Name Disambiguation in Digital Libraries

The Pennsylvania State University

Dongwon Lee
dongwon@psu.edu

Outline

- Warm-Up
- Motivation & Problem Def.
- Disambiguation by Graphs
- Disambiguation by Groups
- Disambiguation by Googling
- Conclusion

Penn State University

- Founded in 1855
- 23 campuses throughout PA state
- Main campus at State College, PA
- 84,000 students, 20,800 faculty
- $1.2 billion endowment
- "Nittany Lion"
- Penn State ≠ U. Penn

- Two CompSci-related divisions:
 - Dept. of Computer Science & Engineering (CSE)
 - College of Info. Sciences & Technology (IST)

Penn State University

- State College, PA
 - Out of nowhere, but close to everywhere
- West: 2.5 hours to Pittsburgh
- East: 4 hours to New York
- South: 3 hours to Washington DC
- North: 3 hours to Buffalo

Penn State University

- 5 DL/DB Faculty
 - CSE:
 - Wang-Chien Lee
 - IST:
 - C. Lee Giles
 - Dongwon Lee
 - Prasenjit Mitra
 - James Wang

- Active Collaboration
Penn State University

- In 2005, IST hired a faculty from NUS
 - Dr. Heng Xu
- In 2007, plan to hire 1-2 faculty on
 - Security
 - Risk Analysis
 - Data Mining
- Encourage to apply
 - http://ist.psu.edu/ist/facultyrecruiting/

QUAGGA Project

- Data Cleaning project @ Penn State
 - http://pike.psu.edu/quagga/
- Goals:
 - Scalable
 - Semantic and context-aware
 - DB-centric system-building

QUAGGA Project

- This talk is mainly based on:
 - "Group Linkage", ICDE 2007
 - "Improving Grouped-Entity Resolution using Quasi-Cliques", ICDM 2006
 - "Googled Name Linkage", Penn State TR, 2006
 - "Search Engine Driven Author Name Disambiguation", JCDL 2006
- Slides for this talk are available at:
 - http://pike.psu.edu => talk

Credits

- Students
 - Ergin Elmacioglu (Penn State, USA)
 - Yee Tan Fan (NUS, Singapore)
 - Byung-Won On (Penn State, USA)
- Collaborators
 - C. Lee Giles (Penn State, USA)
 - Min-Yen Kan (NUS, Singapore)
 - Jaewoo Kang (Korea U., Korea)
 - Nick Koudas (U. Toronto, Canada)
 - Prasenjit Mitra (Penn State, USA)
 - Jian Pei (Simon Fraser U., Canada)
 - Divesh Srivastava (AT&T Labs – Research, USA)
 - Yi Zhang (UC. Santa Cruz, USA)

Outline

- Warm-Up
- Motivation & Problem Def.
- Disambiguation by Graphs
- Disambiguation by Groups
- Disambiguation by Googling
- Conclusion

Eg. ACM DL Portal

Jeffrey D. Ullman @ Stanford Univ.
Most common activities of Internet users
- ~30% of search engine queries include person names (R. Guha et al., WWW 2004)

Highly ambiguous
- only 90,000 different names for 100 million people (U.S. Census Bureau)
- Valid changes:
 - Customs: Lee, Dongwon vs. Dongwon Lee vs. LEE Dongwon
 - Marriage: Carol Dusseau vs. Carol Arpaci-Dusseau
 - Misc.: Sean Engelson vs. Shlomo Argamon

Results:
- mixture of web pages or query results about different people with the same name
Eg. Product Names

- Automobile models
 - Honda Fix vs. Honda Jazz

- Companies
 - T-Fal vs. Tefal

- Electronic devices
 - Apple iPod Nano 4GB vs. 4GB iPod nano 4GB
 - Apple iPhone vs. Canadian iPhone

Eg. Drug Names

- Confusion due to look-alike or sound-alike drug names:
 - Primaxin (antibiotic inject.) – Primacor (hypertension inject.)
 - Amaryl – Amikin, Flomax – Volmax, Zantac – Xanax

- 44,000 – 98,000 fatalities each year
 - Institute of Medicine Report, 1999

- Automatic identification of similar drug names has an important implication

Name Disambiguation Problem

- When names of entities (eg, people, products, companies, drugs) are:
 - Mixed → sort them out
 - Split → link them out

Name Disambiguation Problem: The process of detecting and correcting ambiguous named entities that represent the same real-world object

Terminology

- Entity: real-world object (eg, person, product, drug, company, etc)

- We view that Entity has two main information:
 - name: textual description of the entity
 - contents: metadata or contents describing the entity

- Eg.

Landscape

- Abundant research on related problems

- Split names
 - DB: approximate join, merge/purge, record linkage
 - DL: citation matching
 - AI: identity uncertainty
 - LIS: name authority control

- Mixed names
 - DM: k-way clustering
 - DL: author name disambiguation
 - NLP: word sense disambiguation
 - IR: query results grouping

Landscape

- In a nutshell, existing approaches often do:
 - For two entities, e1 and e2, capture their information in data structures, \(D(e1) \) and \(D(e2) \)
 - Measure the distance or similarity between data structures: \(\text{dist}(D(e1), D(e2)) = d \)
 - Determine for matching:
 - If \(d < \text{threshold} \), then \(e1 \) and \(e2 \) are matching entities

- Work well for common applications

- Ours do name disambiguation better when
 - Entities have structures that we can exploit, or
 - Entities lack useful information
Outline

- Warm-Up
- Motivation & Problem Def.
- Disambiguation by Graphs
- Disambiguation by Groups
- Disambiguation by Googling
- Conclusion

Key Idea

- When entities have contents that can be captured as graphs, let’s exploit it
- In DL, entities often have
 - A set of co-authors to work with
 - A set of venues to submit to
 - A set of topics to work on
- If we capture these information as graphs, it may yield better results than using simple distance

Using Graphs

- Represent entity e_i as graph g_1 using common tokens
 - Author: co-author
 - Venue: common venues
 - Title: common keywords
- Superimpose the graph g_1 onto base graph B_1 to get a final graph representation G_1
 - Author: entire collaboration graph as B_1
 - Venue: entire venue similarity graph as B_1
 - Title: entire token co-occurrence graph B_1
- Measure the similarity of two entities e_1 and e_2 w.r.t. G_1 and G_2

Superimposition

- Our graph-based approach:
 - Overcome the limitation of existing distance metrics
 - Unearth the hidden relationships in contents
 - Use Quasi-Clique to measure strong relations

Quasi-Clique

- Graph G
 - $V(G)$: set of vertices
 - $E(G)$: set of edges
 - Γ-quasi-complete-graph ($0<\Gamma\leq1$)
 - Every vertex in G has at least Γ degrees
 - $V(S) \subseteq V(G)$
 - Γ-Quasi-Clique
 - Γ-Clique
 - Use Quasi-Clique (QC) to measure contextual distances
 - E.g., Function $\text{QC}(G(a), G(b), \Gamma=0.3, S=3)$
** Experimental Validation

<table>
<thead>
<tr>
<th>JC+QC</th>
<th>TC+QC</th>
<th>IC+QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaccard similarity</td>
<td>TF-IDF Cosine similarity</td>
<td>IntelliClean (venue hierarchy)</td>
</tr>
</tbody>
</table>

Outline

- Warm-Up
- Motivation & Problem Def.
- Disambiguation by Graphs
- **Disambiguation by Groups**
- Disambiguation by Googling
- Conclusion

Key Idea

- Graph is a rich data structure
 - Can capture a wealth of information
 - But expensive to manipulate
- Better data structure than Graphs \Leftrightarrow Groups
 - When entities have a **group** of elements
 - Authors with citations, images with $m \times n$ grids

Popular Group Similarity

- Jaccard

 $sim(g_1, g_2) = \frac{|g_1 \cap g_2|}{|g_1 \cup g_2|}$

- Bipartite Matching
 - Cardinality
 - Weighted

- Clustering
 - Single vs. Complete vs. Average Link

Intuition for better similarity

- Two groups are similar if:
 - There is high enough similarity between matching pairs of individual elements that constitute the two groups
 - A large fraction of elements in the two groups form matching element pairs
Group similarity

- Two groups of elements:
 - \(g_1 = \{r_{11}, r_{12}, \ldots, r_{1m_1}\} \)
 - \(g_2 = \{r_{21}, r_{22}, \ldots, r_{2m_2}\} \)
- The group measure \(BM \) is the normalized weight of the maximum bipartite matching \(M \) in the bipartite graph \((N = g_1 \cup g_2, E = g_1 \times g_2) \)

\[
BM_{\text{sim,}\rho}(g_1, g_2) = \frac{\sum_{r_{1i}, r_{2j}\in E} (\text{sim}(r_{1i}, r_{2j}))}{m_1 + m_2 - |M|}
\]

such that
\[
\text{sim}(r_{1i}, r_{2j}) \geq \rho
\]

Challenges

- Large number of groups to match
 - \(O(NM) \)
- \(BM \) uses maximum weight bipartite matching
 - Bellman-Ford: \(O(V^2E) \)
 - Hungarian: \(O(V^3) \)

Solution: Greedy matching

- Bipartite matching computation is expensive because of the requirement
 - No node in the bipartite graph can have more than one edge incident on it
- Let’s relax this constraint:
 - For each element \(e_i \) in \(g_1 \), find an element \(e_j \) in \(g_2 \) with the highest element-level similarity \(\preceq S_1 \)
 - For each element \(e_i \) in \(g_2 \), find an element \(e_j \) in \(g_1 \) with the highest element-level similarity \(\preceq S_2 \)

Upper/Lower Bounds

\[
BM_{\text{sim,}\rho}(g_1, g_2) = \frac{\sum_{r_{1i}, r_{2j}\in E} (\text{sim}(r_{1i}, r_{2j}))}{m_1 + m_2 - |M|}
\]

\[
UB_{\text{sim,}\rho}(g_1, g_2) = \frac{\sum_{(r_{1i}, r_{2j})\in (S_1 \cup S_2)} (\text{sim}(r_{1i}, r_{2j}))}{m_1 + m_2 - (|S_1| + |S_2|)}
\]

\[
LB_{\text{sim,}\rho}(g_1, g_2) = \frac{\sum_{(r_{1i}, r_{2j})\in (S_1 \cap S_2)} (\text{sim}(r_{1i}, r_{2j}))}{m_1 + m_2 - (|S_1| - |S_2|)}
\]

Theorem & Algorithm

\[
BM_{\text{sim,}\rho}(g_1, g_2) \leq UB_{\text{sim,}\rho}(g_1, g_2)
\]

- IF \(UB(g_1, g_2) < \theta \rightarrow BM(g_1, g_2) < \theta \rightarrow g_1 \neq g_2 \)

\[
LB_{\text{sim,}\rho}(g_1, g_2) \leq BM_{\text{sim,}\rho}(g_1, g_2)
\]

- ELSE IF \(LB(g_1, g_2) \geq \theta \rightarrow BM(g_1, g_2) \geq \theta \rightarrow g_1 = g_2 \)

- ELSE, compute \(BM(g_1, g_2) \)
 - This step is expensive
 - \(BM(g, g) \geq \theta \)

Experiment

Left: 300 groups
Right: 700,000 groups
Experiment

Left: 100 groups
Right: 700,000 groups

Outline

- Warm-Up
- Motivation & Problem Def.
- Disambiguation by Graphs
- Disambiguation by Groups
- Disambiguation by Googling
- Conclusion

Key Idea

- When entities have a wealth of information, we can exploit them by capturing them as either Graphs or Groups
- But when entities do not have a wealth of information or have only noisy information, then what to do?
- Ask people what they think

Hypothesis

- Use the Web as a collective knowledge of people
- Hypothesis:

 If an entity e1 is a duplicate of another entity e2, and if e1 frequently appears together with information I on the Web, then e2 may appear frequently with I on the Web, too.

Eg. ACM DL Case

- Search results from Google:
 + "Jeffrey D. Ullman” 384,000 pages 45%
 + "Jeffrey D. Ullman” + “aho” 174,000 pages 45%
 + "J. Ullman” 124,000 pages 33%
 + "J. Ullman” + “aho” 41,000 pages 33%
 + "Shimon Ullman” 27,300 pages 3%
 + "Shimon Ullman” + “aho” 66 pages 0%

Googled Name Linkage
Step 1. Select representative data
- What to select
 - A single token "aho"
 - A key phrase "stanford professor"
 - A sentence or more?
- How to select
 - tf, tf*idf, latent topic models, …
- How many to select
 - 1, 2, … n
- Where to select from?
 - Contents of canonical entity, variant, both

Step 2. Acquire the collective knowledge
- How to form the query?
 - Single information "I" (the most important data piece)
 - "J. D. Ullman" AND "Aho"
 - Multiple information "I_1", "I_2", "I_3", … (the most k important data pieces)
 - Conjunction or Disjunction or Hybrid
 - "J. D. Ullman" AND "Aho" AND "database" AND "vldb".
 - Formal evaluation of the effectiveness of such variations
 - Different heuristics based on
 - Availability, discriminative power of the data content
 - Popularity of the name, variants, other candidates

Step 3. Interpret the collective knowledge
For entities ec, ei and information tc
- Page Count
 - Jeffrey D. Ullman = 1/(174,000 - 41,000)
 - Shimon Ullman = 1/(174,000 - 66)
- URLs
 - Jeffrey D. Ullman = 3/16
 - portal.acm.org = 1/19
- Web Page Contents
 - Use top-k returned Web pages for each entity
 - Two alternatives for sim(ec, ei):
 - Group distance between two sets of top-k web pages
 - Represent each set by a single Virtual Document
 - Apply document comparison metrics on Virtual Doc.
 - Heuristics for creating Virtual documents:

Results with URL and Host
ACM data set:
- 43 authors
- 14.2 citations/author
- 21 candidates/block
- 3.1 citations/candidate
- 1.8 name variants/block
- 6.7 citations/variant
Results with Web Pages

ACM data set:
- 43 authors
- 14.2 citations/author
- 21 candidates/block
- 3.1 citations/candidate
- 1.8 name variants/block
- 6.7 citations/variant

Results with Web Pages (cont)

IMDB data set:
- 50 actors
- 24 titles/entity
- 20 candidates/block
- 24 titles/candidate
- 1 name variant/block
- 23.5 titles/variant

Scalability

- Not scalable:
 - A large number of Web accesses
 - Network traffic, load of search engine and web sites

- Solutions:
 - Local snapshot of the Web
 - Stanford WebBase Project
 - ~100 million web pages from >50,000 sites including many .edu domains
 - Downloaded the half of the data & filtered
 - Local snapshot containing 3.5 million relevant pages

Conclusion

- More research needed
 - Inputs from AI, NLP, DB, DL

Task #13: Web People Search Task

http://nlp.uned.es/weps/

http://pike.psu.edu/

Thank You!