
Ernesto Damiani
Pierangela Samarati
University of Milan

Sabrina De Capitani
di Vimercati
University of Brescia

Stefano Paraboschi
Milan Polytechnic

Controlling Access to
XML Documents

Access control techniques for XML provide a simple way to

protect confidential information at the same granularity level

provided by XML schemas.

The widespread adoption of the
Extensible Markup Language has
profoundly changed the nature of

the information and user interaction
styles available on the Web. Unlike HTML,
XML can represent both document struc-
ture and content, offering increased con-
trol of information granularity through
transformation and query languages. The
original XML 1.0 specification used doc-
ument type definitions (DTDs) to describe
document structure; recently, the World
Wide Web Consortium (W3C) issued the
XML Schema Recommendation, which
lets users define XML vocabularies and
complete typespaces. Starting from a doc-
ument-oriented standard, XML is evolv-
ing toward a universal format for infor-
mation interchange.

This evolution is fostering a new gen-
eration of applications that can synthesize
and exchange XML information tailored
to user needs. XML’s new features, how-
ever, imply a complete paradigm shift
from HTML that raises new security con-
cerns in the WWW community. Initially,
many practitioners assumed that XML
documents would automatically benefit

from the security standards already in
place to deliver HTML pages via HTTP.
Later, researchers began investigating
XML-specific security measures that
would address its richer data model and
finer granularity control; work is under
way to develop standard XML-based for-
mats for the resources to be protected,
their associated metadata, and the policies
expressing authorizations (see the sidebar,
“XACML Standardization Effort”). For
instance, the adoption of XML for medical
records requires tailoring information
from XML data sources to the different
needs of physicians and patients, preserv-
ing confidentiality and avoiding unneces-
sary duplications. In the same scenario,
access control policies themselves should
be easy to process and interchange and
should check for compliance with exter-
nally defined regulations.

In this article, we describe our
approach to these problems and the
design guidelines that led to our current
implementation of an access control sys-
tem for XML information. (See the side-
bar, “Related Work in XML Access Con-
trol,” page 20.)

18 NOVEMBER • DECEMBER 2001 http://computer.org/internet/ 1089-7801/01/$10.00 © 2001 IEEE IEEE INTERNET COMPUTING

Fe
at

u
re

The Role of Encryption
Cryptography has given the Web a general-purpose
infrastructure for secure communication. What is
its potential role in providing fine-grained security
to XML documents? Some commercial products are
available (for example, AlphaWorks’ XML Security
Suite; http://alphaworks.ibm.com/tech/xmlsecuri-
tysuite), providing fine-grained security features,
such as element-wise encryption and digital signa-
tures. DataChannel (http://www.datachannel.com/)
has proposed a coarser solution; their server product
links XML authentication to directory systems, sup-
porting both Windows NT and lightweight directo-
ry access protocol (LDAP) 3 directories. However,
encryption-based approaches unequally split secu-
rity responsibilities between the connection proto-
col, the XML content, and the application process-
ing the document; in parallel, the need for access
control standardization for XML data is receiving
growing recognition. Moreover, some encryption-
based techniques leave encrypted private informa-
tion in the hands of unauthorized users, a design
choice that might well prove unwise over time.
Recently, a W3C initiative began dealing with XML
Encryption, focusing on how to make XML content
discernible only to the intended recipients, and
opaque to all others. XML Encryption focuses on
how to encrypt XML documents at the granularity
of elements. While there are many applications for
such a specification, including the protection of
payment and transaction information, the XML
Encryption initiative is explicitly not aimed at con-
trolling access to XML information.

XML Access Control:An Outline
Our approach exploits XML’s own capabilities,
using XML markup to describe access authoriza-
tions to XML elements. The hierarchical structure
of XML documents lets you intuitively specify an
authorization’s definition: authorizations, when
stated for an element, can propagate to the other
elements or attributes included in it, unless a more
specific authorization is stated for them. The main
features of our fine-grained authorizations include

� Authorization signs: Authorizations can be
positive, granting access, or negative, denying
access, to an XML element or attribute. The
possibility of specifying negative authoriza-
tions, while increasing our model’s expressive
power, introduces potential conflicts among
authorizations. Our approach solves such con-
flicts by giving priority to authorizations spec-
ified on more specific subjects or objects, and

denying the access (denial takes precedence
policy) for unresolved conflicts.

� Authorization levels: You can add security
markup to XML documents and XML schemas
to provide document- and schema-level autho-
rizations with the granularity of XML elements
and attributes. Schema- and document-level
authorizations have complementary roles in
increasing access control flexibility. Intuitive-
ly, as XML schemas specify structure and con-
tent of entire document classes, schema-level
security markup lets you quickly and effective-
ly state authorizations that apply to XML ele-
ments regardless of the specific document under
consideration (as with a <CONFIDENTIAL> tag
used consistently in a set of documents).
Schema-level authorizations can serve to
implement corporate-wide access control poli-
cies on document classes. Document-level secu-
rity markup lets you tailor security require-
ments for each document, as is required when
documents complying with the same XML
schema contain information with different pro-

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 19

XML Access Control

The research described in this article, together with that described by
Michiharu Kudo and Satoshi Hada,1 underlies a recent standardization
effort on the use of XML-based languages to express and interchange
access control policies.

This effort is organized under a new technical committee within the
Organization for the Advancement of Structured Information Standards, a
nonprofit, international consortium that creates interoperable industry
specifications based on public standards such as XML and SGML
(http://www.oasis.org/).The OASIS Extensible Access Control Markup
Language (XACML) technical committee has been organized to define a
standard core schema and corresponding namespace for the expression of
authorization policies in XML against objects that are themselves identified
in XML.The schema will be capable of representing the functionality of
most policy representation mechanisms available at the time of adoption.
It should also be extensible to address custom application requirements
and other functions or features not yet included.

The TC charter includes such issues as fine-grained control, the
requestor’s nature, the protocol over which the request is made, content
introspection, and the types of activities authorized. Initial TC members
include Baltimore Technologies, CrossLogix, Hewlett-Packard, IBM, Jam-
cracker,Oblix,Reuters, Sun Microsystems, and webMethods.Other com-
panies and individuals are encouraged to participate in the XACML work
by joining OASIS.

Reference
1. M.Kudo and S.Hada,“XML Document Security Based on Provisional Authorization,” Proc.

7th ACM Conf. Computer and Communication Security,ACM Press,New York,2000,pp. 87–96.

XACML Standardization Effort

tection requirements (for example, a <CURRENT-
PROJECTS> tag in the resumes of researchers
pursuing both classified and public projects).

� Authorization strength: Intuitively, document-
level authorizations usually take precedence
over schema-level ones. When this behavior is
not adequate, you can either define document-
level authorizations as soft (giving them a lower
priority than schema-level ones) or define
schema-level authorizations as hard (giving
them a higher priority). You would use soft doc-
ument-level authorizations when the document
owner agrees to accept the policy stated at the
schema level, if existing. In turn, you would use
hard schema-level authorizations when your
organization wants to implement a system-wide
security policy, which must not be reverted by
authorizations at the specific document level.

� Propagation policies: Whatever its sign or level,
an authorization can be either local (it applies
only to the current element and its attributes)
or recursive (it applies recursively to the cur-
rent element and its subelements).

Authorizations must be specified for the different
classes of requesters, as identified by user-group
name and physical location. As you would obvi-
ously not want to list all potential requesters indi-
vidually, our model uses the well-known technique
of defining a subject hierarchy of requesters based
on their identifications. Authorizations stated for
a given subject automatically apply to all subjects
below it in the subject hierarchy. Every time you
request access to XML data, the joint enforcement
of the authorizations that apply to them at the
schema and document level will produce a custom

20 NOVEMBER • DECEMBER 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Because HTML tagging is intended primarily
to render Web pages, access control mecha-
nisms currently available for Web sites tend to
be coarse-grained. For instance, the Apache
Web server (http://www.apache.org//) lets
you specify access control lists through a con-
figuration file (access.conf) containing a list of
users,hosts (IP addresses),or host-user pairs
that are specifically allowed or forbidden con-
nection to the server.Users are identified by
user and group names and passwords, which
are specified through Unix-style password
files.By specifying a configuration file for each
directory on the Web server’s disk, you can
define authorizations on a directory basis.The
specification of authorizations at the level of
single files (that is,Web pages) is possible but
a little awkward,whereas it is not possible on
portions of files.This limitation forces protec-
tion requirements to affect data organization
at the file system level.

John Linn and Magnus Nyströmpropose
a model for authorizations that reference
portions of a file.1 However, the model does
not support semantic context similar to that
provided by XML and so remains limited.The
Enterprise Integrated Technologic Secure
HTTP scheme (http://www.homeport.org/
~adam/shttp.html) represents authorizations
within HTML documents through security-
related tags. Every document can include
security (meta)tags describing its access

authorizations.Again, because of HTML lim-
itations,even this proposal cannot take infor-
mation semantics into account.

Recently, several research groups pro-
posed access control techniques expressed
through XML-based languages or aimed at
XML data.2,3 We developed the approach
here from work presented at the 2000
International Conference on Extending
Database Technology (EDBT2000).4

A related line of research was pursued by
the Tokyo IBM Research Labs by developing a
processor that lets users specify and enforce
fine-grained authorization policies.5 They
have proposed XrML (http://www.xrml.org/),
a commercial product designed to serve as
an open architecture for digital content
rights management.

Our model presents similarities with
some access control models for object-ori-
ented DBMSs; in particular,authorizations can
propagate along the document structure, and
conflict resolution must consider authoriza-
tion strength.6 However, the object-oriented
context differs significantly from XML,which
was born as a textual representation format:

� In XML, the main form of relationship
between nodes is in the form of node
containment (which is similar but not
identical to part-of composition in
object-oriented models);

� XML does not offer inheritance, poly-
morphism, or typing of references.

You must consider all these aspects when
designing an access control model for XML,
making it inconvenient to apply an object-
oriented access control model to XML
information.

References
1. J. Linn and M. Nyström,“Attribute Certification:An

Enabling Technology for Delegation and Role-Based

Controls in Distributed Environments,” Proc. 4th

ACM Workshop on Role-Based Access Control, ACM

Press, New York, 1999, pp. 121-130.

2. E. Bertino, S.Castano, and E. Ferrari,“Securing XML

Documents with Author-X,” IEEE Internet Comput-

ing, vol. 5, no. 3, May/June 2001, pp. 21-31.

3. A.Gabillon and E.Bruno,“Regulating Access to XML

Documents,” Proc. 15th Ann. IFIP WG 11.3 Working

Conf. Database and Application Security, Kluwer Aca-

demic, Boston, 2001, pp. 311-328.

4. E. Damiani et al.,“Securing XML Documents,” Proc.

2000 Int’l Conf. Extending Database Technology

(EDBT2000),Springer Verlag,Berlin,2000,pp.121-135.

5. M. Kudo and S. Hada, “XML Document Security

Based on Provisional Authorization,” Proc. 7th ACM

Conf. Computer and Communication Security (CCS

2000),ACM Press, New York, 2000, pp. 87-96.

6. S. Jajodia et al.,“Flexible Support for Multiple Access

Control Policies,” to be published in ACM Trans.

Database Systems, 2001.

Related Work in XML Access Control

view on the data, including only the information
that the particular requesters are entitled to see.
This approach, while powerful enough to define
sophisticated access to XML data, makes the
design of a server-side Access Control Processor
(ACP) for XML data sources rather straightforward.

The specification of the access control system
we’ve just outlined requires a detailed definition of
objects (the resources against which authorizations
must be specified) and subjects (the system’s users).

Identifying Authorization
Objects via Path Expressions
Our model identifies the objects to which fine-
grained access authorizations apply using XPath
(XML Path Language, http://www.w3.org/TR/xpath)
expressions, which return a set of nodes within a
document. XPath is a W3C standard well known to
potential users and supported by several tools that
can be easily reused to produce a functioning sys-
tem. A simple example of XPath expression is a
sequence of element names separated by a slash; for
instance, path expression /catalog/category/
merchant denotes the nodes of the merchant ele-
ment, which are children of category elements, which
are children of catalog elements. Path expressions
can terminate with an attribute name (prefixed with
the special character @), add conditions in the navi-
gation, and also use special functions. Overall, XPath
is a powerful language and its capabilities match
quite well the access control model’s needs.

Identifying Authorization Subjects
Usually, most approaches identify authorization sub-
jects by their identity or the location from which their
requests originate. In turn, locations can be expressed
through IP addresses (150.100.30.8, for example)
or symbolic names (such as tweety.admin.com). Our
model combines all these features. In it, we charac-
terize subjects requesting access by a triple 〈user-
id,IP-address,sym-address〉, where user-id is
the login name the user used in connecting to the
server, IP-address is the client machine’s address,
and sym-address is the machine’s name.

Our model lets you consider remote identities
trusted by the server (using a Certification Author-
ity or any other secure infrastructure) as well. So
that authorizations can apply to sets of users or
machines, our model also supports groups and
location patterns. Groups are sets of users defined
at the server; they need not be disjoint and can be
nested. On the other hand, a location pattern is an
expression identifying a set of physical locations,
referencing either their symbolic names or IP

addresses. Our model uses the wild card character *
to specify patterns. For instance, 151.100.*.*
denotes all the machines belonging to network
151.100. Similarly, *.it denotes all the machines
in the Italy domain. (See the sidebar, “Dealing with
Roles.”)

For each XML data source, users and groups
linked by their membership relationship, IP address-
es with patterns, and symbolic names with patterns
form three distinct hierarchies. As the same user can
belong to more than one group, the user-group
hierarchy is a direct acyclic graph (DAG), while IP
addresses’ and, as you would expect, symbolic
names’ hierarchies are trees. Figure 1 (next page)
shows an example of such hierarchies. You can
define a general authorization subject hierarchy
ASH by combining user and group, symbolic
names, and IP address hierarchies as follows: A sub-
ject sj is dominated by another subject si (that is, sj

≤ si) if each of sj’s components (namely user group,
IP address, and symbolic name) are dominated by
the corresponding component of si.

While our model conceptually identifies autho-
rization subjects by triples of the general hierarchy,
it can detect relationships between address (and
symbolic names) patterns in a straightforward man-

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 21

XML Access Control

The application scenario we describe in this article assumes an access
control server dealing with locally defined users and groups.While such an
approach might well suffice for a number of intranet-based applications,
Internet services often require access control decisions not to be iden-
tity based. On the global Net, the way users can exercise an access right
(which we characterize as a role) tends to be more important than a par-
ticular user’s identity. For instance,browsing an online library catalog might
require that a user subscribe to the library (user’s identity can be rele-
vant only for accounting purposes or not at all).We use roles to deal with
access requests coming from previously unknown parties.

Our model readily extends to cover this eventuality by considering
roles as an additional component characterizing authorization subjects.
It lets you model subjects requesting access as a 4-tuple 〈user-id, IP-
address, sym-address, role-id〉, where role-id is a set of roles activated by
attaching appropriate accreditation (or attribute) certificates with a
request.1,2 An authorization’s subject can be either a user, group, or role,
possibly restricted with respect to a request’s originating location.

References
1. J. Linn and M. Nyström,“Attribute Certification:An Enabling Technology for Delegation

and Role-Based Controls in Distributed Environments,” Proc. 4th ACM Workshop on Role-

Based Access Control, ACM Press, New York, 1999, pp. 121-130.

2. J.S.Park,R.Sandhu,and G.-J.Ahn,“Roll-Based Access Control on the Web,” ACM Trans. Infor-

mation and System Security, vol. 4, no. 1, Feb. 2001, pp. 37-71.

Dealing with Roles

ner; therefore, only the usual user-group hierarchy
need be explicitly defined and stored at the server. It
can specify access authorizations for any of ASH’s
elements, propagating the authorizations to all sub-
jects that lie below it in the hierarchy. More for-
mally, authorizations specified for subject sj ∈ ASH
are applicable to all subjects si such that si ≤ sj.

A Closer Look at
Fine-Grained Authorizations
To illustrate our model’s expressiveness, consider
the following example. An electronic company,
called OnlineMall, wants to create an online cata-
log so potential customers can search and browse
the catalog and purchase items. The catalog is
encoded in XML and its structure is defined by the
XML schema in Figure 2a.

OnlineMall collects information about products
and services of several merchants such as MyItems.
For accounting purposes, besides catalog informa-
tion, each merchant maintains profiles of its cus-
tomers. Customer profiles, described by the XML
schema in Figure 2b, include such personal cus-

tomer information as name, address, date of birth,
and sex, and general information such as age, pref-
erences, and hobbies.

Here, we present some examples of protection
requirements for the XML document depicted in Fig-
ure 3 (page 24), complying with the XML schema in
Figure 2b, which is stored at the Web site of merchant
MyItems. The letters between square brackets in the
list identify the authorizations in Figure 4 (page 25).
Note that the horizontal line between authorizations
[e] and [f] separates schema-level authorizations ([a]
through [e]) from document-level authorizations ([f]
through [k]).

OnlineMall’s Policy. Specified at the schema level —
applicable to all merchants:

[a] Catalog information is public.
[b] Personal information about merchants can-

not be accessed by customers. (This autho-
rization forbids access only to the textual
content of pinfo’s children, so that cus-
tomers can still see the element names.)

[c] Information about tobacco and wine prod-
ucts can be accessed only by customers who
are not minors.

[d-e] Information about customers cannot be
accessed without the customer’s consent.

MyItems’ Policy. Specified at the document level
by the MyItems merchant to complement or over-
ride the OnlineMall’s policy:

[f] Information about customers cannot be ac-
cessed, unless otherwise stated at the
schema level.

[g] Information about name and address of all
customers can be accessed by members of
the AdmMI group connected from network
130.*.

[h] Customer identifiers can be accessed by the
administrative staff.

[i] General information about customers can be
accessed by members of ProdManager group.

[j] Information about birth date and sex of all
customers can be accessed by members of
ProdManagerMI group when connected
from hosts with domain *.it.

Computing the Requester’s
View on XML Documents
In our model, you compute each subject’s view on
each XML document by combining local and
propagated authorizations at schema and docu-

22 NOVEMBER • DECEMBER 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Public

...

Customers

...

ProdManager AdmMI

Adult

...

Tom Bob

Minor ProdManagerMI

 ... Sam

(a)

(b)

Alice John

UGH

*

... ...

130.*

...

...

149.135.*.* 200.100.80.*

...

...

149.135.80.*

149.135.80.5

IPH

(c)

*

... ...

*.org

...

...

*.com *.edu

...

...tweety.admin.com

SNH

*.admin.com

Figure 1.Sample hierarchies: (a) user group, (b) IP,and
(c) symbolic name.

ment levels. This computation’s first stage is a sim-
ple labeling procedure. To explain the procedure’s
operation, we employ a widely used graphical rep-
resentation of XML documents.1 It represents XML
documents as labeled trees containing a node for
each attribute and element. Elements are repre-

sented as circles and attributes as squares. There is
an arc between an element and an element or
attribute belonging to it.

Figure 3 (next page) illustrates the tree repre-
sentation of an XML document complying with the
schema in Figure 2b. When you request a docu-

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 23

XML Access Control

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
 targetNamespace="http://www.w3.org/namespace/"
 xmlns:t="http://www.w3.org/namespace/">
 <element name="catalog">
 <complexType>
 <sequence>
 <element ref="t:category" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="category">
 <complexType>
 <sequence>
 <element ref="t:merchant" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 <element name="merchant">
 <complexType>
 <sequence>
 <element ref="t:pinfo"/>
 <element ref="t:name"/>
 <element ref="t:URL"/>
 <element ref="t:product" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="pinfo">
 <complexType>
 <sequence>
 <element ref="t:email" minOccurs="0" maxOccurs="1"/>
 <element ref="t:tel"/>
 <element ref="t:fax" minOccurs="0" maxOccurs="1"/>
 </sequence>
 </complexType>
 </element>
 <element name="product">
 <complexType>
 <sequence>
 <element ref="t:item" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="id" type="ID" use="required"/>
 </complexType>
 </element>
 <element name="item">
 <complexType>
 <sequence>
 <element ref="t:name"/>
 <element ref="t:description"/>
 <element ref="t:price"/>
 </sequence>
 </complexType>
 </element>
 <element name="name">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="email">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="tel">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="fax">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="URL">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="description">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="price">
 <complexType mixed="true"> </complexType>
 </element>
</schema>

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
 targetNamespace="http://www.w3.org/namespace/"
 xmlns:t="http://www.w3.org/namespace/">
 <element name="cprofiles">
 <complexType>
 <sequence>
 <element ref="t:customer" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="customer">
 <complexType>
 <sequence>
 <element ref="t:pinfo"/>
 <element ref="t:ginfo" minOccurs="0" maxOccurs="1"/>
 <element ref="t:consent"/>
 </sequence>
 <attribute name="id" type="ID" use="required"/>
 </complexType>
 </element>
 <element name="pinfo">
 <complexType>
 <sequence>
 <element ref="t:name"/>
 <element ref="t:address"/>
 <element ref="t:birthday"/>
 <element ref="t:sex"/>
 </sequence>
 </complexType>
 </element>
 <element name="ginfo">
 <complexType>
 <sequence>
 <element ref="t:age"/>
 <element ref="t:preference" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="t:hobby" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="consent">
 <complexType>
 <attribute name="val" use="default" value="no">
 <simpleType>
 <restriction base="string">
 <enumeration value="yes"/>
 <enumeration value="no"/>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 <element name="name">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="address">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="preference">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="hobby">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="birthday">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="sex">
 <complexType mixed="true"> </complexType>
 </element>
 <element name="age">
 <complexType mixed="true"> </complexType>
</element>
</schema>

(a) (b)

Figure 2.Two examples of XML schema: (a) catalog structure, (b) customer profiles.

ment, the analysis of all the authorizations being
held for you produces an access decision (yes or no,
depicted as + or –) on each node to which some
authorization applies. To obtain this outcome, we
associate with each note a list of signs, corre-
sponding to authorizations of different types.
Namely, our tree-labeling process associates to each
element or attribute node n an 8-tuple 〈LXHn; RXHn;
Ln; Rn; LXn; RXn; LSn; RSn〉, whose content reflects
the authorizations specified on the node. In other
words, the 8-tuple elements contain the signs of the
authorizations of types Local for the XML Schema
Hard; Recursive for the XML Schema Hard; Local;
Recursive; Local for the XML Schema; Recursive
for the XML Schema Local Soft; and Recursive

Soft; holding for each node n. The eight types arise
from the combination of three properties: propa-
gation (local or recursive), level (document or
schema), and strength (normal and soft or hard).

An element’s order in the 8-tuple reflects its pri-
ority, from the highest to the lowest, in determin-
ing the access decision. Each element in the tuple
can assume one of three values: + for permission,
– for denial, and ε for no authorization. Local
authorizations holding for each node propagate to
its attributes, while propagating authorizations
also propagate to its subelements. You can over-
ride authorizations according to a most specific
object takes precedence principle, which guaran-
tees that authorizations on a node take precedence
over those on its ancestors. This principle operates
together with the denial takes precedence policy
we discussed earlier.

Thus, you can obtain a document’s labeling by
starting from its root and, proceeding downward
with a preorder visit, updating the 8-tuple of a
node n depending on its values and the values of
the 8-tuple of node p parent of n in the tree. At the
visit’s end, for each node n of the document tree,
the authorization valid on n will be the not-null
one with the highest priority. The decision value is
set to the null value ε when no authorizations have
been specified nor can be derived for n. You can
interpret value ε as either a negation or a permis-
sion, corresponding to the enforcement of the
closed or the open policy.2 We act conservatively,
choosing the closed policy.

Document Transformation
After the labeling process, the requester can access
all the elements and attributes whose label is pos-
itive. For elements with a negative or undefined
label that have a descendant with a positive label,
start and end tags will also be included in the doc-
ument portion visible to the requester. You can
obtain the document view by pruning from the
original document tree all the subtrees containing
only nodes labeled negative or undefined. You per-
form this pruning using a postorder visit on the
document removing any leaf labeled – or ε.

The pruned document might not conform with
the original schema. This will happen, for instance,
when required attributes are deleted because the
requester is not entitled to receive them. Typically,
this is not a problem and it is sufficient for the XML
document to be well formed. If the document must
be validated at the client side, you can apply a loos-
ening transformation to the schema, defining as
optional all the elements and attributes marked as

24 NOVEMBER • DECEMBER 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

"no"

"no"

"yes"

"c01"

Lion St. 15, CA

Male

Steve

"c02"

Drive Ave 5, PA

January, 5

Male

Dave

traveling

biking

37

"c03"

Ann

Princeton Ave 5, NY

August, 3

Female

30

June, 23

customer id

name

address

consent val

customer id

name

address

age

consent val

hobby

hobby

customer id

name

address

age

consent val

cprofiles

birthday

sex

pinfo

birthday

sex

ginfo

pinfo

birthday

sex

ginfo

pinfo

preference Personal Care

Figure 3. A valid XML document conforming to the XML schema in
Figure 2b.

required in the original schema. Schema loosening
also prevents users from detecting whether infor-
mation was hidden by the security enforcement or
simply missing in the original document.

A Sample Transformation
We now provide a step-by-step example based on
the XML document in Figure 3, using the set Auth
of authorizations depicted in Figure 4 and the
user-group hierarchy shown in Figure 1.

Consider two requests to read the document, the
first submitted by user Sam connected from host
130.89.56.8with symbolic name nf3lab.staff.it
and the second from user Trent connected from host
130.100.50.5 with symbolic name u20.staff.it.
Trent is a product manager of the FurnitureSup-
pliermerchant, a member of company OnlineMall.
According to the authorizations stated by the com-
pany and by the MyItems, because Sam is a member
of the AdmMI group, he can only access all informa-
tion about customers who give a positive consent,
and names and addresses of all other customers. But,
because Trent is a member of OnlineMall’s Prod-
Manager group, he can access general information
about customers but not personal information.

Figure 5 (next page) shows the resulting view
of Sam and Trent. Sam view is restricted to admin-
istrative information, while Trent view is restrict-
ed to general marketing information. Neither Sam
nor Trent have a full view on the document.

Designing and Implementing an
Access Control Processor for XML
We implemented a prototype of the system to
demonstrate how our access control technique can
be smoothly integrated with existing XML-based
solutions.

As one of our first decisions in implementing
the prototype, we decided to use the Java platform.
This is a natural choice in the current XML con-
text, where Java-based solutions are quite com-

mon. We first focused our prototype design efforts
on demonstrating the access control model’s inter-
nal mechanisms. Then, we refined it using a num-
ber of different server-side solutions: simple CGI
architectures, Java servlets, and JSP pages. We
also integrated the prototype with an XSL pro-
cessing tool (the Cocoon environment produced by
the Apache Software Foundation) and verified the
use of an SSL implementation as a transport layer,
a solution that would probably be used in secure
environments. All these experiments demonstrat-
ed the model’s applicability and flexibility.

Incidentally, we could have implemented the pro-
totype with XSLT, defining a set of templates that,
considering the requesting user and existing autho-
rizations, would transform the XML document to
remove the protected parts. The XSLT solution does
not require a complex programming environment
nor a Java virtual machine, whereas XSLT engines
are already available in many XML processing envi-
ronments, without requiring a complex program-
ming environment or a JVM. However, the XSLT
language is designed to describe local XML trans-
formations, so it is quite cumbersome for use in real-
izing an implementation of our access control
model, which requires propagation of authorizations
and conflict resolution among positive and negative
authorizations. XSLT would be an interesting option
for implementing an access control model simpler
than the one we describe here.

Use of the System
Our system manages documents internally by rep-
resenting them as object trees, according to the
Document Object Model specification (www.w3org/
TR/REC-DOM-Level-1). We chose DOM as the
internal data representation format because it pro-
vides an object-oriented API for HTML and XML
documents.

Our prototype is based on the definition of a
set of Java classes describing users, groups,

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 25

XML Access Control

Figure 4. Examples of authorizations.

[a] <<Public,*,*>, /catalog, read, +, RX>
[b] <<Customers,*,*>, /catalog//pinfo//text(), read, –, RXH>
[c] <<Minors,*,*>, //product[.//description[contains(text(),'tobacco')

or contains(text(),'wine')]], read, –, R>
[d] <<Public,*,*>, /cprofiles, read, –, RX>
[e] <<Public,*,*>, /cprofiles/customer[./consent[@val='yes']], read, +, RX>
--
[f] <<Public,*,*>, /cprofiles/, read, –, RS>
[g] <<AdmMI,130.*,*>, /cprofiles//info/node()[position()=1

or position()=2], read, +, L>
[h] <<AdmMI,*,*>, /cprofiles/customer/@id, read, +, L>
[i] <<ProdManager,*,*>, /cprofiles//ginfo, read, +, L>
[j[<<ProdManagerMI,*,*.it>, /cprofiles//pinfo/node()[position()=3

or position()=4], read, +, L>

authorizations, and security labels. We do not
detail the design and organization of classes, but
in this context only provide an example of use of
our prototype. The fragment of Java program in
Figure 6 uses six parameters: three String vari-
ables representing the user name, IP address and
symbolic address, and three File parameters rep-
resenting the user–group hierarchy, the autho-
rizations to apply, and the document requested by
the user.

Statement 1 initializes variable ugRep, instance
of class UserGroupRepository, which represents,
in the internal memory format of the prototype,

the user–group hierarchy described in the XML file
usersAndGroupsFile. Variable user is created in
statement 2, initialized to the object in ugRep iden-
tified by the name appearing in parameter user-
Name. In statement 3, an instance authSubj of
class AuthorizationSubject is created, using as
parameters symbName, ipAddr, and the user vari-
able created in the previous statement. The three
parameters fully characterize the subject with
respect to the identification of the authorizations
that should be applied.

Statements 4 to 6 build an instance of DocInfo,
a support class that binds the document with the
authorization files applicable to it; the XML doc-
ument the user wants to access is in file docu-
mentFile and the authorizations are in XML file
authorizationsFile. Statement 7 creates the
instance factory of class SecureDocumentFacto-
ry; this class is responsible for creating the pruned
document, receiving as parameter the User-
GroupRepository on which authorization sub-
jects should be evaluated; statement 8 associates
variable factory with the document and its
authorizations, as represented in variable docIn-
fo. In statement 9, the ACP is finally invoked, by
method getDocumentForUser, using as parame-
ter the authSubj object; the method returns the
pruned document, which is assigned to variable

26 NOVEMBER • DECEMBER 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

"c03"

Ann

Princeton Ave 5, NY

"c01"

"yes"

Lion St. 15, CA

Male

Steve

"c02"

Drive Ave 5, PA
Dave

June, 23

traveling

biking

37

"c01"

"yes"

Lion St. 15, CA

Male

Steve

June, 23

30

Personal Care
(a) (b)

customer

name

address

consent val

customer id

name

address

cprofiles

customer id

name

address

pinfo

customer

name

address

consent val

customer

cprofiles

age

hobby

hobby

ginfo

customer

id id

age

birthday

sex

pinfo

pinfo

birthday

sex

pinfo

ginfo

preference

Figure 5.The views of user Sam (a) and user Trent (b) on the document in Figure 3b.

DOM—http://www.w3.org/TR/REC-DOM-Level-1
Fine-Grained XML Access Control—http://sansone.crema.unimi.it/

~xml-sec
XML—http://www.w3.org/TR/REC-xml
XML schema—http://www.w3.org/TR/xmlschema-2
XPath—http://www.w3.org/TR/xpath
XQuery—http://www.w3.org/TR/xquery
XSLT—http://www.w3.org/TR/xslt

Online Resources

prunedDocument.

The ACP follows three steps when it is invoked
by method getDocumentForUser.

� Parsing. The parsing step consists of checking
the syntax of the requested document with
respect to the associated XML schema and its
compilation to obtain an object-oriented docu-
ment graph according to the DOM format. In
the prototype this task is realized by Apache
Software Foundation’s Xalan tool.

� Tree labeling. The labeling step involves the
propagation of the labeling of the DOM tree
according to the authorizations associated with
the document. If the current user satisfies the
pattern represented by the authorization’s sub-
ject, the authorization is added to the nodes
described by the authorization’s object.

� Transformation. The transformation phase is
the pruning of the DOM tree, described earlier.
A visit on the document tree first evaluates in
preorder the label of the current node, consid-
ering all authorizations defined on the node
and recursive authorizations coming from the
parent node. If the node has a negative label
and it has an empty set of children, the node is
removed from the document, pruning the DOM
tree. The resulting DOM structure is then
returned as the result.

Evolving the Prototype
Despite the access model’s capabilities, the fine
granularity on which accesses can be granted, and
the use of nontrivial algorithms, the major source
of computational complexity lies in the interpreta-
tion of the XPath expressions that identify the
nodes. If all authorization objects are represented
by an XPointer, the system characteristically has a
linear complexity in the size of the document and
the authorizations. In other words, our model does
not introduce any fundamental increase in com-
plexity. Moreover, several optimization techniques

will speed up access control, including low-level
refinements (for example, the use of a compiled
language instead of Java), as well as a few high-
level strategies.

A first strategy consists of prelabeling docu-
ments to associate authorizations with the nodes
of XML documents in anticipation of user
requests. A further strategy involves the definition
of auxiliary structures to reduce the labeling pro-
cedure’s granularity (for example, if an authoriza-
tion defined on a node n is not overridden by any
other authorization on its subnodes, the labeling
procedure can deal with the subtree whose root is
n as a unity).

Yue Wang and Kian-Lee Tan describe an ACP
built starting from our prototype, which tries to
improve system performance by avoiding the
DOM construction and relying on a relational
storage to compute access only to the fraction
of data that the user is authorized to see.3 This
is an interesting solution, which is applicable in
certain contexts (in particular, when authoriza-
tions severely restrict the portion of XML infor-
mation that a user can access) and which can
exploit the results of research on relational stor-
age of XML information.

Conclusions
One of the evident features of our proposed sys-
tem is its richness, which lets you define sophisti-
cated security requirements but also might require
the authorization designer to carefully consider
each authorization’s implications. Also, the system
reads authorizations in an XML format, which the
designer might find difficult to manage if the XML
representation must be created with a text editor
or an unspecialized XML tool. To solve both prob-
lems, we implemented a tool in Java offering a
graphical interface to the ACP, supporting the def-
inition of user-group hierarchies and authoriza-
tions and their rapid interactive evaluation on the
XML repository.

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2001 27

XML Access Control

Figure 6. Fragment of Java program using the prototype implementation.

(1) UserGroupRepository ugRep = UserGroupRepository.getInstance(usersAndGroupsFile);

(2) UserGroup user = ugRep.userGroupByName(userName);

(3) AuthorizationSubject authSubj = new AuthorizationSubject(symbName,ipAddr,user);

(4) DocInfo docInfo = new DocInfo();

(5) docInfo.setXmlFile(documentFile);

(6) docInfo.addAuthDocuments(authorizationsFile);

(7) SecureDocumentFactory factory = SecureDocumentFactory.getInstance(ugRep);

(8) factory.setTargetDocument(docInfo);

(9) Document prunedDocument = factory.getDocumentForUser(authSubj);

References

1. J. Siméon and K. Smaga, “Your Mediators Need Data Con-

version,” Proc. ACM SIGMOD Int’l Conf. Management of

Data, ACM Press, New York, 1998, pp. 177-188.

2. S. Jajodia et al., “Flexible Support for Multiple Access Control

Policies,” ACM Trans. Database Systems, 2001; to appear.

3. Y. Wang and K.-L. Tan, “A Scalable XML Access Control

System,” Poster Proc. 10th Int’l World Wide Web Conf.,

Elsevier, Dordrecht, the Netherlands, 2001, pp. 150-151.

Ernesto Damiani is an associate professor at the Department

of Information Technology of the University of Milan. His

research interests include distributed and object-oriented

systems, semistructured information processing, and soft

computing. He holds a Laurea in electrical engineering

from the University of Pavia and a PhD in computer sci-

ence from the University of Milan. He is the vice chair of

ACM SIGAPP and the general chair of the International

Conference on Knowledge-Based Engineering Systems.

Sabrina De Capitani di Vimercati is an assistant professor at

the Department of Electronics for Automation at the Uni-

versity of Brescia. She received a Laurea and a PhD in com-

puter science from the University of Milan. Her research

interests are in information security, databases, and infor-

mation systems. She has been an international fellow in

the Computer Science Laboratory at SRI. She is co-recipi-

ent of the ACM-PODS 99 Best Newcomer Paper Award.

Stefano Paraboschi is an associate professor at the Department

of Electronics and Information at the Milan Politechnic. He

received the Laurea in electrical engineering and a PhD in

informatics from Milan Politechnic. His main research inter-

ests are in databases, with a focus on active databases, data

warehouses, and the construction of data-intensive Web

sites. He is the coauthor of Database Systems: Concepts,

Languages and Architectures (McGraw-Hill 1999).

Pierangela Samarati is a professor at the Department of Infor-

mation Technology at the University of Milan. Her main

research interests are in data and application security,

information system security, access control policies, mod-

els and systems, and information protection in general. She

has been a computer scientist in the Computer Science Lab-

oratory at SRI. She is coauthor of Database Security (Addi-

son-Wesley, 1995) and is co-recipient of the ACM-PODS

99 Best Newcomer Paper Award.

Readers may contact the authors at {damiani, samarati}@

dti.unimi.it, decapita@ing.unibs.it, and parabosc@elet.polimi.it.

Feature

PURPOSE The IEEE Computer Society is the world’s

largest association of computing professionals, and is the

leading provider of technical information in the field.

MEMBERSHIP Members receive the monthly

magazine COMPUTER, discounts, and opportunities

to serve (all activities are led by volunteer

members). Membership is open to all IEEE

members, affiliate society members, and others

interested in the computer field.

B O A R D O F G O V E R N O R S
Term Expiring 2001: Kenneth R.Anderson,
Wolfgang K.Giloi, Haruhisa Ichikawa, Lowell G.
Johnson, Ming T.Liu, David G.McKendry, Anneliese
Amschler Andrews

Term Expiring 2002: Mark Grant, James D.
Isaak, Gene F.Hoffnagle, Karl Reed, Kathleen M.
Swigger, Ronald Waxman,Akihiko Yamada

Term Expiring 2003: Fiorenza C.Albert-
Howard, Manfred Broy, Alan Clements, Richard A.
Kemmerer, Susan A.Mengel, James W.Moore,
Christina M.Schober

Next Board Meeting: 8 Feb 2001, Orlando, FL

I E E E O F F I C E R S
President: JOEL B. SNYDER

President-Elect: RAYMOND D. FINDLAY

Executive Director: DANIEL J. SENESE

Secretary: HUGO M. FERNANDEZ VERSTAGEN

Treasurer: DALE C. CASTON

VP, Educational Activities: LYLE D. FEISEL

VP, Publications Activities:JAMES M. TIEN

VP, Regional Activities: ANTONIO BASTOS

VP, Standards Association: MARCO W. MIGLIARO

VP, Technical Activities: LEWIS M. TERMAN

President, IEEE-USA: NED R. SAUTHOFF

EXECUTIVE COMMITTEE

President: BENJAMIN W. WAH*
University of Illinois
Coordinated Sci Lab
1308 W. Main St
Urbana, IL 61801-2307
Phone: +1 217 333 3516 Fax: +1 217 244 7175
b.wah@computer.org

President-Elect: WILLIS K. KING*

Past President: GUYLAINE M. POLLOCK*

VP, Educational Activities: CARL K. CHANG (1ST VP)*

VP, Conferences and Tutorials: GERALD L. ENGEL*

VP, Chapters Activities: JAMES H. CROSS†

VP, Publications: RANGACHAR KASTURI†

VP, Standards Activities: LOWELL G. JOHNSON*

VP, Technical Activities: DEBORAH K. SCHERRER

(2ND VP)*

Secretary: WOLFGANG K. GILOI*

Treasurer: STEPHEN L. DIAMOND*

2000–2001 IEEE Division V Director:
DORIS L. CARVER†

2001–2002 IEEE Division VIII Director:
THOMAS W. WILLIAMS†

Acting Executive Director: ANNE MARIE KELLY†

* voting member of the Board of Governors

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
http://computer.org, offers information and samples
from the society’s publications and conferences, as well
as a broad range of information about technical
committees, standards, student activities, and more.

COMPUTER SOCIETY OFFICES
Headquarters Office

730 Massachusetts Ave.NW
Washington, DC 20036-1992
Phone:+1 202 371 0101 • Fax:+1 202 728 9614
E-mail:hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
Phone:+1 714 8218380
E-mail:help@computer.org
Membership and Publication Orders:
Phone:+1 800 272 6657 Fax:+1 714 821 4641
E-mail: help@computer.org

European Office
13, Ave.de L’Aquilon
B-1200 Brussels, Belgium
Phone:+32 2 770 21 98 • Fax:+32 2 770 85 05
E-mail: euro.ofc@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,Minato-ku,
Tokyo107-0062, Japan
Phone:+81 3 3408 3118 • Fax:+81 3 3408 3553
E-mail: tokyo.ofc@computer.org

E X E C U T I V E S T A F F
Acting Executive Director :ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Acting Director,Volunteer Services:
MARY-KATE RADA
Chief Financial Officer: VIOLET S.DOAN
Director, Information Technology & Services:
ROBERT CARE
Manager, Research & Planning: JOHN C.KEATON

