 authors and 2892 components with 2-
4 authors. 

6. CLUSTERING COEFFICIENTS 
Given a node v, the neighborhood of v, N(v), is a subgraph 
that consists of the nodes adjacent to the node v. 
Furthermore, let us denote the edges and nodes in N(v) by 
E(N(v)) and K(N(v)), respectively. Then, the clustering 
coefficient of v, )(vγ , is:  

|))(max(|
|))((|)(

vNE
vNEv =γ  

When the neighborhood is fully-connected (i.e., clique), 
it has 

2
)1|))(((||))((| |))(max(| −

=
vNKvNKvNE

 edges. Therefore, 

the clustering coefficient measures how many edges 
actually occur compared to the fully-connected case [14]. 
The clustering coefficient of a graph G, )(Gγ , is the 
average clustering coefficients of all nodes in G.   

The clustering coefficient can be also viewed as 
“transitivity” which describes the interactions among trios 
of nodes in a network [10] – the degree to which a 
scholar’s collaborators have collaborated with each other. 
In co-authorship networks, this measure implies how much 
authors are willing to collaborate with each other. The 
clustering coefficient of the giant component in the db co-



 

authors graph is shown in Figure 13 as a function of year 
(shown from 1972 when the network started to form a 
relatively giant component). 
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Figure 13: Clustering coefficient of the giant component, determined for 
the cumulative data up to the year indicated.  

Over the years, the clustering coefficients tend to 
increase steadily, reaching 0.63 in 2003. This rather high 
value of the clustering coefficient is expected since DBLP-
DB is after all a tight community of people working on 
databases only. Moreover, the increasing clustering 
coefficient is in sync with the tendency for more 
collaboration in recent years. The last two columns of 
Table 4 lists the top-10 authors with the highest clustering 
coefficients for different cases; the first ranking only 
considers authors with at least 60 collaborators while the 
second one lists authors with more than 60 papers 
(numbers in parenthesis).   

7. GEODESIC 
In a co-authorship network, two authors could know each 
other through their collaborators. In other words, there 
could be several interaction paths between two of them not 
directly but through a number of the other authors in the 
network. The path(s) with the minimum number of edges 
between any given pair of authors in the network is called 
shortest path or geodesic of the pair. Then the average 
distance in a network is the average of all pair-wise 
geodesics of authors in the network. Social networks often 
have small average distances compared to the number of 
nodes in the networks, which is first described by Milgram 
[7] and now referred to as “small-world effect”. Figure 14 
shows the evolution of the averages distance in the db 
community over the given period. 

After the initial fluctuations, the average distance 
reaches to its maximum value, 8, in 1983. This seems 
natural since in the beginning of the time period analyzed, 
the growth of the community is rapid (i.e. each year, an 
increase between 40% - 80 % from the previous year). New 
authors are probably responsible for making the 
community expansion since the collaboration during that 

period was not very active. After 1983, however, it starts to 
decrease and eventually stabilizes around 6 for the last 15 
years. Interestingly Milgram also found an average distance 
of six hops for his social network experiment. The 
relatively low value, 6, is probably a good sign since 
scientific discoveries can be disseminated rather fast [10]. 

The diameter of a graph, the maximum of the pair-wise 
distances in the giant component, of the db community is 
20 as of 2003: “A.Baczko - F.Seredynski - P.Bouvry - J.Blazewicz -
P.Dell'Olmo - H.Kellerer - A.Caprara - D.Maio - P.Tiberio - 
S.J.Finkelstein - I.S.Mumick - O.Shmueli - F.Gavril - J.Urrutia - V.Estivill-
Castro - L.Brankovic - M.Miller - P.D.Manuel - J.AlGhamdi - M.Sarfraz - 
K.Salah”. 
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Figure 14: Average distance of the network, computed on the cumulative 
data up to the year indicated. 

8. CENTRALITY 
One of the interesting aspects of co-authorship network is 
to identify the most “central” scholars in the network. 
Authors who are the most prominent in the community are 
often (certainly not always) located in the strategic 
locations of the co-authorship network, which may allow 
them: (1) to communicate directly with many other authors, 
(2) to be close to many other authors, or (3) to be as 
intermediary in the interactions of many other pair of 
authors.  There are several methods which aim to quantify 
authors’ locations in [12]. For our work, we used the 
closeness and betweenness measures to quantify the 
prominent db scholars.  
Table 5: Authors with the highest betweenness and closeness scores 

Betweenness Closeness 
0.054620 G. Wiederhold 0.268216 U. Dayal 
0.048295 U. Dayal 0.262397 G. Wiederhold 
0.045001 J. Han 0.256737 R. T. Snodgrass 
0.038067 Y. Kambayashi 0.256555 D. Maier 
0.030376 E. Bertino 0.256332 K. A. Ross 
0.029406 H. Lu 0.256261 H. Garcia-Molina 
0.027622 H.-J. Schek 0.256247 S. Ceri 
0.026841 M. Jarke 0.256003 H.-J. Schek 
0.026526 R. Agrawal 0.254401 M. J. Carey 
0.026504 S. Ceri 0.253945 M. Stonebraker 



 

8.1 Closeness Centrality 
The closeness can be defined as how close an author is on 
average to all other authors. Authors with low closeness 
values could be viewed as those who can access new 
information quicker than others and similarly, information 
originating from those authors can be disseminated to 
others quicker [10]. Formally, the closeness of a node v in a 
connected graph G is defined as follows:  

∑
∈

−
=

Gwv
wvd

nvC

,
),(

1)(  

where d(v,w) is the pair-wise geodesic and n is the number 
of all nodes reachable from v in G. That means that, it is 1 
over the average of the shortest paths from v to all other 
nodes in G.  

The second column of Table 5 lists the top-10 
individuals with the highest closeness scores. Furthermore, 
all those 10 scholars are closely connected to each other 
through collaborations (Figure 15), which could be viewed 
as a “core” component of the db community. 

 
Figure 15: Connectivity of top10 authors with the highest closeness  

8.2 Betweenness Centrality 
Sometimes the interactions between any two non-directly 
connected authors (i.e., who never collaborated before) 
might depend on the authors who connect them through 
their shortest path(s). These authors potentially play an 
important role in the network by controlling the flow of 
interactions. Hence the authors who lie between most of the 
shortest paths of the pairs of authors could be viewed as the 
central people in the community. This notion, known as the 
betweenness of a node v, B(v), measures the number of 
geodesics between pairs of nodes passing through v, and 
formally defined as follows [5]:  

∑ ∈
=

Gxwv xwd
vxwdvB

,, ),(
);,()(  

where d(w,x) is a geodesic between w and x, and d(w,x;v) is 
a geodesic between w and x passing through v. The 
equation can be also interpreted as the sum of all 

probabilities a shortest path between each pair of nodes w 
and x passes through node v. The first column of Table 5 
shows the top-10 authors with the highest betweenness 
scores.  

8.3 Weighted Measures 
So far, we have not differentiated whether or not two 
authors have single or multiple collaborations – as long as 
there is a single co-authored paper, two authors are linked 
in the collaboration graph. People have recognized this and 
tried to incorporate weight such that the more collaboration 
two authors have, the stronger link exists between them [1, 
10]. Newman in [10] defines such a collaboration network 
as follows: 

1
 

)()( −
∂∂

= ∑∑∑
≠≠ k

k
j

k
i

ijkij
ij

n
w  

In this model, wij represent the collaboration weight 
between two authors i and j. ki∂ is 1 if author i is a co-
author of paper k and nk is the total number of co-authors of 
paper k. That is, if authors i and j co-authored a paper k, 
each one should divide his time equally between the other 
n-1 co-authors. Then, the sum of all collaboration weights 
wij between two authors defines the total strength of that 
tie.  

 
Table 6: Closeness and betweenness for the weighted collaboration graph. 
Weighted closeness     

score name 
# of 
papers 

# of 
co-authors 

0.19262862 H. V. Jagadish 106 102 
0.19192969 Divesh Srivastava 85 91 
0.19161295 Umeshwar Dayal 103 119 
0.19156657 Raghu Ramakrishnan 90 76 
0.19137470 Rakesh Agrawal 115 94 
0.19029398 Surajit Chaudhuri 83 67 
0.19005407 Jiawei Han 147 125 
0.19004566 L.V. S. Lakshmanan 66 58 
0.18976747 Hector Garcia-Molina 151 139 
0.18934639 Qiming Chen 35 17 
Weighted betweenness     

score name 
# of 
papers 

# of 
co-authors 

0.48422084 Umeshwar Dayal 103 119 
0.46723451 Jiawei Han 147 125 
0.33170557 H. V. Jagadish 106 102 
0.28326387 Yahiko Kambayashi 105 99 
0.28119593 Elisa Bertino 128 124 
0.26476805 Hongjun Lu 97 99 
0.26315179 Hector Garcia-Molina 151 139 
0.25839473 Raghu Ramakrishnan 90 76 
0.23657271 Surajit Chaudhuri 83 67 
0.22207486 Rakesh Agrawal 115 94 

 
We regenerated our network according to this model 

and considered the distance value between two authors as 
the inverse of their collaboration weight. The new weighted 



 

rankings of closeness and betweenness measures can be 
seen in Table 6 for this network. Interestingly, authors who 
tend to collaborate often with a small number of people 
only are ranked high (e.g., scholars in research labs or a 
small set of collaborators). 

8.4 Caveats 
Although the bibliometric analysis described above is 
meaningful in many cases, it is worthwhile to point out that 
these are not without problems (Dickson even argues 
“measuring scientific productivity by tracking the 
publication record of researchers is widely acknowledged 
to be hazardous and imperfect” [4]). One such problem 
visibly occurs in our study as well.  

Note that since the raw data set, DBLP-DB, contains 
only papers in the pre-selected database-related publication 
venues, all measures tend to favor authors whose expertise 
is focused on the database field alone (penalizing scholars 
whose expertise is diverse and inter-disciplinary). In 
addition, the measures such as closeness or betweenness 
cannot identify scholars who made a critical contribution to 
the community with only a small number of publications or 
collaborators. 

For instance, consider the following four distinguished 
database scholars: (1) E. F. Codd: the inventor of the 
relational data model, (2) Jim Gray: Turing award winner, 
(3) Peter P. Chen: the inventor of the ER model, and (4) 
Jeffrey D. Ullman: a renowned computer scientist at 
Stanford University. As shown in Table 7, Chen and Codd 
are ranked very low (e.g., 347-th and 3638-th in their 
betweenness ranks) in the betweenness and closeness ranks 
due to their small number of publications. On the other 
hand, although both Ullman and Gray have a substantial 
number of publications (233 for Ullman and 121 for Gray), 
since their contributions in general are very diverse, 
ranging from algorithms and automata to databases and 
programming languages, and to even physics, only about 
1/3 of them are included in DBLP-DB. 

Table 7: Statistics of four authors for DBLP-DB. Figures in the 
parenthesis are for the entire DBLP data set. 

 
# of  

papers 
# of  

co-authors 
Betwn. 

rank 
Close. 
rank 

Ullman 82(233) 87(131) 67 17 
Chen 33(43) 24(27) 347 837 
Gray 43(121) 97(179) 83 29 
Codd 23(47) 5(15) 3638 7829 

 

9. CONCLUSIONS 
In this paper we analyzed the collaboration network of 
scientists who publish in the database area. We presented a 
large number of statistics including how number of papers 
per author, authors per paper and number of collaborators 
change over the time period analyzed. We found that 

distributions of these statistics follow a scale-free power 
law distribution. We also looked at the evolution of other 
properties including average distance, clustering co-
efficient and size of the giant component. The results imply 
that the db community seems to be a “small-world” by 
having a very small average distance between authors and 
being highly-clustered. These results may be helpful for 
further efforts on the db community such as modeling the 
network growth that may allow us to predict the 
approximate network behavior at any given time. 
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