Circumventing Data Quality Problems
Using Multiple Join Paths

Yannis Kotidis Amélie Marian Divesh Srivastava
Athens University of Rutgers University AT&T Labs—Research
Economics and Business amelie@cs.rutgers.edu divesh@research.att.com
kotidis@aueb.gr
ABSTRACT to enforce integrity constraints across independent databases. For

instance, a provisioning database may have a place-holder (i.e., a

high quality information by linking fields across multiple databases, ﬁeld)_for storing customer contact informa_tion. However, often this
when the underlying databases have poor quality data, which aref'eId Is empty (n_uII value_s) or populqted W't.h dummy (default) VQI'

characterized by violations of integrity constraints like keys and ues, since this |r_1for_mat|on is of no |m_m_ed|_ate use for_the applica-
functional dependencies within and across databases. MJP assolion that deals V.V'th inventory and provisioning and Wh'c.h oversees
ciates quality scores with candidate answers by first scoring indi- ths dalta. Data |q(c:jon5|ste30|es(j(e.g., r‘r;tultlptl)e recor((:ijsbwnz thehsame
vidual data paths between a pair of field values taking into account ey value) arc(ja widesprea I gn can often be Itrac¢|a ac dt% uman
data quality with respect to specified integrity constraints, and then errors, €.g., during manua ata entry. Defau t values an _ata In-
agglomerating scores across multiple data paths that serve as corconsistencies are examples of poor data quality prevalent in large
roborating evidences for a candidate answer. We address the propdatabases.

lem of finding the top-few (highest quality) answers in the MJP 1.1 VI|P: Motivating Example

framework using novel techniques, and demonstrate the utility of
our techniques using real data and our Virtual Integration Proto-
type testbed.

We propose the Multiple Join Path (MJP) framework for obtaining

VIP is an integration platform, developed at AT&T, covering
more than 30 legacy systems. It was developed in an effort to pro-
vide a platform for doing quick investigations and resolving dis-
putes (due to data inconsistencies) between different applications.
1. INTRODUCTION A basic query that often arises in VIP is of the form “given the
value of a fieldX, find the value of a field ”. For instance, when
processing telecom data, an example query is: given the telephone
number (TN) of a customer that shows up in a sales application
(SALES), find the circuit id of the attached line. Since circuit ids
are not part of SALES application, the users need to access the in-
ventory application INVENTORY that can look up circuit ids using
a provisioning order number (PON). Users have access to a front-

across multiple, autonomously managed databases. For instance, end web interface that provides authentication and allows queryin
multitude of ordering and provisioning tools can lead to customer o P : . querying
the underlying inventory dataset by pasting a single PON value into

accounts and billing data being present in different databases de_a form. The same front-end can also retrieve circuit information

pending on, among other things, location, type of customer, etc. . . . Lo

- : . L when queried using a TN, but the internal mapping is incomplete
This fragmentation of data makes investigations across these datab%sneascontains inconsistencies. Thus. we need to devise additional
problematic. A standard technique used for the task of querying) ’

across databases is the join path, linking two data fields, possib|ystrateg|es for locating the target circuit id by considering other ap-

in different databases, through intermediate data. Given a value forpll;atg;asrrt]?ritnwe;Tt]tae)rlnr;ac\)lfuz(;ﬁsfeic;};tions with the SALES. OR-
one of the data fields, a join path enables the identification of values y gp '

reachable in the other field using the join path. DERING, PROV and INVENTORY applications, we have been

Compounding the difficulty of querying across databases is the able to compute the schema graph, depicted in Figure 1, to help an-

: i swer the query; the meaning of the numbers along the edges will be
prevalence of data quality problems, within and across databases . .) .
(see, e.g., [6]). A typical phenomenon is the existence of dupli- made clear when discussing our experimental results. PROV is an

cate, default and null values in columns of database tables that areapphcatlon that maintains provisioning records, while ORDERING

.) 1s an ordering tool used primarily for small-business customers. Ta-
supposed to be treated as primaryfforeign keys, due to the inability | 2 A ETES OF 581 0 depic%/ed in the schema graph of Figure 1.

The combined size of the databases behind these four applications
is in the order of 100 million records.
The schema graph provides multiple paths to link a TN value in
o - . . SALES to a CircuitID in INVENTORY. We list here a few of them:
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies aret Using a TN value in SALES, we obtain PON values, based on
not made or distributed for profit or commercial advantage and that copies the “intra-application” edge (SALES.TN, SALES.PON) depicted
bear this notice and the full citation on the first page. To copy otherwise, to in Figure 1. We then access the INVENTORY application using
republish, to post on servers or to redistribute to lists, requires prior specific these PON values and the “inter-application” edge (SALES.PON,

permission and/or a fee. L -
CleanDBSeoul, Korea, 2006 INVENTORY.PON). There, we look up CircuitIDs using the

In any large organization, there are many database-centric appli-
cations, with overlapping features and functionality, ranging from
sales and ordering tools to inventory and provisioning applications.
These applications have authority over different pieces of data, and
the difficulty of integrating legacy applications into a unified ap-
plication for a given task typically results in the data being spread

1008/472

5364/99

309/199

1008/472

Figure 1: Schema graph for subset of VIP

[Field Name][Description]
TN Telephone Number under investigation
BAN Billing Account Number (primary key in biller)
CustName || Customer name (in biller and provisioning)
PON Provisioning Order Number (key in
provisioning applications)
SubPON subsequent/related Provisioning Order Number
(links multiple provisioning records for a customer)
ORN Order Number (key in ordering applications)
CircuitlD Circuit the line is attached to

Table 1: Description of Fields in Figure 1

(INVENTORY.PON, INVENTORY.CircuitID) intra-application
edge in INVENTORY. This corresponds to the left-most path in
the schema graph.

Given a TN in SALES, we can look up the customer name.

This may be done directly, or via the billing account number

for the customer. Notice that due to internal inconsistencies
the two methods might give us different results. We can then
input the customer name in the PROV application to retrieve
all known PONSs for the customer (from the PON and SubPON
fields) which can be then used to probe INVENTORY, as in the
first case. This corresponds to the set of middle paths in the
schema graph of Figure 1.

Small-business customers typically have multiple working tele-
phone lines sharing the same circuits. For such customers, we
can obtain the order number (ORN) in SALES, probe ORDER-
ING and get all other lines ordered by the customer. Using this
set of telephone numbers, we can probe INVENTORY multiple
times. Even though, as explained, the internal TN-to-CircuitlD
mapping in INVENTORY is often incomplete, we can use the
expanded set of all TNs in the customer order to try and find
matching circuit ids in INVENTORY. This corresponds to the
right-most path in the schema graph of Figure 1.

Given the different schema graph paths that link the TN input
field (in SALES) to the CircuitlD output field (in INVENTORY),
which join pathshould be used to identify query answers?

1.2 Multiple Join Path Framework

swers, especially when only a single answer is expected. Efficiency
of query answering is also a concern. For instance, the return of a
default value by an application may result in a significant number
of probes to applications that follow it in a join path. Furthermore,
different join paths that share edges need to be processed in a coor-
dinated manner so that we avoid probing with the same input values
multiple times.

TheMultiple Join Path(MJP) framework proposed in this paper
resolves these problems as follow:

t It takesall join paths in the schema graph into account.

t Each data path (schema path instancef@ed taking the qual-
ity of integrity constraints (keys, functional dependencies), pos-
sibly across multiple databases/applications, and the quality of
the data with respect to the integrity constraints into account.

t Multiple data paths between the same TN, CircuitID value pairs
are treated as corroborating evidences, and data path scores are
agglomerated to yield scores for CircuitlD values.

t Alljoin paths are considered when deciding the next application
to probe. Intersecting data paths help re-use results of other join
paths and reduce the number of probes to the applications.

t The top-few (typically 1) matches are returned as the desired
answers. The schema graph and the computed data paths are
used to prune unnecessary accesses to the applications.

When we are interested only in the top-few matches, it is ex-
tremely expensive to repeatedly probe the legacy applications, one
schema graph edge at a time, to find all matching answers. This
leads to the main technical problem addressed in this paper, the
Multiple Join Path Problem

Given a schema graph identifying multiple join paths
between fieldX and fieldY , and a valueX = x, find
the top-few values of that are reachable frold = x
using the schema join paths.

The contributions of our paper are as follows:

t We introduce the MJP framework, and an agglomerative scoring
methodology, to quantify answer quality in the presence of data
quality problems arising due to integrity constraint violations
in primary and foreign key columns, across multiple databases
(Section 2).

t We develop novel techniques to limit the probing of legacy ap-
plications to efficiently compute the top-few answers to the MJP
Problem. The agglomerative scoring methodology essentially
renders previous mechanisms for computing kogaswers in-
applicable for our problem (Section 3).

t Finally, we evaluate our techniques using real data and our VIP
testbed. In particular, we demonstrate both the utility of the ag-
glomerative scoring methodology in the presence of data quality
problems, and the efficiency of our algorithmic techniques for

computing top-few answers. In our real telecom example, we
observe a reduction in the number of probes to the legacy appli-

cations by a factor of up to 18 in some cases (Section 4).

2. THE MJP PROBLEM

When querying across multiple databases, in the presence of data In this section, we introduce the Multiple Join Path framework,

quality problems, choosing any one join path results in missing an-
swers, but choosing multiple join paths may lead to conflicting an-

and our agglomerative scoring methodology, to quantify answer
quality in the presence of data quality problems in multiple databases.

2.1 Queries and Answers

A basic query of interest is of the form “given the value of a field
X, find values of a field ”, where X andY refer to specific fields
of individual applications. For instance, when processing telecom ———!—— ——
data, example queries include:

t Q1: given the telephone number of a customer (in SALES), find
the circuit id (in INVENTORY) that the line is attached to.

t Q2: givenacircuitid (in INVENTORY), find the customer names
(in SALES) whose telephone numbers attach to this circuit id.

Figure 2: Data graph for query SALES.TN=555-5555

of Figure 1. Two additional nodes are present in this data graph,

In the case of query Q1, one would expect there to be exactly one SALES.PON.pon3 and SALES.ORN.01 (corresponding to schema
resulting answer. Since multiple telephone numbers may be at- 9raph nodes SALES.PON and SALES.ORN), which do not join
tached to a circuit, query Q2 may have more than one answer. InWith values in INVENTORY.PON and ORDERING.ORN, respec-
both casesX andY are fields in different databases, so we need tively. Note that the data graph can have multiple or no nodes cor-
to establishjoin pathsthat link these two fields. There may be responding to any specific node in the schema graph.

multiple possible join paths between any two given fields, and the 213 Scoring Answers

schema graph, discussed next, identifies these possibilities. S]
In a perfect world, the applications would have no internal data

2.2 Schema and Data Graphs quality problems, and our basic query (giv¥n= x, find Y) could
A schema graph is a 3-tup(€; X; Y), where: be answered correctly by following all the join paths across the
multiple applications starting fronX = x, and taking the union of
t G = (V;E) is adirected acyclic graphwhose nodey = all theY values that are reached along these individual join paths.
X;Y;:::g are labeled by field names of accessible applica- But data quality problems are prevalent in large data-centric appli-
tions, ande % V £V are directed edges. cations. For example, a primary key field (like the billing account

number (BAN) field) may only be aapproximatekey [6]. Simi-
larly, a functional dependency expected of an intra-application edge
in the schema graph may be violated. As an example, we might find
Adirected edgév1;v2) 2 E is referred to as aimtra-application that the same telephone number is associated with two customer
edge, ifvl andv2 are fields in the same application; otherwise, it Names due to manual data-entry errors in the SALES application.
is aninter-application edge A directed patf® from X to Y in So we are faced with the considerable challenge of answering
G is referred to as @in path For instance, the schema graph of our basic querieithout a priori knowledge of which values in the
Figure 1 has six possible join paths from SALES.TN to INVEN- underlying databases are clean, and which ones are Tiotmeet
TORY.CircuitlD, which can be used to answer query Q1. Thus, thischallenge, we employ a probabilistic technique that scores data
join paths in a schema graph identify different ways in which a €dges using values in the ran§e : : 1]. Thus, the score of a data
basic query can be answered. edge(T1:Al:vl; T 2:A2:v2) represents our belief that the associ-
To ensure that join paths yield meaningful associations, not spu- ation between valuesl andv2 of fieldsT 1:Al andT 2:A2 is cor-
rious correlations, we focus attention on the case where (i) all nodesrect. We will describe later how these scores are obtained. What
in the schema graph (except, possibly, for source and sink nodes)is important is that this probabilistic interpretation of the scores al-
are (possibly approximate) primary keys or foreign keys in their lows us to combine scores across a data path.
respective applications, (i) inter-application edges correspond to Recall that a data path is just a sequential composition of data
(approximate primary key, approximate foreign key) associations, edges. Using a probabilistic interpretation of the data edge scores,
and (jii) intra-application edges are incident on an approximate pri- assuming independence of the data edges in a data pastdre
mary key. of a data pathis defined to be the product of the scores of the
Given a specific valua of the source nodX (e.g., telephone constituent data edges. More formallysi;; sc2;:::; scn are the
number, 555-5555, in query Q1), all join paths in the schema graph scores of the constituent data edges of a dataathen the score
need to be explored to find all matchiggralues for the sink node ~ ©of P is given by:

t X 2V is the unique source (no incoming edges), #¥n& V is
the unique sink (no outgoing edges)®f

Y (i.e., particular circuit ids). Intuit_ive_ly, the d_ata graph, defined sequential_com(sci;1 =i =n) = I, (sci) @

below, captures these data associations. Given a schema graph

(G; X;Y), adata graphis a triple(Gp; Xp; Yb), where: As will be explained, this probabilistic interpretation assigns scores

on data paths using data quality metrics on the edges. Thus, a high

T Go = (Vb;Ep) is adirected acyclic graphwhose node¥p quality data path will get high scores independent of the length
have labels of the fornT:Aiv, such thafl:A 2 V andv is a of the path, unlike, e.g., techniques like [1]. In fact, it is easy to
value of fieldT:A, andEp % Vp £ Vp are directed edges such see that the latter technique is just a special case of our framework
that(T1:Al:iv1; T2:A2:v2) 2 Ep D (TL:AL T2:A2) 2 E. when all data edges are scored with the same val(e; in).

t Xp 2 Vp is the unique source dbp, corresponding to value An answer may be corroborated by multiple data paths, and our
x of source node&X of G, andYp % Vp is a subset of the sink ~ Scoring methodology agglomerates the scores of these data paths,
nodes ofGp, corresponding to valuag of sink nodeY of G. usingparallel compositionto compute the score of\a value. For

example in Figure 2 there are two data paths from SALES.TN.555-
For instance, given the schema graph of Figure 1, an example5555 to answer INVENTORY.CircuitlD.c1. Different data paths
data graph is shown in Figure 2. There are two paths in this data are considered independent evidences and their scores are com-

picted by sink node INVENTORY.CircuitID.c1l. Both these data the scores of individual data patfs;1 = i = n, between two
paths correspond to the leftmost join path in the schema graphnodes in the data graph, then, to ensure that all scores &elin

the score of the parallel composition of tRgs is given by: values of fieldA in applicationsT 1 andT 2. In that case the score
of the inter-application data edge is adjusted by using some notion
of error metric (e.g., normalized edit distance or tf.idf for strings)
wheres1 = sc; ands2 = parallel_com(sci;2 = i = n). between the values.
Finally, the score of & valuey; is the score of the parallel : :
composition of all the data paths from the souke to the sink 2.5 Mul_tlple Join F_)ath P_roblem . .
Y:yi. This agglomerativescoring takes into consideratiail the Our goal is to locate high quality information across multiple
data paths that corroborate an answer. databases, in the presence of data quality problems. Since the dif-
Other combining functions may also be used without affecting ferentY values that are reached from a givénvalue may have
the generality of the proposed methodology. The process that we Very different scores, we are interested only in the top-few matches.
describe in Section 3 requires the following two monotonicity prop- When we are interested only in the top-few matches, itis extremely
erties, which allow for a broad selection of scoring functions: expensive to repeatedly probe the legacy applications, one schema
graph edge at a time, to find all matching answers, only to eventu-
t Property 1:the score of a data path is a non-increasing func- ally discard the low scoring answers.
tion of the scores of the constituent data edges. This leads to the main technical problem addressed in this paper,
referred to as th#lultiple Join Path(MJP) Problem:

parallel_com(sci;1 = i=n) = sl+s2j (sL-52) (2)

t Property 2:the score of an answer is a non-decreasing func-

tion of the scores of the constituent data paths. Given a schema graph identifying multiple join paths
between fieldX and fieldY, and a valueX = X,
2.4 Data Edge Scores find the top-few values of (with the highest scores)
Without a priori knowledge of the internals of the applications, reachable fronx using the multiple join paths.

or expertise on the quality of specific data items, our approach is conventional togk evaluation requires exact scores to be re-
to rely on expected functional dependencies between the exportedyined along with the matching answers, resulting in a ranking
data fields. For instance, in the telecom example, we expect a tele-of the k results. In our agglomerative scoring methodology, since
phone number to uniquely identify a customer. Thus, when probing any unexplored data path could eventually corroborate a known
the SALES application, if we get two customer names for an as- ya|ye, resulting in a score increase (however slight), one would not
signed TN, this is a_wolatlon of an expected_ functl(_)nal dependency pe gple to perform any early pruning for the MJP Problem, if one
and we should assign a lower score to the instantiated data edges. jsisted on returning exact scores.

Recall that intra-application schema edg&sA; T:B) capture A more promising approach is where one can returnkagm-
associations where at least on€loA andT:B is an approximate gyers, where each answer is associated with a score range, and the
key in the corresponding applicatign Assume, without loss of regyIt is asetof answers, not a ranking. In Section 3, we shall dis-
generality, thafl :A is the approximate key. Then the edge cap- cyss novel solutions to the MJP Problem, and subsequently exper-

tures aforward functional dependendyFD) from T:A to T:B. imentally validate the utility and efficiency of our approach using
Assume also that while answering a posed query, due to internal .ag| gata and the VIP testbed.

data quality problems, the following data edges are instantiated:

(T:A:v1; T:B:v1l), (T:A:vl; T:B:v12) and(T:A:v2; T:B:v21). .
It is then obvious that the two different valu€sB:v11, T:B:v12 3. THEMJP PROBLEM: SOLUTION

associated witf :A:v1 are witnesses that:A:v1 is in violation of 31 Incremental Data Graph Com putatlon
the FFD and therefore data edd@eA:v2; T:B:v21) should have a . . .
Given a specific value of the source nod& in the schema

h'gLZetrfS((fro:f::/hﬁr.}.?g?fﬁf‘ |Vi 'I;Bvé 18 : ?ﬁ éTS'Q'\(/)} (;I’ a.tg.\égjzgs graph, the data graph is initially instantiated with a upique (source)

instantiated for valud:A:v1 following this schema edge, and let nodeXp = X'.X‘ For eagh newly msprted data nolig in the data

j:j denote the size of a set. To achieve the desired behavior, thegraph (excluding those in s¥p of sink nodes), we create the set

score of each data edg€:A:v1; T:B:vli) is set to: openedgesp) to be the S‘?t of all s_chema edgee E that em-

anate from the corresponding no@ien the schema graph. As an
AT T R 1 example, for the schema graph shown in Figure 1 and for TN = 555-

Se(T-AVE TBuv) = JF(T:AVL;T:Bivii)i=1;:::40j ®) 5555 being the TN in quer@1, the data graph is instantiated with a

single node SALES.TN.555-5555. The spenedges(SALES.TN.555-

5555)will then include the following schema edges: (SALES.TN,

SALES.PON), (SALES.TN, SALES.BAN),

1 4) (SALES.TN, SALES.CustName) and (SALES.TN, SALES.ORN).

JE(T:AVIL; T:Bivl);i=1;:::qj An open nodein the data graph is any nodes, not in Yp,

for which the setopenedges(p) is not empty. Our algorithms

will proceed by carefully choosing an open notis and select-

ing one of the edges in setopenedges(p) to explore. Fol-

lowing an intra-application edgd :A; T:B) for open nodél :A:u

The case when the schema edge capturbackward functional
dependenc{BFD) is handled symmetrically:

sc(T:A:vli; T:B:vl) =

Finally, when bothT:A andT:B are approximate keys, the edge
captures aymmetric functional dependen@&FD) and the score is
computed as:

so(T:AVi: T:Bvj) = 1 results in probing applicatiom and retrieving a set of values for
T JF(T:AVI; T:BJg [F(T:A-T:B:vj)gj field T:B. For each unique value; of attributeT:B in the re-
(5) sult of this probe, we add a new nodeB:v; to the data graph
where ™ means any value and is used to capture all data edgesand generate setpenedges(:B:vi). We further instantiate the
emanating fronT:A:vi (resp. leading t@ :B:vj). data edgg(T:A:u; T:B:vj) and compute its score. In Figure 3,

For an inter-application schema edgel:A; T 2:A), the score of we depict the data graph after exploring schema edge (SALES.TN,
a data edge corresponding to this schema edge is always 1, since th8 ALES.PON) for open node SALES.TN.555-5555. The applica-
association between the fields is assured by the schema graph. Arion in this case returned three distinct values for SALES.PON:
interesting extension is to considgoproximate matchingetween ponl, pon2 and pon3.

Figure 3. Data graph, after processing of edge (SALES.TN, -
SALES.PON)
v
‘

ORDERING.ORD

Following an inter-application edgd 1:A; T2:A) does not in- é
cur additional probes to the applications. Values of fieldA that Cmronrmn = e T
do not appear in applicatiom 2 will not generate any new data \
nodes when a follow-up intra-application edge is processed. In ei- mrony e
ther case, after edgds explored itis removed frompenedges(p). .)
We adopt a simple cost model that enumerates the number of Figuré 4: Maximum paths for unexplored edges of node
probes to the applications while expanding the data graph to answerSALES. TN.555-5585, after processing of edge (SALES.TN,

the user query. This cost model is reasonable in the absence ofSALES.PON)
internal knowledge of the behavior of the applications.

. i 0
3.2 Schedullng of Open Nodes data edge for each pakh that containg’. As an example, schema

] o edge (PROV.CustName, PROV.PON) instantiates two distinct data
While building the data graph, we often have many open nodes edges in Figure 4.

to explore, each with at least one unexplored edgsinedges() Given one or more open nod€s in the data graph, we pick the
We thus need a strategy that will lead to early pruning when com- next edge to explore as the one that maximizes our benefit metric.
puting topk answers. This is ourmaximum benefjiolicy, MAXB. In our experiments we

Since the data grapiGo; Xp; Yp) has a strong correspondence see that MAXB outperform DFS and BFS, by a factor of up to 18:1.
with the schema graph, we can pick the next open node/schema

edge to explore using standard graph searching techniques like dep8-3 Pruning Criteria

first-search (DFS) or breadth-first-search (BFS) guided by the schemaynlike conventional togk evaluation, where exact scores of an-
graph. Such techniques however are oblivious to the statistics wesyers are returned, for our MJP framework a more promising ap-
can collect both at the schema graph as well as at the (incomplete)proach is to return the top-few answers, where each answer is asso-

data graph while processing the query. As is demonstrated by ourcjated with a score range. We distinguish between two versions of
experiments in Section 4, this results in substantially more probes the problem:

to the applications. In what follows, we describe a greedy schedul-
ing technique that is based on the notion of tte@ximum beneff t The exact togk setYp = (yi;:::;Yk) is returned. For each
unexplored paths that go through open nodes. answelyi, we provide a score rand8min(Yi) :: : Smax (Yi)].

Benefit computation involves two components. The first uses the
statistics accumulated in the data graph to compute the score of all
paths leading to an open node. The second component calculates
the best way that the data graph can be augmented when following
unexplored edges from an open node on the way to an answer. The
fusion of these two components provides our benefit metric.

At each step, our algorithm maintains this benefit metric per open
node/schema-edge in the data graph and schedules the next movp
using this metric. At an abstract level, our methodology for pro-
cessing a user query can be summarized as follows:

t The top cluster of answers that is guaranteed to contain the top-
k values is returned. Each answer is associated with a score
range. We call this theop-fewevaluation. Top-few is valuable
when doing quick ad hoc investigations, since it allows for more
pruning because of the weaker stopping condition.

Lety 2 Yp be an answer present in the (incomplete) data path.

from Xp toy. Then, the minimum score of answér= vy is the
parallel composition of the scores of all known pathgto

t Start from the sole instance of source no¢ie and expand one

data node at a time. For any open ndg@g maintain the multiset smin(y) = parallelcom(sci; 1 =i = n) ©
of scores along data paths frodp to Tp. The maximum score of answgris computed by additionally con-

t By associating open nodEs with its schema nod@ , we can sideripg the maximum bene_fit of each open node and unexplored
quantify theresidual benefibf an unexplored schema edeén edge in the data graph, as discussed previously.
openedges(p) as the maximum possible contribution of the Through similar arguments we can compute the range of scores
subgraph fromX to any possible data node in &5, passing Smin (Yunseen) : : : Smax (Yunseen)] Of an answepunseen that we
throughTp using instances af in the data graph. have not encountered in our evaluatiori@s : max_contribution].

The lower bound is trivial (when no new answer exists). The upper

As an example, we consider the data graph of Figure 3. For openbound follows easily if we consider that all paths from the open
node SALES.TN.555-5555 there are three unexplored edges in thenodes in the data graph terminate to a new ang\wefeen-
setopenedges(SALES.TN.555-55583ALES. TN, SALES.BAN), In a naive evaluation of the MJP Problem we stop when all open
(SALES.TN, SALES.CustName), and (SALES.TN, SALES.ORN). nodes in the data graph have been explored. However, one may
Figure 4 shows the maximal subgraph that can be generated bystop earlier without exploring all open nodes, depending on the
exploring these edges in a way that maximizes the score of anversion of the problem. Assume sétcontains all answers that
answer. In this figure there are five paths from SALES.TN.555- we have seen so far and algenseen (a placeh@lder for some an-
5555 to schema node INVENTORY.CircuitID. For each patha swer we have not yet encountered). ThisYp fyunseeng. We
schema edge is only instantiated once (since all edges are treated agrder the answers i using their minimum scores 83;y2;:::,
FFD/SFD). However, a schema edgemay generate one distinct ~ wheresmin(Yi) » Smin(Yj) Wheni < j. This order also implies

Smax(Yi) » Smax(Yj). If setY contains more thak answers, we
may stop further processing under the following condition:

t In topk evaluation, we stop wheSmax(Yik+1) = Smin(Yk)-
That is, the upper bound on the score of kiel'th candidatey
value is no larger than the score of the curieiti candidate.

t In the top-few evaluation, we may stop fnax(Yunseen) =
Smin(Yk). If this condition holds then any new answer can-
not possible be scored higher that our curietit candidateyy.
Thus, the top cluster is identified and we return thpse with

Smax(yi) > Smin(yk)-

4. EXPERIMENTS

In this section, we experimentally evaluate our solution using
our VIP testbed. Due to lack of space we provide detailed results
for one query in our real dataset (query Q1, Section 2.1). Results

for other queries between pairs of nodes in the schema graph of

Figure 1 were similar. Our main experimental results can be sum-
marized as follows:

t Real datasets have a multitude of data quality problems and no T

join path is immune to these problems. Using a fixed path or
the maximum path for answering a query can lead to missing
answers (low recall). That is why, in our MJP framework, all
paths are considered.

t The data graphs can be fairly large (for instance when default

‘ "Top-H Ansvs)ers"

Frequency Count

1 L

Il
50 60 70 80
Number of Parallel Paths

i

90

100
Figure 5: Number of parallel paths in top-1 answers

t hH: heavyHitters(10): These are the top-10 queries (TNs) ranked
by the number of matching circuits in our data. TNs in that group

returned between 128 and 257 circuits.

oL: onelLarge(47): This is the subset of TNs that returned one
circuit id with score at least 1% and zero or more circuits with
scores less that this threshdld.

t mL: manyLarge(4): This set of TNs have at least 5 matching

circuits with score at 1% or higher.
t mS: manySmall(8): This set of TNs returned at least 5 answers,

values are encountered). Our scheduling techniques based onthe while no answer had score greater or equal to 1%.

maximum benefit metric achieve substantial pruning by elimi-
nating a large number of candidate paths from evaluation.

The rest of this section is organized as follows. In Section 4.1 we
illustrate that real applications are faced with significant data qual-
ity problems. When joining data across diverse applications, we

typically find many answers, even when a single answer is expected

(for instance a single CircuitID for a TN in Q1). Thus, ranking is

t aA: anyAnswer(94): All TNs with any matching circuits.

t nA: noAnswer(56): These are TNs for which no answer (cir-
cuits) can be obtained from the data.

4.2 Benefit of Agglomerative Scoring
We now address the utility of our agglomerative scoring method-

required to help users identify the correct answer. In Section 4.2 we 0logy. In Figure 5 we plot the number of parallel data paths that
demonstrate that top-1 answers typically have several instantiatedcontribute to the top-1 answer for each TN with a non-empty an-
data paths leading to them and an agglomeration of their scores isSWer (seanyAnswer). For the 94 top-1 answers, there is an av-

needed. Animportant observation is that even join paths with small €rage of 10 parallel paths per answer (for a total of 946), out of
schema weights in their edges are useful in determining top-1 an- Which roughly 2.5 parallel paths per answer (for a total of 229) are
swers. In Section 4.3 we demonstrate that using our benefit metric Significant (score of the path is greater than 10% of final score). In
results in substantially fewer probes to the applications, often by a contrast, when looking at all answers for each TN there are on the

factor of 1:18. Using the top-few execution model, this reduction
is further increased by a factor of 2.

4.1 Nature and Quality of Data

We used traces of real user queries and obtained a random sal
ple of 150 TNs that users ran investigations upon. We then used
the schema graph to obtain circuit ids for these TNs (i.e., using
k=1). We noticed that there is a large number of TNs (56) that
return no matching circuitids. This is because (i) the INVENTORY
dataset is incomplete and (i) the provisioning key is often missing
in SALES, forcing join paths either through customer names (Cust-
Name) or order numbers (ORN). The distribution is heavy-tailed,
as there are many TNs for which we obtain 50 or more circuits
through the schema graph. The maximum number of circuits re-
turned for a single TN was 257. It is clear that most queries return
a lot of answers. In fact only 2 TNs returned just one circuit! Thus,
we need to be able to prune the long lists of matching circuit ids in
order to provide meaningful answers to the user.

Using answer scores, we classify user queries into the following
classes (in parentheses we show the number of TNs in each class)

average just 1.7 parallel paths contributing to each answer.

A natural question one may ask is whether all the schema join
paths are really relevant, or if one of them dominates in its con-
tribution to the final scores. In Figure 1, we annotate the schema

maraph edges with two numbers. The first is the number of data

paths leading to an answer that instantiated this edge. The second
number is for top-1 answers only. Some interesting observations
on the nature of the data can be drawn by interpreting these num-
bers. First, paths that go through the SALES.PON node are more
likely to end up in a top-1 answer: 199 out of 309 overall. Simi-
larly, probing the ORDERING application leads to a top-1 answer
in almost half the cases. In contrast, many paths that use instances
of nodes SALES.BAN, SALES.CustName do not end up in top-1
answers. However, it is still beneficial to include these nodes in
the schema graph. We notice that 275/946 top-1 paths (paths that
result in a top-1 answer) go through instances of these nodes. If we
remove these nodes from the schema graph along with all paths that

The low value of the threshold has been chosen to capture as many
potentially relevant answers as possible, given the scoring method-

ology.

Top-1

3121 k=1 DFS | BFS | MAXB
aA || 207/1189| 206/1188| 130/1109| 59/679
hH 903/1189| 902/1188| 618/1109| 162/679
oL 305/1189| 304/1188| 141/890| 23/231
mL 415/793| 414/793| 327/625 52/83
mS || 310/1128| 310/1128| 306/1106 | 237/629
nA 471232

SALES.BAN

ORDERING.ORN

ORDERING.TN

312-1

Table 3: Avg and Max Data Graph Size (edge seEp)

400

"m‘anyLarg‘e.aII” L
350 "manylLarge.varyk" ---x--- |
300 | g
% 250 IR RSB SRR
INVENTORY CircuitiD 3 -
> 200 | |
] e X\ //
Figure 6: Aggregate Path Statistics for top-1 answers (setmeLarge G 150 [b
- manySmall) w00 b X{/ X |
Top-1 Top-few 50 L g |
k=1 | DFS| BFS| MAXB || DFS| BFS| MAXB
aA || 2469 2454 1251 47.1] 2449] 97.3] 246 T, s 4 s s 7 s s 10
hH 724.1| 722.9| 453.0 109.5 || 722.3 | 359.6 56.1 K
oL 261.0 | 259.1 | 104.6 146 || 251.4| 95.5 141
mL | 3658 3654 | 249.8| 400 326.8| 136.8| 19.3 Figure 7: Query cost, varying k (manyLarge set)
mS 258.5| 258.5| 253.8 184.8 || 258.5| 231.7 119.6
nA 24.6

the answer set and, thus, we can expect a lot of pruning during
Table 2: Cost of top-1/top-few evaluation top-1 evaluation. Here, the MAXB policy reduces the cost of pro-
cessing by a factor of 18:1 compared to the case wkerk. For
the setmanylLarge , savings are smaller but still substantial (9:1).
Even in the case of sebanySmall , MAXB results in significant
use them, then for the 94 queries with non empty top-1 answers, 8pruning. These are TNs for which a large number of circuits with
return no result while for 77 the top-1 answer differs. very low scores were discovered. Looking at the instance graphs of
We next discuss the issue if there is any correlation between the these TNs we observed that most were due to a default value of field
join paths used and the class of queries. In Figure 6 we aggregateBAN in SALES, resulting in many matching customer names when
at the schema level the number of paths in top-1 answers for setsfollowing the intra-application (SALES.BAN, SALES.CustName)
oneLarge (first number next to an edge) anthnySmall (sec- edge. Because of our scoring mechanism, all these paths were as-
ond number). The number of paths in seteLarge is larger signed very low scores and MAXB was able to prune a substantial
because more TNs belong to that set (47 compared to 8 in setnumber of them. In contrast, DFS for top-1 is almost as bad as get-
manySmall). In the case of setneLarge , paths through OR- ting all answers. This is because DFS follows deep paths through
DERING schema nodes appear in more than half of the cases.the schema graph to the end without concern of the current scores
However, again paths through the PROV dataset using customerleading to an open node or potential benefits of open paths. BFS is
names are significant in top-1 answers. InreahySmall there is slightly better since all paths are explored in unison.
only one top-1 answer with a path through ORDERING. Most of |n Table 3, we show the average (first number) and maximum
the paths (9 out of 15) go through the (SALES.TN,SALES.BAN) (second number) size of the data graph for the same experiment.
edge and subsequently to PROV, joining on the CustName attribute.we notice that fok=1_ the data graph size is on the average 207
.. . with a maximum instance of 1189 (edges). Thus, evaluation of
4.3 EfﬂC'enCy of TOp-k Evaluation Multiple Join Path queries in our framework has very modest re-
quirements in terms of memory usage. We further notice that top-1
We use the number of probes to the applications to determine theevaluation with the MAXB policy reduces these numbers by a fac-
efficiency of topk evaluation. In Table 2, we present the average tor of up to 13:1. This reduction of the data graph size will become
number of probes per TN during the top-k evaluation Kei. We significant in a multi-user environment when the server processes
also present the average number of probes when all circuits wereseveral queries at a time.
requestedK=21). For scheduling the next open node to explore, In Figure 7, we plot the query cost, varyihkgbetween 1 and
we tested the MAXB policy (discussed in Section 3) as well as the 10. For comparison, we also show the cost wked (flat line).
standard DFS and BFS orders obtained from the schema graph. It is interesting that there is a drop in query cost k5. This
Top-1 evaluation, using MAXB, reduces the number of probes suggests that the size of the top-cluster is, on the average, around
by a factor of more than 5, on the average, for TNs with match- five (circuits per TN) with the last 3 having similar scores. Thus,
ing circuit ids. A large number of queries (56/150) returned no for k=3 or 4, additional queries are required to distinguish among
answer, and for these queries top-1 evaluation cannot prune anythem, while wherk=5, we can stop earlier and report all of them.
paths. For the remaining TNs the greatest benefits arise for subset In Table 2 we show the cost of the top-few execution, Ked.
onelLarge . These are TNs for which one circuit stands out from The top-few execution, allows us to stop a query at an earlier stage,

when a superset containing the thgluster has been identified. As Recently, Chaudhuri et al. [5] investigated the problem of rank-
in the top-1 case, the MAXB policy by far outperforms the other ing answers of database queries that are not very seleMizey-
alternatives. Comparing the numbers with the top-1 case, we seeAnswergproblem) and propose a ranking function based on Proba-
that we get a reduction in evaluation cost by a factor of two on the bilistic Information Retrieval ranking models. Our scoring func-
average. In most cases the number of answers returned to the usetions also have a probabilistic interpretation and, similar to [5],
is very small, typically one. There are only 5 instances where we ranking is proposed in order to prune a potentially large answer set.
see more than 10 and all of them are for TNs with many small, However, while in [5] the problem arises from loosely constrained
indistinguishable, answers. queries, the complexity of our problems stems from (i) the exis-
tence of multiple join (schema) paths that can potentially link two
attributes in the same or different databases, and (ii) low data qual-
5. RELATED WORK ity that further increases the number of instantiated data paths for a
Scheuermann et al. [14] consider querying multiple database pathgiven query. Approximating tog-answers, by offering guaranteed
by allowing for some uncertainty in the attribute correspondences answer quality wrt the correct tdpscores [7, 4], or probabilistic
between databases in a multidatabase system. They return multipleguarantees [15], is an issue we do not address here.
query results ranked by some degree of confidence in the answer.
However, to the best of our knowledge, our work is the firstto take 6. CONCLUSIONS

int_o account similar rgsglts from_ multiple paths as corroborating This paper addressed the Multiple Join Path problem, of finding
evidence and using this information to rank query results. pigh quality query results that can be reached from a query node,
_There has been much Wo_rk in addressing the pr_oblem of identi- by following one or more join paths in the schema graph, across
fying keyword query results in an RDBMS and ranking them based) ipje databases, in the presence of data quality problems. The
on some quality metric 8, 1, 2, 10, 9]. In such scenarios, the User gamework proposed in this paper scores each data path that in-

queries multiple relations for a set of keywords and gets back t- giantiates the schema join paths, taking data quality with respect to
ples that contain all keywords, ranked by a measure of the proxim- gpeified integrity constraints into account. Multiple data paths be-

ity of the keywords. DBXplorer [1] and DISCOVER [10] use index yyeen the same nodes are treated as corroborating evidences, and
structures coupled with the DBMS schema graph to identify answer a4 path scores are agglomerated to yield scores for matching an-
tuples and rank answers based onribenber of joindbetween the gyers. \We develop novel techniques to efficiently compute the top-
keywords. Our framework can also benefit from auxiliary struc- e\ answers within the Multiple Join Path framework, taking the
tures like indexes and materialized views to speed up processing.,ggiomerative scoring mechanism into consideration. We evaluate
BANKS [2] creates a data graph (a similar graph is used by [8]), o techniques using real data and our Virtual Integration Prototype
containing all database tuples, allowing for a finer ranking mecha- (eqthed, and demonstrate both the utility of the agglomerative scor-

nism that takes prestige (i.e., in-link structure) as well as proximity jnq methodology, and the efficiency of our algorithmic techniques
into account. Hristidis et al. [9] use an IR-style technique to assign ¢, computing top-few answers.

relevance scores to keyword matches and take advantage of these
relevance rankings to process answers in akidmmework that
allows for efficient computations through pruning. As with prox- 7[1] S. Igzrgwlél)SE Ha%51§1 and G. Das. DBXplorer: A system for

imity search techniques, we consider all possible join paths and, keyword-based search over relational databd&43E, 2002.
as in [9], we want to allow for pruning of irrelevant data paths in [2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
order to speed up query execution time. A key difference with pre- ggé"é"ord searching and browsing in databases using BANEBE,

vious proximity search techniques is that none of these techniques . . .
deal with data q_uality issues, or agglomerate scores of multiple data 3] ';'\}grfer;g{i?h ; Zifgg;;g;na ;‘bngvgrr‘gt'e?ge;?Sgr?gr‘i::s ce
paths that contribute to the same answer. evaluation ACM TODS 27(2), 2002.

Topk query evaluation algorithms that aim at identifying the [4] K. C.-C. Chang and S.-W. Hwang. Minimal probing: Supporting
highest ranking answers to a query have been proposed for a va- expensive predicates for top-k queri&$GMOD, 2002.
riety of scenarios: multimedia [7, 11], web [12], expensive pred- [5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic
icates [4], and RDBMS [3, 11]. Adaptive tdpstrategies [4, 12] ranking of database query resuk&.DB, 2004.
dynamically choose which operation to perform next based on cur- [6] T. Dasu and T. Johnsogxploratory data mining and data cleaning
rent tuple scores and estimated statistics. In this paper, we use such __John Wiley, 2003. _ _ _
adaptive techniques to select which join paths to investigate next. [7] R-Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms

Most existing topk techniques focus on cases where answer tuples for middleware PODS 2001.
9 q P [8] R. Goldman, N. Shivakumar, S. Venkatasubramanian,

can be mapped into a single relation, with all attributes values ac- H. Garcia-Molina. Proximity search in databas¢sDB, 1998.
cessible through a unique ID, and rank the result tuples according [g] v. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style
to a predefined aggregation function (emin or weighted-sum keyword search over relational databa34sDB, 2003.

While some of the proposed techniques [13, 11] apply to scenarios[10] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search
involving joins, and therefore deal with a potential explosion in the in relational database¥LDB, 2002.

number of tuples, we are not aware of any tofechnique that does ~ [11] I. F. llyas, W. G. Aref, and A. K. Elmagarmid. Supporting tpgein
not consider each possible answer tuple as a single entity. queries in relational databas&4.DB, 2003.

Traditional topk techniques require exact tdpanswer scores [12] A.Marian, N. Bruno, and L. Gravano. Evaluating tkueries over
to be returned. In contrast, NRA [7], which only considers sorted web-accessible databasé&M .TODSZ.Q(Z)' 2004. .
accesses to multimedia sources, allows for thek@mswers to be [13] A Natsev, T Chang.). R. SmltE' g: LI'L);EdDé' 28(.)(\)fitter. Supporting

) e) . . incremental join queries on ranked inp 2 .
returned as soon as they are identified, along with their possible [14] P. Scheuermann, W.-S. Li, and C. Clifton. Multidatabase query

range of scores. We use this relaxed stopping condition for our top- processing with uncertainty in global keys and attribute values.
k evaluation, and present another efficient stopping conditimm: JASIS 49(3), 1998.

few, which returns a set of answers that are guaranteed to contain[15] M. Theobald, G. Weikum, R. Schenkel. Tépguery evaluation with
the besk answers. probabilistic guarantee¥LDB, 2004.

