The Data Linkage Project: A Preliminary Report

The Pennsylvania State University

Dongwon Lee
dongwon@psu.edu

Outline
- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Penn State University

- Founded in 1855
- 23 campuses throughout PA state
- Main campus at State College, PA
- 84,000 students, 20,800 faculty
- $1.2 billion endowment
- "Nittany Lion"
- Penn State ≠ U. Penn

- Two CompSci-related divisions:
 - Dept. of Computer Science & Engineering (CSE)
 - College of Info. Sciences & Technology (IST)

Penn State University

- State College, PA
 - Out of nowhere, but close to everywhere
 - West: 2.5 hours to Pittsburgh
 - East: 4 hours to New York
 - South: 3 hours to Washington DC
 - North: 3 hours to Buffalo

Penn State University

- 5 DL/DB Faculty
- CSE:
 - Wang-Chien Lee
- IST:
 - C. Lee Giles
 - Dongwon Lee
 - Prasenjit Mitra
 - James Wang

- Active Collaboration
Penn State University

- In 2007, plan to hire 1-2 faculty on
 - Security
 - Risk Analysis
 - Data Mining

- Encourage to apply
 - http://ist.psu.edu/ist/facultyrecruiting/

This Talk

- Mainly based on:
 - “Group Linkage”, ICDE 2007
 - “Improving Grouped-Entity Resolution using Quasi-Cliques”, ICDM 2006
 - “Googled Name Linkage”, Penn State TR, 2006
 - “Search Engine Driven Author Name Disambiguation”, JCDL 2006

- Slides for this talk are available at:
 - http://pike.psu.edu => talks

Credits

- Students @ Penn State
 - Ergin Elmaciloglu
 - Hung-sik Kim
 - Byung-Won On
 - Su Yan

- Collaborators
 - Min-Yen Kan (NUS, Singapore)
 - Jaewoo Kang (Korea U., Korea)
 - Nick Koudas (U. Toronto, Canada)
 - Jian Pei (Simon Fraser U., Canada)
 - Divesh Srivastava (AT&T Labs – Research, USA)
 - Yi Zhang (UC. Santa Cruz, USA)

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Eg. Records

- Customer Addresses
 - Dongwon Lee, 110 E. Foster Ave. #410, State College, PA, 16802
 - LEE Dong, 110 East Foster Avenue Apartment 410, University Park, PA 16802-2343

- Citations
 - [SM83] G. Salton et al. 1983

Eg. Authors

- Jeffrey D. Ullman
 - @ Stanford Univ.
Eg. People Names

- Most common activities of Internet users
 - ~30% of search engine queries include person names (R. Guha et al., WWW 2004)
- Highly ambiguous
 - only 90,000 different names for 100 million people (U.S. Census Bureau)
 - Valid changes:
 - Customs: Lee, Dongwon vs. Dongwon Lee vs. LEE Dongwon
 - Marriage: Carol Dusseau vs. Carol Arpaci-Dusseau
 - Misc.: Sean Engelson vs. Shlomo Argamon

Eg. Products

- Products
 - Honda Fix vs. Honda Jazz
 - T-Fal vs. Tefal
 - Apple iPod Nano 4GB vs. 4GB iPod nano 4GB

Eg. Images

The Data Linkage Problem

- Many entities are without IDs
- When entities (e.g., people, products, companies, drugs) have variants → link them out

Data Linkage Problem: The process of detecting and correcting variant named entities that represent the same real-world object

Terminology

- Entity: real-world object (e.g., tuples, person names, product web pages, images, etc)
- We view that Entity has two main information
 - name: textual description of the entity
 - contents: metadata or contents describing the entity
- Eg.
 - John Doe
 - Penn State Univ.
 - www.ics.psu.edu
 - State College, PA
 - 814.865.3206
 - Data mining
 - T. Cruise
 - Collateral (2004)
 - The Last Samurai (2003)
 - Minority Report (1992)
 - Vanilla Sky (2001)
 - iPod Nano
 - Black
 - 4GB Storage capacity
 - 14 hrs of music playback
 - 3.4 x 0.9 x 5.4 inches
 - $184.99

Landscape

- Abundant research in many disciplines
- A.K.A.
 - DB: approximate join, merge/purge, record linkage
 - DL: citation matching, author name disambiguation
 - AI: identity matching
 - NLP: word sense disambiguation
 - IR: web query results clustering
 - LIS: name authority control
Landscape

- In a nutshell, existing approaches often do:
 - For two entities, e_1 and e_2, capture their information in data structures, $D(e_1)$ and $D(e_2)$
 - Measure the distance or similarity between data structures: $\text{dist}(D(e_1), D(e_2)) = d$
 - Determine for matching:
 - If $d < \theta$, then e_1 and e_2 are matching entities
 - Work well for common applications

Join vs. Linkage

- Approximate Join
 - On short string or numeric data types
 - With index
 - Match only
 - Tuples
- Linkage
 - On long string data types
 - Very expensive
 - Without Index
 - Match, Merge, Match, ...
 - Iterative
 - Tuples, Objects, Images, Documents, ...

New Challenges

- Record vs. Set vs. Vector ...
- Millions of data to link
- Entities sometimes have
 - Too many (confusing) contents to use or
 - Too few contents to use
- Solutions for one scenario often do not work well for another

The Data Linkage Project

- We re-visit the linkage problem to be able to link:
 - Large-scale \leftrightarrow Parallel Linkage
 - Arbitrary data objects \leftrightarrow Group & Googled Linkage
 - Under various scenarios \leftrightarrow Adaptive Linkage

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Key Idea

- Often, entities have a wealth of information
 - Can do better than simple token co-occurrence
- When entities have a group of elements
 - Authors with a group of citations
 - Tax payers with a family names
 - Images with $m \times n$ grids
Popular Group Similarity

- **Jaccard**
 \[\text{sim}(g_1, g_2) = \frac{|g_1 \cap g_2|}{|g_1 \cup g_2|} \]

- **Bipartite Matching**
 - Cardinality
 - Weighted

- **Clustering**
 - Single vs. Complete vs. Average Link

Intuition for better similarity

- Two groups are similar if:
 - A large fraction of elements in the two groups form matching element pairs
 - There is high enough similarity between matching pairs of individual elements that constitute the two groups

Group similarity

- Two groups of elements:
 \[g_1 = \{r_{11}, r_{12}, \ldots, r_{1m_1}\}, \quad g_2 = \{r_{21}, r_{22}, \ldots, r_{2m_2}\} \]

- The group measure \(BM \) is the normalized weight of the maximum bipartite matching \(M \) in the bipartite graph \((N = g_1 \cup g_2, E = g_1 \times g_2) \)

\[
BM_{\text{sim}, \rho}(g_1, g_2) = \frac{\sum_{(r_{1i}, r_{2j}) \in M} (\text{sim}(r_{1i}, r_{2j}))}{m_1 + m_2 - |M|}
\]

such that \(\text{sim}(r_{1i}, r_{2j}) \geq \rho \)

- \(BM(g_1, g_2) \geq \theta \)

Challenges

- Each \(BM \) group measure uses the maximum weight bipartite matching
 - Bellman-Ford: \(O(V^2E) \)
 - Hungarian: \(O(V^3) \)

- Large number of groups to match
 - \(O(NM) \)

Solution: Greedy matching

- Bipartite matching computation is expensive because of the requirement
 - No node in the bipartite graph can have more than one edge incident on it

- Let’s relax this constraint:
 - For each element \(e_i \) in \(g_1 \), find an element \(e_j \) in \(g_2 \) with the highest element-level similarity \(\Rightarrow S_1 \)
 - For each element \(e_i \) in \(g_2 \), find an element \(e_j \) in \(g_1 \) with the highest element-level similarity \(\Rightarrow S_2 \)

Upper/Lower Bounds

\[
BM_{\text{sim}, \rho}(g_1, g_2) = \frac{\sum_{(r_{1i}, r_{2j}) \in M} (\text{sim}(r_{1i}, r_{2j}))}{m_1 + m_2 - |M|}
\]

\[
UB_{\text{sim}, \rho}(g_1, g_2) = \frac{\sum_{(r_{1i}, r_{2j}) \in S_1 \cup S_2} (\text{sim}(r_{1i}, r_{2j}))}{m_1 + m_2 - |S_1 \cap S_2|}
\]

\[
LB_{\text{sim}, \rho}(g_1, g_2) = \frac{\sum_{(r_{1i}, r_{2j}) \in S_1 \cap S_2} (\text{sim}(r_{1i}, r_{2j}))}{m_1 + m_2 - |S_1 \cap S_2|}
\]
Theorem & Algorithm

\[BM_{\text{sim},\rho}(g_1, g_2) \leq UB_{\text{sim},\rho}(g_1, g_2) \]

- IF \(UB(g_1, g_2) < \theta \rightarrow BM(g_1, g_2) < \theta \rightarrow g_1 \neq g_2 \)

\[LB_{\text{sim},\rho}(g_1, g_2) \leq BM_{\text{sim},\rho}(g_1, g_2) \]

- ELSE IF \(LB(g_1, g_2) \geq \theta \rightarrow BM(g_1, g_2) \geq \theta \rightarrow g_1 \equiv g_2 \)

- ELSE, compute \(BM(g_1, g_2) \)
 - This step is expensive

 \(\text{Goal: } BM(g, g_i) \geq \theta \)

ACM Dataset

Left: 300 groups
Right: 700,000 groups

Summary of Group Linkage

- When entities have a group of elements in them, group linkage is useful and efficient
- But still somewhat slow
- Directions
 - More efficient implementation
 - Hierarchical Group Linkage: OLAP
 - Group \(\Rightarrow \) Tree, Graph
 - Application to Image Retrieval

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Key Idea

- An array of parameters play an important role in existing linkage solutions
- Eg:
 - Attributes to use for blocking
 - Sliding window size
 - Choice of similarity functions: Edit, Jaccard, TF/IDF
 - Minimum similarity threshold, \(\theta \)
- A linkage solution often picks certain values for these parameters (by human experts) and never change afterward \(\Leftrightarrow \) Why not?
Case Study: SNM

- Sorted Neighborhood Method (SNM)
 - Merge/Purge problem
 - A fixed size window slides from the beginning to the end
 - Within each window, all entities are compared pair-wise
- Adaptive-SNM
 - In watching videos, if subsequent frames are similar \Rightarrow fast-forward
 - Dissimilar \Rightarrow fast-backward
 - Adaptively adjust the sliding window size to maximize objective functions

Example

- Entity set $E = \{e_1, \ldots, e_6\}$
 - e_1 = "iPod"
 - e_2 = "iPod nano"
 - e_3 = "iPod mp3 player"
 - e_4 = "MS Zune"
 - e_5 = "Apple iPod 512MB"
 - e_6 = "MS Zune 30GB Player"

Address Dataset (dbgen)

Citation Dataset (CORA)

Summary of Adaptive Linkage

- Linkage solutions need to be
 - Adaptive
 - Flexible
 - Modifiable
- Directions
 - Re-visiting existing linkage solutions
 - Adaptively set their parameters
 - Machine learning and Data Mining techniques

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion
Key Idea

- The linkage problem has two building blocks
 - Match: $e_1 \sim e_2$?
 - Merge: $e_1 + e_2 = e_3$
- More complicated design from Sequential to Parallel
- In parallel processing, when data and tasks are partitioned and later merged
 - One can avoid substantial computation by exploiting the interplay btw. Match and Merge

Match(a_i, b_j) in Nested-Loop

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_{j1}</td>
</tr>
<tr>
<td>a_2</td>
<td>b_{j2}</td>
</tr>
<tr>
<td>a_3</td>
<td>b_{j3}</td>
</tr>
</tbody>
</table>

- If $a_i \leftrightarrow b_j$, do next match(a_i, b_{j+1})
- If $a_i \sim b_j$:
 - Remove a_i from A
 - No need for match(a_i, b_k) s.t. $j<k<|B|$
 - No need for match(a_l, b_j) s.t. $i<l<|A|$
- If a_i contains b_j:
 - Remove b_j from B
 - Impossible: b_k contains a_i & $b_k \sim a_i$
 - Cannot skip match(a_i, b_k)
- If a_i is contained by b_j:

Summary of Parallel Linkage

- Three sequential linkage scenarios
 - Clean vs. Clean
 - Clean vs. Dirty
 - Dirty vs. Dirty
- Each sequential linkage generates three output sets
- Parallel linkage can merge output sets using only six merge
- N-processor parallel linkage

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
- Googled Linkage
- Conclusion

Hypothesis

- Use the Web as a collective knowledge of people
- Hypothesis:

 If an entity e_1 is a duplicate of another entity e_2, and if e_1 frequently appears together with information l on the Web, then e_2 may appear frequently with l on the Web, too.

Key Idea

- When entities have a wealth of information, we can exploit them by capturing them as either Groups or Graphs
- But when entities do not have a wealth of information or have only noisy information, then what to do?
- Ask people what they think
Eg. ACM DL Case

- Search results from Google:
 - "Jeffrey D. Ullman” 384,000 pages 45%
 - "J. Ullman” 124,000 pages 33%
 - "Shimon Ullman” 27,300 pages 0%
 - "J. D. Ullman” AND "Aho” AND/OR "database" AND/OR "vldb”…

Step 1. Select representative data

- What to select
 - A single token “aho”
 - A key phrase “stanford professor”
 - A sentence or more?
- How to select
 - tf, tf*idf, latent topic models, …
- How many to select
 - 1, 2, … n
- Where to select from?
 - Contents of canonical entity, variant, both

Step 2. Acquire the collective knowledge

- How to form the query?
 - Single information “I” (the most important data piece)
 - “J. D. Ullman” AND “Aho”
 - Multiple information “I1”, “I2”, “I3”, … (the most k important data pieces)
 - “J. D. Ullman” AND “Aho” AND/OR “database” AND/OR “vldb”…
 - Formal evaluation of the effectiveness of such variations
 - Different heuristics based on
 - Availability, discriminative power of the data content
 - Popularity of the name, variants, other candidates

Step 3. Interpret the collective knowledge

- Page Count
 - Jeffrey D. Ullman J. Ullman Shimon Ullman
 - portal.acm.org
 - infolab.stanford.edu
 - en.wikipedia.org
 - theory.lcs.mit.edu
 - = 4/16
 - = 1/19

- URLs
 - Jeffrey D. Ullman J. Ullman Shimon Ullman
 - =1/(174,000 - 41,000)
 - =1/(174,000 - 66)

- Web Page Contents

Overview

Step 3. Interpret the collective knowledge

- Web Page Contents
 - Use top-k returned Web pages for each entity
 - Two alternatives for sim(ei, ej):
 - Group distance between two sets of top-k web pages
 - Represent each set by a single Virtual Document
 - Formal evaluation of the effectiveness of such variations
 - Heuristics for creating Virtual documents:
Web Page Contents
- \(\text{sim}(e_i, e_j) = \text{doc_sim}(v_{\text{doc}}(e_i), v_{\text{doc}}(e_j)) \)
- Document Similarity metrics:
 - \(\text{sim}_{\text{secure}}(D_i, D_j) = \frac{\text{intersection}(D_i \cap D_j)}{\text{union}(D_i \cup D_j)} \)
 - \(\text{sim}_{\text{coding}}(D_i, D_j) = \frac{\sum_{k=1}^{n} \text{coding}(D_i)_k \cdot \text{coding}(D_j)_k}{\sum_{k=1}^{n} \text{coding}(D_i)_k \cdot \text{coding}(D_j)_k} \)
 - \(\text{sim}_{\text{long-model}}(D_i, D_j) = \text{sim}(\theta_i, \theta_j) - \sum_k p(\theta_i | \theta_j) \log \frac{p(\theta_i | \theta_j)}{p(\theta_i | \theta_j)} \)

Results with URL and Host
- ACM data set:
 - 43 authors
 - 14.2 citations/author
 - 21 candidates/block
 - 3.1 citations/candidate
 - 1.8 name variants/block
 - 6.7 citations/variant

Results with Web Pages
- ACM data set:
 - 43 authors
 - 14.2 citations/author
 - 21 candidates/block
 - 3.1 citations/candidate
 - 1.8 name variants/block
 - 6.7 citations/variant

Results with Web Pages (cont)
- IMDB data set:
 - 50 actors
 - 24 titles/entity
 - 20 candidates/block
 - 24 titles/candidate
 - 1 name variant/block
 - 23.5 titles/variant

Scalability
- Not scalable:
 - A large number of Web accesses
 - Network traffic, load of search engine and web sites

Solutions:
- Local snapshot of the Web
 - Stanford WebBase Project
 - ~100 million web pages from >50,000 sites including many .edu domains
 - Downloaded the full of the data & filtered
 - Local snapshot containing 3.5 million relevant pages

Summary of Googled Linkage
- When entities lack evidences for linkage
 - Googled linkage can be useful
 - But terribly slow
- Directions
 - Balance btw. Googling vs. Local Cache
 - Applications
 - Medical literature mining: acronym-fullname
Conclusion

- Linkage problems are common
- Four novel directions
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- We are only in a preliminary stage
- Many interesting yet practical problems