XDuce: A Typed XML Processing Language
(Preliminary Report)

Haruo Hosoya! and Benjamin Pierce?

! Department of CIS, University of Pennsylvania
hahosoya@cis.upenn.edu

2 Department of CIS, University of Pennsylvania
bcpierce@cis.upenn.edu

1 Introduction

Among the reasons for the popularity of XML is the hope that the static typing
provided by DTDs [XML] (or more sophisticated mechanisms such as XML-
Schema [XS00]) will improve the safety of data exchange and processing. But,
in order to make the best use of such typing mechanisms, we need to go beyond
types for documents and exploit type information in static checking of programs
for XML processing.

In this paper, we present a preliminary design for a statically typed program-
ming language, XDuce (pronounced “transduce”). XDuce is a tree transforma-
tion language, similar in spirit to mainstream functional languages but special-
ized to the domain of XML processing. Its novel features are reqular expression
types and a corresponding mechanism for regular expression pattern matching.
Regular expression types are a natural generalization of DTDs, describing, as
DTDs do, structures in XML documents using regular expression operators (i.e.,
* 7, |, etc.). Moreover, regular expression types support a simple but powerful
notion of subtyping, yielding a substantial degree of flexibility in programming.
Regular expression pattern matching is similar to ML pattern matching except
that regular expression types can be embedded in patterns, which allows even
more flexible matching.

In this preliminary report, we show by example the role of these features in
writing robust and flexible programs for XML processing. After discussing the
relationship of our work to other work, we briefly sketch some larger applica-
tions that we have written in XDuce, and close with remarks on future work.
Appendices give a formal definition of the core language.

2 Programming in XDuce

We develop a series of examples of programming in XDuce, using regular ex-
pression types and regular expression pattern matching.



2.1 Regular Expression Types

Values and Types XDuce’s values are XML documents. A XDuce program
may read in an XML document as a value and write out a value as an XML
document. Even values for intermediate results during the execution of the pro-
gram have a one-to-one correspondance to XML documents (besides some trivial
differences).

As concrete syntax, the user has two choices: XML syntax or XDuce’s native
syntax. We can either write the following XDuce value (we assign it to the
variable mybook for later explanation)

val mybook = addrbook[
name ["Haruo Hosoya"],
addr ["Tokyo"],
name ["ABC"],
addr["Def"],
tel["123-456-789"],
name ["Benjamin Pierce"],
addr ["Philadelphia"]]

in the native syntax, or the following corresponding document in standard XML
syntax:

<addrbook>
<name>Haruo Hosoya</name>
<addr>Tokyo</addr>
<name>ABC</name>
<addr>Def</addr>
<tel>123-456-789</tel>
<name>Benjamin Pierce</name>
<addr>Philadelphia</addr>

</addrbook>

XDuce provides term constructors of the form label[...], where ... is a se-
quence of other values. This corresponds to <label>...</label> in XML no-
tation. We enclose strings in double-quotes, unlike XML.

Observe the sequence contained in addrbook. It is natural to impose a struc-
ture on the seven children so that they can be regarded as three “entries,” each
of which consists of fields tagged name, addr and optional tel. We can capture
this structure by defining the following regular expression types.

type Addrbook = addrbook[(Name,Addr,Tel?)*]
type Name = name[String]

type Addr = addr[String]

type Tel = tel[String]

These XDuce definitions roughly correspond to the following DTD:

<!ELEMENT addrbook (name,addr,tel?)*>
<!ELEMENT name #PCDATA>
<!ELEMENT addr #PCDATA>
<!ELEMENT tel #PCDATA>



(Just as XDuce can read standard XML documents, we also provide a construct
to import DTDs as regular expression types.) Type constructors labell...]
have the same form as the term constructors that they classify. In addition,
types may be formed using the regular expression operators * for repetition, |
for alternation, and ? for optional elements. (We will show examples of alterna-
tions later.) For instance, the type (Name,Addr,Tel?)* stands for zero or more
repetitions of the sequence of a Name, an Addr, and an optional Tel.

The notion of subtyping will play a crucial role in the calculation that justifies
assigning the type Addrbook to the value mybook.

Subtyping Before showing the subtyping relation, we need to clearly state this:
the elements of every type in XDuce are sequences. For example, the type Tel*
contains the following sequences.

O the empty sequence
tel["123"] sequence with one Tel
tel["123"],tel["234"] sequence with two Tel’s

In the type language, comma is the type constructor for concatenation of
sequences. For example, the type (Name,Telx*, Addr) contains

name["abc"],addr["ABC"]
name["abc"],tel["123"],addr["ABC"]
name["abc"],tel["123"],tel["234"] ,addr ["ABC"]

i.e., sequences with one Name value, followed by zero or more Tel values, then
followed by one Addr value. The comma operator on types is associative: the
types ((Name,Telx),Addr) and (Name, (Tel*,Addr)) have exactly the same
set of elements.

The subtype relation between two types is simply inclusion of the sets denoted
by types(see Appendix A for the formal definition).

We now show the sequence of steps involved in verifying that mybook has type
Addrbook. First, from the intuition that ? means “optional,” we would expect
the following relations:

Name,Addr <: Name,Addr,Tel?
Name, Addr,Tel <: Name,Addr,Tel?

Notice that each right hand side has more possibilities than the left hand side.
Similarly, * means “zero or more” intuitively, so in particular it could be three:

T,T,T < T*
Combining these relations, we obtain

(Name, Addr) , (Name,Addr,Tel) , (Name,Addr) <: (Name,Addr,Tel?)x*.



Since comma is associative, we can get rid of parentheses:

Name,Addr ,Name,Addr,Tel,Name,Addr
= (Name,Addr) , (Name,Addr,Tel) , (Name,Addr)

(Here, we mean by T = U that both T <: U and U <: T.) Finally, combining these
two relations and enclosing both sides by addrbook constructor, we obtain

addrbook [Name ,Addr ,Name,Addr ,Tel,Name,Addr]
<: addrbook[ (Name,Addr,Tel?) *]

4ef ) ddrbook.

Since the mybook value trivially has the type on the left hand side, it has also
the type on the right hand side.

Union Types XDuce also provides a union (or alternation) type constructor
|. For example, we write (Name|Tel) to mean “either Name or Tel”; the basic
subtyping relations for union types are the following.

Name <: Name | Tel
Tel <: Name | Tel

Notice that each right hand side offers more possibilities, and so describes a
larger set of sequences.

Union types substantially increase our flexibility in programming. In partic-
ular, union types yield two interesting relations: “forget ordering” subtyping and
“distributivity.” These are the distinguishing points in union types, as opposed
to conventional tagged sum types (as found, say, in ML). To illustrate these, let
us consider the following scenario of a “database evolution.”

Suppose we begin with a trivial database consisting of just a list of names,
with type Name*. At some point, this database is copied to two different sites and
maintained and evolved separately. At one site, address information is added to
each name and the type of the database becomes (Name,Addr)*, while at the
other telephone numbers are added and it becomes (Name, Tel) *.

Now, suppose we want to re-integrate these databases—that is, combine the
copies srci1, whose type is (Name,Addr)*, and src2 of type (Name,Tel)* by
concatenating them: src1, src2. The type of this merged database is, of course,
(Name, Addr)*, (Name,Tel)x.

Next, suppose we want to do something with our new database that involves
extracting the common part (i.e., the name) from each record. Since we have
two repetitions in the type, we might expect to need two loops in the program.
(We do not show such a program explicitly, but it is easy to write.) However,
we can do better by making the two loops into one, using the following “forget
ordering” subtype relation:

(Name,Addr)*, (Name,Tel)* <: ((Name,Addr) | (Name,Tel))=*



The intuition behind this relation is that the ordering information of the left
hand side is forgotten on the right hand side. That is, on the left hand side, any
(Name,Tel) pairs must occur after any (Name,Addr) pairs, while on the right
hand side, these pairs can appear in any order.

Finally, since we have two alternatives joined by | in the new type, we might
expect to need two branches in our inner loop, to extract the Name field from
each of them. But we don’t: we can use the following distributive subtyping law

(Name,Addr) | (Name,Tel) = Name, (Addr | Tel)

to reorganize the type so that the Name field can be accessed directly.

2.2 Regular Expression Pattern Matching

Our term language is based on a powerful form of pattern matching. Our pattern
matching is similar in spirit to ML’s (or Haskell’s, etc.), but somewhat more
powerful, since it includes the use of regular expression types to dynamically
match values of those types. Our patterns also require a different treatment of
the usual checks for exhaustiveness and ambiguity of patterns.

The body of a XDuce program is a series of function definitions. As an
example, the following function converts an address book into a telephone list.

fun mkTellList : (Name,Addr,Tel?)* — (Name,Tel)* =
name[n:String], addr[a:String], tel[t:String],
rest: (Name,Addr,Tel?) *
— name[n], tel[t], mkTelList(rest)
| name[n:String], addr[a:Stringl, rest:(Name,Addr,Tel?)x*
— mkTelList (rest)
I O

- 0

This function takes a value of type (Name,Addr,Tel?)* and returns a value of
type (Name,Tel)*. The body is a pattern match that breaks up the possibilities
on the input values into three cases. The first case matches when the input value
is a sequence beginning with name, addr, and tel labels, followed by some further
sequence of type (Name,Addr,Tel?)*. In this case, we pick out the name and tel
elements and prepend them to the result of calling mkTelList recursively on the
remainder. The second case matches when we cannot find tel after addr, and
simply calls mkTelList recursively. The third case matches the empty sequence,
and returns the empty sequence.

As another example, consider the following function firstTriple, which
takes out the first entry with a tel element.

fun firstTriple : (Name,Addr,Tel?)* — (Name,Addr,Tel)? =
ps: (Name,Addr)*, t:(Name,Addr,Tel), rest:(Name,Addr,Tel?)* — t
| whole:(Name,Addr,Tel?)* — ()

The function firstTriple has a pattern matching with two cases. In the first
case, we skip all “pair” entries (i.e., (Name,Addr)) from the beginning and then



pick out the first “triple” entry (i.e., (Name,Addr,Tel)) if such an entry exists.
The second case matches otherwise and returns the empty.

The second example is more interesting in that the use of regular expression
types is more critical there than in the first example. In the first case in the
first example, the pattern matcher will walk over the first three elements of label
name, addr, and tel, and then try to match the rest value against the pattern
rest: (Name,Addr,Tel?)* However, any value should already have this type.
Therefore such a matching would not be meaningful. This is not true in the first
case in the second example. When the pattern matcher looks at the first pattern
ps: (Name, Addr) * in the first case, there is no hint about how many entries are
“pairs.” Therefore the matcher must walk through the input value to find where
the chain of pairs ends. This matching for a variable length sequence is beyond
ML pattern matching.

In these examples, pattern matchings are exhaustive. That is, all the values
of type (Name,Addr,Tel?)* are covered by these patterns. In order to check
exhaustiveness, we again use subtyping. For instance, in the first example, we
check the following subtype relation

(Name, Addr,Tel?) *

<: name[String], addr[String], tel[String], (Name,Addr,Tel?)*
| name[String], addr[String], (Name,Addr,Tel?)x*
IO

where the left hand side is the parameter type on the annotation and the right
hand side is the type constructed from the patterns (i.e., the union of the patterns
with all the term variables n, a, etc. removed). (Although in these examples
subtyping of the other way around also holds, we do not check this since allowing
this sometimes makes programming easier. Such a situation typically occurs
when a pattern contains variables whose type information is useless in the body.)

Our pattern matchings can have two kinds of ambiguity. The first ambiguity
occurs when multiple patterns match the same input value. For example, the
patterns in firstTriple function above are ambiguous since any value that
matches the first pattern also matches the second pattern. In such a case, we
simply take the first matching pattern (“first matching policy”). The second
ambiguity occurs when a single pattern can have multiple ways for variable
bindings. This is intrinsic in regular expression pattern matching. For example,
suppose we replace the first case in firstTriple with the following:

es: (Name,Addr,Tel?)*, t:(Name,Addr,Tel), rest:(Name,Addr,Tel?)* — t

since we now skip both pair and triple entries at the beginning using the pat-
tern es: (Name,Addr,Tel?)*, it is not clear which triple entry the variable t
is bound to. We resolve this ambiguity by adopting a “longest match” policy
where patterns appearing earlier have higher priority. In this example, the first
(Name,Addr,Tel?)* matches as a long sequence as possible and therefore t is
bound to the last triple entry. See Section Appendix C for a more formal treat-
ment.



Another possible approach to resolving this ambiguity issue would be to
simply disallow ambiguity. However, when we want to write a “default case” in
a pattern matching, this restriction would force to write a somewhat cumbersome
pattern that captures the “negation” of the other cases.

2.3 More Complex Example: Folder Manipulation

Up to now, the types that we have seen looked like regular expressions on strings.
More interesting programs involve regular expressions on trees. Consider the
following program.

type Folder = Record*
type Record name [String], folder[Folder]
name [String], url[String], exists[Bool]

fun tidyFolder : Folder—Folder =
record:Record, folder:Folder
— tidyRecord(record), tidyFolder(folder)
IO =0

fun tidyRecord : Record—Record? =
name [nm:String], folder[fl:Folder]
— name[nm], folder[tidyFolder(£f1)]
| name[nm:String], url[s:Stringl, exists[false[]]
- 0
| name[nm:String], url[s:String], exists[true[]]
— name[nm], url[s], exists[true[]]

The mutually recursive types Folder and Record define a simple template for
storing structured lists of bookmarks, as might be found in a web browser: a
folder is a list of records, while a record is either a named folder or a named
URL plus a boolean indicating whether the link is good or broken. The functions
tidyFolder and tidyRecord traverse a bookmark list recursively, preserving
leaves with good links and dropping ones with bad links.

3 Related Work

Mainstream XML-specific languages can be divided into query languages such
as XML-QL [DFF*] and Lorel [AQM™*97] and programming languages such as
XSLT [XSL]. In general, when one is interested in rather simple information
extraction from XML databases, programs in programming languages are less
succinct than the same programs in a suitable query language. On the other
hand, programming languages tend to be more suitable for writing complicated
transformations like conversion to a display format. XDuce is categorized as a
programming language.

Static typing of programs for XML processing has been approached from
several different angles. One popular approach is to embed a type system for



XML in an existing typed language. The advantage is that we can enjoy not
only the static safety and typechecking, but also all the other features provided
by the host language. The cost is that XML values and their corresponding
DTDs must be some how “injected” into the value and type space of the host
language; this usually involves adding more layers of tagging than were present
in the original XML documents, which inhibits subtyping. The lack of subtyping
(or availability of only restricted forms of subtyping) is not a serious problem
for simple traversal of tree structures; it becomes a stumbling block, though,
in tasks like the “database evolution” that we discussed in Section 2, where
forget-ordering subtyping and distributivity were critically needed.

A recent example of the embedding approach is Wallace and Runciman pro-
posal to use Haskell as a host language [WR99] for XML processing. The only
thing they add to Haskell is a mapping from DTDs into Haskell datatypes. This
allows their programs to make use of other mechanisms standard in functional
programming languages, such as higher-order functions, parametric polymor-
phism, and pattern matching. However, they do not have any notion of sub-
typing. Moreover, pattern matching in XDuce is more powerful than Haskell’s
in some cases. For instance, as shown in Section 2.2, we can concisely write
patterns that skip a variable length sequence by using regular expression types.
A difference in the other direction is that XDuce does not currently support
higher-order functions or parametric polymorphism. (We are working on both
of these extensions.)

Another piece of work along similar lines is the functional language XM for
XML processing, proposed by Meijer and Shields [MS99]. Their type system is
not described in detail in this paper, but seems to be close to Haskell’s, except
that they incorporate Glushkov automata in type checking, resulting in a more
flexible type system.

A closer relative to XDuce is the query language YAT [CS98], which allows
optional use of types similar to DTDs. The notion of subtyping between these
types is somewhat weaker than ours (lacking, in particular, the distributivity
laws used in the “database evolution” example in Section 2.1).

Milo, Suciu, and Vianu have studied a typechecking problem for their gen-
eral framework called k-pebble tree transducers, which can capture a wide range
of query languages for XML [MSV00]. The types there are based on tree au-
tomata and conceptually identical to those of XDuce. Papakonstantinou and
Vianu present a typechecking algorithm for their query language loto-gl by using
extensions to DTDs [PV00]. One of their extensions is equivalent to tree au-
tomata. The type checking algorithms presented in both papers are semantically
complete, while XDuce’s is not (since such typechecking would be undecidable
in general for Turing-complete languages).

The type system of XDuce was originally motivated by the observation by
Buneman and Pierce [BP99] that untagged union types corresponded naturally
to forms of variation found in semistructured databases.



4 Conclusions and Future Work

We have presented several examples of XDuce programming and shown how we
can write flexible and robust programs for processing XML by combining regular
expression types and regular expression pattern matching.

We consider XDuce suitable for applications involving rather complicated
tree transformation. Moreover, for such applications, our static typing mecha-
nism would help in reducing development periods.

In this view, we have built a prototype implementation of XDuce and used
it to develop some small but non-trivial applications:

Bookmarks can be viewed as a simple database query. It takes as input an
Netscape bookmarks file of type Bookmarks, which is a subset of the (much
larger) type HTML. It extracts a certain folder named “Public”, formats
it as a free-standing document, adds a table of contents at the front, and
inserts links between the contents and the body. The result has type the full
HTML type. (Total: 224 lines)

Html2Latex takes an HTML file (of type HTML) and converts it into LaTeX
format (of type String). (264 lines)

Diff implements the “tree diff” algorithm proposed by Chawathe [Cha99]. It
takes a pair of XML files of generic Xml type and returns a tree with anno-
tations indicating whether each subtree has been retained, inserted, deleted,
or changed between the two inputs. (300 lines)

The first two applications are written in the way that traverses the input tree
by several simple recursive functions. The third one is more complex. The first
phase is a dynamic programming algorithm, where regular expression types are
used for representing the internal data structures; the second phase combines
two input trees and inserts annotations at each node, where types ensure that
the annotations and the actual trees are never confused. In the course of writing
these applications, our type checker gave us tremendous help in finding silly
mistakes.

The implementation of XDuce raises many algorithmic issues. The primary
source of complication is that types and patterns in XDuce are essentially tree
automata and therefore we need to use operations on tree automata [CDG*],
which are in general expensive. For instance, decision for subtyping is inclusion
of tree automata, which is known to be EXPTIME-complete [Sei90]. We have
addressed this problem and obtained an algorithm that runs efficiently in prac-
tice [HVPO0O]. In particular, the HTML type! used in the above applications
is generally considered to be one of the largest XML DTDs, yet type checking
of our programs involving it takes a fraction of a second on stock hardware.
As other implementation issues, we are working on a type inference algorithm
to eliminate spurious type annotations in patterns, and a pattern compilation
scheme to improve run-time efficiency [HP00].

! More precisely, we use XHTML, which is an XML implementation of HTML.



XDuce’s language design is far from finished. We plan to add standard fea-
tures from functional programming, such as higher-order functions and paramet-
ric polymorphism. We also consider a support for object-oriented features found
in XML-Schema specifications [XS00]. The combination of these features with
regular expression types raises some subtle issues, which we are now seeking to
solve.

Our prototype implementation is written in O’Caml (6500 lines excluding
libraries such as the XML parser). Interested readers are invited to visit our
home page:

http://www.cis.upenn.edu/ hahosoya/xduce.html

5 Acknowledgments

Our main collaborators in the XDuce project are Peter Buneman, Jérome Vouil-
lon, and Phil Wadler. We have also learned a great deal from discussions with
Nils Klarlund and Volker Renneberg, with the DB Group and the PL Club at
Penn, and with members of Professor Yonezawa’s group at Tokyo.

This work was supported by the University of Pennsylvania and by an NSF
Career grant, CCR-9701826. Haruo Hosoya is supported by Japan Society for
the Promotion of Science.

References

[AQM™'97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and
Janet L. Wiener. The Lorel query language for semistructured data. Inter-
national Journal on Digital Libraries, 1(1):68-88, 1997.

[BP99] Peter Buneman and Benjamin Pierce. Union types for semistructured
data. In Proceedings of the International Database Programming Languages
Workshop, September 1999. Also available as University of Pennsylvania
Dept. of CIS technical report MS-CIS-99-09.

[CDG'] Hubert Common, Max Dauchet, Rémy Gilleron, Florent Jacquemard, De-
nis Lugiez, Sophie Tison, and Marc Tommasi. Tree automata tech-
niques and applications. Draft book; available electronically on http://
www.grappa.univ-1ille3.fr/tata.

[Cha99]  Sudarshan S. Chawathe. Comparing hierarchical data in external memory.
In Proceedings of the Twenty-fifth International Conference on Very Large
Data Bases, pages 90-101, Edinburgh, Scotland, U.K., September 1999.

[CS98] Sophie Cluet and Jerome Simeon. Using YAT to build a web server. In
Intl. Workshop on the Web and Databases (WebDB), 1998.

[DFF*]  Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy,

and Dan Suciu. XML-QL: A Query Language for XML.
http://www.w3.org/TR/NOTE-xml-ql.
[HPO0O] Haruo Hosoya and Benjamin Pierce. Tree automata and pattern match-

ing, July 2000. Available through http://www.cis.upenn.edu/"hahosoya/
papers/tapat-full.ps.



[HU79]

[HVPOO]

[MS99]

[MSV00]

[PV00]

[Sei90]

[WR99]

[XML]
[XS00]

[XSL]

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

Haruo Hosoya, Jérome Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for XML. In Proceedings of the International Conference on
Functional Programming (ICFP), 2000.

Erik Meijer and Mark Shields. XMA: A functional programming language
for constructing and manipulating XML documents. Submitted to USENIX
2000 Technical Conference, 1999.

Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transform-
ers. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 11-22. ACM, May
2000.

Yannis Papakonstantinou and Victor Vianu. DTD Inference for Views of
XML Data. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 3546, Dal-
las, Texas, May 2000.

Hermut Seidl. Deciding equivalence of finite tree automata. SIAM Journal
of Computing, 19(3):424-437, June 1990.

Malcolm Wallace and Colin Ranciman. Haskell and XML: Generic combina-
tors or type-based translation? In Proceedings of the Fourth ACM SIGPLAN
International Conference on Functional Programming (ICFP‘99), volume
34-9 of ACM Sigplan Notices, pages 148-159, N.Y., September 27-29 1999.
ACM Press.

Extensible markup language (XML™). http://www.w3.org/XML/.

XML Schema Part 0: Primer, W3C Working Draft. http://www.w3.org/
TR/xmlschema-0/, 2000.

XSL Transformations (XSLT). http://www.w3.org/TR/xslt.



A Types

This section gives the formal definitions for types and subtyping.

A.1 Syntax

We assume a fixed set of base types, ranged over by B, and a countably infinite
set of labels, ranged over by 1. Each base type B denotes a set V3 of base values,
ranged over by bg. We assume that all V3 are disjoint.

Values are defined as follows.

vi=M,..,M, sequence (n > 0)

M::=bg base element
1[v] label element

We write () for the empty value (i.e., the empty sequence). We write v,w for
the concatenation of values (i.e., sequences) v and w.

A XDuce program consists of a set of type definitions, a set of function
definitions, and an expression to be evaluated. Type definitions have the form

type X =T

where X ranges over variables and T ranges over type expressions. Type expres-
sions are defined as follows.

T:=X variable
B base type
() empty sequence
1[T] label
T,T concatenation
TIT union

We sometimes write type X=T to abbreviate a set of type definitions type
X1=T1,...,type X,=T,. Since the set of type definitions is fixed for a given
XDuce program, we lighten the notation below by assuming a fixed set of defi-

nitions E = type X=T.

A.2 Semantics of Types

The denotation of each type is a set of values, defined as follows.
First, we define a function [-], which takes a type and an environment map-
ping type variables to sets of values, and returns a set of values.

[Blp = V&

[O]p={0O}
[iTllp={10£1 [ £ € [T]p}
[T1,T2]p={f,g|f €[Tilp A g€[T2]p}
[T11T2]p = [T1]p U [T2]p

[X]p = p(X)



Let p be the smallest mapping satisfying p(X;) = [T;]p for all the definitions
type X;=T; in E. Finally, write [T] for [T]u.

A.3 Derived Forms

The regular expression type constructors are derivable as combinations of the
above constructs. We represent the Kleene closure Tx by a variable X that is
recursively defined as follows (cf. lists as a datatype in ML).

type X = T,X | O
The other regular expression constructors are defined as follows.

T+=T , T*
=T | O

A.4 Regularity

As we have defined them so far, types correspond to arbitrary context-free
grammars—for example, we can write definitions like:

type X = Int,X,String | O

Since the decision problem for inclusion between context free languages is un-
decidable [HU79], we need to impose an additional restriction to reduce the
power of the system so that types correspond to regular tree languages. Decid-
ing whether an arbitrary context-free grammar is regular is also undecidable
[HU79], so we adopt a simple syntactic condition, called well-formedness, that
ensures regularity. Intuitively, well-formedness allows recursive uses of variables
to occur only in tail positions. For example, we allow the following type defini-
tions:

type X
type Y

Int,Y
String,X | O

More precisely, we define well-formedness in terms of a “right-linearity” judg-
ment of the form o + T : 7l(X), where o is a set of variables. It should be read
“T is right-linear in X, assuming that all bodies of variables in ¢ are right-linear
in X.” This judgment uses an auxiliary “disconnectedness” judgment of the form
ok T: de(X), read “T is disconnected from X (i.e., X does not occur in the top
level of T), assuming that all bodies of variables in ¢ are disconnected from X.”



These two judgments are defined by the following rules (where X # Y):

obT:rl(X) forT= () orl[T] or X
obY:rl(X) ifYeo

obFY:rl(X) ifY&oand cU{Y}F E(Y):rl(X)
obFTIU:rl(X) if o T:7l(X) and o F U : 7l(X)
cbFT,U:rl(X) f OF T:de(X) and o F U : 7I(X)

obT:de(X) forT=( or1[T]
obFY:de(X) ifYeo
obFY:de(X) ifYgoand o U{Y}F E(Y): de(X)

ocbFTIU:de(X)if o FT:de(X) and o U : de(X)
ocbFT,U:de(X)if o FT:de(X) and o - U : de(X)

The empty sequence, a label, and the variable X are right-linear in X. For variables
Y other than X, we recursively check the right-linearity of the body of Y. To ensure
termination, we keep track in o of variables that have already been checked. For
(T|U), both T and U should be right-linear in X. For (T,U), we check if U is
right-linear in X, while T is disconnected from X. The disconnectedness judgment
is defined similarly, except for the first rule, in which X is not disconnected from
X. Now, the set of type definitions F is said to be well-formed if

0 F EX): rl(X) for all X € dom(E)

A.5 Subtyping
We define the subtyping relation in the simplest possible way:
S< T iff [S]C[T].
A.1 Theorem: There is an algorithm to decide the subtyping relation.

The concrete algorithm and its soundness, completeness, and termination theo-
rems are given in our another paper [HVP00].

B Terms

B.1 Syntax

At the top level, we have a set of declarations of mutually recursive functions,
each of the following form.

fun £ : ST =
pl — el
| p2 = e2
[ ...

| pn = en



Each function has type annotations for both the parameter and the result. The
body consists of one or more pattern matching clauses. Each clause has a pattern
and a term for the body. (We write fun f:S—T = p—e to abbreviate the above
form.) In addition to the fixed set E of type definitions, we fix a set F' of function
definitions for the remainder of the document.

The syntax of terms and patterns is:

en=x variable
bg  base value
()  empty sequence
1[e] label
e,e concatenation
f (e) application

p :=x:T variable
()  empty sequence
1[p] label
pP,p concatenation

B.2 Typing Rules

A context I' is a mapping from variables to types, written x1:T1,...,%X,:Tp.
We have three judgments:

I'keeT e has type T
FpeT=1TI" p accepts type T and yields context I’
F fun £:S—T = p—e £ is well-typed

The typing relation for terms is:

I =1 (TE-VaR)
-VAR
I'xeT
I'bg €eB (TE-BASE)
r-0e0O (TE-Ewmp)
I'e€eT (TE-Lap)
-LAB
I'-1[e] € 1[T]
I'ke €T I'Fey€eT
S = 2= 2 (TE-CaT)
F l_ e],en € Tl,Tg
fun £:ST = ... € F
r+ s
e € (TE-AppP)

I'-f(e) €T



I'ee€esS S< T

TE-SuB
TFeeT ( )
For patterns:
Fx:TeT=x:T (TP-VaR)
FOeO=- (TP-EmP)
FpeT=1T
: (TP-LAB)
F1lpl € 1[T]1 = I
Fpr €T = I+ Fpy €Ty = I}
P1 1 1 P2 2 2 (TP-Ca)
Fpi,p2 €T1,To = I, 1
For functions:
FpieSi=Ti TiFe €T,
S<iSl..18
il..1S, (TF)

F fun £:5—T = p—e

The rule TF needs a little explanation: each pattern p; accepts type S; and
yields the context I';, under which the body e; can be given the result type T (as
annotated). Also, the parameter type S is required to be a subtype of the union
of all S;’s. This subtype checks exhaustiveness of patterns.

C Operational Semantics

The operational semantics consists of evaluation relations for terms and pat-
tern matching. The former is fairly standard, the latter a little unusual due to
“ambiguity” in patterns.

There are two kinds of ambiguity. One appears when there are multiple
clauses whose patterns match the input value. For example, in the function

fun is_single : Int*—Bool =
x:Int — true
| x:Int* — false

we have two possibilities when the input is a single integer.
The other source of ambiguity is when there are multiple ways in which a
single clause can match a given value. For example, in the function

fun £ : Int*—Int* =
x:Int*, y:Int* — x



it is unclear how many integers x takes from the beginning of the input. We
address the first source of ambiguity by adopting a “first match” policy, as in
ML. For the second one, we adopt a “longest match” policy as in Emacs.

In fact, the longest-match policy turns out to be just a special case of the first-
match policy. Recall that Int* is a derived form meaning a variable X defined
as follows:

type X = Int,X | ()

The ordering of the branches in the definition is significant: Int,X comes before
(). Now, in the above example, we first process the pattern x:Intx*, traversing
the input value and the definition of X in parallel and taking the first clause
(Int,X) as often as possible. When the input value is exhausted and the second
clause (()) is taken, we move on to the pattern y:Int*, where we can now only
take the second clause because the remaining of the input value is the empty
sequence.

To describe the first-match policy, we use a notion of choice sequence. During
pattern matching, we remember the index of the branch we take at each choice
point. A choice sequence is a sequence of such indices, listed according to the
order of traversal—from left to right and from outer to inner. Finally, we take
the smallest choice sequence in the dictionary order (written <).

The evaluation relations are defined with respect to an environments V—a
mapping from variables to values. There are three judgments.

VEelvw e evaluates to v
Fprv=V/a pmatches v and yields V' and choice sequence «
FTov=a T matches v and yields choice sequence

Evaluation of terms is defined as follows:

VEx{|V(x) (EE-VAR)
VEbg{bg (EE-BASE)
VEOUO (EE-EwmP)

Viedv (EE-LAB)

VE1llel | 10v]

VEie v VEielw
VEie,eo yv,w

(EE-CaT)

ViEelv
fun f:S—T = pye e F
Fpipv=>W/a
Vi B pipv=U /B = (i,0) < (,A)
Whe w

(EE-APpP)
VELf(e)w




Pattern matching:

FTov= o

Fx:Tpv=x v/ @
FOrO=-/-

Fppv=>V/a

Filplolvl=>V/a

Fprv=V/a
Faqrw=>W /0

Fp,qrv,w=>V,W/a,pf

Type matching:

type X=T € FE
FTerv= o

FXpv=a
l‘BDbB:>‘
FO>»0O=-

FTov= o
F1I[TI > 1llv] = «

FTov=a
FUbw= 0

FT,Ubv,w=a,f

FTov=a
FTIUbv=1,a

FUbv=a
FTIUbv= 2,0

(EP-VAR)

(EP-EwmpP)

(EP-LAB)

(EP-CaT)

(ET-VAR)

(ET-BASE)

(ET-EwmP)

(ET-LAB)

(ET-Car)

(ET-OR1)

(ET-OR2)

The third and fourth premises in EE-APP say that we choose the match that
yields the smallest choice sequence in the dictionary order. Also, notice that in
EP-CAT and ET-CAT we concatenate the choice sequences left to right, and
that in ET-OR1 and ET-OR2 we adjoin the present choice number to the front.
These reflect our policy that the priority of choice is from left to right and from

outer to inner.

We can prove the following type soundness: a well-typed term evaluates to a

value inhabiting the expected type.



C.1 Theorem [Type Soundness|: Supposet fun f:S—T = p—e for all func-
tions in F. Then, e | vand @+ e € T imply v € [T].

Proof: We prove the result by showing the following stronger statements:

— IfFTp v, then veT.
—Iftprv=>V/ aandFpeT=1TI,then ' V.
—IfVikelvand I'FeeTwhere I' -V, then v € [T].

(Here, I' + V means that dom(I") = dom(V) and V(x) € [I'(x)] for each
x € dom(I").) Each statement can be proved by induction on the derivation
of the type matching, pattern matching, or term evaluation relation. For the
last statement, we need the following inversion properties.

— I'tx € T implies I'(x) < T.

— I' b € T implies B <: T.

— I'F () €Timplies () <: T.

— I't1[e] € T implies I' e € S with 1[S] <: T for some S.

—I'te,es €T implies I'e €Sy and I''+ ex € Sy with S1,S9 <2 T for
some S; and S».

I'f(e) € Timplies I'+e € S where fun £:S—T = ... e Fand T' < T.



