The Data Linkage Project: A Preliminary Report

The Pennsylvania State University

Dongwon Lee
dongwon@psu.edu

Outline
- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Penn State University

- Founded in 1855
- 23 campuses throughout PA state
- Main campus at State College, PA
- 84,000 students, 20,800 faculty
- $1.2 billion endowment
- "Nittany Lion"
- Penn State ≠ U. Penn

- Two CompSci-related divisions:
 - Dept. of Computer Science & Engineering (CSE)
 - College of Info. Sciences & Technology (IST)

Penn State University

- 5 DL/DB Faculty
- CSE:
 - Wang-Chien Lee
- IST:
 - C. Lee Giles
 - Dongwon Lee
 - Prasenjit Mitra
 - James Wang

- Active Collaboration

Penn State University

- State College, PA
 - Out of nowhere, but close to everywhere
- West: 2.5 hours to Pittsburgh
- East: 4 hours to New York
- South: 3 hours to Washington DC
- North: 3 hours to Buffalo
Penn State University

- In 2007, plan to hire 1-2 faculty on
 - Security
 - Risk Analysis
 - Data Mining

- Encourage to apply
 - http://ist.psu.edu/ist/facultyrecruiting/

This Talk

- Mainly based on:
 - “Group Linkage”, ICDE 2007
 - “Improving Grouped-Entity Resolution using Quasi-Cliques”, ICDM 2006
 - “Googled Name Linkage”, Penn State TR, 2006
 - “Search Engine Driven Author Name Disambiguation”, JCDL 2006

- Slides for this talk are available at:
 - http://pike.psu.edu => talks

Credits

- Students @ Penn State
 - Ergin Elmacioglu, Hung-sik Kim, Byung-Won On, and Su Yan

- Collaborators
 - Min-Yen Kan (NUS, Singapore)
 - Jaewoo Kang (Korea U., Korea)
 - Nick Koudas (U. Toronto, Canada)
 - Jian Pei (Simon Fraser U., Canada)
 - Divesh Srivastava (AT&T Labs – Research, USA)

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Eg. Records

- Customer Addresses
 - Dongwon Lee, 110 E. Foster Ave. #410, State College, PA, 16802
 - LEE Dong, 110 East Foster Avenue Apartment 410, University Park, PA 16802-2343

- Citations
 - [SM83] G. Salton et al. 1983

Eg. Authors

- Jeffrey D. Ullman
 @ Stanford Univ.
Eg. People Names
- Most common activities of Internet users
 - ~ 30% of search engine queries include person names (R. Guha et al., WWW 2004)
- Highly ambiguous
 - only 90,000 different names for 100 million people (U.S. Census Bureau)
 - Valid changes:
 - Customs: Lee, Dongwon vs. Dongwon Lee vs. LEE Dongwon
 - Marriage: Carol Dusseau vs. Carol Arpaci-Dusseau
 - Misc.: Sean Engelson vs. Shlomo Argamon

Eg. Products
- Products
 - Honda Fix vs. Honda Jazz
 - T-Fal vs. Tefal
 - Apple iPod Nano 4GB vs. 4GB iPod nano 4GB

Eg. Images

The Data Linkage Problem
- Many entities are without IDs
- When entities (e.g., people, products, companies, drugs) have variants \(\Rightarrow \) link them out

Data Linkage Problem: The process of detecting and correcting variant named entities that represent the same real-world object

Terminology
- Entity: real-world object (e.g., tuples, person names, product web pages, images, etc)
- We view that Entity has two main information
 - name: textual description of the entity
 - contents: metadata or contents describing the entity
- Eg:

Technical Landscape
- Abundant research in many disciplines
- Also known as:
 - DB: approximate join, merge/purge, record linkage
 - DL: citation matching, author name disambiguation
 - AI: identity matching
 - NLP: word sense disambiguation
 - IR: web query results clustering
 - LIS: name authority control
Technical Landscape

- In a nutshell, existing approaches often do:
 - For two entities, \(e1 \) and \(e2 \), capture their information in data structures, \(D(e1) \) and \(D(e2) \)
 - Measure the distance or similarity between data structures: \(\text{dist}(D(e1), D(e2)) = d \)
 - Determine for matching:
 - If \(d < \theta \), then \(e1 \) and \(e2 \) are matching entities
 - Work well for common applications

Join vs. Linkage

- **Approximate Join**
 - On short string or numeric data types
 - With Index
 - Match only
 - Tuples

- **Linkage**
 - On long string data types
 - Very expensive
 - Without Index
 - Match, Merge, Match, ...
 - Iterative
 - Tuples, Objects, Images, Documents, ...

New Challenges

- Record vs. Set vs. Vector …
- Millions of data to link
- Entities sometimes have
 - Too many (confusing) contents to use or
 - Too few contents to use
- Solutions for one scenario often do not work well for another

The Data Linkage Project

- We re-visit the linkage problem to be able to link:
 - Large-scale \(\Leftrightarrow \) Parallel Linkage
 - Arbitrary data objects \(\Leftrightarrow \) Group & Googled Linkage
 - Under various scenarios \(\Leftrightarrow \) Adaptive Linkage

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Key Idea

- Often, entities have a wealth of information
 - Can do better than simple token co-occurrence
- When entities have a **group** of elements
 - Authors with a group of citations
 - Tax payers with a family names
 - Images with \(m \times n \) grids
Popular Group Similarity

- Jaccard
 \[\text{sim}(g_1, g_2) = \frac{|g_1 \cap g_2|}{|g_1 \cup g_2|} \]

- Bipartite Matching
 - Cardinality
 - Weighted

- Clustering
 - Single vs. Complete vs. Average Link

Intuition for better similarity

- Two groups are similar if:
 - A large fraction of elements in the two groups form matching element pairs
 - There is high enough similarity between matching pairs of individual elements that constitute the two groups

Group similarity

- Two groups of elements:
 - \(g_1 = \{ r_{11}, r_{12}, \ldots, r_{1m_1} \} \), \(g_2 = \{ r_{21}, r_{22}, \ldots, r_{2m_2} \} \)
 - The group measure \(BM \) is the normalized weight of the maximum bipartite matching \(M \) in the bipartite graph \((N = g_1 \cup g_2, E = g_1 \times g_2) \)
 \[
 BM_{g_1, g_2} = \sum_{(r_{1i}, r_{2j}) \in M} (\text{sim}(r_{1i}, r_{2j})) \\
 \text{such that } \text{sim}(r_{1i}, r_{2j}) > \theta \\
 BM(g_1, g_2) \geq 0
 \]

Challenges

- Each \(BM \) group measure uses the maximum weight bipartite matching
 - Bellman-Ford: \(O(V^2E) \)
 - Hungarian: \(O(V^3) \)
- Large number of groups to match
 - \(O(NM) \)

Solution: Greedy matching

- Bipartite matching computation is expensive because of the requirement
 - No node in the bipartite graph can have more than one edge incident on it
- Let’s relax this constraint:
 - For each element \(e_i \) in \(g_1 \), find an element \(e_j \) in \(g_2 \) with the highest element-level similarity \(\sim S_1 \)
 - For each element \(e_i \) in \(g_2 \), find an element \(e_j \) in \(g_1 \) with the highest element-level similarity \(\sim S_2 \)

Upper/Lower Bounds

\[
BM_{g_1, g_2} = \sum_{(r_{1i}, r_{2j}) \in M} (\text{sim}(r_{1i}, r_{2j})) \\
UB_{g_1, g_2} = \sum_{(r_{1i}, r_{2j}) \in M} (\text{sim}(r_{1i}, r_{2j})) \\
LB_{g_1, g_2} = \sum_{(r_{1i}, r_{2j}) \in M} (\text{sim}(r_{1i}, r_{2j}))
\]
Theorem & Algorithm

\[BM_{\text{sim}, \rho}(g_1, g_2) \leq UB_{\text{sim}, \rho}(g_1, g_2) \]

- IF \(UB(g_1, g_2) < \theta \rightarrow BM(g_1, g_2) < \theta \rightarrow g_1 \neq g_2 \)

\[LB_{\text{sim}, \rho}(g_1, g_2) \leq BM_{\text{sim}, \rho}(g_1, g_2) \]

- ELSE IF \(LB(g_1, g_2) \geq \theta \rightarrow BM(g_1, g_2) \geq \theta \rightarrow g_1 = g_2 \)
- ELSE, compute BM\((g_1, g_2)\)
 - This step is expensive

Goal: \(BM(g, g_i) \geq \theta \)

ACM Dataset

Left: 300 groups
Right: 700,000 groups

Better precision/recall but 20 times slower!

Summary of Group Linkage

- When entities have a group of elements in them, group linkage is useful and efficient
- But still somewhat slow
- Directions
 - More efficient implementation
 - Hierarchical Group Linkage: OLAP
 - Group => Tree, Graph
 - Application to Image Retrieval

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Key Idea

- An array of parameters play an important role in existing linkage solutions
- Eg:
 - Attributes to use for blocking
 - Sliding window size
 - Choice of similarity functions: Edit, Jacard, TF/IDF
 - Minimum similarity threshold, \(\theta \)
- A linkage solution often picks certain values for these parameters (by human experts) and never change afterward \(\Leftrightarrow \) Why not?
Case Study: SNM

- Sorted Neighborhood Method (SNM)
 - Merge/Purge problem
 - A fixed size window, \(W \), slides from the beginning to the end
 - Within each window, all entities are compared pair-wise
- Adaptive-SNM
 - In watching videos, if subsequent frames are
 - Similar \(\rightarrow \) fast-forward
 - Dissimilar \(\rightarrow \) fast-backward
 - Adaptively adjust \(W \) to maximize objective functions – e.g., accuracy, speed

Example

- Entity set \(E = \{e_1, \ldots, e_6\} \)
 - \(e_1 = \) "iPod"
 - \(e_2 = \) "iPod nano"
 - \(e_3 = \) "iPod mp3 player"
 - \(e_4 = \) "MS Zune"
 - \(e_5 = \) "Apple iPod 512MB"
 - \(e_6 = \) "MS Zune 30GB Player"

Address Dataset (dbgen)

Citation Dataset (CORA)

Summary of Adaptive Linkage

- Linkage solutions need to be
 - Adaptive
 - Flexible
 - Modifiable
- Directions
 - Re-visiting existing linkage solutions
 - Adaptively set their parameters
 - Machine learning and Data Mining techniques

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
- Parallel Linkage
 - Googled Linkage
- Conclusion
Key Idea

- The linkage problem has two building blocks
 - Match: $e_1 \sim e_2$?
 - Merge: $e_1 + e_2 = e_3$
- Iterative
- More complicated design from Sequential to Parallel
- In parallel processing, when data and tasks are partitioned and later merged
 - One can avoid substantial computation by exploiting the interplay btw. Match and Merge

Match(a_i, b_j) in Nested-Loop

- If $a_i \sim b_j$, do next match(a_{i+1}, b_j)
- If $a_i \sim b_j$:
 - Remove a_i from A
 - No need for match(a_i, b_k) s.t. $j<k<|B|$
 - No need for match(a_l, b_j) s.t. $i<l<|A|$
- If a_i contains b_j:
 - Remove b_j from B
 - Impossible: b_k contains a_i & $b_k \sim a_j$
 - Cannot skip match(a_i, b_k)
- If a_i is contained by b_j: …

Summary of Parallel Linkage

- Three sequential linkage scenarios
 - Clean vs. Clean
 - Clean vs. Dirty
 - Dirty vs. Dirty
- Each sequential linkage generates three output sets
- Parallel linkage can merge output sets using only six merges, not nine merges
- N-processor parallel linkage

Outline

- Warm-Up
- Motivation & Problem Def.
- Data Linkage
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- Conclusion

Key Idea

- When entities have a wealth of information, we can exploit them by capturing them as either Groups or Graphs
- But when entities do not have a wealth of information or have only noisy information, then what to do?
 - Ask PEOPLE what they think!

Hypothesis

- Use the Web as a collective knowledge of people
 - Hypothesis:

 If an entity e_1 is a duplicate of another entity e_2, and if e_1 frequently appears together with information I on the Web, then e_2 may appear frequently with I on the Web, too.
Eg. ACM DL Case

- Search results from Google:
 - "Jeffrey D. Ullman" 384,000 pages 45%
 - "Jeffrey D. Ullman" + "aho" 174,000 pages
 - "J. Ullman" 124,000 pages 33%
 - "J. Ullman" + "aho" 41,000 pages
 - "Shimon Ullman" 27,300 pages
 - "Shimon Ullman" + "aho" 66 pages

Overview

Step 1. Select representative data

- What to select
 - A single token "aho"
 - A key phrase "stanford professor"
 - A sentence or more?
- How to select
 - tf, tf*idf, latent topic models, ...
- How many to select
 - 1, 2, ... n
- Where to select from?
 - Contents of canonical entity, variant, or both

Step 2. Acquire the collective knowledge

- How to form the query?
 - Single information "I" (the most important data piece)
 - "J. D. Ullman" AND "Aho"
 - Multiple information "I1", "I2", "I3", ... (the most k important data pieces)
 - Conjunction or Disjunction or Hybrid
 - "J. D. Ullman" AND "Aho" AND/OR "database" AND/OR "vldb"...
- Formal evaluation of the effectiveness of such variations
 - Different heuristics based on
 - Availability, discriminative power of the data content
 - Popularity of the name, variants, other candidates

Step 3. Interpret the collective knowledge

For entities ec, ei, and information tc

- Page Counts
 - Jeffrey D. Ullman: J. Ullman 4/16
 - Jeffrey D. Ullman: Shimon Ullman 1/19
- URLs
 - Jeffrey D. Ullman: J. Ullman
 - portal.acm.org
 - inforlab.stanford.edu
 - en.wikipedia.org
 - theory.lcs.mit.edu
 - Jeffrey D. Ullman: Shimon Ullman
 - portal.acm.org
- Web Page Contents

Web Page Contents

- Use top-k returned Web pages for each entity
- Two alternatives for sim(ec, ei):
 - Group distance between two sets of top-k web pages
 - Represent each set by a single Virtual Document
 - Apply document comparison metrics on Virtual Doc.
- Heuristics for creating Virtual documents:
Step 3. Interpret the collective knowledge

- **Web Page Contents**
 - \(\text{sim}(e_e, e_i) = \text{doc_sim}(vdoc(e_e), vdoc(e_i)) \)
- **Document Similarity metrics**:
 - \(\text{sim}_{\text{secure}}(D_e, D_i) = \frac{\text{internal}(D_e) \text{ internal}(D_i)}{\text{internal}(D_e) + \text{internal}(D_i) - \text{internal}(D_e \cap D_i)} \)
 - \(\text{sim}_{\text{cosine}}(D_e, D_i) = \frac{\sum \text{cos}(vdoc(e_e), vdoc(e_i))}{|D_e| |D_i|} \)
 - \(\text{sim}_{\text{long-model}}(D_e, D_i) = \text{sim}(\theta_e, \theta_i) = -KL(\theta_i \| \theta_e) - \sum_k p(k|\theta_i) \log \frac{p(k|\theta_i)}{p(k|\theta_e)} \)

Results with URL and Host

ACM data set:
- 43 authors
- 142 citations/author
- 21 candidates/block
- 3.1 citations/candidate
- 1.8 name variants/block
- 6.7 citations/variant

Results with Web Pages

ACM data set:
- 43 authors
- 142 citations/author
- 21 candidates/block
- 3.1 citations/candidate
- 1.8 name variants/block
- 6.7 citations/variant

Results with Web Pages (cont)

IMDB data set:
- 50 actors
- 24 titles/entity
- 20 candidates/block
- 24 titles/candidate
- 1 name variant/block
- 23.5 titles/variant

Scalability

- Not scalable:
 - A large number of Web accesses
 - Network traffic, load of search engine and web sites

- Solutions:
 - Local snapshot of the Web
 - Stanford WebBase Project
 - ~100 million web pages from >50,000 sites including many .edu domains
 - Downloaded the half of the data & filtered
 - Local snapshot containing 3.5 million relevant pages

Summary of Googled Linkage

- When entities lack evidences for linkage
 - Googled linkage can be useful
 - But terribly slow
- Directions:
 - Balance btw. Googling vs. Local Cache
 - Applications
 - Medical literature mining: acronym-fullname
Conclusion

- Linkage problems are common
- Four novel directions
 - Group Linkage
 - Adaptive Linkage
 - Parallel Linkage
 - Googled Linkage
- We are only in a preliminary stage
- Many interesting yet practical problems
 - Surged interest from DB, DM, WWW, NLP, and AI communities