
Pushing Reactive Services to XML Repositories using
Active Rules

Angela Bonifati
Politecnico di Milano

Piazza Leonardo Da Vinci 32
I-20133 Milano, Italy

bonifati@elet.polimi.it

Stefano Ceri
Politecnico di Milano

Piazza Leonardo Da Vinci 32
I-20133 Milano, Italy

ceri@elet.polimi.it

Stefano Paraboschi
Politecnico di Milano

Piazza Leonardo Da Vinci 32
I-20133 Milano, Italy

parabosc@elet.polimi.it

ABSTRACT
Push technology, i.e., the ability of sending relevant infor-
mation to clients in reaction to new events, is a fundamen-
tal aspect of modern information systems; XML is rapidly
emerging as the widely adopted standard for information
exchange and representation and hence, several XML-based
protocols have been de�ned and are the object of investiga-
tion at W3C and throughout commercial organizations. In
this paper, we propose the new concept of active XML rules
for \pushing" reactive services to XML-enabled repositories.
Rules operate on XML documents and deliver information
to interested remote users in reaction to update events oc-
curring at the repository site.
The proposed mechanism assumes the availability of XML

repositories supporting a standard XML query language,
such as XQuery that is being developed by the W3C; for
the implementation of the reactive components, it capital-
izes on the use of standard DOM events and of the SOAP
interchange standard to enable the remote installation of ac-
tive rules. A simple protocol is proposed for subscribing and
unsubscribing remote rules.

Categories and Subject Descriptors
H.2 [Database Management]: Languages; I.7 [Document

and Text Processing]: Document Management

General Terms
Languages

Keywords
Push technology, Active Rules, XML, SOAP, Document man-
agement, Query languages for XML

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong
ACM 1-58113-348-0/01/0005.

1. INTRODUCTION
One important aspect of Internet-based information sys-

tems is the ability of pushing information to clients, by
matching new event occurrences with prede�ned user's inter-
ests. Such ability is embedded within many WEB develop-
ment products [23, 8] and applications [49, 3], which support
one-to-one information delivery in response to users' current
and past interactions. Active rules and database triggers are
an important ingredient for supporting this reactive tech-
nology [1]. All of the above proposals, however, make use
of mechanisms which operate locally, on top of given data
sources which are controlled by the organizations delivering
the information to users. So far, the possibility of distribut-
ing the \pushing logic", and installing it at remote servers,
has not been considered.
In this paper, we argue that such a possibility is becom-

ing very concrete with the advent of new technological stan-
dards, such as XML [7], and XML query languages [33, 10,
14, 21, 39, 17, 15], and with the parallel development of
XML-based repository technology [43, 38, 19]. Furthermore,
the Internet and Web communities are repeatedly proposing
the use of XML in network protocols and distributed appli-
cations - XML-RPC [48], SOAP [41], XMI [46], ebXML [25],
ICE [31], IOTP [32] and XML Protocol [47] are only a few
examples.
Our proposed approach falls under the generic framework

of e-services; such a paradigm denotes a class of Internet
computations and systems which ful�ll a given objective
with some degree of autonomy, for instance because they
search within the Internet the best matchings of given client
requests, or are capable of simple forms of negotiations.
Along these lines, we propose a class of Internet services that
behave, in a remote system, by means of active rules; these
rules monitor the events occurring at the remote systems
and notify interested information consumers. Each rule acts
like an independent e-service; a B2B protocol regulates the
remote installation of rules at the server, which is proposed
by a rule broker and accepted by the remote repository; this
negotiation follows a simple installation contract.
The rules that we propose in this paper are not currently

supported by XML repositories; however, the standard bod-
ies, and particularly the W3C, are making the appropriate
steps in order to make the implementation of such rules
rather simple. In particular, active XML rules capitalize on
the existence of events in DOM (since the Level 2 Speci�-
cation [22]) and of a standard XML query language, named
XQuery, which has recently been proposed by W3C XML

633

Query Working Group. Our proposal is independent from
the choice of a particular XML query language, and is cur-
rently based on the XQuery Working Draft [15].
We have already discussed, in [6], the issues that arise

in the development of active rules for XML. We have pre-
sented two speci�c instantiations of active rules, relative to
Lorel and XSL used as query languages; and we have stud-
ied the issues of rule con
icts and of their properties, such
as termination, con
uence, and edit-script independence. It
is worth noticing that many of the problems discussed in [6]
relative to a generic XML active rule set are much simpli-
�ed in the environment proposed in this paper, because the
active rules that we use have only the ability of notifying re-
mote users, and therefore cannot trigger each other. Thus,
termination is guaranteed; con
ict resolution policies may
determine di�erent orders of noti�cations to subscribers.
The submission of a rule for its execution by the server

permits to locate tasks near to the data, which is innova-
tive for the Web context; this is similar to what happens
in distributed databases with stored procedures, that locate
applicative code within the server maintaining the data [11].
This integration guarantees the fastest possible noti�cation
to subscribers, who come to know of events as they occur; it
also improves the global systems' eÆciency, because services
are executed right where the information resides, without
requiring expensive data replication.
For the negotiation protocol, and speci�cally for the inter-

change between the rule broker and the XML-based repos-
itory, we use SOAP protocols and envelopes. The use of
SOAP as generic e-service invocation mechanism makes our
solution
exible and portable. SOAP was chosen among the
several available XML-based protocols, due to its increasing
popularity as a lightweight protocol for exchange of infor-
mation in a decentralized environment. The XML Protocol
Working Group at W3C is addressing the speci�cation of re-
quirements of XML Protocol, which condenses and extends
the experience of previously de�ned lightweight protocols,
including SOAP. Such a protocol, once deployed, can be
easily adopted in our framework.
This paper is organized as follows. After an overview of

related work in Section 2, Section 3 brie
y presents the syn-
tax and semantics of XML active rules. Section 4 describes
the application scenario for rule brokering. Section 5 de-
scribes the B2B protocol for submitting a rule to the XML
Server. Section 6 describes the steps that are needed in or-
der to implement a reactive engine on top of an XML Server.
Finally, Section 7 draws the conclusions.

2. RELATED WORK
Event-based computation has been studied in several di-

versi�ed communities, spanning from software engineering
and networking to databases. Within these communities,
many event-based distributed architectures have been de-
�ned implementing the mechanisms of remote event sub-
scription, �ltering and management. Among these systems,
we cite OMG Event and Noti�cation Service [36, 37], Yeast
[35], Ready [29] and Smarts [42]. OMG Event Service and
Noti�cation supports asynchronous exchange of events amo-
ng clients, which can play the roles of event consumers or
suppliers and use event channels to communicate. The pub-
lishing mechanism of events is based on the pull/push model
and a �lter facility is provided. In Yeast, event patterns are
descriptors, actions are sequences of commands and remote

invocations; the underlying communication layer is based on
a traditional client/server paradigm. Yeast is extended by
Ready, which introduces a speci�cation language for match-
ing of events and quality of service directions. Smarts de-
ploys a distributed system architecture for the purpose of
detecting and handling system problems. Event streams oc-
curring in a network are elaborated in real-time and ad-hoc
policies are adopted to solve problems. We have taken into
account the experience of such event-based computation sys-
tems, particularly for what concerns our proposal of a rule
subscription mechanism.
Within the database community, a lot of attention has

been paid to reactive mechanisms broadened to a distributed
environment [44]. Beyond the traditional applications of
centralized active database systems, such as support of in-
tegrity constraints, materialized views, and derived data,
reactive mechanisms can be used to implement services re-
quired for network management, e.g., mail services and �re-
walls. Prominent works concern the maintenance of mate-
rialized views in data warehousing systems [45, 50], or the
constraint maintenance in a distributed environment [12] by
means of distributed triggers. However, the application of
active rules to the development of reactive push services has
not yet been described in the literature.
The unbundling trend in the database �eld advocates the

modularization of monolithic databases into smaller and au-
tonomous services to promote more
exibility and function-
ality. According to this trend, an event service and a rule
service can be enucleated from conventional databases and
o�ered to the nodes of a network, guaranteeing portabil-
ity and heterogeneity [13, 28, 34]. In our approach, un-
bundling is helpful to identify the rule components, but it is
not strictly required, as we assume that XML rules will be
part of the XML repository.
We discussed the application of XML active rules to im-

plement suitable e-services in [6]; here, active rules imple-
ment business applications (such as alerters, personalizers
and classi�ers) as well as document maintenance. An event
detector based on DOM [22] is responsible for capturing the
data mutating events on the document and an XML query
(expressed in Lorel [33] or in XSL [17]) implements the con-
ditions and actions of the rules. In the present work, XQuery
[15] has been chosen to encode XML active rules.
Other works deal with the de�nition of triggers for XML

data, more or less concerned with e-commerce applications.
A novel view speci�cation language, equipped with active
capabilities has been de�ned in [1]. The actors involved
in an electronic commerce application might need di�erent
views of the repository data, and these are encoded through
a set of activity speci�cations, methods and triggers. En-
hanced mechanisms for noti�cation, access control and log-
ging/tracing of user activities are provided. Here active rules
are application-speci�c and use a set of proprietary method
calls, de�ned within the views.
Database reactive technology can be considered as com-

plementary to agent technology in implementing event-based
computation. Among agent-based systems, Jedi [20] is rele-
vant because it is based on reactive objects, i.e. autonomous
computational units performing application speci�c tasks.
Each reactive object has its own thread of control, and in-
teracts with other reactive objects producing and consum-
ing events. They are based on mobile pieces of software
(i.e., agents) and use a subscription facility to declare their

634

interest to events. Compared to agents, rules can be more
easily implemented, since they are plugged into the XML
repository without any need of mobility. Rules are less so-
phisticated than agents and o�er less
exibility, but in our
application context (i.e. push technology), they can be con-
sidered both light-weighted and enough powerful.
A language-speci�c and proprietary architecture to pro-

vide sophisticated e-services is the purpose of many high-
tech industries research. Among the many products avail-
able on the market, e-speak [24] introduces several innova-
tive aspects. The e-speak architecture leverages on a mes-
sage passing mechanism between the e-speak logical machine
(or core) and the resources, which provide the services. The
communication is obtained through a speci�c session layer
security protocol, and a mailbox metaphor is used to de-
scribe the interactions between the clients and the core. E-
speak does not support reactive mechanisms.
The use of rules to perform e-services may produce some

scalability issues. In fact, as the application of triggers
moves from databases towards the Internet, the number of
potentially expensive triggers becomes larger and eÆciency
becomes increasingly desirable. Recent works [30, 16, 2]
discussed the theme of scalability applied to triggers and to
continuous query systems. Their common idea is to share
common computations among large sets of similar triggers
or queries. These techniques could be adapted to the de-
livery of eÆcient and scalable XML rule engines. In our
framework, rules do not interfere with each other, therefore
scalability issues are less relevant than in traditional rule
engines.

3. ACTIVE RULES FOR XML
The event-condition-action paradigm for active rules has

demonstrated in the database context its
exibility and ex-
pressive power; each rule is characterized by the events that
can \trigger" it; once a rule is triggered, the condition is
\considered"; if the evaluation of the condition is success-
ful, the rule action is executed. This model is proposed for
XML active rules. A simple rule can be represented by the
following XML fragment:

<event>insert(//cd)</event>
<condition> FOR $a IN //cd

WHERE $a=$new AND
$a/price < 20 AND

contains($a/author,"Milli Vanilli")
</condition>
<action>

<soap-header>
<uri>/notification</uri>

<host>131.175.16.105</host>
<soap-action>notify</soap-action>

</soap-header>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/
soap/envelope"

SOAP-ENV:encodingStyle="http://
schemas.xmlsoap.org/soap/encoding">

<SOAP-ENV:Body>
<m:Notify xmlns:m="http://

131.175.16.105/methods">
<cdfound>

$a//*

</cdfound>

</m:Notify>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

</action>

The rule is triggered by an insertion of a <cd> element.
The rule veri�es if the sub-element <price> of the new ele-
ment has a value less than 20 and if the element <author>
contains the string \Milli Vanilli". If the condition is veri-
�ed, the rule invokes the SOAPmethod Notify on the server
131.175.16.105, passing as parameter <cdfound> the in-
serted <cd> node and its content. We now give a more de-
tailed description of each part of the rule.

3.1 Event
The Event part of the rule speci�es the event responsi-

ble of rule triggering; it is enclosed into XML <event> tags.
A mutating event is generated when the XML content is
modi�ed; we assume three types of mutating events: in-
sert, delete, and update. The de�nition of a mutating event
declaratively describes the nodes (elements or attributes)
whose modi�cations need to be monitored; every time a
monitored modi�cation occurs, the corresponding event in-
stance is generated and associated with the modi�ed node.
E.g., an event de�nition insert(//house) monitors the inser-
tion of <house> elements in the repository; an event instance
for the event is generated whenever a <house> element is in-
troduced.
The Document Object Model (DOM) is an API de�ned

by the W3C to access and manipulate XML information;
the DOM consists of an object oriented model de�ned in
IDL, that associates a set of methods with the nodes of an
XML document. The component of the DOM interface most
relevant to the event part of rules is the Event Model, intro-
duced in the DOM Level 2 speci�cation. The DOM Event
Model assumes that the visualization and manipulation of
XML information generates events on the nodes. For the
realization of our services, we are interested into the mu-
tating events, which are generated when a node of an XML
document is modi�ed (either because it is inserted, deleted,
or its textual content is modi�ed). Event detection is real-
ized by event listeners associated with DOM nodes, which
detect events occurring on the nodes to which they are as-
sociated or on their descendents. The detection of events on
node descendents is based on a bi-directional propagation of
the events, which requires that every event navigates down-
wards from the root of a document to the node instance on
which the event occurred; when the event reaches its target,
it can propagate back (bubble up) to the document root;
events may be captured by event listeners; event listeners
may choose to stop the propagation of events.
The availability of this sophisticated Event Model in DOM

o�ers most of the services required for an implementation of
a reactive mechanism for XML. The main problem that this
event model presents is that event listeners are associated
with node instances, whereas the event part of rules is de-
�ned in terms of a declarative speci�cation of the schema
element (e.g., a rule should be de�ned as triggered by an
update on the price attribute of a car element). Thus, the
implementation of events on top of the DOM Event Model
requires the introduction of a conversion mechanism able to
map each declarative event in an adequate set of associations
of DOM event listeners with nodes.

635

3.2 Condition
The Condition part of the rule speci�es the predicate that

must be satis�ed to execute the rule's action, expressed
through a query which is interpreted as a truth value if it
returns a nonempty answer. An important feature is the
presence of a communication mechanism between the con-
dition and the event part, so that the condition has a way to
refer to the nodes on which the events occurred. This com-
munication is based on prede�ned variables new and old

that represent the nodes on which the events occurred with
their current and past values, in a way similar to transition
variables of database triggers.
An XML query for the condition can be expressed by us-

ing one of the available query languages for XML. The two
most interesting alternatives are XPath and XQuery (in [6]
we considered Lorel in place of XQuery). XPath is the
language that permits the identi�cation of nodes on which
XSL templates must operate their transformation; XPath
is a readable and intuitive language and has already gained
an extensive support (e.g., the Xalan tool produced by the
Apache Software Foundation).
The XML Query Algebra [27] is being developed by the

W3C XML Query Working Group and is a compact pro-
cedural and strong-typed language for XML. Nonetheless,
with respect to XPath, the XML Query Algebra is more a
semantic and formal speci�cation rather than an optimiz-
able target language for XML.
XQuery [15] is the �rst step towards the de�nition of a

standard XML query language, based on the experience of
Quilt [14]. XQuery uses as one of its components XPath,
and enriches it with services that permit the construction of
an arbitrary XML structure as the result of a query. There-
fore, XQuery is a good prototype of an expressive query lan-
guage that is needed for the design of complex rules, used
throughout this paper.
The implementation of the prede�ned variables new and

old that represent the communication channel between the
event and the condition depends on the choice of row or set
semantics for the rules. The discussion on this aspect ap-
pears in [6], where we describe the two alternatives. Since
the row semantics is easier to implement and to use and
suited to the \pushing service" application, we assume a
row-level semantics; thus, each event generates a rule con-
sideration, in the context of which the variables new and
old o�er a reference to the node involved in the event. The
implementation of these transition variables can take advan-
tage of the target attribute of the MutationEvent interface
and speci�cally of the prevValue and newValue attributes.

3.3 Action
The Action part of a rule speci�es a SOAP method to

invoke when the rule condition is evaluated true. We re-
strict the SOAP method to implement the call to a message
delivery system, that will transfer information to speci�c re-
cipients. In this way, the action part is much simpler than
the general case, as discussed in [6]; in particular, there are
no mechanisms for updating the content of the repository,
or problems related to rule termination. In this proposal we
assume that rules are not prioritized; therefore, if the same
event may be serviced by several rules we cannot assume a
rule execution ordering, and rule execution is not con
uent;
however, the addition of a simple prioritization mechanism
could take place easily.

The implementation of the communication channel be-
tween condition and action is realized by permitting the
reuse of condition variables in the action. The system will
then replace at run-time each variable with the XML struc-
ture created by the query evaluation.
We assume that complex SOAP parameters can be passed

to the method being invoked; these parameters are con-
structed in the condition and passed to the action, thus
keeping the action very simple. It may be useful to de-
�ne constraints limiting the recipients of the SOAP call ap-
pearing in the action of a rule to be authorized addresses,
thereby introducing security requirements. It is possible to
use mechanisms similar to those present in Java applets, for
restricting the applet to the invocation of services available
on the site from which the applet was downloaded. In gen-
eral, the work done in the implementation of Java and in the
CORBA middleware can o�er many valuable suggestions to
the design of a distributed execution system like the one we
propose, particularly with respect to security aspects.

4. APPLICATION SCENARIO
The generic architecture of Reactive E-services Architec-

tural Framework consists of three main actors (see Figure 1):
Service Reseller, Service Supplier, and Rule Broker. The
Service Supplier delivers goods and services described by an
XML Server which internally supports an XML rule execu-
tion engine. Rules monitor events - such as the new avail-
ability of a service - and then notify the service resellers.
The Service Reseller is, in turn, the recipient of messages
concerning new services; they typically interact with clients
which are interested in purchasing speci�c goods or services.
The Rule Broker acts as an intermediary; it receives infor-
mation about the services being searched over the Internet,
and installs rules at the service supplier sites. For doing so,
it needs to compose the rules in a suitable format and then
to install them remotely.
There is no need of a standard protocol o�ered by the

Rule Broker to the Service Reseller; simple WEB-based in-
terfaces may be used in order to acquire information con-
cerning the service being searched. Similarly, the Service
Reseller receives a simple message informing of the relevant
occurred events, without requiring any special purpose in-
terface. However, the interface between the Rule Broker
and the Service Supplier is a classical B2B interface, as the
two systems need to establish a protocol which is both tech-
nical (yielding to the installation or removal of XML rules
at the servers) and business-oriented (yielding to the estab-
lishment of mechanisms by means of which the rule broker
sees its e�orts being repaid). For these reasons, we propose
a B2B interface between the Rule Broker and the Service
Supplier, based upon four SOAP primitives (Connect, Sub-
scribe, Unsubscribe and Disconnect) that are invoked by the
Rule Broker and that are supported by the XML Server. We
denominate this interface the Rule Submission Protocol and
describe it in Section 5.1.
The XML Server needs to be augmented in order to sup-

port the protocol mentioned above and to execute XML
rules; Section 6 is dedicated to describe the adaptations
which are needed in order to upgrade the XML server tech-
nology.
The Rule Broker has a double role in the architecture:

it is assigned the task of rule creation and it is responsi-
ble for the submission of the rules to all the XML Servers

636

that can contribute to the service. Rule creation requires
that the Rule Broker knows how to write rules that satisfy
a given applicative need and how to submit them to XML
Servers using the Rule Submission Protocol. Rule submis-
sion requires that the Rule Broker knows which are the XML
Servers that store the pieces of information that are rele-
vant for the application, possibly through interaction with
the Service Reseller. In summary, the Rule Broker is the
mediator of the business transaction that is realized by the
reactive services.
The Service Reseller may be directly the user of the noti-

�cation server, or a mediator which presents the service to
the �nal user with a user-friendly interface.

4.1 Example of Application
The architectural framework will be shown at work with

a concrete example, in the �eld of real estate agent appli-
cations. An example of request can be: a furnished four-
bedroom (or more), two-bathroom (or more) Victorian house,
which costs $1,500,000 or less, located in the Marina area
in San Francisco. A request is immediately issued on a list
of house agency XML Servers, but no matching is found.
Then, the reactive service is invoked; as a result, a set of
rules are submitted to the XML Servers of several house
agencies with the task of promptly reacting when a house,
which satis�es the requirements, becomes available on the
market. To achieve such result, a request is sent from the
reseller to the rule broker, a contract is de�ned upon the
rule and the proper authorization for the use and instal-
lation of the rule is marshalled, passing through the Rule
Subscription Protocol commands.
The message exchange between the Rule Broker and the

Reseller is a Rule Subscription Request. The communication
and coordination between the Rule Broker and the Reseller
can be managed as well through a web interface. After the
negotiation, a response can be sent back to the reseller to
con�rm or reject the subscription. In the following, an ex-
ample of Rule implementing the request is reported and a
Rule-Generated Message delivered by the XML Server to
the Reseller, is shown. The information that is sent out to
the XML Server is encoded in SOAP and XML; it encloses
the rule, the type of contract and the identi�cation of the
reseller. The event part is based on any update of relevant
elements in the XML resources of the real estate agency
servers. The condition part represents the query issued by
the �nal user and is expressed in XQuery; the action part is
the invocation of a SOAP method which takes care of alert-
ing the reseller with the news about the houses appearing
on the market.

POST /Soap/Rules/Subscribe HTTP/1.1

Host: www.expensivehousesincalifornia.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "/Subscribe"

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/
soap/envelope/"

SOAP-ENV:encodingStyle="http://
schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<m:Subscribe xmlns:m="http://

schemas.xmlsoap.org/soap/rules/">

<openConnection>343</openConnection>

<ruleToSubmit>
<event>update($a) OR insert($a)</event>
<condition>
FOR $a IN document()//housestobuy/house,
WHERE $a//cost < 1500000 AND

contains($a//style,"victorian") AND

contains($a//description,"furnished") AND
$a//nr_of_bedrooms >= 4 AND
$a//nr_of_bathrooms >= 2 AND
$a//city="San Francisco" AND
$a//area="Marina" AND
empty($a//sold_to)

</condition>
<action>
<soap-header>

<uri>/NotifyHouse</uri>
<host>housemediator.com</host>
<soap-action>notifyHouse</soap-action>

</soap-header>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/
soap/envelope"

SOAP-ENV:encodingStyle="http://
schemas.xmlsoap.org/soap/encoding">

<SOAP-ENV:Body>
<m:DeliverHouseNews xmlns:m="http://

housemediator.com/soap/methods">
<foundthehouse>

$a//*

</foundthehouse>
<server>

www.expensivehousesincalifornia.com
</server>
<localHouseId>

$a/@Id

</localHouseId>
</m:DeliverHouseNews>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
</action>

</ruleToSubmit>

<contractProposed>
<cost>0</cost>
<guarantee>none</guarantee>

</contractProposed>
</m:Subscribe>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

When a house satisfying the search is retrieved, a SOAP
invocation is produced on the XML server and sent back to
the Service Reseller under the format of a Rule-Generated
Message.

POST /NotifyHouse HTTP/1.1
Host: housemediator.com

Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "notifyHouse"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://

schemas.xmlsoap.org/soap/envelope"

637

Rule Subscription Request

XML
Repository

Rule
Engine

Rule
Repository

Clients

Web &
Mail

Interfaces

Rule Broker

Rule Generated-Messages

Service Broker

Rule Subscription
Protocol

Service Suppliers

Service Reseller

Rules

Humans

Rules
Rules

Figure 1: Reactive E-service Application Scenario

SOAP-ENV:encodingStyle="http://

schemas.xmlsoap.org/soap/encoding">
<SOAP-ENV:Body>
<m:DeliverHouseNews xmlns:m="http://

housemediator.com/soap/methods">
<foundthehouse>
<house Id="1745">

<address>
<street>A Street</street>
<area>Marina</area>
<city>San Francisco</city>
<zip>94120</zip>

</address>
<cost>1450000</cost>
<squarefeet>1600</squarefeet>
<year_construction>1925</year_construction>
<year_refurbished>1980<year_refurbished>
<nr_of_bedrooms>6<nr_of_bedrooms>

<nr_of_bathrooms>2<nr_of_bathrooms>
<nr_of_balconies>2<nr_of_balconies>
<miscellaneous>
<style>modern and victorian</style>
<view>Ocean view</view>
<description>

Possibly furnished, wide kitchen,
no smoking policy

</description>
</miscellaneous>

</house>
</foundthehouse>

<server>
www.expensivehousesincalifornia.com

</server>
<localHouseId>

1745
</localHouseId>

</m:DeliverHouseNews>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

5. ARCHITECTURAL FRAMEWORK
In this Section we introduce a proposal for the protocol

used to submit rules to the repository. We are interested
in presenting the features that are needed for a successful
deployment of these services in the Internet context. This is
the low-level protocol for the de�nition of e-service requests.

5.1 E-service request protocol
A minimal interface for the submission of rules is rep-

resented by the following primitives: Connect, Subscribe,
Unsubscribe, and Disconnect. Our goal is to present the
fundamental primitives and parameters required for a rule
submission service; actual implementations will use addi-
tional support primitives and a more complex API. For read-
ability, we represent the primitives in IDL, even if they will
be implemented as SOAP invocations to the XML server.
We describe separately each of the primitives.

ConnectionId Connect(in AuthenticatedUser user,
in ServerProfile requestedProfile)

The Connect primitive creates a connection for the sub-
mission of rules to a remote XML repository. A connec-
tion is established, instead of using a state-less approach
as in HTTP, because the submission of rules typically re-
quires that users are authenticated and the capabilities of
the server are veri�ed. Instead of repeating these steps for
every rule submission, it is preferable to do them once and
separately for every set of rule submissions. Once a connec-
tion is established, all future requests originating from the
same location can refer to the same connection.
The parameters of the request are an instance of Authen-

ticatedUser, which represents the user with the password or
the credentials that are needed to verify his identity and

638

the corresponding privilege to submit rules. The second pa-
rameter is an instance of ServerPro�le, which contains a list
of features that the submitter expects to be supported by
the server. For instance, the requester may present a list of
rule languages and ask which are the ones accepted by the
system, it may query if the server stores XML information
conforming with a given DTD, or it may request if SOAP
calls in the rule action should only return to the submitter;
any other parameter that may be relevant in this context
may be part of the server pro�le. If the user privileges are
suÆcient to open a connection with the server, the response
of the call returns a valid connection identi�er, combined
with the answer to each of the components of the server
pro�le.

SubmissionId Subscribe(in ConnectionId
openConnection,
in Rule ruleToSubmit,

in Contract contractProposed)

The Subscribe primitive permits the submission of a rule
to a server. Its parameters are the connection which the re-
quest refers to (openConnection), the rule (ruleToSubmit),
and the contract on which the service is realized (contract-
Proposed). The role of the last parameter is the focus of
Section 5.2. If the request is successful, it will return a valid
SubmissionId; if the connection is not open, the rule is not
understood, the contract is not accepted or the query is not
satis�ed, the request will not be accepted and it will return
an error code, with an explanation of the motivation for the
refusal in the SOAP body of the response.

void Unsubscribe(in ConnectionId openConnection,
in SubmissionId subId)

The Unsubscribe primitive is invoked when a submitted
rule must be removed from a server. The request must orig-
inate from the same user who submitted the rule. The pa-
rameter subId is a rule identi�er internal to the XML server
that has been returned by the Subscribe request.

void Disconnect(in ConnectionId openConnection)

The Disconnect primitive closes the connection created
by the Connect primitive and frees the resources required
for its management on the server. A timeout mechanism
can automatically invoke the primitive for connections that
remain idle beyond a prede�ned duration.

5.2 Rule Packaging
The primitive Subscribe used to submit active rules to an

XML Server presents a contractProposed parameter. This
parameter speci�es the contract that the rule submitter of-
fers to the XML Server. A contract describes a set of obli-
gations agreed by each party in the transaction. In this
context, the Rule Broker will typically describe the remu-
neration requested to the Server for the acceptance of the
rule and for its execution. Typically, a Broker will be guar-
anteed either a �xed rate for each installed rule, or a variable
rate for each delivered message, or both. In addition, the
XML Server will typically o�er guarantees regarding the re-
sponsiveness of the rule, its robustness, and its availability.
Experience in the construction of B2B applications demon-

strates that one of the most critical aspects for the success

of a B2B initiative is the de�nition of adequate contracts.
Even for trading commodities, where the problem of de�ning
a market seems relatively simple, several systems failed be-
cause they were unable to represent precisely the \contract",
that is, the assumption of responsibilities that a commercial
transaction implies.
It is indeed quite diÆcult to prescribe a solution that will

satisfy the requirements of every context. The main pre-
scription that we present is the need of this component in
the interface, whose exact structure depends on the charac-
teristics of the application and requires a speci�c study.

6. IMPLEMENTATION
In this Section we show the guidelines that can be used

for the implementation of an active rule system for XML.
An interesting feature of our proposal is the relatively easy
implementation and integration with existing Web solutions,
based on the reuse of several current Web standards and of
their robust implementations.
The run-time behavior of a single rule execution is mod-

eled by a process that binds the three parts of the rule, inter-
acting with the subsystems responsible for each of them: the
DOM Event Model, the XQuery engine, and the generator
of SOAP calls.
The DOM Event Model permits the de�nition of arbitrary

event listeners, which consist of generic procedures, written
in the language implementing the interface (e.g., Java), that
need to present the implementation of a set of prede�ned
methods. The event listener can be dynamically associated
with the document nodes, for a certain event, and its meth-
ods are invoked when an event of the speci�ed kind on the
speci�ed node is generated. As we discuss below, the Event
Model of the DOM generates processes for rule execution
according to two di�erent alternatives. In either case, the
rule process �rst extracts from the event the information
that may be required to complete the XQuery query that
represents the condition. Then, the condition is executed
by a XQuery processor, which may return an empty result
or an XML fragment. When the result is empty, the con-
dition is not satis�ed, and the execution of the rule process
terminates. If the query returns an XML fragment, then the
rule action is executed, by extracting from the query result
the information necessary for the construction of the SOAP
call; then, the call is submitted to the server appearing in
one of the action elements.
The rule engine is the software component at the core

of an active rule system. In database trigger systems, its
responsibilities include the determination of the triggered
rules, the selection of the order of rule execution among rules
triggered at the same time, and in general the coordination
among separate rules [5]. This role is greatly simpli�ed by
the assumptions on rules that we made in this paper.
We have seen the detection of events and the triggering of

rules is directly managed by the Event Model of the DOM.
We identify two main alternatives for the realization of this
task.

� The centralized solution associates a single event lis-
tener with the root of the document. This alternative
requires the creation of a complex event listener, which
can be considered as the main component of the rule
engine. The event listener classi�es each event and
detects if the occurred event triggers one of the ac-

639

tive rules. This task requires an eÆcient description of
the rule repository, with a structure similar to that re-
quired for the implementation of trigger engines. Once
a rule is triggered, the process managing it is activated.

� The fragmented solution creates a set of event listeners,
associated with every node instance on which events
have to be monitored. This solution introduces an
event listener for every rule, and associates the event
listener with every node instance on which the trigger-
ing events can occur.

In the database �eld, previous research has analyzed the
impact that various design parameters could have on system
performance [4]. Based on those results and on the charac-
teristics of this context, it is possible to estimate that the
main criteria to use in the choice between the centralized
and the fragmented solution are the cost of the association
between event listeners and nodes, the number of monitored
nodes compared with the number of document nodes, and
the frequency of irrelevant events. The fragmented solution
is preferable when the association between an event listener
and a node requires limited resources, when the monitored
nodes are a small fraction of the document nodes, and when
the events that trigger rules are very few compared with the
produced events.
A particularly sophisticated implementation of the frag-

mented solution may be optimized to restrict the creation
of event listeners only to the nodes that have the potential
to satisfy the rule condition. This strategy has a great po-
tential and is the one that can o�er the best performance in
many applications.

7. CONCLUSIONS
In this paper, we propose the use of active rules for push-

ing reactive services; we have shown that such services sat-
isfy the needs of many important applications. Below, we
list some of the possible obstacles that could limit the ap-
plicability of our solution, and explain why each of them is
not critical.
The �rst observation is that in order to write an eÆ-

cient rule it may be necessary to know the schema of XML
resources; this is a serious obstacle for a wide-scale rule
deployment, where the Rule Broker submits the rule to
many di�erent and autonomous sites. Indeed, this problem
is faced by most of the wide-scale, inter-business applica-
tions based on XML. Fortunately, many ongoing initiatives
(RosettaNet [40], eCo Framework [26], OMG CORBA [18],
ebXML [25]) are dedicated to the de�nition of DTDs and
schemas for speci�c industrial sectors, that should permit
interoperability among systems. These e�orts will o�er con-
siderable bene�ts to our application as well.
Another observation is that a rule is an external pro-

gram coming from an external system, whose execution may
present unacceptable risks (such as: access to protected re-
sources, malicious code, etc.). This is an intrinsic char-
acteristic of any agent-based mechanism. In our context,
however, rules are installed only by trusted sites (the Rule
Brokers) and they are (on purpose) severely restricted in the
scope of their actions. They cannot modify the state of XML
resources, and SOAP calls can be addressed only to given,
certi�ed methods. Thus, we believe that the application sce-
nario considered in this paper is suÆciently protected and
secure.

A �nal observation is that most relational trigger systems
and applications do not exhibit high scalability: when the
number of triggers becomes large, applications often become
ineÆcient and unmanageable. However, from the descrip-
tion of the implementation given in Section 6, it is evi-
dent that the rule system hereby proposed is much simpler
than a generic trigger engine. In particular, interactions
among rules are excluded, thereby eliminating one of the
main causes of ineÆciency and mismanagement. In addi-
tion, knowing in advance the structure of rules gives great
potential for optimization strategies. In any case, the transi-
tion from generic, trigger-based implementations of services
(enabling their rapid prototyping) to eÆcient embedded so-
lutions has already occurred in many active rule applications
[9], and could take place in our context as well.
In summary, services based on reactive push technology

have great potential applicability; their
exibility and ease
of implementation can make such services one of the key in-
gredients of future Web-based infrastructures.

8. REFERENCES
[1] S. Abiteboul, C. Cluet, L. Mignet, B. Amann, T. Milo,

and A. Eyal. \Active Views for Electronic Commerce".
In 25th Very Large Data Bases Conference
Proceedings, pages 138{149, September 1999.

[2] M. Altinel and M. Franklin. \EÆcient Filtering of
XML Documents for Selective Dissemination of
Information". In 26th Very Large Data Bases
Conference Proceedings, pages 53{64, September 2000.

[3] \Amazon Web Site", 2001. http://www.amazon.com.

[4] E. Baralis and A. Bianco. \Performance Evaluation of
Rule Semantics in Active Databases". In 13th ICDE
Conference Proceedings, pages 365{374, April 1997.

[5] E. Baralis, S. Ceri, and S. Paraboschi. \Compile-Time
and Runtime Analysis of Active Behaviors". IEEE
Transactions on Knowledge and Data Engineering,
10(3):353{370, 1998.

[6] A. Bonifati, S. Ceri, and S. Paraboschi. \Active Rules
for XML: A New Paradigm for E-Services". In 1st
Workshop on E-Services (co-held with the 26th Very
Large Data Bases Conference) Proceedings, September
2000.

[7] T. Bray, J. Paoli, and C. M. Sperberg-McQueen
(Eds.). \Extensible Markup Language (XML) 1.0-2nd
Edition", Oct. 2000.
http://www.w3.org/TR/2000/REC-xml-20001006.

[8] \Broadvision Web Site", 2001.
http://www.broadvision.com.

[9] S. Ceri, R. J. Cochrane, and J. Widom. \Practical
Applications of Triggers and Constraints: Success
Stories and Lingering Issues". In 26th Very Large Data
Bases Conference Proceedings, pages 254{262,
September 2000.

[10] S. Ceri, S. Comai, E. Damiani, P. Fraternali,
S. Paraboschi, and L. Tanca. \XML-GL: a Graphical
Language for Querying and Restructuring WWW
Data". In WWW8 Conference Proceedings, May 1999.

[11] S. Ceri and G. Pelagatti. \Distributed Databases:
Principles and Systems". McGraw Hill, 1984.

640

[12] S. Ceri and J. Widom. \Production Rules in Parallel
and Distributed Database Environments". In 18th
Very Large Data Bases Conference Proceedings,
August 1992.

[13] S. Chakravarthy, R. Le, and R. Dasari. \ECA Rule
Processing in Distributed and Heterogeneous
Environments". In International Symposium on
Distributed Objects and Applications, 1999.

[14] D. Chamberlin, J. Robie, and D. Florescu. \Quilt: An
XML Query Language for Heterogeneous Data
Sources". In Webdb Conference Proceedings, Dallas,
TX, May 2000.

[15] D. Chamberlin et al.(Eds.). \XQuery: A Query
Language for XML. W3C Working Draft, 15 February
2001.".
http://www.w3.org/TR/2001/WD-xquery-20010215/.

[16] J. Chen, D. DeWitt, F. Tian, and Y. Wang.
\NiagaraCQ: A Scalable Continuous Query System for
Internet Databases". In ACM Sigmod Conference
Proceedings, May 2000.

[17] J. Clark (Eds.). \XML Transformations (XSLT)
Version 1.0", Nov. 1999. http://www.w3.org/TR/xslt.

[18] \Corba Web Site", 2001. http://www.omg.org.

[19] \Crossgain Web Site", 2001.
http://www.crossgain.com.

[20] G. Cugola, E. D. Nitto, and A. Fuggetta. \Exploiting
an Event-Based Infrastructure to Develop Complex
Distributed Systems". In 20th International
Conference on Software Engineering Proceedings,
April 1998.

[21] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy,
and D. Suciu. \A Query Language for XML". In
WWW8 Conference Proceedings, Toronto, Canada,
May 1999. http://www8.org/fullpaper.html.

[22] \Document Object Model (DOM) Level 2 Core
Speci�cation Version 1.0 W3C Proposed
Recommendation", September 2000.
http://www.w3.org/TR/2000/PR-DOM-Level-2-Core-
20000927/.

[23] \Dynamo Web Site", 2001.
http://www.dynamo-ny.com/
ash index.html.

[24] \E-Speak Web Site", 2001.
http://www.e-speak.hp.com/map.shtm.

[25] \ebXML Web Site", 2001. http://www.ebXML.org.

[26] \The eCo Framework", 2001.
http://www.commerce.net.

[27] P. Fankhauser et al.(Eds). \The XML Query
Algebra", Dec. 2000.
http://www.w3.org/TR/query-algebra/.

[28] S. Gatziu, A. Koschel, G. von Bultzingsloewen, and
H. Fritschi. \Unbundling Active Functionality". ACM
Sigmod Record, 27(1):35{40, 1998.

[29] R. Gruber, B. Krishnamurthy, and E. Panagos. \The
Architecture of the READY Event Noti�cation
Service". In Workshop on Middleware (co-held with
the International Conference on Distributed
Computing Systems) Proceedings, May 1999.

[30] E. N. Hanson, C. Carnes, L. Huang, M. Konyola,
L. Norohna, S. Parthasarathy, and J. B. Park.
\Scalable Trigger Processing". In 15th ICDE
Conference Proceedings, pages 266{275, 1999.

[31] \ICE Protocol Speci�cation (CGA)", 1999.
http://www.idealliance.org/ice/ice note-ice-
19990519.asp.

[32] \Internet Object Transfer Protocol Speci�cation
(Commerce One)", 2001.
http://search.ietf.org/internet-drafts/draft-ietf-trade-
iotp-v1.0-protocol-07.txt.

[33] \J. McHugh and S. Abiteboul and R. Goldman and
D. Quass and J. Widom". Lore: A database
management system for semistructured data. ACM
Sigmod Record, 26(3):54{66, September 1997.

[34] A. Koschel, S. Gatziu, H. Fritschi, and G. von
Bultzingsloewen. \Applying the Unbundling Process
To Active Database Systems". In International
Workshop on Issues and Applications of Database
Technology Proceedings, Toronto, Canada, July 1998.

[35] B. Krishnamurthy and D. Rosemblum. \Yeast: A
General Purpose Event-Action System". IEEE
Transactions on Software Engineering, 21(10), 1995.

[36] Object Management Group 2000. \Event Service
Speci�cation", 2000.
http://www.omg.org/technology/documents/formal/
event service.htm.

[37] Object Management Group 2000. \Noti�cation
Service Speci�cation", 2000.
http://www.omg.org/technology/documents/formal/
noti�cation service.htm.

[38] \Propel Web Site", 2001. http://www.propel.com.

[39] J. Robie (Ed.). \XQL (XML Query Language)", Aug.
1999. http://www.ibiblio.org/xql/xql-proposal.html.

[40] \RosettaNet Framework", 2001.
http://www.rosettanet.org.

[41] \Simple Object Access Protocol (SOAP) 1.1 (W3C
Note)", 2000. http://www.w3.org/TR/2000/NOTE-
SOAP-20000508/.

[42] \System Management Arts. Root Cause Analysis and
its Role in Event Correlation (White Paper)", 2001.
http://www.smarts.com.

[43] \Tamino Product Web Site", 2000.
http://www.softwareag.com/tamino/.

[44] G. von Bultzingsloewen, A. Koschel, P. Lockemann,
and H. Walter. \ECA Functionality in a Distributed
Environment". In Norman W. Paton (ed), Active
Rules in Database Systems, pages 147{175, 1999.

[45] J. Widom. \Research Problems in Data Warehousing".
In Information and Knowledge Management
Conference Proceedings, pages 583{595, August 1995.

[46] \XML Metadata Interchange (Unysis et al.)".
Updated 2 October 1999.
http://www.omg.org/cgi-bin/doc?ad/99-10-02.

[47] \XML Protocol Requirements. W3C Working Draft
19 December 2000 ".
http://www.w3.org/TR/2000/WD-xp-reqs-20001219/.

[48] \XML-RPC Speci�cation (Userland)". Updated 16
October 1999. http://www.xmlrpc.com/spec.

[49] \Yahoo Web Site", 2000. http://www.yahoo.com.

[50] G. Zhou, R. Hull, R. King, and J. Franchitti.
\Supporting Data Integration and Warehousing Using
H20". IEEE Data Engineering Bulletin, 18(2):29{40,
June 1995.

641

