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ABSTRACT
XML repositories are now a widespread means for storing
and exchanging information on the Web. As these repos-
itories become increasingly used in dynamic applications
such as e-commerce, there is a rapidly growing need for a
mechanism to incorporate reactive functionality in an XML
setting. Event-condition-action (ECA) rules are a technol-
ogy from active databases and are a natural method for
supporting such functionality. ECA rules can be used for
activities such as automatically enforcing document con-
straints, maintaining repository statistics, and facilitating
publish/subscribe applications. An important question as-
sociated with the use of a ECA rules is how to statically
predict their run-time behaviour. In this paper, we define
a language for ECA rules on XML repositories. We then
investigate methods for analysing the behaviour of a set of
ECA rules, a task which has added complexity in this XML
setting compared with conventional active databases.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—program analysis; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms
Languages

Keywords
Event-condition-action rules, XML, XML repositories, reac-
tive functionality, rule analysis

1. INTRODUCTION
XML is becoming a dominant standard for storing and ex-

changing information. With its increasing use in areas such
as data warehousing and e-commerce [13, 14, 18, 22, 28],
there is a rapidly growing need for rule-based technology to
support reactive functionality on XML repositories. Event-
condition-action (ECA) rules are a natural candidate to sup-
port such functionality. In contrast to implementing reactive
functionality directly within a programming language such
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as Java, ECA rules have a high level, declarative syntax and
are thus more easily analysed. Furthermore, many commer-
cial and research systems based on ECA rules have been
successfully built and deployed, and thus their implementa-
tion within system architectures is well-understood.

ECA rules automatically perform actions in response to
events provided stated conditions hold. They are used in
conventional data warehouses for incremental maintenance
of materialised views, for validation and cleansing of the
input data streams, and for maintaining audit trails of the
data. By analogy, ECA rules can also be used as an integrat-
ing technology for providing this kind of reactive function-
ality on XML repositories. They can also be used for check-
ing key and other constraints on XML documents, and for
performing automatic repairs when violations are detected.
For a ‘push’ type environment, they are a mechanism for au-
tomatically broadcasting information to subscribers as the
contents of relevant documents change. They can also be
employed as a flexible means for maintaining statistics about
document and web site usage and behaviour. In this paper,
we present a language in which ECA rules on XML can be
defined.

ECA rules have been used in many settings, including
active databases [26, 29], workflow management, network
management, personalisation and publish/subscribe tech-
nology [3, 13, 14, 17, 27], and specifying and implementing
business processes [2, 16, 22]. However, one of the key re-
curring themes regarding the successful deployment of ECA
rules is the need for techniques and tools for analysing their
behaviour [15, 23]. When multiple ECA rules are defined
within a system, their interactions can be difficult to anal-
yse, since the execution of one rule may cause an event which
triggers another rule or set of rules. These rules may in turn
trigger further rules and there is indeed the potential for
an infinite cascade of rule firings to occur. Thus, the sec-
ond part of this paper explores techniques for analysing the
behaviour of a set of ECA rules defined in our language.

Other ECA rule languages for XML have been proposed
in [13, 14, 22] but none of these focus on analysing the be-
haviour of the ECA rules. It is proposed in [13] that analysis
techniques developed for conventional active databases can
be applied in an XML setting too, but details are not given.

A more recent paper [12] also defines an active rule lan-
guage for XML, but is not concerned with rule analysis. The
rule syntax it describes is similar to the one we define here,
the rule format being based on the definition of triggers in
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SQL3. Its rule execution semantics is rather different from
the model we adopt, however. Generally speaking, inser-
tions and deletions of XML data (so-called bulk statements)
may involve document fragments of unbounded size. [12]
describes a semantics whereby each (top-level) update is de-
composed into a sequence of smaller updates (which depend
on the contents of the fragment being inserted/deleted) and
then trigger execution is interleaved with the execution of
these smaller updates. In contrast, we treat each top-level
update as atomic and trigger execution is invoked only after
completion of the top-level update. In general, these se-
mantics may produce different results for the same top-level
update and it is a question of future research to determine
their respective suitability in different applications.

In an earlier paper [7] we described some initial propos-
als for analysis, and also optimisation, of XML ECA rules.
The language we discussed there was less expressive than
the language we propose here in that it did not allow dis-
junction or negation in rule conditions. Moreover, here we
examine more deeply the triggering and activation relation-
ships between rules and have derive more precise tests for
determining both of these relationships than the tests we
described in [7].

2. THE ECA RULE LANGUAGE
An XML database consists of a set of XML documents.

Event-condition-action (ECA) rules on XML databases take
the following form:

on event

if condition

do actions

Rather than introducing yet another query language for
XML, we use the XPath [32] and XQuery [33] languages
to specify events, conditions and actions within our ECA
rules. XPath is used in a number of W3C recommendations,
such as XPointer, XSLT and XQuery itself, for selecting and
matching parts of XML documents and so is well-suited to
the requirements of ECA rules. XQuery is used in our ECA
rules only where there is a need to be able to construct new
fragments of XML. We define each of the components of
our ECA rule language below, give some example rules, and
describe the rule execution semantics.

2.1 Rule Events
The event part of an ECA rule is an expression of the

form

INSERT e

or

DELETE e

where e is a simple XPath expression (defined in Section 2.4)
which evaluates to a set of nodes. The rule is said to be
triggered if this set of nodes includes any node in a new
sub-document, in the case of an insertion, or in a deleted
sub-document, in the case of a deletion.

The system-defined variable $delta is available for use
within the condition and actions parts of the rule (see be-
low), and its set of instantiations is the set of new or deleted
nodes returned by e.

2.2 Rule Conditions
The condition part of an ECA rule is either the constant

TRUE, or one or more simple XPath expressions connected
by the boolean connectives and, or, not.

The condition part of an ECA rule is evaluated on each
XML document in the database which has been changed by
an event of the form specified in the rule’s event part. If the
condition references the system-defined $delta variable, it
is evaluated once for each instantiation of $delta for each
document. Otherwise, the condition is evaluated just once
for each document.

2.3 Rule Actions
The actions part of an ECA rule is a sequence of one or

more actions:

action1; . . . ; actionn

These actions are executed on each XML document which
has been been changed by an event of the form specified in
the rule’s event part and for which the rule’s condition query
evaluates to True — we call this set of documents the rule’s
set of candidate documents.

An ECA rule is said to fire if its set of candidate docu-
ments is non-empty.

Each actioni above is an expression of the form

INSERT r BELOW e [BEFORE|AFTER q]

or

DELETE e

where r is a simple XQuery expression, e is a simple XPath
expression and q is either the constant TRUE or an XPath
qualifier — see Sections 2.4 and 2.5 for definitions of the
italicised terms.

In an INSERT action, the expression e specifies the set of
nodes, N , immediately below which new sub-document(s)
will be inserted. These sub-documents are specified by the
expression r1. If e or r references the $delta variable then
one sub-document is constructed for each instantiation of
$delta for which the rule’s condition query evaluates to
True. If neither e nor r references $delta then a single
sub-document is constructed2.

q is an optional XPath qualifier which is evaluated on each
child of each node n ∈ N . For insertions of the form AFTER q,
the new sub-document(s) are inserted after the last sibling
for which q is True, while for insertions of the form BEFORE q,
the new sub-document(s) are inserted before the first sibling
for which q is True. The order in which new sub-documents
are inserted is non-deterministic.

In a DELETE action, expression e specifies the set of nodes
which will be deleted (together with their sub-documents).
Again, e may reference the $delta variable.

1We observe that using the phrase BELOW e to indicate where
the update should happen is significant. Without it the
placement of new sub-documents would be restricted to oc-
curring only at the root node of documents.
2Thus, both document-level and instance-level triggering are
supported in our ECA rule language. If there is no occur-
rence of the $delta variable in a rule action, the action is
executed at most once on each document each time the rule
fires — this is document-level triggering. If there is an oc-
currence of $delta in an action part, the action is executed
once for each possible instantiation of $delta on each doc-
ument — this is instance-level triggering.
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Example 1. Consider an XML database consisting of two
documents, s.xml and p.xml. The document s.xml contains
information on stores, including which products are sold in
each store:

<stores>

<store id="s1">

<location>...</location>

<manager>...</manager>

<product id="p1"/>

<product id="p2"/>

...

</store>

...

</stores>

The document p.xml holds information on each product,
including which stores sell each product:

<products>

<product id="p1">

<name>...</name>

<category>...</category>

<price>...</price>

<store id="s1"/>

<store id="s2"/>

...

</product>

...

</products>

The following ECA rule updates the p.xml document when-
ever one or more products are added below an existing store
in s.xml:

on INSERT document(’s.xml’)/stores/store/product

if not(document(’p.xml’)/products/

product[@id=$delta/@id]/store[@id=$delta/../@id])

do INSERT <store id=’{$delta/../@id}’/>

BELOW document(’p.xml’)/products/

product[@id=$delta/@id] AFTER TRUE

Here, the system-defined $delta variable is bound to the
newly inserted product nodes detected by the event part of
the rule. The rule’s condition checks that the store which is
the parent of the inserted products in s.xml is not already a
child of those products in p.xml. The action then adds the
store as a child of those products in p.xml.

In a symmetrical way, the following ECA rule updates
the s.xml document whenever one or more stores are added
below an existing product in p.xml:

on INSERT document(’p.xml’)/products/product/store

if not(document(’s.xml’)/stores/

store[@id=$delta/@id]/product[@id=$delta/../@id])

do INSERT <product id=’{$delta/../@id}’/>

BELOW document(’s.xml’)/stores/

store[@id=$delta/@id] AFTER TRUE

The two rules ensure that the information in the two docu-
ments is kept mutually consistent.

Example 2. This example is taken from [1] which dis-
cusses view updates on semi-structured data. The XML
database consists of two documents, g.xml and m.xml. g.xml
contains a restaurant guide, with information about restau-
rants, including the entrees they serve, and the ingredients
of each entree:

<guide>

<restaurant>

<name>Thai City</name>

<rating>5</rating>

</restaurant>

<restaurant>

<name>Baghdad Cafe</name>

<rating>9</rating>

<entree>

<name>Beef Stew</name>

<ingredient>Mushroom</ingredient>

</entree>

<entree>

<ingredient>Tomato</ingredient>

</entree>

</restaurant>

<restaurant>

<name>Eats</name>

<rating>Four stars</rating>

<entree>

<ingredient>Tomato</ingredient>

</entree>

<entree>

<name>Cheeseburger Club</name>

<ingredient>Cheese</ingredient>

<ingredient>Beef</ingredient>

</entree>

</restaurant>

...

</guide>

The document m.xml is a view derived from g.xml, and con-
tains a list of those entrees at the Baghdad Cafe where one
of the ingredients is Mushroom:

<entrees>

<entree>

<name>Beef Stew</name>

<ingredient>Mushroom</ingredient>

</entree>

</entrees>

Suppose now an ingredient element with value Mushroom
is added to the second (unnamed) entree of the Baghdad
Cafe in g.xml. The following ECA rule performs the view
maintenance of m.xml:

on INSERT document(’g.xml’)/guide/restaurant/

entree/ingredient

if $delta[.=’Mushroom’] and

$delta/../..[name=’Baghdad Cafe’]

do INSERT $delta/.. BELOW document(’m.xml’)/entrees

AFTER TRUE

The resulting m.xml document is:

<entrees>

<entree>

<name>Beef Stew</name>

<ingredient>Mushroom</ingredient>

</entree>

<entree>

<ingredient>Tomato</ingredient>

<ingredient>Mushroom</ingredient>

</entree>

</entrees>
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Note that inserting $delta/.. results in the complete entree
being inserted, while AFTER TRUE causes it to be inserted af-
ter the last child of entrees.

2.4 Simple XPath Expressions
The XPath and XQuery expressions appearing in our ECA

rules are restrictions of the full XPath [32] and XQuery [33]
languages, to what we term simple XPath and XQuery ex-
pressions. These represent useful and reasonably expressive
fragments which have the advantage of also being amenable
to analysis.

The XPath fragment we use disallows a number of features
of the full XPath language, most notably the use of any axis
other than the child, parent, self or descendant-or-self axes
and the use of all functions other than document(). Thus,
the syntax of a simple XPath expression e is given by the
following grammar, where s denotes a string and n denotes
an element or attribute name:

e ::= ‘document(’ s ‘)’ (( ‘/’ | ‘//’ ) p) |
‘$delta’ (‘[’ q ‘]’)* (( ‘/’ | ‘//’ ) p)?

p ::= p ‘/’ p | p ‘//’ p | p ‘[’ q ‘]’ | n | ‘*’ |
‘@’n | ‘@*’ | ‘.’ | ‘..’

q ::= q ‘and’ q | q ‘or’ q | e | p | (p | e | s) o (p | e | s)
o ::= ‘=’ | ‘!=’ | ‘<=’ | ‘<’ | ‘>=’ | ‘>’

Expressions enclosed in ‘[’ and ‘]’ in an XPath expression
are called qualifiers. So a simple XPath expression starts
by establishing a context, either by a call to the document

function followed by a path expression p, or by a reference to
the variable $delta (the only variable allowed) followed by
optional qualifiers q and an optional path expression p. Note
that a qualifier q can comprise a simple XPath expression e.

If we delete all qualifiers (along with the enclosing brack-
ets) from an XPath expression, we are left with a path of
nodes. We call this path the distinguished path of the ex-
pression and the node at the end of the distinguished path
the distinguished leaf of the expression.

The result of an XPath expression e is a set of nodes,
namely, those matched by the distinguished leaf of the ex-
pression. The (simple) result type of e, denoted type(e), is
one of string, element name n or *, where * denotes any el-
ement name. The result type can be determined as follows.

Let p be the distinguished path of e. If the leaf of p is
@n or @*, type(e) is string. If the leaf of p is n or *, type(e)
is n or *, respectively. If the leaf is ‘.’ or ‘..’, type(e) is
determined from the leaf of a modified distinguished path3

which is defined below.
The modified distinguished path is constructed from the

distinguished path p of expression e by replacing each oc-
currence of ‘.’ and ‘..’ from left to right in p as follows.
If p starts with $delta, then we substitute for $delta the
distinguished path of the XPath expression which occurs in
the event part of the rule. If the step is ‘..’ and it is pre-
ceded by ‘a/’ (where a must be either an element name or
*’), then replace ‘a/..’ with ‘.’. If the separator preceding
the occurrence of ‘.’ or ‘..’ is ‘//’, then replace the step
with ‘*’. If the step is ‘.’ and the separator which precedes
it is ‘/’, then delete the step and its preceding separator.

3The modified distinguished path is simply used to deter-
mine the result type; it may not be equivalent to the original
path p.

Example 3. Consider the condition from the ECA rule of
Example 2, namely,

if $delta[.=’Mushroom’] and

$delta/../..[name=’Baghdad Cafe’]

The result type of the first conjunct is ingredient because
the event part of the rule is

on INSERT document(’g.xml’)/guide/restaurant/

entree/ingredient

The result type of the second conjunct is restaurant, deter-
mined as follows. The distinguished path after substituting
$delta is

document(’g.xml’)/guide/restaurant/entree/

ingredient/../..

So we replace ‘ingredient/..’ with ‘.’, we delete ‘/.’, we
replace ‘entree/..’ with ‘.’, and finally we delete ‘/.’, leav-
ing the modified distinguished path

document(’g.xml’)/guide/restaurant

Type inference is part of the XQuery formal semantics
defined in [34]. This allows an implementation of XQuery
to infer at query compile time the output type of a query
on documents conforming to a given input type (DTD or
schema). Since XPath expressions are part of XQuery, their
result types can also be inferred. Thus, in the presence of
a DTD or XML schema, it is possible to infer more accu-
rate result types for XPath expressions using the techniques
described in [34]4.

2.5 Simple XQuery Expressions
The XQuery fragment we use disallows the use of full

so-called FLWR expressions (involving keywords ‘for,’ ‘let,’
‘where’ and ‘return’), essentially permitting only the ‘return’
part of an expression [33].

The syntax of a simple XQuery expression r is given by
the following grammar:

r ::= e | c
c ::= ‘<’ n a (‘/>’ | (‘>’ t∗ ‘</’ n ‘>’))
a ::= (n ‘= "’ (s | e′) ‘"’ a)?
t ::= s | c | e′

e′ ::= ‘{’ e ‘}’

Thus, an XQuery expression r is either a simple XPath ex-
pression e (as defined in Section 2.4) or an element construc-
tor c. An element constructor is either an empty element
or an element with a sequence of element contents t. In
each case, the element can have a list of attributes a. An
attribute list a can be empty or is a name equated to an
attribute value followed by an attribute list. An attribute
value is either a string s or an enclosed expression e′. El-
ement contents t is one of a string, an element constructor
or an enclosed expression. An enclosed expression e′ is an
XPath expression e enclosed in braces. The braces indicate
that e should be evaluated and the result inserted at the
position of e in the element constructor or attribute value.

4Although the parent function in [34], which corresponds
to a step of ‘..’, always returns the type anyElement?.
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The result type of an XQuery expression r, denoted type(r),

is a tree, each of whose nodes is of type n (for element name
n), @n (for attribute name n), *, n//*, *//*, or string. The
types with a suffix //* indicate that the corresponding node
can be the root of an arbitrary subtree. This is necessary
to capture the fact that the results of XPath expressions
embedded in r return sets of nodes which may be the roots
of subdocuments. The tree for type(r) can be determined
as follows. If r is an XPath expression e, then type(r) com-
prises a single node whose type is type(e)//* if type(e′) is
n or *, or string if type(e′) is string. If r is an element
constructor c, then we form a document tree T from c in
the usual way, except that some nodes will be labelled with
enclosed expressions. For each such enclosed expression e′,
we determine its result type type(e′) in the same way as for
the single XPath expression above. We then replace e′ in T
by type(e′). Now type(r) is given by the modified tree T .

The result type of an XQuery expression r denotes a set
of trees S such that every tree returned by r is in S (the
converse does not necessarily hold because we do not type
the results of enclosed expressions as tightly as possible).
We call each tree in S an instance of type(r). Given an
XPath expression e and a tree T , T satisfies e if e(T ) 6= ∅.
We say that type(r) may satisfy e if some instance of type(r)
satisfies e.

Given XPath expression e and XQuery expression r, it is
straightforward to test whether or not type(r) may satisfy
e. The test essentially involves checking whether the evalu-
ation of e on the tree of type(r) is empty or not. However,
since type(r) denotes a set of trees rather than a single tree,
the evaluation needs to be modified as indicated in the fol-
lowing informal description: a node of type string in type(r)
may satisfy any string in e; a node of type * in type(r) may
satisfy any element name in e; a node of type n//* (re-
spectively, *//*) in type(r) may satisfy any expression in e
which tests attributes or descendants of an element name n
(respectively, any element name).

Example 4. Let r be the XQuery expression in the action
of the first rule in Example 1, namely

<store id=’{$delta/../@id}’/>.

The result type of $delta/../@id is string, so type(r) is
store(@id(string)).

As another example, let r be the XQuery expression

<a><b>{$delta/..}</b><c/></a>

and assume that the result type of {$delta/..} is *. Then
type(r) is a(b(∗//∗))(c).

2.6 ECA Rule Execution
In this section we describe informally the ECA rule execu-

tion semantics, giving sufficient details for our purposes in
this paper. We refer the interested reader to [7] for a fuller
discussion.

The input to ECA rule execution is an XML database and
a schedule. The schedule is a list of updates to be executed
on the database. Each such update is a pair

(ai,j , docsAndDeltasi).

The component ai,j is an action from the actions part of
some rule ri. The component docsAndDeltasi is a set of
pairs (d, deltasd,i), where d is the identifier of a document

upon which ai,j is to be applied and deltasd,i is the set of
instantiations for the $delta variable generated by the event
and condition part of rule ri with respect to document d.

The rule execution begins by removing the update at
the head of the schedule and applying it to the database.
For each rule ri, we then determine its set of candidate
documents generated by this update, together with the set
deltasd,i for each candidate document d. For all rules ri

that have fired (i.e. whose set of candidate documents is
non-empty) we place their list of actions ai,1, . . . , ai,ni at the
head of the schedule, placing the actions of higher-priority
rules ahead of the actions of lower-priority rules5. Each such
action ai,j is paired with the set docsAndDeltasi consisting
of the set of candidate documents for rule ri with the set of
instantiations deltasd,i for each such document d.

The execution proceeds in this fashion until the schedule
becomes empty. Non-termination of rule execution is a pos-
sibility and thus rule analysis techniques are important for
developing sets of ‘well-behaved’ rules.

3. ANALYSING ECA RULE BEHAVIOUR
Analysis of ECA rules in active databases is a well-studied

topic and a number of analysis techniques have been pro-
posed, e.g. [4, 5, 6, 8, 9, 10, 11, 16], mostly in the context of
relational databases. Analysis is important, since within a
set of ECA rules, unpredictable and unstructured behaviour
may occur. Rules may mutually trigger one another, lead-
ing to unexpected (and possibly infinite) sequences of rule
executions.

Two important analysis techniques are to derive trigger-
ing [4] and activation [10] relationships between pairs of
rules. This information can then be used to analyse proper-
ties such as termination or confluence of a set of ECA rules,
or reachability of individual rules. The triggering and ac-
tivation relationships between pairs of rules are defined as
follows:

A rule ri may trigger a rule rj if execution of the action
of ri may generate an event which triggers rj .

A rule ri may activate another rule rj if rj ’s condition
may be changed from False to True after the execution of
ri’s action.

A rule ri may activate itself if its condition may be True
after the execution of its action.

Thus, two key analysis questions regarding ECA rules are:

1. Is it possible that a rule ri may trigger a rule rj ?

2. Is it possible that a rule ri may activate a rule rj ?

Once triggering and activation relationships have been de-
rived, one can construct graphs which are useful in analysing
rule behaviour:

A triggering graph [4] represents each rule as a vertex, and
there is a directed arc from a vertex ri to a vertex rj if ri

may trigger rj . Acyclicity of the triggering graph implies
definite termination of rule execution. Triggering graphs

5In common with the SQL3 standard for database triggers
[24] we assume that no two rules can have the same priority.
This, together with our use of restricted sub-languages of
XPath/XQuery, ensures that rule execution is deterministic
in our language, up to the order in which new sub-documents
are inserted below a common parent.
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can also be used for deriving rule reachability information,
by examination of the arcs in the graph.

An activation graph [10] again represents rules as vertices
and there is a directed from a vertex ri to a vertex rj if ri

may activate rj . Acyclicity of this graph also implies definite
termination of rule execution.

The determination of triggering and activation relation-
ships between ECA rules is more complex in an XML set-
ting than for relational databases, because determining the
effects of rule actions is not simply a matter of matching
up the names of updated relations with potential events or
with the bodies of rule conditions. Instead, the associations
are more implicit and semantic comparisons between sets of
path expressions are required. We develop some techniques
below.

3.1 Triggering Relationships between XML
ECA rules

In order to determine triggering relationships between our
XML ECA rules, we need to be able to determine whether
an action of some rule may trigger the event part of some
other rule. Clearly, INSERT actions can only trigger INSERT

events, and DELETE actions can only trigger DELETE events.

3.1.1 Insertions
For any insertion action a of the form

INSERT r BELOW e1 [BEFORE|AFTER q]

in some rule ri and any insertion event ev of the form

INSERT e2

in some rule rj , we need to know whether ev is independent
of a, that is, e2 can never return any of the nodes inserted
by a.

The simple XQuery r defines which nodes are inserted
by a, while the simple XPath expression e1 defines where
these nodes are inserted. So, informally speaking, if it is
possible that some initial part of e2 can specify the same
path through some document as e1 and the remainder of e2

“matches” r, then ev is not independent of a. We formalise
these notions below, based on tests for containment between
XPath expressions [19, 20, 30].

A prefix of a simple XPath expression e is an expression e′

such that e = e′/e′′ or e = e′//e′′. We call e′′ the suffix of e
and e′. Recall from Section 2.5 that, for XQuery r, type(r)
denotes the result type of r, and we can test whether or not
type(r) may satisfy an XPath expression e.

Given XPath expressions e1 and e2, we say that e1 and
e2 are independent if, for all possible XML documents d,
e1(d) ∩ e2(d) = ∅.

Now let us return to the action a and event ev defined
above. Event ev is independent of action a if for all prefixes
e′
2 of e2, either

(1) e1 and e′
2 are independent, or

(2) type(r) cannot satisfy e′′
2 .

Equivalently, we can say that rule ri (containing action a)
may trigger rule rj (containing event ev) if for some prefix
e′
2 of e2, e1 and e′

2 are not independent and type(r) may
satisfy e′′

2 .
From arbitrary simple XPath expressions e1 and e2, we

can construct an XPath expression e1 ∩ e2 such that for all

documents d, e1(d) ∩ e2(d) = (e1 ∩ e2)(d). This is done
by converting the distinguished paths of e1 and e2 to reg-
ular expressions, finding their intersection using standard
techniques [21], and converting the intersection back to an
XPath expression with the qualifiers from e1 and e2 cor-
rectly associated with the merged steps in the intersection.
The resulting expression for e1 ∩ e2 may have to use a union
of path expressions (denoted p1 | p2) at the top level, as
permitted by XPath [32].

We can test whether e1 ∩ e2 is unsatisfiable, and hence
whether e1 and e2 are independent, by checking whether
e1 ∩ e2 is contained in an unsatisfiable expression, using the
containment test developed in [19] (which allows unions of
path expressions).

Example 5. Recall the two rules from Example 1. Let us
call them Rule 1 and Rule 2. For i = 1, 2, the form of each
rule is

on INSERT ei

if ci

do INSERT ri BELOW fi AFTER TRUE

where

• e1 is document(’s.xml’)/stores/store/product,

• r1 is <store id=’{$delta/../@id}’/> and

• f1 is document(’p.xml’)/products/

product[@id=$delta/@id]

while

• e2 is document(’p.xml’)/products/product/store,

• r2 is <product id=’{$delta/../@id}’/> and

• f2 is document(’s.xml’)/stores/

store[@id=$delta/@id].

Now let ei = e′
i/e′′

i , i = 1, 2, where e′
1 is

document(’s.xml’)/stores/store,

e′′
1 is product, e′

2 is document(’p.xml’)/products/product
and e′′

2 is store. So f2 and e′
1 are not independent. Further-

more, type(r2) is product(@id(string)) which may satisfy
e′′
1 . We conclude that Rule 2 may trigger Rule 1. A similar

argument shows that Rule 1 may trigger Rule 2.
On the other hand, if event e1 were modified to

document(’s.xml’)/stores/store/product[name]

so that the inserted product had to have a name child, then
f2 and e′

1 are still not independent. However, now type(r2)
cannot satisfy e′′

1 since the product node in type(r2) does
not contain a name child. In this case, we would detect that
Rule 2 could not trigger the modified Rule 1.

3.1.2 Deletions
Similarly to insertions, for any deletion action a of the

form

DELETE e1

belonging to a rule ri, and any deletion event ev of the form

DELETE e2
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belonging to a rule rj , we have that ri may trigger rj if ev
is not independent of a.

The test for independence of an action and an event in
the case of deletions is simpler than for the insertion case
above. Let e be the XPath expression e1//*. Event ev is
independent of action a if expressions e and e2 are indepen-
dent (which can be determined as in Section 3.1.1).

3.2 Activation Relationships between XML
ECA rules

In order to determine activation relationships between
ECA rules, we need to be able to determine

(a) whether an action of some rule ri may change the value
of the condition part of some other rule rj from False
to True, in which case ri may activate rj ; and

(b) whether all the actions of a rule ri will definitely leave
the condition part of ri False; if not, then ri may ac-
tivate itself.

Without loss of generality, we can assume that rule con-
ditions are in disjunctive normal form, i.e. they are of the
form

(l1,1 and l1,2 . . . and l1,n1) or (l2,1 and l2,2 . . . and l2,n2) or

. . . or (lm,1 and lm,2 . . . and lm,nm)

where each li,j is either a simple XPath expression c, or the
negation of a simple XPath expression, not c.

3.2.1 Simple XPath expressions
The following table illustrates the transitions that the

truth-value of a condition consisting of a simple XPath ex-
pression can undergo. The first column shows the condi-
tion’s truth value before the update, and the subsequent
columns its truth value after a non-independent insertion
(NI) and a non-independent deletion (ND):

before after NI after ND

True True True or False
False True or False False

For case (a) above, i.e. when ri and rj are distinct rules,
it is clear from this table that ri can activate rj only if one
of the actions of ri is an insertion which is non-independent
of the condition of rj . Let the condition of rj be the simple
XPath expression c.

For c to be True, we require that it returns a non-empty
result. Thus, in a sense, the distinguished path of c plays
the same role as an XPath qualifier in that we are interested
in the existence of some path in the document matching
the distinguished path. In addition, the insertion of an el-
ement whose name occurs only in a qualifier of c can turn
c from False to True. For example, the insertion of a d ele-
ment below /a/b can turn condition /a/b[d]/e from False
to True. Thus we need to consider all the qualifiers and the
distinguished path in c in a similar way in any test for case
(a). Moreover, the use of ‘..’ in a condition is analogous
to introducing a qualifier, so we need to rewrite conditions
accordingly. For example, the condition a/b/../d is equiv-
alent to a[b]/d. This condition can be turned from False
to True if either a d element is added below an a element
which has a b element as a child, or a b element is added
below an a element which has a d element as a child.

The procedure for determining non-independence of an
insertion from a condition, c, involves constructing from c
a set C of conditions, each of which is an XPath expression
without any qualifiers i.e. a distinguished path. The objec-
tive is that condition c can change from False to True as a
result of an insertion only if at least one of the conditions in
C can change from False to True as a result of the insertion.
We start with set C = {c} and proceed to decompose c into
a number of conditions without qualifiers, adding each one
to C.

A single step of the decomposition is as follows:

1. For any u and w, and v an element name n or *,

• if condition ci is of the form uv/..w, then replace
ci in C by u./[v]w;

• if ci is of the form uv//..w, then replace ci in C
by u./[v]w and uv//*[*].

2. We can delete from ci steps of the form /. and ./, as
well as replacing occurrences of //.// by //, thereby
ensuring that . can occur only at the end of ci pre-
ceded by //

3. If ci ∈ C is of the form u[v]w, where u, v and w are
all non-empty, then replace ci in C by u[v] and uw.

4. If ci ∈ C is of the form u[v], where u and v are non-
empty, then delete ci from C and add to C the con-
ditions specified by one of the cases below, depending
on the structure of the qualifier v:

• if v matches nonterminal p from the grammar for
simple XPath expressions, then add u/v to C;

• if v matches nonterminal e, then add e to C;

• if v matches x ‘or’ y (where x and y must be
qualifiers), then add u[x] and u[y] to C;

• if v matches x ‘and’ y (where x and y must be
qualifiers), then add u[x] and u[y] to C;

• if v matches x o y, then if x or y match non-
terminal p, add u/x or u/y, respectively, to C,
while if x or y match nonterminal e, add x or y,
respectively, to C.

The decomposition process continues until all conditions in
C are qualifier-free.

Now let one of the actions a from rule ri be

INSERT r BELOW e1 [BEFORE|AFTER q]

As in Section 3.1.1, we determine type(r) and consider pre-
fixes and suffixes of each condition ci ∈ C, where ci = c′

i ·c′′
i .

Set C of conditions is independent of a if for each ci ∈ C
and for each prefix c′ of c, either

(1) e1 and c′
i are independent, or

(2) type(r) cannot satisfy c′′
i .

If so, then action a cannot change the truth value of condi-
tion c in rule rj from False to True. Equivalently, we can
say that rule ri may activate rule rj if for some prefix c′

i of
some ci ∈ C, e1 and c′

i are not independent and type(r) may
satisfy c′′

i .

492



Example 6. The conjunction of conditions from the ECA
rule in Example 2 can be rewritten as the single condition
c:

$delta[.=’Mushroom’]/../..[name=’Baghdad Cafe’]

Set C initially comprises just condition c, which, after sub-
stituting for $delta (and dropping document(’g.xml’) for
simplicity), is decomposed into the conditions

c1 = /guide/restaurant/entree/ingredient

and

c2 = /guide/restaurant/entree/ingredient/../../name

Condition c2 is further decomposed into

c3 = c1 = /guide/restaurant/entree/ingredient

c4 = /guide/restaurant/entree

c5 = /guide/restaurant/name

Conditions c3, c4 and c5 can be interpreted as stating that
the only way an insertion can change condition c from False
to True is if an ingredient is inserted as a child of an
entree, an entree is inserted as a child of a restaurant,
or a name is inserted as a child of a restaurant. The test
described above will detect these possibilities and will cor-
rectly infer the possible activation relationships.

For case (b) above, a rule ri activates itself if it may leave
its own condition True. From the above table, we see that
with the analysis that we have used so far this will be the
case for all rules. To obtain more precision, we need to de-
velop the notion of self-disactivating rules, by analogy to this
property of ECA rules in a relational database setting [9].
A self-disactivating rule is one where the execution of its
action makes its condition False.

If the condition part of ri is a simple XPath expression c,
the rule will be self-disactivating if all its actions are dele-
tions which subsume c. For each deletion action

DELETE e1

we thus need to test if

e1//∗ ⊇ c

For the simple XPath expressions to which our ECA rules
are constrained in this paper, and provided additionally
that the only operator appearing in qualifiers is ‘=’, it is
known that containment is decidable [19]. Thus, it is pos-
sible to devise a test for determining whether rules are self-
disactivating. The decidability of containment for larger
fragments of the XPath language is an open problem [19].
However, even if a fragment of XPath is used for which this
property is undecidable, it may still be possible to develop
conservative approximations, and this is an area of further
research.

3.2.2 Negations of Simple XPath expressions
The following table illustrates the transitions that the

truth-value of a condition of the form not c, where c is a sim-
ple XPath expression, can undergo. The first column shows
the truth value of the condition before the update, and the
subsequent columns its truth value after a non-independent
insertion (NI) and a non-independent deletion (ND):

before after NI after ND

True True or False True
False False True or False

For case (a), where rules ri and rj are distinct, it is clear
from this table that ri can activate rj only if one of the
actions of ri is a deletion which is non-independent of the
condition of rj .

Let the condition of rj be not c. We construct the set of
conditions C from c as in Section 3.2.1. Now let the action
from rule ri be

DELETE e1

and let e be the query e1//∗. We again use the intersection
test from Section 3.1.1in order to check whether e is inde-
pendent of each of the conditions in C. If so, then e cannot
change the truth value of c from False to True. Otherwise,
e is deemed to be non-independent of c, and ri may activate
rj .

For case (b) above, a rule ri activates itself if it may leave
its own condition True. We again need the notion of a self-
disactivating rule. If the condition part of ri is not c, the
rule will be self-disactivating if all its actions are insertions
which guarantee that c will be True after the insertion.

Let an insertion action a from rule ri be

INSERT r BELOW e1 [BEFORE|AFTER q]

and let condition c comprise prefix c′ and suffix c′′. Action
a guarantees that c will be True after the insertion if

c′ ⊇ e1

and each of the trees in the set of trees denoted by r satisfies
c′′. As a result, we need a stronger concept than the fact
that type(r) may satisfy expression c′′.

Recall the construction of the tree type(r) from Section 2.5.
We modify the construction of type(r) to leave enclosed ex-
pressions which are of type string in type(r) instead of re-
placing them by string. We then need to define what it
means for a node in type(r) to satisfy (rather than may sat-
isfy) part of an XPath expression e. A node of type n, @n
or * in type(r) satisfies element name n, attribute name @n
or expression *, respectively, in e. A node of type n//*
(respectively, *//*) in type(r) satisfies element name n (re-
spectively, expression *). A node labelled with an enclosed
expression e′ in type(r) satisfies e′ in e.

Example 7. Recall the first rule of Example 1. A prefix of
the negated condition is identical to the XPath expression

document(’p.xml’)/products/product[@id=$delta/@id]

and so clearly contains it. The corresponding suffix of the
negated condition, namely

store[@id=$delta/../@id]

is satisfied by each of the trees denoted by the XQuery ex-
pression

<store id=’{$delta/../@id}’/>

since the value for the id attribute is defined by the same
expression as used in the suffix. Hence the rule is self-
disactivating. The second rule of Example 2 is similarly
self-disactivating.
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3.2.3 Conjunctions
For case (a), if the condition of a rule rj is of the form

li,1 and li,2 . . . and li,ni

we can use the tests described in the previous two sections
for conditions that are simple XPath expressions or nega-
tions of simple XPath expressions to determine if a rule ri

may turn any of the li,j from False to True. If so, then ri

may turn rj ’s condition from False to True, and may thus
activate rj .

For case (b), suppose the condition of rule ri is of the form
li,1 and li,2 . . . and li,ni . There are three possible cases:

(i) All the li,j are simple XPath expressions. In this case,
ri will be self-disactivating if each of its actions is a
deletion which subsumes one or more of the li,j .

(ii) All the li,j are negations of simple XPath expressions.
In this case, ri will be self-disactivating if each of its
actions is an insertion which falsifies one or more of
the li,j .

(iii) The li,j are a mixture of simple XPath expressions and
negations thereof. In this case, ri may or may not be
self-disactivating.

3.2.4 Disjunctions
For case (a), if the condition of a rule rj is of the form

(l1,1 and l1,2 . . . and l1,n1) or (l2,1 and l2,2 . . . and l2,n2) or

. . . or (lm,1 and lm,2 . . . and lm,nm)

we can use the test described in Section 3.2.3above to de-
termine if a rule ri may turn any of the disjuncts

li,1 and li,2 . . . and li,ni

from False to True. If so, then ri may turn rj ’s condition
from False to True and may thus activate rj .

For case (b), suppose the condition of rule ri is of the form

(l1,1 and l1,2 . . . and l1,n1) or (l2,1 and l2,2 . . . and l2,n2) or

. . . or (lm,1 and lm,2 . . . and lm,nm)

Then ri will be self-disactivating if it leaves False all the
disjuncts of its condition. This will be so if

(i) all the li,j are simple XPath expressions and ri disac-
tivates all the disjuncts of its condition as in case (i)
of Section 3.2.3above; or

(ii) all the li,j are negations of simple XPath expressions
and ri disactivates all the disjuncts of its condition as
in case (ii) of Section 3.2.3above.

In all other cases, ri may or may not be self-disactivating.

4. CONCLUSIONS
In this paper we have proposed a new language for defin-

ing ECA rules on XML, thus providing reactive functional-
ity on XML repositories, and we have developed new tech-
niques for analysing the triggering and activation dependen-
cies between rules defined in this language. Our language is
based on reasonably expressive fragments of the XPath and
XQuery standards.

The analysis information that we can obtain is particu-
larly useful in understanding the behaviour of applications
where multiple ECA rules have been defined. Determining
this information is non-trivial, since the possible associations
between rule actions and rule events/conditions are not syn-
tactically derivable and instead deeper semantic analysis is
required.

One could imagine using XSLT to transform source docu-
ments and materialise the kinds of view documents we have
used in the examples in this paper. However, XSLT would
have to process an entire source document after any update
to it in order to produce a new document whereas we in-
visage detecting updates of much finer granularity. Also,
using ECA rules allows one to update a document directly,
wheareas XSLT requires a new result tree to be generated
by applying transformations to the source document.

The simplicity of ECA rules is another important factor
in their suitability for managing XML data. ECA rules have
a simple syntax and are automatically invoked in response
to events — the specification of such events is indeed a part
of the Document Object Model (DOM) recommendation by
the W3C. Also, as is argued in [13], the simple execution
model of ECA rules make them a promising means for rapid
prototyping of a wide range of e-services.

The analysis techniques we have developed are useful in
a context beyond ECA rules. Our methods for comput-
ing rule triggering and activation relationships essentially
focus on determining the effects of updates upon queries —
the ‘query independent of update’ problem [25]. We can
therefore use these techniques for analysing the effects of
other (i.e. not necessarily rule-initiated) updates made to
an XML database, e.g. to determine whether integrity con-
straints have been violated or whether user-defined views
need to be re-calculated. Query optimisation strategies are
also possible: e.g. given a set of pre-defined queries, one may
wish to retain in memory only documents which are relevant
to computing these queries. As updates to the database are
made, more documents may need to be brought into mem-
ory and these documents can be determined by analysing the
effects of the updates made on the collection of pre-defined
queries.

For future work there are two main directions to explore.
Firstly, we wish to understand more fully the expressive-
ness and complexity of the ECA language that we have de-
fined. For example, we wish to look at what types of XML
Schema constraints can be enforced and repaired using rules
in the language. Secondly, we wish to further develop and
gauge the effectiveness of our analysis methods. Techniques
such as incorporating additional information from document
type definitions may help obtain more precise information
on triggering and activation dependencies [31]. We also wish
to investigate the use of these dependencies for carrying out
optimisation of ECA rules.
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