
Circumventing Data Quality Problems
Using Multiple Join Paths

Yannis Kotidis
Athens University of

Economics and Business
kotidis@aueb.gr

Amélie Marian
Rutgers University

amelie@cs.rutgers.edu

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

ABSTRACT
We propose the Multiple Join Path (MJP) framework for obtaining
high quality information by linking fields across multiple databases,
when the underlying databases have poor quality data, which are
characterized by violations of integrity constraints like keys and
functional dependencies within and across databases. MJP asso-
ciates quality scores with candidate answers by first scoring indi-
vidual data paths between a pair of field values taking into account
data quality with respect to specified integrity constraints, and then
agglomerating scores across multiple data paths that serve as cor-
roborating evidences for a candidate answer. We address the prob-
lem of finding the top-few (highest quality) answers in the MJP
framework using novel techniques, and demonstrate the utility of
our techniques using real data and our Virtual Integration Proto-
type testbed.

1. INTRODUCTION
In any large organization, there are many database-centric appli-

cations, with overlapping features and functionality, ranging from
sales and ordering tools to inventory and provisioning applications.
These applications have authority over different pieces of data, and
the difficulty of integrating legacy applications into a unified ap-
plication for a given task typically results in the data being spread
across multiple, autonomously managed databases. For instance, a
multitude of ordering and provisioning tools can lead to customer
accounts and billing data being present in different databases de-
pending on, among other things, location, type of customer, etc.
This fragmentation of data makes investigations across these databases
problematic. A standard technique used for the task of querying
across databases is the join path, linking two data fields, possibly
in different databases, through intermediate data. Given a value for
one of the data fields, a join path enables the identification of values
reachable in the other field using the join path.

Compounding the difficulty of querying across databases is the
prevalence of data quality problems, within and across databases
(see, e.g., [6]). A typical phenomenon is the existence of dupli-
cate, default and null values in columns of database tables that are
supposed to be treated as primary/foreign keys, due to the inability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CleanDBSeoul, Korea, 2006

to enforce integrity constraints across independent databases. For
instance, a provisioning database may have a place-holder (i.e., a
field) for storing customer contact information. However, often this
field is empty (null values) or populated with dummy (default) val-
ues, since this information is of no immediate use for the applica-
tion that deals with inventory and provisioning and which oversees
this data. Data inconsistencies (e.g., multiple records with the same
key value) are widespread, and can often be traced back to human
errors, e.g., during manual data entry. Default values and data in-
consistencies are examples of poor data quality prevalent in large
databases.

1.1 VIP: Motivating Example
VIP is an integration platform, developed at AT&T, covering

more than 30 legacy systems. It was developed in an effort to pro-
vide a platform for doing quick investigations and resolving dis-
putes (due to data inconsistencies) between different applications.

A basic query that often arises in VIP is of the form “given the
value of a fieldX, find the value of a fieldY ”. For instance, when
processing telecom data, an example query is: given the telephone
number (TN) of a customer that shows up in a sales application
(SALES), find the circuit id of the attached line. Since circuit ids
are not part of SALES application, the users need to access the in-
ventory application INVENTORY that can look up circuit ids using
a provisioning order number (PON). Users have access to a front-
end web interface that provides authentication and allows querying
the underlying inventory dataset by pasting a single PON value into
a form. The same front-end can also retrieve circuit information
when queried using a TN, but the internal mapping is incomplete
and contains inconsistencies. Thus, we need to devise additional
strategies for locating the target circuit id by considering other ap-
plications that we may have access to.

By examining patterns of user interactions with the SALES, OR-
DERING, PROV and INVENTORY applications, we have been
able to compute the schema graph, depicted in Figure 1, to help an-
swer the query; the meaning of the numbers along the edges will be
made clear when discussing our experimental results. PROV is an
application that maintains provisioning records, while ORDERING
is an ordering tool used primarily for small-business customers. Ta-
ble 1 describes the fields depicted in the schema graph of Figure 1.
The combined size of the databases behind these four applications
is in the order of 100 million records.

The schema graph provides multiple paths to link a TN value in
SALES to a CircuitID in INVENTORY. We list here a few of them:

† Using a TN value in SALES, we obtain PON values, based on
the “intra-application” edge (SALES.TN, SALES.PON) depicted
in Figure 1. We then access the INVENTORY application using
these PON values and the “inter-application” edge (SALES.PON,
INVENTORY.PON). There, we look up CircuitIDs using the

1

5364/99

1136/176

1008/472

1008/472

1008/472

309/199

6809/474

6199/259 301/16

301/166199/259

6500/275

1008/472

5364/99

1008/472

309/199

INVENTORY.CircuitID

INVENTORY.PON

SALES.ORN

SALES.TN

SALES.BAN

SALES.CustName

SALES.PON

PROV.CustName

PROV.PON PROV.SubPON

ORDERING.ORN

ORDERING.TN

INVENTORY.TN

Figure 1: Schema graph for subset of VIP

Field Name Description
TN Telephone Number under investigation
BAN Billing Account Number (primary key in biller)
CustName Customer name (in biller and provisioning)
PON Provisioning Order Number (key in

provisioning applications)
SubPON subsequent/related Provisioning Order Number

(links multiple provisioning records for a customer)
ORN Order Number (key in ordering applications)
CircuitID Circuit the line is attached to

Table 1: Description of Fields in Figure 1

(INVENTORY.PON, INVENTORY.CircuitID) intra-application
edge in INVENTORY. This corresponds to the left-most path in
the schema graph.

† Given a TN in SALES, we can look up the customer name.
This may be done directly, or via the billing account number
for the customer. Notice that due to internal inconsistencies
the two methods might give us different results. We can then
input the customer name in the PROV application to retrieve
all known PONs for the customer (from the PON and SubPON
fields) which can be then used to probe INVENTORY, as in the
first case. This corresponds to the set of middle paths in the
schema graph of Figure 1.

† Small-business customers typically have multiple working tele-
phone lines sharing the same circuits. For such customers, we
can obtain the order number (ORN) in SALES, probe ORDER-
ING and get all other lines ordered by the customer. Using this
set of telephone numbers, we can probe INVENTORY multiple
times. Even though, as explained, the internal TN-to-CircuitID
mapping in INVENTORY is often incomplete, we can use the
expanded set of all TNs in the customer order to try and find
matching circuit ids in INVENTORY. This corresponds to the
right-most path in the schema graph of Figure 1.

Given the different schema graph paths that link the TN input
field (in SALES) to the CircuitID output field (in INVENTORY),
which join pathshould be used to identify query answers?

1.2 Multiple Join Path Framework
When querying across multiple databases, in the presence of data

quality problems, choosing any one join path results in missing an-
swers, but choosing multiple join paths may lead to conflicting an-

swers, especially when only a single answer is expected. Efficiency
of query answering is also a concern. For instance, the return of a
default value by an application may result in a significant number
of probes to applications that follow it in a join path. Furthermore,
different join paths that share edges need to be processed in a coor-
dinated manner so that we avoid probing with the same input values
multiple times.

TheMultiple Join Path(MJP) framework proposed in this paper
resolves these problems as follow:

† It takesall join paths in the schema graph into account.

† Each data path (schema path instance) isscored, taking the qual-
ity of integrity constraints (keys, functional dependencies), pos-
sibly across multiple databases/applications, and the quality of
the data with respect to the integrity constraints into account.

† Multiple data paths between the same TN, CircuitID value pairs
are treated as corroborating evidences, and data path scores are
agglomerated to yield scores for CircuitID values.

† All join paths are considered when deciding the next application
to probe. Intersecting data paths help re-use results of other join
paths and reduce the number of probes to the applications.

† The top-few (typically 1) matches are returned as the desired
answers. The schema graph and the computed data paths are
used to prune unnecessary accesses to the applications.

When we are interested only in the top-few matches, it is ex-
tremely expensive to repeatedly probe the legacy applications, one
schema graph edge at a time, to find all matching answers. This
leads to the main technical problem addressed in this paper, the
Multiple Join Path Problem:

Given a schema graph identifying multiple join paths
between fieldX and fieldY , and a valueX = x, find
the top-few values ofY that are reachable fromX = x
using the schema join paths.

The contributions of our paper are as follows:

† We introduce the MJP framework, and an agglomerative scoring
methodology, to quantify answer quality in the presence of data
quality problems arising due to integrity constraint violations
in primary and foreign key columns, across multiple databases
(Section 2).

† We develop novel techniques to limit the probing of legacy ap-
plications to efficiently compute the top-few answers to the MJP
Problem. The agglomerative scoring methodology essentially
renders previous mechanisms for computing top-k answers in-
applicable for our problem (Section 3).

† Finally, we evaluate our techniques using real data and our VIP
testbed. In particular, we demonstrate both the utility of the ag-
glomerative scoring methodology in the presence of data quality
problems, and the efficiency of our algorithmic techniques for
computing top-few answers. In our real telecom example, we
observe a reduction in the number of probes to the legacy appli-
cations by a factor of up to 18 in some cases (Section 4).

2. THE MJP PROBLEM
In this section, we introduce the Multiple Join Path framework,

and our agglomerative scoring methodology, to quantify answer
quality in the presence of data quality problems in multiple databases.

2

2.1 Queries and Answers
A basic query of interest is of the form “given the value of a field

X, find values of a fieldY ”, whereX andY refer to specific fields
of individual applications. For instance, when processing telecom
data, example queries include:

† Q1: given the telephone number of a customer (in SALES), find
the circuit id (in INVENTORY) that the line is attached to.

† Q2: given a circuit id (in INVENTORY), find the customer names
(in SALES) whose telephone numbers attach to this circuit id.

In the case of query Q1, one would expect there to be exactly one
resulting answer. Since multiple telephone numbers may be at-
tached to a circuit, query Q2 may have more than one answer. In
both cases,X andY are fields in different databases, so we need
to establishjoin paths that link these two fields. There may be
multiple possible join paths between any two given fields, and the
schema graph, discussed next, identifies these possibilities.

2.2 Schema and Data Graphs
A schema graph is a 3-tuple(G; X; Y), where:

† G = (V; E) is a directed acyclic graph, whose nodesV =
fX; Y; : : :g are labeled by field names of accessible applica-
tions, andE ‰ V £ V are directed edges.

† X 2 V is the unique source (no incoming edges), andY 2 V is
the unique sink (no outgoing edges) ofG.

A directed edge(v1; v2) 2 E is referred to as anintra-application
edge, ifv1 andv2 are fields in the same application; otherwise, it
is an inter-application edge. A directed pathP from X to Y in
G is referred to as ajoin path. For instance, the schema graph of
Figure 1 has six possible join paths from SALES.TN to INVEN-
TORY.CircuitID, which can be used to answer query Q1. Thus,
join paths in a schema graph identify different ways in which a
basic query can be answered.

To ensure that join paths yield meaningful associations, not spu-
rious correlations, we focus attention on the case where (i) all nodes
in the schema graph (except, possibly, for source and sink nodes)
are (possibly approximate) primary keys or foreign keys in their
respective applications, (ii) inter-application edges correspond to
(approximate primary key, approximate foreign key) associations,
and (iii) intra-application edges are incident on an approximate pri-
mary key.

Given a specific valuex of the source nodeX (e.g., telephone
number, 555-5555, in query Q1), all join paths in the schema graph
need to be explored to find all matchingy values for the sink node
Y (i.e., particular circuit ids). Intuitively, the data graph, defined
below, captures these data associations. Given a schema graph
(G; X; Y), adata graphis a triple(GD; XD; YD), where:

† GD = (VD; ED) is adirected acyclic graph, whose nodesVD

have labels of the formT:A:v, such thatT:A 2 V andv is a
value of fieldT:A, andED ‰ VD £ VD are directed edges such
that(T1:A1:v1; T2:A2:v2) 2 ED) (T1:A1; T2:A2) 2 E.

† XD 2 VD is the unique source ofGD, corresponding to value
x of source nodeX of G, andYD ‰ VD is a subset of the sink
nodes ofGD, corresponding to valuesyi of sink nodeY of G.

For instance, given the schema graph of Figure 1, an example
data graph is shown in Figure 2. There are two paths in this data
graph from source node SALES.TN.555-5555 to the answer de-
picted by sink node INVENTORY.CircuitID.c1. Both these data
paths correspond to the leftmost join path in the schema graph

 SALES.ORN.o1

INVENTORY.PON.pon1

SALES.PON.pon3SALES.PON.pon2SALES.PON.pon1

SALES.TN.555−5555

INVENTORY.CircuitID.c1

INVENTORY.PON.pon2

Figure 2: Data graph for query SALES.TN=555-5555

of Figure 1. Two additional nodes are present in this data graph,
SALES.PON.pon3 and SALES.ORN.o1 (corresponding to schema
graph nodes SALES.PON and SALES.ORN), which do not join
with values in INVENTORY.PON and ORDERING.ORN, respec-
tively. Note that the data graph can have multiple or no nodes cor-
responding to any specific node in the schema graph.

2.3 Scoring Answers
In a perfect world, the applications would have no internal data

quality problems, and our basic query (givenX = x, find Y) could
be answered correctly by following all the join paths across the
multiple applications starting fromX = x, and taking the union of
all theY values that are reached along these individual join paths.
But data quality problems are prevalent in large data-centric appli-
cations. For example, a primary key field (like the billing account
number (BAN) field) may only be anapproximatekey [6]. Simi-
larly, a functional dependency expected of an intra-application edge
in the schema graph may be violated. As an example, we might find
that the same telephone number is associated with two customer
names due to manual data-entry errors in the SALES application.

So we are faced with the considerable challenge of answering
our basic querieswithout a priori knowledge of which values in the
underlying databases are clean, and which ones are not. To meet
this challenge, we employ a probabilistic technique that scores data
edges using values in the range[0 : : : 1]. Thus, the score of a data
edge(T1:A1:v1; T2:A2:v2) represents our belief that the associ-
ation between valuesv1 andv2 of fieldsT1:A1 andT2:A2 is cor-
rect. We will describe later how these scores are obtained. What
is important is that this probabilistic interpretation of the scores al-
lows us to combine scores across a data path.

Recall that a data path is just a sequential composition of data
edges. Using a probabilistic interpretation of the data edge scores,
assuming independence of the data edges in a data path, thescore
of a data pathis defined to be the product of the scores of the
constituent data edges. More formally, ifsc1; sc2; : : : ; scn are the
scores of the constituent data edges of a data pathP , then the score
of P is given by:

sequential com(sci; 1 • i • n) = Πn
i=1(sci) (1)

As will be explained, this probabilistic interpretation assigns scores
on data paths using data quality metrics on the edges. Thus, a high
quality data path will get high scores independent of the length
of the path, unlike, e.g., techniques like [1]. In fact, it is easy to
see that the latter technique is just a special case of our framework
when all data edges are scored with the same value in(0; 1).

An answer may be corroborated by multiple data paths, and our
scoring methodology agglomerates the scores of these data paths,
usingparallel composition, to compute the score of aY value. For
example in Figure 2 there are two data paths from SALES.TN.555-
5555 to answer INVENTORY.CircuitID.c1. Different data paths
are considered independent evidences and their scores are com-
bined in a probabilistic manner. Formally, ifsc1; sc2; : : : ; scn are
the scores of individual data pathsPi; 1 • i • n, between two
nodes in the data graph, then, to ensure that all scores are in[0; 1],

3

the score of the parallel composition of thePi’s is given by:

parallel com(sci; 1 • i • n) = s1 + s2¡ (s1 ⁄ s2) (2)

wheres1 = sc1 ands2 = parallel com(sci; 2 • i • n).
Finally, the score of aY value yi is the score of the parallel

composition of all the data paths from the sourceX:x to the sink
Y:yi. This agglomerativescoring takes into considerationall the
data paths that corroborate an answer.

Other combining functions may also be used without affecting
the generality of the proposed methodology. The process that we
describe in Section 3 requires the following two monotonicity prop-
erties, which allow for a broad selection of scoring functions:

† Property 1:the score of a data path is a non-increasing func-
tion of the scores of the constituent data edges.

† Property 2: the score of an answer is a non-decreasing func-
tion of the scores of the constituent data paths.

2.4 Data Edge Scores
Without a priori knowledge of the internals of the applications,

or expertise on the quality of specific data items, our approach is
to rely on expected functional dependencies between the exported
data fields. For instance, in the telecom example, we expect a tele-
phone number to uniquely identify a customer. Thus, when probing
the SALES application, if we get two customer names for an as-
signed TN, this is a violation of an expected functional dependency
and we should assign a lower score to the instantiated data edges.

Recall that intra-application schema edges (T:A; T:B) capture
associations where at least one ofT:A andT:B is an approximate
key in the corresponding applicationT . Assume, without loss of
generality, thatT:A is the approximate key. Then the edge cap-
tures aforward functional dependency(FFD) from T:A to T:B.
Assume also that while answering a posed query, due to internal
data quality problems, the following data edges are instantiated:
(T:A:v1; T:B:v11), (T:A:v1; T:B:v12) and(T:A:v2; T:B:v21).
It is then obvious that the two different valuesT:B:v11, T:B:v12
associated withT:A:v1 are witnesses thatT:A:v1 is in violation of
the FFD and therefore data edge(T:A:v2; T:B:v21) should have a
higher score than edges(T:A:v1; T:B:v11) and(T:A:v1; T:B:v12).

Let f(T:A:v1; T:B:v1i); i = 1; : : : g be the set of data edges
instantiated for valueT:A:v1 following this schema edge, and let
j:j denote the size of a set. To achieve the desired behavior, the
score of each data edge (T:A:v1; T:B:v1i) is set to:

sc(T:A:v1; T:B:v1i) =
1

jf(T:A:v1; T:B:v1i); i = 1; : : : gj (3)

The case when the schema edge captures abackward functional
dependency(BFD) is handled symmetrically:

sc(T:A:v1i; T:B:v1) =
1

jf(T:A:v1i; T:B:v1); i = 1; : : : gj (4)

Finally, when bothT:A andT:B are approximate keys, the edge
captures asymmetric functional dependency(SFD) and the score is
computed as:

sc(T:A:vi; T:B:vj) =
1

jf(T:A:vi; T:B:⁄)g [f(T:A:⁄; T:B:vj)gj
(5)

where ’*’ means any value and is used to capture all data edges
emanating fromT:A:vi (resp. leading toT:B:vj).

For an inter-application schema edge(T1:A; T2:A), the score of
a data edge corresponding to this schema edge is always 1, since the
association between the fields is assured by the schema graph. An
interesting extension is to considerapproximate matchingbetween

values of fieldA in applicationsT1 andT2. In that case the score
of the inter-application data edge is adjusted by using some notion
of error metric (e.g., normalized edit distance or tf.idf for strings)
between the values.

2.5 Multiple Join Path Problem
Our goal is to locate high quality information across multiple

databases, in the presence of data quality problems. Since the dif-
ferentY values that are reached from a givenX value may have
very different scores, we are interested only in the top-few matches.
When we are interested only in the top-few matches, it is extremely
expensive to repeatedly probe the legacy applications, one schema
graph edge at a time, to find all matching answers, only to eventu-
ally discard the low scoring answers.

This leads to the main technical problem addressed in this paper,
referred to as theMultiple Join Path(MJP) Problem:

Given a schema graph identifying multiple join paths
between fieldX and fieldY , and a valueX = x,
find the top-few values ofY (with the highest scores)
reachable fromx using the multiple join paths.

Conventional top-k evaluation requires exact scores to be re-
turned along with the matching answers, resulting in a ranking
of thek results. In our agglomerative scoring methodology, since
any unexplored data path could eventually corroborate a knownY
value, resulting in a score increase (however slight), one would not
be able to perform any early pruning for the MJP Problem, if one
insisted on returning exact scores.

A more promising approach is where one can return top-k an-
swers, where each answer is associated with a score range, and the
result is asetof answers, not a ranking. In Section 3, we shall dis-
cuss novel solutions to the MJP Problem, and subsequently exper-
imentally validate the utility and efficiency of our approach using
real data and the VIP testbed.

3. THE MJP PROBLEM: SOLUTION

3.1 Incremental Data Graph Computation
Given a specific valuex of the source nodeX in the schema

graph, the data graph is initially instantiated with a unique (source)
nodeXD = X:x. For each newly inserted data nodeTD in the data
graph (excluding those in setYD of sink nodes), we create the set
openedges(TD) to be the set of all schema edgese 2 E that em-
anate from the corresponding nodeT in the schema graph. As an
example, for the schema graph shown in Figure 1 and for TN = 555-
5555 being the TN in queryQ1, the data graph is instantiated with a
single node SALES.TN.555-5555. The setopenedges(SALES.TN.555-
5555)will then include the following schema edges: (SALES.TN,
SALES.PON), (SALES.TN, SALES.BAN),
(SALES.TN, SALES.CustName) and (SALES.TN, SALES.ORN).

An open nodein the data graph is any nodeTD, not in YD,
for which the setopenedges(TD) is not empty. Our algorithms
will proceed by carefully choosing an open nodeTD and select-
ing one of the edgese in set openedges(TD) to explore. Fol-
lowing an intra-application edge(T:A; T:B) for open nodeT:A:u
results in probing applicationT and retrieving a set of values for
field T:B. For each unique valuevi of attributeT:B in the re-
sult of this probe, we add a new nodeT:B:vi to the data graph
and generate setopenedges(T:B:vi). We further instantiate the
data edge(T:A:u; T:B:vi) and compute its score. In Figure 3,
we depict the data graph after exploring schema edge (SALES.TN,
SALES.PON) for open node SALES.TN.555-5555. The applica-
tion in this case returned three distinct values for SALES.PON:
pon1, pon2 and pon3.

4

LDW.PON.pon1 LDW.PON.pon2 LDW.PON.pon3

LDW.TN.555−5555

Figure 3: Data graph, after processing of edge (SALES.TN,
SALES.PON)

Following an inter-application edge(T1:A; T2:A) does not in-
cur additional probes to the applications. Values of fieldT1:A that
do not appear in applicationT2 will not generate any new data
nodes when a follow-up intra-application edge is processed. In ei-
ther case, after edgee is explored it is removed fromopenedges(TD).

We adopt a simple cost model that enumerates the number of
probes to the applications while expanding the data graph to answer
the user query. This cost model is reasonable in the absence of
internal knowledge of the behavior of the applications.

3.2 Scheduling of Open Nodes
While building the data graph, we often have many open nodes

to explore, each with at least one unexplored edge inopenedges().
We thus need a strategy that will lead to early pruning when com-
puting top-k answers.

Since the data graph(GD; XD; YD) has a strong correspondence
with the schema graph, we can pick the next open node/schema
edge to explore using standard graph searching techniques like depth-
first-search (DFS) or breadth-first-search (BFS) guided by the schema
graph. Such techniques however are oblivious to the statistics we
can collect both at the schema graph as well as at the (incomplete)
data graph while processing the query. As is demonstrated by our
experiments in Section 4, this results in substantially more probes
to the applications. In what follows, we describe a greedy schedul-
ing technique that is based on the notion of themaximum benefitof
unexplored paths that go through open nodes.

Benefit computation involves two components. The first uses the
statistics accumulated in the data graph to compute the score of all
paths leading to an open node. The second component calculates
the best way that the data graph can be augmented when following
unexplored edges from an open node on the way to an answer. The
fusion of these two components provides our benefit metric.

At each step, our algorithm maintains this benefit metric per open
node/schema-edge in the data graph and schedules the next move
using this metric. At an abstract level, our methodology for pro-
cessing a user query can be summarized as follows:

† Start from the sole instance of source nodeXD and expand one
data node at a time. For any open nodeTD, maintain the multiset
of scores along data paths fromXD to TD.

† By associating open nodeTD with its schema nodeT , we can
quantify theresidual benefitof an unexplored schema edgee in
openedges(TD) as the maximum possible contribution of the
subgraph fromXD to any possible data node in setYD, passing
throughTD using instances ofe in the data graph.

As an example, we consider the data graph of Figure 3. For open
node SALES.TN.555-5555 there are three unexplored edges in the
setopenedges(SALES.TN.555-5555): (SALES.TN, SALES.BAN),
(SALES.TN, SALES.CustName), and (SALES.TN, SALES.ORN).
Figure 4 shows the maximal subgraph that can be generated by
exploring these edges in a way that maximizes the score of an
answer. In this figure there are five paths from SALES.TN.555-
5555 to schema node INVENTORY.CircuitID. For each pathPi, a
schema edge is only instantiated once (since all edges are treated as
FFD/SFD). However, a schema edgee0 may generate one distinct

INVENTORY.TN

ORDERING.TN

ORDERING.ORD

PROV.SubPON

SALES.TN.555−5555

INVENTORY.PON

SALES.ORDSALES.CustName

SALES.CustName

SALES.BAN

PROV.CustName

INVENTORY.CircuitID

INVENTORY.PON INVENTORY.PON INVENTORY.PON

PROV.PONPROV.SubPONPROV.PON

PROV.CustName

Figure 4: Maximum paths for unexplored edges of node
SALES.TN.555-5555, after processing of edge (SALES.TN,
SALES.PON)

data edge for each pathPi that containse0. As an example, schema
edge (PROV.CustName, PROV.PON) instantiates two distinct data
edges in Figure 4.

Given one or more open nodesTD in the data graph, we pick the
next edge to explore as the one that maximizes our benefit metric.
This is ourmaximum benefitpolicy, MAXB. In our experiments we
see that MAXB outperform DFS and BFS, by a factor of up to 18:1.

3.3 Pruning Criteria
Unlike conventional top-k evaluation, where exact scores of an-

swers are returned, for our MJP framework a more promising ap-
proach is to return the top-few answers, where each answer is asso-
ciated with a score range. We distinguish between two versions of
the problem:

† The exact top-k setYD = (y1; : : : ; yk) is returned. For each
answeryi, we provide a score range[smin(yi) : : : smax(yi)].

† The top cluster of answers that is guaranteed to contain the top-
k values is returned. Each answer is associated with a score
range. We call this thetop-fewevaluation. Top-few is valuable
when doing quick ad hoc investigations, since it allows for more
pruning because of the weaker stopping condition.

Let y 2 YD be an answer present in the (incomplete) data path.
Let scores(y) = (sc1; sc2; : : : ; scn) be the scores of all data paths
from XD to y. Then, the minimum score of answerY = y is the
parallel composition of the scores of all known paths toy:

smin(y) = parallel com(sci; 1 • i • n) (6)

The maximum score of answery is computed by additionally con-
sidering the maximum benefit of each open node and unexplored
edge in the data graph, as discussed previously.

Through similar arguments we can compute the range of scores
[smin(yunseen) : : : smax(yunseen)] of an answeryunseen that we
have not encountered in our evaluation as[0 : : : max contribution].
The lower bound is trivial (when no new answer exists). The upper
bound follows easily if we consider that all paths from the open
nodes in the data graph terminate to a new answeryunseen.

In a naive evaluation of the MJP Problem we stop when all open
nodes in the data graph have been explored. However, one may
stop earlier without exploring all open nodes, depending on the
version of the problem. Assume setY contains all answers that
we have seen so far and alsoyunseen (a placeholder for some an-
swer we have not yet encountered). Thus,Y=YD

Sfyunseeng. We
order the answers inY using their minimum scores asy1; y2; : : : ,
wheresmin(yi) ‚ smin(yj) wheni < j. This order also implies

5

smax(yi) ‚ smax(yj). If setY contains more thank answers, we
may stop further processing under the following condition:

† In top-k evaluation, we stop whensmax(yk+1) • smin(yk).
That is, the upper bound on the score of thek+1’th candidatey
value is no larger than the score of the currentk’th candidate.

† In the top-few evaluation, we may stop ifsmax(yunseen) •
smin(yk). If this condition holds then any new answer can-
not possible be scored higher that our currentk’th candidateyk.
Thus, the top cluster is identified and we return thoseyi’s with
smax(yi) ‚ smin(yk).

4. EXPERIMENTS
In this section, we experimentally evaluate our solution using

our VIP testbed. Due to lack of space we provide detailed results
for one query in our real dataset (query Q1, Section 2.1). Results
for other queries between pairs of nodes in the schema graph of
Figure 1 were similar. Our main experimental results can be sum-
marized as follows:

† Real datasets have a multitude of data quality problems and no
join path is immune to these problems. Using a fixed path or
the maximum path for answering a query can lead to missing
answers (low recall). That is why, in our MJP framework, all
paths are considered.

† The data graphs can be fairly large (for instance when default
values are encountered). Our scheduling techniques based on the
maximum benefit metric achieve substantial pruning by elimi-
nating a large number of candidate paths from evaluation.

The rest of this section is organized as follows. In Section 4.1 we
illustrate that real applications are faced with significant data qual-
ity problems. When joining data across diverse applications, we
typically find many answers, even when a single answer is expected
(for instance a single CircuitID for a TN in Q1). Thus, ranking is
required to help users identify the correct answer. In Section 4.2 we
demonstrate that top-1 answers typically have several instantiated
data paths leading to them and an agglomeration of their scores is
needed. An important observation is that even join paths with small
schema weights in their edges are useful in determining top-1 an-
swers. In Section 4.3 we demonstrate that using our benefit metric
results in substantially fewer probes to the applications, often by a
factor of 1:18. Using the top-few execution model, this reduction
is further increased by a factor of 2.

4.1 Nature and Quality of Data
We used traces of real user queries and obtained a random sam-

ple of 150 TNs that users ran investigations upon. We then used
the schema graph to obtain circuit ids for these TNs (i.e., using
k=1). We noticed that there is a large number of TNs (56) that
return no matching circuit ids. This is because (i) the INVENTORY
dataset is incomplete and (ii) the provisioning key is often missing
in SALES, forcing join paths either through customer names (Cust-
Name) or order numbers (ORN). The distribution is heavy-tailed,
as there are many TNs for which we obtain 50 or more circuits
through the schema graph. The maximum number of circuits re-
turned for a single TN was 257. It is clear that most queries return
a lot of answers. In fact only 2 TNs returned just one circuit! Thus,
we need to be able to prune the long lists of matching circuit ids in
order to provide meaningful answers to the user.

Using answer scores, we classify user queries into the following
classes (in parentheses we show the number of TNs in each class).

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Fr
eq

ue
nc

y
C

ou
nt

Number of Parallel Paths

"Top-1 Answers"

Figure 5: Number of parallel paths in top-1 answers

† hH: heavyHitters(10): These are the top-10 queries (TNs) ranked
by the number of matching circuits in our data. TNs in that group
returned between 128 and 257 circuits.

† oL: oneLarge(47): This is the subset of TNs that returned one
circuit id with score at least 1% and zero or more circuits with
scores less that this threshold.1

† mL: manyLarge(4): This set of TNs have at least 5 matching
circuits with score at 1% or higher.

† mS: manySmall(8):This set of TNs returned at least 5 answers,
while no answer had score greater or equal to 1%.

† aA: anyAnswer(94): All TNs with any matching circuits.

† nA: noAnswer(56): These are TNs for which no answer (cir-
cuits) can be obtained from the data.

4.2 Benefit of Agglomerative Scoring
We now address the utility of our agglomerative scoring method-

ology. In Figure 5 we plot the number of parallel data paths that
contribute to the top-1 answer for each TN with a non-empty an-
swer (setanyAnswer). For the 94 top-1 answers, there is an av-
erage of 10 parallel paths per answer (for a total of 946), out of
which roughly 2.5 parallel paths per answer (for a total of 229) are
significant (score of the path is greater than 10% of final score). In
contrast, when looking at all answers for each TN there are on the
average just 1.7 parallel paths contributing to each answer.

A natural question one may ask is whether all the schema join
paths are really relevant, or if one of them dominates in its con-
tribution to the final scores. In Figure 1, we annotate the schema
graph edges with two numbers. The first is the number of data
paths leading to an answer that instantiated this edge. The second
number is for top-1 answers only. Some interesting observations
on the nature of the data can be drawn by interpreting these num-
bers. First, paths that go through the SALES.PON node are more
likely to end up in a top-1 answer: 199 out of 309 overall. Simi-
larly, probing the ORDERING application leads to a top-1 answer
in almost half the cases. In contrast, many paths that use instances
of nodes SALES.BAN, SALES.CustName do not end up in top-1
answers. However, it is still beneficial to include these nodes in
the schema graph. We notice that 275/946 top-1 paths (paths that
result in a top-1 answer) go through instances of these nodes. If we
remove these nodes from the schema graph along with all paths that

1The low value of the threshold has been chosen to capture as many
potentially relevant answers as possible, given the scoring method-
ology.

6

7 − 1

 7 − 1

138 − 14

138 − 14

267 − 15

312 − 1

312 − 1

312 − 1

312 − 1

50 − 9

50 − 9

95 − 6

122 − 0

145 − 15

122 − 0

312 − 1

INVENTORY.CircuitID

INVENTORY.PON

SALES.PON

SALES.TN

SALES.ORNSALES.BAN

SALES.CustName

INVENTORY.TN

PROV.CustName

PROV.PON PROV.SubPON

ORDERING.ORN

ORDERING.TN

Figure 6: Aggregate Path Statistics for top-1 answers (setsoneLarge
- manySmall)

Top-1 Top-few
k =1 DFS BFS MAXB DFS BFS MAXB

aA 246.9 245.4 125.1 47.1 244.9 97.3 24.6
hH 724.1 722.9 453.0 109.5 722.3 359.6 56.1
oL 261.0 259.1 104.6 14.6 251.4 95.5 14.1
mL 365.8 365.4 249.8 40.0 326.8 136.8 19.3
mS 258.5 258.5 253.8 184.8 258.5 231.7 119.6
nA 24.6

Table 2: Cost of top-1/top-few evaluation

use them, then for the 94 queries with non empty top-1 answers, 8
return no result while for 77 the top-1 answer differs.

We next discuss the issue if there is any correlation between the
join paths used and the class of queries. In Figure 6 we aggregate
at the schema level the number of paths in top-1 answers for sets
oneLarge (first number next to an edge) andmanySmall (sec-
ond number). The number of paths in setoneLarge is larger
because more TNs belong to that set (47 compared to 8 in set
manySmall). In the case of setoneLarge , paths through OR-
DERING schema nodes appear in more than half of the cases.
However, again paths through the PROV dataset using customer
names are significant in top-1 answers. In setmanySmall there is
only one top-1 answer with a path through ORDERING. Most of
the paths (9 out of 15) go through the (SALES.TN,SALES.BAN)
edge and subsequently to PROV, joining on the CustName attribute.

4.3 Efficiency of Top-k Evaluation

We use the number of probes to the applications to determine the
efficiency of top-k evaluation. In Table 2, we present the average
number of probes per TN during the top-k evaluation, fork=1. We
also present the average number of probes when all circuits were
requested (k=1). For scheduling the next open node to explore,
we tested the MAXB policy (discussed in Section 3) as well as the
standard DFS and BFS orders obtained from the schema graph.

Top-1 evaluation, using MAXB, reduces the number of probes
by a factor of more than 5, on the average, for TNs with match-
ing circuit ids. A large number of queries (56/150) returned no
answer, and for these queries top-1 evaluation cannot prune any
paths. For the remaining TNs the greatest benefits arise for subset
oneLarge . These are TNs for which one circuit stands out from

Top-1
k =1 DFS BFS MAXB

aA 207/1189 206/1188 130/1109 59/679
hH 903/1189 902/1188 618/1109 162/679
oL 305/1189 304/1188 141/890 23/231
mL 415/793 414/793 327/625 52/83
mS 310/1128 310/1128 306/1106 237/629
nA 47/232

Table 3: Avg and Max Data Graph Size (edge setED)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 C

os
t

k

"manyLarge.all"
"manyLarge.varyk"

Figure 7: Query cost, varying k (manyLarge set)

the answer set and, thus, we can expect a lot of pruning during
top-1 evaluation. Here, the MAXB policy reduces the cost of pro-
cessing by a factor of 18:1 compared to the case wherek=1. For
the setmanyLarge , savings are smaller but still substantial (9:1).
Even in the case of setmanySmall , MAXB results in significant
pruning. These are TNs for which a large number of circuits with
very low scores were discovered. Looking at the instance graphs of
these TNs we observed that most were due to a default value of field
BAN in SALES, resulting in many matching customer names when
following the intra-application (SALES.BAN, SALES.CustName)
edge. Because of our scoring mechanism, all these paths were as-
signed very low scores and MAXB was able to prune a substantial
number of them. In contrast, DFS for top-1 is almost as bad as get-
ting all answers. This is because DFS follows deep paths through
the schema graph to the end without concern of the current scores
leading to an open node or potential benefits of open paths. BFS is
slightly better since all paths are explored in unison.

In Table 3, we show the average (first number) and maximum
(second number) size of the data graph for the same experiment.
We notice that fork=1 the data graph size is on the average 207
with a maximum instance of 1189 (edges). Thus, evaluation of
Multiple Join Path queries in our framework has very modest re-
quirements in terms of memory usage. We further notice that top-1
evaluation with the MAXB policy reduces these numbers by a fac-
tor of up to 13:1. This reduction of the data graph size will become
significant in a multi-user environment when the server processes
several queries at a time.

In Figure 7, we plot the query cost, varyingk between 1 and
10. For comparison, we also show the cost whenk=1 (flat line).
It is interesting that there is a drop in query cost fork=5. This
suggests that the size of the top-cluster is, on the average, around
five (circuits per TN) with the last 3 having similar scores. Thus,
for k=3 or 4, additional queries are required to distinguish among
them, while whenk=5, we can stop earlier and report all of them.

In Table 2 we show the cost of the top-few execution, fork=1.
The top-few execution, allows us to stop a query at an earlier stage,

7

when a superset containing the top-k cluster has been identified. As
in the top-1 case, the MAXB policy by far outperforms the other
alternatives. Comparing the numbers with the top-1 case, we see
that we get a reduction in evaluation cost by a factor of two on the
average. In most cases the number of answers returned to the user
is very small, typically one. There are only 5 instances where we
see more than 10 and all of them are for TNs with many small,
indistinguishable, answers.

5. RELATED WORK
Scheuermann et al. [14] consider querying multiple database paths

by allowing for some uncertainty in the attribute correspondences
between databases in a multidatabase system. They return multiple
query results ranked by some degree of confidence in the answer.
However, to the best of our knowledge, our work is the first to take
into account similar results from multiple paths as corroborating
evidence and using this information to rank query results.

There has been much work in addressing the problem of identi-
fying keyword query results in an RDBMS and ranking them based
on some quality metric [8, 1, 2, 10, 9]. In such scenarios, the user
queries multiple relations for a set of keywords and gets back tu-
ples that contain all keywords, ranked by a measure of the proxim-
ity of the keywords. DBXplorer [1] and DISCOVER [10] use index
structures coupled with the DBMS schema graph to identify answer
tuples and rank answers based on thenumber of joinsbetween the
keywords. Our framework can also benefit from auxiliary struc-
tures like indexes and materialized views to speed up processing.
BANKS [2] creates a data graph (a similar graph is used by [8]),
containing all database tuples, allowing for a finer ranking mecha-
nism that takes prestige (i.e., in-link structure) as well as proximity
into account. Hristidis et al. [9] use an IR-style technique to assign
relevance scores to keyword matches and take advantage of these
relevance rankings to process answers in a top-k framework that
allows for efficient computations through pruning. As with prox-
imity search techniques, we consider all possible join paths and,
as in [9], we want to allow for pruning of irrelevant data paths in
order to speed up query execution time. A key difference with pre-
vious proximity search techniques is that none of these techniques
deal with data quality issues, or agglomerate scores of multiple data
paths that contribute to the same answer.

Top-k query evaluation algorithms that aim at identifying thek
highest ranking answers to a query have been proposed for a va-
riety of scenarios: multimedia [7, 11], web [12], expensive pred-
icates [4], and RDBMS [3, 11]. Adaptive top-k strategies [4, 12]
dynamically choose which operation to perform next based on cur-
rent tuple scores and estimated statistics. In this paper, we use such
adaptive techniques to select which join paths to investigate next.
Most existing top-k techniques focus on cases where answer tuples
can be mapped into a single relation, with all attributes values ac-
cessible through a unique ID, and rank the result tuples according
to a predefined aggregation function (e.g.,min or weighted-sum).
While some of the proposed techniques [13, 11] apply to scenarios
involving joins, and therefore deal with a potential explosion in the
number of tuples, we are not aware of any top-k technique that does
not consider each possible answer tuple as a single entity.

Traditional top-k techniques require exact top-k answer scores
to be returned. In contrast, NRA [7], which only considers sorted
accesses to multimedia sources, allows for the top-k answers to be
returned as soon as they are identified, along with their possible
range of scores. We use this relaxed stopping condition for our top-
k evaluation, and present another efficient stopping condition:top-
few, which returns a set of answers that are guaranteed to contain
the bestk answers.

Recently, Chaudhuri et al. [5] investigated the problem of rank-
ing answers of database queries that are not very selective (Many-
Answersproblem) and propose a ranking function based on Proba-
bilistic Information Retrieval ranking models. Our scoring func-
tions also have a probabilistic interpretation and, similar to [5],
ranking is proposed in order to prune a potentially large answer set.
However, while in [5] the problem arises from loosely constrained
queries, the complexity of our problems stems from (i) the exis-
tence of multiple join (schema) paths that can potentially link two
attributes in the same or different databases, and (ii) low data qual-
ity that further increases the number of instantiated data paths for a
given query. Approximating top-k answers, by offering guaranteed
answer quality wrt the correct top-k scores [7, 4], or probabilistic
guarantees [15], is an issue we do not address here.

6. CONCLUSIONS
This paper addressed the Multiple Join Path problem, of finding

high quality query results that can be reached from a query node,
by following one or more join paths in the schema graph, across
multiple databases, in the presence of data quality problems. The
framework proposed in this paper scores each data path that in-
stantiates the schema join paths, taking data quality with respect to
specified integrity constraints into account. Multiple data paths be-
tween the same nodes are treated as corroborating evidences, and
data path scores are agglomerated to yield scores for matching an-
swers. We develop novel techniques to efficiently compute the top-
few answers within the Multiple Join Path framework, taking the
agglomerative scoring mechanism into consideration. We evaluate
our techniques using real data and our Virtual Integration Prototype
testbed, and demonstrate both the utility of the agglomerative scor-
ing methodology, and the efficiency of our algorithmic techniques
for computing top-few answers.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for

keyword-based search over relational databases.ICDE, 2002.
[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using BANKS.ICDE,
2002.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries
over relational databases: Mapping strategies and performance
evaluation.ACM TODS, 27(2), 2002.

[4] K. C.-C. Chang and S.-W. Hwang. Minimal probing: Supporting
expensive predicates for top-k queries.SIGMOD, 2002.

[5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic
ranking of database query results.VLDB, 2004.

[6] T. Dasu and T. Johnson.Exploratory data mining and data cleaning.
John Wiley, 2003.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware.PODS, 2001.

[8] R. Goldman, N. Shivakumar, S. Venkatasubramanian,
H. Garcia-Molina. Proximity search in databases.VLDB, 1998.

[9] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style
keyword search over relational databases.VLDB, 2003.

[10] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search
in relational databases.VLDB, 2002.

[11] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join
queries in relational databases.VLDB, 2003.

[12] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over
web-accessible databases.ACM TODS, 29(2), 2004.

[13] A. Natsev, Y. Chang, J. R. Smith, C. Li, and J. S. Vitter. Supporting
incremental join queries on ranked inputs.VLDB, 2001.

[14] P. Scheuermann, W.-S. Li, and C. Clifton. Multidatabase query
processing with uncertainty in global keys and attribute values.
JASIS, 49(3), 1998.

[15] M. Theobald, G. Weikum, R. Schenkel. Top-k query evaluation with
probabilistic guarantees.VLDB, 2004.

8

