On the Topological Landscape of Web Services Matchmaking

Hyunyoung Kil, Seog-Chan Oh, and Dongwon Lee
The Pennsylvania State University
USA

Motivation

- How useful are current web services?
 - Very little research
- Web services in WSDL form a network
 - Network analysis technique
- The topology of networks often help understand its behavior:
 - How to describe a large network quantitatively?
 - How were networks formed?
 - What are the consequences of a specific network organization?
WSDL

- Web Services Definition Language
- WSDL provides a way for service providers to describe the basic format of web service requests over different protocols or encodings
- WSDL is used to describe what a web service can do, where it resides, and how to invoke it
- Similar to IDL of CORBA
WSDL

- A **web service**, ws, consists of operations
- An **operation**, op, consists of input and output parameters: \(op(IN, OUT) \)
 - One-way
 - Request-response
 - Solicit-response
 - Notification
- A **parameter**, \(p \), has name and type
 - \(p(name, type) \)

Example

```xml
<message name='findRestaurant_Request'>
  <part name='zip' type='xs:string'>
  <part name='foodPref' type='xs:string'>
</message>

<message name='findRestaurant_Response'>
  <part name='zip' type='xs:string'>
  <part name='phone' type='xs:integer'>
</message>

<portType name='allRestaurant'>
  <operation name='findRestaurant'>
    <input message='findRestaurant_Request'/>
    <output message='findRestaurant_Response'/>
  </operation>
</portType>
```

- **op**: findRestaurant
- **IN**: \{zip, foodPref\}
- **OUT**: \{zip, phone\}
Matchmaking Framework: Parameter Matching

- For two parameters:
 - p_1(name$_1$, type$_1$) and p_2(name$_2$, type$_2$),
 - **Type-Match**: p_1 type-matches p_2 iff
 1. p_1.type == p_2.type or
 2. p_1.type is derived from p_2.type.
 - **Name-Match**: p_1 name-matches p_2 iff
 $\text{dist}(p_1$.name, p_2.name) \leq threshold
 - p_1 matches p_2, ($p_1 \sim p_2$), if p_1 and p_2 are type-match and name-match
 - Eg. p(“password”, xs:string) \sim q (“pwd”, xs:string)

Matchmaking Framework: Operation Invocation

- For two operations
 - op_1(IN$_1$, OUT$_1$) and op_2 (IN$_2$, OUT$_2$),
 - **Full Invocation (FI)**
 - op_1 fully invokes op_2 if for every mandatory input parameter p in IN$_2$, there exists an output parameter q in OUT$_1$ such that $q \sim p$.
 - **Partial Invocation (PI)**
 - op_1 partially Invokes op_2 if there exists any mandatory input parameter p in IN$_2$, an output parameter q in OUT$_1$ such that $q \sim p$.
Matchmaking Framework: Web Service Network Model

WS₁

OP₁

INPUT

OUTPUT

WS₂

OP₂

INPUT

OUTPUT

Matchmaking Framework: Web Service Network Model

WS₁

OP₁

INPUT

OUTPUT

WS₂

OP₂

INPUT

OUTPUT

~
Matchmaking Framework: Web Service Network Model

ws: $WS_1 \rightarrow WS_2$

op: $OP_1 \rightarrow OP_2$

p: $p_1 \rightarrow p_2$

Matchmaking Framework: Web Service Network Model

ws: $WS_1 \rightarrow WS_2$

op: $OP_1 \rightarrow OP_2$

p: $p_1 \rightarrow p_2$

p: $p_3 \rightarrow p_4$

p: $p_5 \rightarrow p_6 \rightarrow p_7$

p: $p_5 \rightarrow p_6 \rightarrow p_7$
Matchmaking Framework: Web Service Network Model

WS₁

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OP₁</th>
<th>p₁</th>
<th>p₂</th>
<th>p₃</th>
<th>p₄</th>
</tr>
</thead>
</table>

WS₂

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>OP₂</th>
<th>p₅</th>
<th>p₆</th>
<th>p₇</th>
</tr>
</thead>
</table>

INPUT={p₄, p₈}

Partial Invocation

op: OP₁ → OP₂

Full Invocation

op: OP₁ → OP₂

Plan of Study

- Use real-world public WSDL files
- Study the topology of various networks formed from the downloaded WSDL files
 - Small-world
 - Power-law
- Use different distance metrics and thresholds in parameter matching
 - Exact, Cosine with TF-IDF, WordNet
Data Pre-Processing

- Data Gathering: 2,100 WSDLs
 - 1,554 files from Fan et al. + top-1,000 WSDLs from Google
- WSDL Validation: 1,360 WSDLs are left
 - After removing 740 invalid WSDL files based on WSDL standard.
- WSDL De-duplication: 984 WSDLs are left
 - After removing 376 duplicate WSDL files at operation level.
- Type Flattening
 - When a parameter has not a simple type, we flatten the type.
 - ex) p1(address, addressType1), where addressType1 is (integer zipcode, string street, string city, string state), changes to a set of parameters, p11(zipcode, integer), p12(street, string), p13(city, string) and p14(state, string).
- Data Cleaning
 - Improve data quality, e.g., replacing too general names such as “return”, “result”.

Small-World Network Model

- Watts & Strogatz (1998)
- Arrange N nodes in a ring and connect each node to k others in each direction. (each node degree = 2k.)
- With probability p “re-wire” each connection from node i to a new node
- Small-world networks show both regularity and randomness
 - Highly clustered & small shortest distance
Small-World Network Model

- L: average shortest distance among all reachable pairs of nodes
- C: average clustering coefficient of all nodes

- $\text{Index}^{\text{SN}} = |C_{\text{actual}} - C_{\text{random}}| / |L_{\text{actual}} - L_{\text{random}}|
- If a network is small-world, then
 - $C_{\text{actual}} >> C_{\text{random}}$
 - $L_{\text{actual}} \sim L_{\text{random}}$
 - \Rightarrow Large Index^{SN}

Result 1: Small World

<table>
<thead>
<tr>
<th>Matching Scheme</th>
<th>Network</th>
<th>L_{actual}</th>
<th>C_{actual}</th>
<th>L_{random}</th>
<th>C_{random}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact matching</td>
<td>Ms</td>
<td>1.3420</td>
<td>0.2418</td>
<td>2.2298</td>
<td>0.3143</td>
</tr>
<tr>
<td></td>
<td>Ms</td>
<td>1.3920</td>
<td>0.2156</td>
<td>2.2298</td>
<td>0.3143</td>
</tr>
<tr>
<td></td>
<td>Ms</td>
<td>2.0304</td>
<td>0.2218</td>
<td>2.2298</td>
<td>0.3143</td>
</tr>
<tr>
<td></td>
<td>Ms</td>
<td>2.1704</td>
<td>0.2218</td>
<td>2.2298</td>
<td>0.3143</td>
</tr>
</tbody>
</table>

Cosine (0.96)	Ms	1.9000	0.3146	2.2298	0.3143
	Ms	2.0304	0.2218	2.2298	0.3143
	Ms	2.1704	0.2218	2.2298	0.3143
	Ms	2.3004	0.2218	2.2298	0.3143

Cosine (0.75)	Ms	1.9000	0.3146	2.2298	0.3143
	Ms	2.0304	0.2218	2.2298	0.3143
	Ms	2.1704	0.2218	2.2298	0.3143
	Ms	2.3004	0.2218	2.2298	0.3143

WordNet (0.96)	Ms	2.8900	0.2838	2.2298	0.3143
	Ms	2.9400	0.2838	2.2298	0.3143
	Ms	2.9900	0.2838	2.2298	0.3143
	Ms	3.0400	0.2838	2.2298	0.3143

WordNet (0.75)	Ms	2.8900	0.2838	2.2298	0.3143
	Ms	2.9400	0.2838	2.2298	0.3143
	Ms	2.9900	0.2838	2.2298	0.3143
	Ms	3.0400	0.2838	2.2298	0.3143
Scale-Free Network Model

- Barabasi & Albert (1999)
- Small number of nodes with many links (Hubs) and many nodes with only a few links
- Scale-free link distribution often follows power-law
 - the proportion of nodes with a given number of links n is $P(n) = 1/n^k$.
- Network grows by addition of new nodes with preferential attachment to the existing nodes based on their number of links with a probability proportional to their degrees

Result 2: Power-law

- Complexity of Web services
Result 2: Popularity of Parameter Names

Result 2: Out-degree Distribution
Conclusion

- Using five matching schemes and three network granularities:
 - Public web services networks show small-world network property
 - Public web service networks follow power-law like distribution pattern
- Semantic Web is needed:
 - Using only exact matching in web service composition is too rigid
 - Using approximate matching helps but not sufficient
 - Semantic web services matchmaking is needed (eg, WSDL-S)
- More study is needed:
 - Giant component size, diameter, formation of networks, etc.