
Structure-aware XML Object Identi�cation

Diego Milano, Monica Scannapieco and Tiziana Catarci

Università degli Studi di Roma �La Sapienza�
Dipartimento di Informatica e Sistemistica

Via Salaria 113, 00198 Roma
{milano,monscan,catarci}@dis.uniroma1.it

Abstract
The object identi�cation problem is particu-
larly hard for XML data, due to its struc-
tural �exibility. Tree edit distances have been
proposed for approximate comparisons among
XML trees. However, such distances ignore
the semantics implicit in XML data structure,
and their use is computationally infeasible for
unordered data. In this paper, we de�ne a new
distance for XML data, the structure aware
XML distance, that overcomes these issues,
together with a polynomial-time algorithm to
calculate it, and we present experimental re-
sult that prove its e�ectiveness and e�ciency.

1 Introduction
The object identi�cation problem is a central problem
arising in data cleaning and data integration, where
di�erent objects must be compared to determine if
they refer to the same real-world entity, even in the
presence of errors such as misspellings. As the spread
of the XML format as a data model increases, the need
to develop e�ective strategies for XML object identi�-
cation grows.

XML documents often represent complex, nested
data, and schema languages for XML allow great �ex-
ibility in how such values are represented inside a doc-
ument. XML data representations may allow for op-
tional values, and lists of values whose length is not
known schema-wise. Functions for approximate XML
data comparisons must thus be able to cope both with
errors at the level of textual data values and with
structural �exibility. The hierarchical nature of XML
data has lead to the use of tree edit distances([1]) to

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for pro�t or com-
mercial advantage and that copies bear this notice and the full
citation on the �rst page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
CleanDB, Seoul, Korea, 2006

compare XML documents for various purposes, like
detection of di�erences in versions of XML documents
([2],[3]). Some proposals also address the object iden-
ti�cation problem ([4]). Tree edit distances in their
original form give great importance to topological fea-
tures of trees, but are not well suited when node labels
and their nesting have semantics and data structure
is somewhat regular. Another issue is that, due to
the infeasibility of tree edit distance measures for un-
ordered trees ([16]), such proposals are usually based
on versions of the tree edit distance for ordered trees.
Notice that, while the XML data model is indeed or-
dered, the presence of unbounded lists of values and
optional elements in the data motivates for the adop-
tion of unordered comparisons when looking for ap-
proximate matches. As an example, consider an ele-
ment de�ned by the following DTD element de�nition:
<!ELEMENT SHOP (NAME, ADDRESS?, PHONENUM*)> Here, an object
representing a shop may contain zero or more phone
numbers. The order in which phone numbers are listed
is irrelevant, or however unspeci�ed, so two objects
representing the same shop might contain the same
set of phone numbers in di�erent order. Requiring
that elements correspond to each other in an ordered
way may lead to miss some of the similarities among
those objects.

We propose a novel distance measure for XML data,
the structure aware XML distance, that copes with
the �exibility which is usual for XML documents, but
takes into proper account the semantics implicit in
structural information. The structure aware XML dis-
tance treats XML data as unordered. Nonetheless,
di�erently from other distances for unordered trees,
it can be computed in polynomial time. In this pa-
per, we formally de�ne the structure aware XML dis-
tance, we present an algorithm to measure the dis-
tance, prove its correctness and its computational cost,
and we perform experiments to test the e�ectiveness
and e�ciency of our distance measure as a comparison
function for XML object identi�cation.

The rest of this paper is organized as follows. In
Section 2 we review some related work. In Section 3
we �rst motivate the introduction of a new distance,



showing with examples how approaches based on clas-
sical tree edit distance fail to respect the semantics
of XML data and then de�ne formally the structure
aware XML distance. In Section 4 we introduce some
theoretical properties of our distance and in Section 5
we present an algorithm to calculate it and we show
its correctness and its time complexity. Section 6 de-
scribes experimental results. In Section 7 we draw
some conclusions and describe some future work.

2 Related Work
The object identi�cation problem has been extensively
studied for relational data (with the name of record
matching or record linkage problem), but the corre-
spondent problem for semi-structured data has only
recently drawn some attention. Most proposals for
XML object identi�cation are structure oblivious, in
the sense that they rely on some kind of �attening
of document structure to perform comparisons. In
[14], XML objects are �attened and compared us-
ing string comparison functions. In the DOGMATIX
framework([13]), data is extracted from an XML docu-
ment and stored in relations calledobject descriptions.
Tuples of two object descriptors containing data with
the same XPath are classi�ed as similar or contradic-
tory using string edit distance, and object descriptions
similarity is assessed taking into account the number of
similar and contradictory tuples. The approach in [10]
is similar, but comparisons of two objects take into ac-
count also approximate similarity results ofdescendant
objects. Structure aware approaches rely on distance
measures based on the tree structure of XML, liketree
edit distances (see [1] and below in this section). In
particular, the authors of [4] integrate string compar-
ison functions into the classic tree edit distance for
ordered trees to compute approximate joins on XML
documents.

The notion of tree edit distance for ordered trees is
due to Tai ([11]). The problem has also been extended
to unordered trees ([16, 9]) and many other variations
have been proposed (see e.g. [8, 5, 15]). Most versions
of the edit distance problem allow polynomial-time al-
gorithms for the case of ordered trees, but become NP-
hard for the unordered case([16]). The tree alignment
distance([5]) is a restricted version of edit distance. In
tree alignment, trees are �rst made isomorphic (ignor-
ing node labels) with the insertion of nodes labelled
with spaces, and then overlayed. A cost function is
de�ned on pairs of labels and the cost of an alignment
is the sum of the costs of opposing labels. An optimal
alignment is an alignment of minimum cost. Di�er-
ently from the distance we propose in this paper, tree
alignment considers insertions of nodes and overlays
nodes with di�erent labels, and it is NP-Hard for un-
ordered trees.

Tree edit distances have been employed also for data
and document change detection [2, 3]. The problem

has connections with object identi�cation, but in that
context XML documents are mostly modelled as or-
dered trees, edit operations are extended to entire sub-
trees, and the focus is on e�ciently �nding an edit
script to represent the changes.

3 A Structure-Aware Approach to
XML Object Identi�cation

Approaches to solve the object identi�cation problem
generally make use of some kind of distance function to
detect the similarity of two objects. In record match-
ing techniques proposed for the relational model, at-
tribute values are often compared usingstring compar-
ison functions ([7]). XML documents can be modelled
as node labelled trees. This hierarchical, tree-like na-
ture justi�es the proposal of similarity measures that
integrate string comparison functions with tree edit
distances ([1]). However, tree distances are not fully
able to capture the semantics of XML data, as they
do not keep into account the semantics and structural
relationships among XML elements.

In this section, we �rst show some weaknesses that
classic tree edit distances su�er when used to compare
XML data, and then de�ne a new notion of distance
for XML data, the structure-aware XML distance, as
the basis of an approach to XML object identi�cation.

3.1 Tree Distances
Given a set of edit operations on labelled trees (i.e.
node insertions, deletions and relabelling) and a func-
tion that assigns a cost to each operation, the tree edit
distance between two trees is de�ned ([11]) as the min-
imum cost sequence of tree edit operations required to
transform one tree to another.

Comparison of XML data based on tree distances
has been proposed for various purposes ([4, 2, 3]).
The authors of [4] perform approximate comparison of
XML data with the tree edit distance de�ned above,
using a string comparison function to compute the cost
of node relabelling. This approach has the advantage
of keeping into account the tree structure of XML data.
However, the use of tree edit distance for this purpose
has some drawbacks. The examples in Figure 1 illus-
trate two of them. First, consider the XML data trees
a) b) and c). Tree c) represents the same data as
tree a), and also contains some additional information.
Tree b), instead, represents di�erent data. However,
the tree distance betweena) and c) is greater than the
distance between a) and b). Consider now trees d)
and e). Here, a person is represented with its parents
and an optional list of friends. When measuring the
tree edit distance between such two trees, a minimal
distance is obtained by deleting from treed) the entire
parent subtree, relabelling node friends into parents
and matching its leaves to two of the nodes of thepar-
ent subtree of tree e). This behaviour clearly violates



movie

title

movie

“1994” “T. Guiry”“Lassie”

awards

“D. Petrie” “H. Slater”

awards

a)

c)“Oscar”“Lassie”

“Oscar”

dog

ownername

b)

“Oscar”“Lassie”

title
year

director
actor

actress

person

“Ela”

friendsname

person

“Ela”

parents

“Mark”

name

e)

“John” “Mark” “Carl”

d)

parents

“Paul” “Ada” “John”

Figure 1: Two issues in classical tree edit distance-
based XML comparisons

the semantics implicit in node labels. These problems,
in addition to the need of performing unordered com-
parisons e�ciently, motivate the introduction of a new
distance measure for XML data.

3.2 XML Structure-aware Distance
In this section, we give an intuitive description of how
the issues highlighted in the previous section can be
overcome, and then formalize the intuition to de�ne a
new distance for XML data. Notice that, throughout
this section and in the rest of this paper, we consider
XML trees as unordered. The above examples show
that, when comparing XML trees, a good choice is to
match subtrees that have similar structure and that
are located under the same path from the root. These
can be indeed interpreted as clues of the same seman-
tics. If two trees have exactly the same structure, and
only di�er by the textual values present on the leaves,
we can overlay the trees so that nodes with the same
path match. When multiple overlays are possible, then
we choose one such that the distance among textual
values on the leaves is minimal. If the structure of
the two trees di�er, due to additional information, we
can still realize an overlay as above by deleting extra
subtrees that do not match well.

The following de�nitions make the notion of overlay
introduce above more formal. We assume a model of
XML objects as labelled trees. All leaves are labelled
with the same special label τ . Given a leaf l, its textual
value (di�erent from its label) is denoted by text(l).

De�nition 1 (Overlay) An overlay O of T1 and T2

is a non-empty set of pairs of nodes from T1 and T2

with the following properties: ∀vi, v
′
i ∈ Ti,∀ni ∈ Ti −

leaves(Ti), i = 1, 2,

if 〈v1, v2〉, 〈v′1, v′2〉 ∈ O, then v1 = v′1 i� v2 = v′2 (1)
if 〈v1, v2〉 ∈ O, then path(v1) = path(v2) (2)

〈n1, n2〉 ∈ O i� ∃v1, v2 s.t. n1 = parent(v1) ∧ (3)

1

2 3

7

A

“john”

C

“mary”

B

5

“lisa”

6

a

b c

g

A

“lisa”

B

“jona”

C

e

“jan”

f

d
C

“tom”

h

4

“tom”

D

8

“karl”

i

T2T1

Figure 2: A maximal overlay of two trees

n2 = parent(v2) ∧ 〈v1, v2〉 ∈ O

Where path(vi) denotes the sequence of node labels
label(rooti) . . . label(vi) encountered when traversing
Ti from the root to node vi.
If 〈v, w〉 ∈ O we say that v and w match. If a node
is not matched with any other node, we say that it is
deleted. Informally, an overlay matches nodes fromT1

to nodes from T2 one-to-one, so that nodes or leaves
are matched only if they have the same path from the
root. Two non-leaf nodes can be matched i� they are
ancestors of two leaves that are matched. Notice that
this implies that, if a node is deleted, all its descen-
dants are also deleted. It also implies that an overlay
of two trees exists only if there exist two leaves l1 ∈ T1

and l2 ∈ T2 with the same path from the root. We say
that two trees are comparable if they have at least one
overlay.
De�nition 2 (Maximal overlay) An overlay O of
two trees is maximal if there is no other overlay O′

such that O ⊂ O′.
Consider the two trees in Figure 2. In the �gure,
nodes are marked in breadth-�rst visit order, re-
spectively with numbers and lowercase letters. Up-
percase letters beside nodes denote labels, and leaf
labels are not shown, while quoted strings denote
their textual values. An example of overlay is O =
{〈1, a〉, 〈3, b〉, 〈6, e〉}. This overlay is not maximal,
since there exist other overlays that contain it. An
example of maximal overlay that includes O is the
overlay shown in the �gure using dashed lines Oc =
{〈1, a〉, 〈2, c〉, 〈3, b〉, 〈5, g〉, 〈6, e〉}. Intuitively, Oc is
maximal since it is not possible to add another line
from a node of T1 to a node of T2 not already touched
by a line while maintaining overlay properties. No-
tice, however, that more than one maximal overlay
may exist between two trees. For the trees in Figure
2, another maximal overlay is obtained by matching
node 5 with node f rather than node g. Another one
is O′

c = {〈1, a〉, 〈2, c〉, 〈3, d〉, 〈5, g〉, 〈6, i〉, 〈7, h〉}.
De�nition 3 (Cost of a match) Let sdist(s1, s2)
be a string comparison function. The cost of match
for two nodes v, w is:

µv,w =
{

sdist(text(v), text(w)) if v, w are leaves
0 otherwise



De�nition 4 (Cost of an overlay) The cost of an
overlay O is de�ned as ΓO =

∑
〈v,w〉∈O µv,w.

De�nition 5 (Optimal overlay) An overlay O of
two trees is optimal if it is maximal and there is no
other maximal overlay O′ such that ΓO′ < ΓO.

Consider again the trees in Figure 2. The cost
of the overlay Oc showed in the �gure is given by
the sum of distances of textual values on matching
leaves. Using for instance the common string edit
distance ([12]), their distance can be calculated as
sdist(�john�, �jona�) + sdist(�lisa�, �lisa�) = 2 + 0 =
2. The cost for overlay O′c de�ned above is instead
given by sdist(�john�, �jona�) + sdist(�lisa�, �karl�) +
sdist(�mary�, �tom�) = 10. Actually, Oc is an optimal
overlay for the two trees. Notice that more than one
optimal overlays may exist for two trees. In this ex-
ample, the overlay obtained by Oc by matching leaf
5 with leaf f instead of leaf g is still optimal, as the
string �john� has the same distance from the strings
�jan� and �jona�. It is worthwhile to notice that, if two
given data trees are comparable, i.e. there is at least
an overlay for them, then from the above de�nitions
it follows that there is also a maximal overlay and an
optimal overlay for them.

De�nition 6 (Structure aware XML distance)
The structure aware XML distance of two comparable
XML trees T1 and T2 is de�ned as the cost of an
optimal overlay of T1 and T2.

Notice that, when applied to the trees in the exam-
ple given in Figure 1, this distance works as expected.
Trees a) and b) are incomparable, while the distance
of trees a) and c) is zero. In the case of trees d) and
e), the distance only considers the di�erences among
those leaves that it is meaningful to compare, giving
as a result the least distance between names present
under the nodes parents.

4 Properties of Overlays
In the next section, we present an algorithm to mea-
sure the structure aware distance de�ned in section 3.
In this section, we describe some properties of overlays
that are useful to prove its correctness. In particular,
we show that an optimal overlay of two trees T1 and
T2 can be found by determining an assignment among
the children of their roots such that the sum of the
costs of optimal overlays for the corresponding sub-
trees is minimal (Theorem 4). To prove this result,
we �rst show that the cost of an overlay of two trees
can be rewritten in terms of the cost of overlays of the
children of their roots (Theorems 1 and 2).

For space reasons, we omit the proofs of some
theorems and only sketch other proofs. Through-
out this section, we denote with T1, T2 two compa-
rable data trees, with r1, r2 their roots, and with

vi, wj , i ∈ [1, deg(r1)], j ∈ [1, deg(r2)] the children of
r1 and r2, respectively. Furthermore, given a node v,
we denote with T (v) the tree rooted at v. We call the
trees T (vi) and T (wj) the �rst-level subtrees of T1 and
T2 respectively.

Theorem 1 Let O be an overlay of T1, T2. If 〈v, w〉 ∈
O, then the set Ov,w = {〈y, z〉 ∈ O|y ∈ T (v), z ∈
T (w)} is an overlay of T (v) and T (w). Moreover, if
O is maximal then also Ov,w is maximal. We say that
Ov,w is the overlay induced by O on T (v) and T (w).

Proof sketch: To show that Ov,w is an overlay of
T (v) and T (w), we show that properties (1),(2) and
(3) of overlays are respected. The fact that Ov,w is
also maximal can be proved by contradiction. If there
exist another overlay of T (v) and T (w) O′v,w ⊃ Ov,w,
then there exists another overlayO′ ⊃ O, and thus O
is not maximal.

Theorem 2 Let O be an overlay of two trees T1, T2.
Then

O = 〈r1, r2〉 ∪ (
⋃

{〈vi,wj〉}∈O

Ovi,wj ) (4)

∀〈vi, wj〉, 〈vh, wk〉 ∈ O, Ovi,wj ∩Ovh,wk
= ∅ (5)

Proof sketch: (4) By de�nition, Ovi,wj ⊂ O
and thus 〈r1, r2〉 ∪ (

⋃
〈vi,wj〉∈O Ovi,wj ) ⊂ O. It re-

mains to show that the reverse inclusion holds, i.e.
that for any match 〈y, z〉 ∈ O, 〈y, z〉 ∈ {〈r1, r2〉} ∪
(
⋃
〈vi,wj〉∈O Ovi,wj . This can be shown reasoning on

the depth of 〈y, z〉.(5) can be proved showing that for
any two overlays Ovi,wj ,∈ Ovh,wk

, if their intersection
is not empty, then necessarily vi = vh and wj = wk.

In other words, an overlay ofT1 and T2 is a partition
of the overlays it induces on its �rst-level subtrees and
the couple 〈r1, r2〉.
Theorem 3 The cost of a maximal overlay O is the
sum of the costs of all the overlays Ovi,wj induced on
its �rst level subtrees.
Proof: Follows immediately from Theorem 2.
From this result it follows, trivially, that an overlay
is optimal only if the overlays induced on its �rst
level subtrees are all optimal. Notice that the re-
verse does not hold in general. As an example, con-
sider the overlay shown in Figure 4. It is easy to
see that the overlays O3,b and O4,c are both opti-
mal since sdist(�john�, �joe�)+sdist(�mary�, �mark�) <
sdist(�john�, �mark�) + sdist(�mary�, �joe�). However,
the overlay of T1 and T2 shown in the picture is not
optimal, since another overlay with cost 0 can be ob-
tained by matching node 3 with c and node 4 with
b. In order to reach a necessary and su�cient con-
dition for the optimality of an overlay, we introduce
a few more de�nitions. Given two trees T1 and T2, a
�rst-level assignment of T1 and T2 is a set of couples



1

4

8

A

“john”

B

“joe”“mark”

7

T1

3

6

B

“mary”

5

a

c

g

A

“joe”

B

“john”“mary”

f

T1

b

e

B

“mark”

d

Figure 3: The overlay ofT1 and T2 is not optimal, even
if all the overlays induced on subtrees are optimal

〈vi, wj〉 such that each node of each tree is coupled
with at most another node of the other one, and the
trees T (vi) and T (vj) are comparable. The concept of
maximality de�ned for overlays can be easily extended
to �rst level assignments. It is easy to prove that an
overlay is maximal i� includes a maximal assignment.
By de�ning the cost of a maximal �rst-level assign-
ment as the sum of the costs of the overlays of �rst
level trees whose roots are coupled in the assignment,
the concept of optimality can also be extended to �rst-
level assignments. Given this de�nition, we can now
present the main result of this section:
Theorem 4 An overlay O is optimal i� it contains
an optimal �rst-level assignment A and the overlays
induced on its �rst level subtrees are all optimal.
Proof sketch: Maximality follows from the max-
imality of A. From the optimality of A and of the
overlays induced of �rst level subtrees it follows, by
Theorem 3, that the overlay is also optimal.

The previous result gives an operative way to build
an optimal overlay of two trees T1 and T2. A maximal
assignment can be obtained by �rst matching r1 with
r2 and then matching a children of r1 with a children
of r2 until no more matches are possible. Two nodesvi

and wj are matched only ifT (vi) and T (vj) are compa-
rable. In this case, an optimal overlay is built forT (vi)
and T (wj) by applying the same process, recursively,
up to the leaves. All possible maximal assignments
must be built and evaluated, and an optimal one must
be chosen.

5 Structure Aware XML Distance
Measurement

In this section, we introduce an algorithm to measure
the structure aware XML distance de�ned in Section 3,
and prove its correctness and its worst case complexity.

Algorithm 1 analyzes two comparable trees recur-
sively, starting from the roots. If the roots are leaf
nodes, a distance measure for their associated text
values is returned. Such function is denoted by the
procedure sdist() in the algorithm. Otherwise, the al-
gorithm considers their children, and computes a dis-
tance for each couple of subtrees rooted at children

Algorithm 1 dist(T1, T2)
if isLeaf(r1) and isLeaf(r2) then

return sdist(text(r1), text(r2))
else

xmldist := ∞
for all l in labels(children(r1) ∪ children(r2)) do
for all vi ∈ childrenl(r1) do
for all wj ∈ childrenl(r2) do

Dl[i, j] := dist(T (vi), T (wj))
end for

end for
assignmentl := findAssignment(Dl[])
for all 〈h, k〉 ∈ assignmentl do
if xmldist = ∞ then

xmldist := 0
end if
xmldist := xmldist + Dl[h, k]

end for
end for
return xmldist

end if

with the same label, recursively. After all distances
have been calculated, the algorithm must assign each
node to another node with the same label, minimizing
the overall cost. This is an assignment problem and
can be solved using a variation of the well-known Hun-
garian Algorithm ([6]). In the algorithm, this task is
performed by a call to procedure findAssignment().
In particular, given a matrix of distances, the proce-
dure returns a set of assignments containing couples of
indices of assigned nodes. For ease of presentation, in
the algorithm we denote the set of all children of node
v having label l with childrenl(v). Results of distance
calculations for a certain set of children having label
l are stored in an array named Dl. The distance is
initially set to∞, and reset to 0 only in the case that
there is at least one assignment of root children.

From the results given in the previous section and
the de�nition of structure aware XML distance given
in section 3 it follows immediately that:
Theorem 5 Algorithm 1 correctly computes the
structure aware XML distance of two comparable trees.
In order to understand the computational cost of the
algorithm, let us consider a case in which all the leaves
of the tree have the same path, and the data trees are
maximal. We consider distance calculation among two
trees T1 and T2. We denote with deg1 and deg2 their
respective degrees and withL1, L2 their sets of leaves.

Let T ′1, T ′2 be two subtrees of T1 and T2 rooted at
level l, and let r′1, r

′
2 be their roots. In order to com-

pute their distance, we must choose a match among
the children of r′1 and r′2 such that the the sum of
distances for corresponding subtrees is minimal. As-
suming that we have already calculated all pairwise
distances, we need to solve an instance of the linear
assignment problem. The Hungarian algorithm gives
a solution in cubic time, so the cost of an assignment
is O((deg1 + deg2)3).

To compute all distance measurements, we pro-
ceed bottom up, starting from the leaves and calcu-



lating all pairwise distances among all nodes at each
level. At level depth−1, before performing the assign-
ment phase we must compute distances among tex-
tual values. These are computed in constant time
(w.r.t. the size of the trees). At upper levels, we
already know the distances among nodes at lower
levels, so we just need to perform the assignment
phase. In total, the assignment phase is repeated
(|T1| − |L1|) × (|T2| − |L2|) times. Thus, the overall
cost is O((|T1| − |L1|)× (|T2| − |L2|)× (deg1 + deg2)3).
When there is more than one path for leaf nodes, the
calculation is less expensive.

6 Experiments
This section presents an experimental evaluation of the
structure aware XML distance introduced in the pre-
vious sections. We tested both e�ectiveness and ef-
�ciency of our distance as the basis of a comparison
function for XML Object identi�cation.

6.1 Experimental Setting
In the tests, a set of objects contained in an XML
document are compared pairwise for similarity. Two
objects oi, oj are classi�ed as similar if dist(oi, oj) < t,
where dist is the structure aware XML distance and t
is a �xed threshold. The string comparison function
we use is the string-edit distance([12]). We performed
three sets of tests. Tests in the �rst and second set aim
at determining how good is our measure at correctly
identifying similar objects under various experimental
conditions. The third set was performed to compare
our distance with the tree-edit distance used in [4].

6.2 Data Sets
The experiments were performed on a synthetic data
set created with ToXGene1. The objects compared
for similarity represented persons, de�ned as in the
following DTD element declarations:
<!ELEMENT PERSON (NAME, MIDDLENAME*, SURNAME, ADDRESS)>
<!ELEMENT ADDRESS (STREET, CITY, COUNTRY, EMAIL*, PHONENUM*)>

all elements not de�ned above contained PCDATA.
Textual data values were taken from the XMark bench-
mark; middlename, email and phonenumber optional
elements were limited to a maximum of respectively
to 2, 2, and 4 instances for each person. We started
from a clean data set of 300 distinctperson objects. In
all experiments, for each person object another similar
object was created (duplication rate = 100%). In order
to create similar objects under controlled conditions,
we have developed a small tool2 that allows to produce
objects that di�er from the original by a given rate of
internal data deletions, text changes, and internal data
duplications, and element swaps. Internal data dele-
tions are leaf deletion. By internal data duplication

1www.cs.toronto.edu/tox/toxgene
2www.dis.uniroma1.it/milano/duplicatecreator

we mean that a portion of an object (e.g. an mid-
dlename element or an address subtree) is duplicated
inside the object. These internal duplicates receive the
same amount of changes as other duplicates, except for
internal duplication. Text changes consisted of dele-
tions, insertions and character swaps. We inserted a
minimum of 2 errors for each text modi�cation. The
speci�c kind of errors were chosen randomly with equal
probability (e.g. a character deletion and a swap, or
two swaps).

Notice that change rates mentioned in the tests re-
fer to the rate of changes for each duplicate. That is,
all duplicates di�er from their original, and the change
rate refers to which percentage of the data present in
a duplicated object has received such changes. As an
example, a deletion rate of 20% means that in the
duplicate of a certain object 20% of the leaves were
deleted. A text change of 10% means that 10% of the
textual values present on leaves that were not deleted
are altered with a certain number of deletions, inser-
tions and character swaps.

6.3 Experimental Set 1
A �rst set of experiments tested how the e�ectiveness
of our measure varies depending on the chosen thresh-
old. E�ectiveness is measured in terms of the f-score:

Fscore = 2 · recall · precision/(recall + precision)

Where recall is the percentage of matches identi�ed by
the algorithm, and precision is the percentage of actual
matches among those declared by the algorithm.

We let the threshold vary over a wide range of val-
ues, and performed the test for �les in which the dif-
ferences among duplicate object are set as follows:

case deletion rate text change rate
1 10% 10%
2 10% 20%
3 20% 20%
4 20% 30%

Observe that the last one is a rather critical situa-
tion: a duplicate for an object with 10 leaves has 2
leaves removed and three of the remaining leaves con-
tain errors. The results for this set of experiments
are shown in Figure 4. A �rst observation that must
be done is that in all cases the measure achieves an f-
score of 100% for some threshold values. Thus, the dis-
tance shows high e�ectiveness as an object identi�ca-
tion comparison function. It is also worthwhile to no-
tice that all the curves in Figure 4 show a wide plateau
in which the f-score stay at its maximum value. Since,
in real-use conditions, determining the right thresh-
old is mainly a matter of experience and it is often
infeasible to evaluate various thresholds, the relative
insensibility of the distance to threshold variation in a
wide range of threshold must be considered as a posi-
tive feature. The curves in the graph appear grouped



0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60 70 80 90 100

threshold

F
-s

c
o

re

case 1 case 2 case 3 case 4

Figure 4: Results for experimental set 1: fscore depen-
dency on similarity threshold

in two sets, corresponding to the two values of deletion
rate used in the experiment. This behavior means that
the distance is more sensible to a variation in the data
available for comparison than to di�used errors over
the data itself.

6.4 Experimental Set 2
Our second set of experiments was performed to de-
termine how our distance is in�uenced by a variation
in the kind and amount of di�erences among similar
objects. The threshold was �xed to a value of 10,
and the rate di�erences introduced in duplicate objects
were varied independently. Figures 6(b), 6(a) and 6(c)
show respectively the trend of the recall, precision and
f-score measures for these tests. Each graph contains
di�erent curves, each one relative to a speci�c kind of
di�erences. Di�erent kinds of changes a�ect in di�er-
ent way the behavior of the measure. From the graphs
it appears that a high rate of deletions a�ects precision
but not recall. This is due to the fact that deletions re-
duce the amount of comparable information available
to determine if two objects are similar. On the other
hand, high text change rates mainly in�uence recall,
since a high rate of errors may introduce high di�er-
ences in comparable features of objects. The measure
is completely insensible to swaps of elements. This is
not surprising, since it compares unordered trees.

6.5 Experimental Set 3
We described in section 3 some issues related to or-
dered tree edit distances when used in an object iden-
ti�cation context, and we claimed that our distance
is both more e�cient and e�ective than such class of
distances. Our third set of experiments con�rms this
claim. We tested our distance measure and the ordered
tree-edit distance over the same set of �les, and com-
pared both execution time and f-score. The algorithm
used for the ordered tree edit distance is described in
[17], and the cost function was modi�ed to account

for textual value comparison as proposed in [4]. More
speci�cally, the cost for relabelling, insertion and dele-
tion for leaves was evaluated based on the same string
comparison function used in our measure. For internal
nodes, a unit cost function was used. The �les used
in the tests contained duplicates produced by applying
to each object all the four kinds of changes described
in section 6.2, with the same change rate for each dif-
ference. Thus, a data change rate of 10% means that
each duplicate has data deletion, text changes, inter-
nal duplication, and element swap rates all set to 10%.
We let the change rate vary from 10% to 45% at in-
tervals of 5%. The threshold was �xed. The graphs
shown in Figure 5 refer to the results obtained for the
best possible choice of a threshold for both measures.
The di�erences in execution time for the two distances
were dramatic. To perform the comparison over a to-
tal of 600 objects the ordered tree edit distance took
approximately 7,5 hours while, on the same machine
and for the same data, our distance takes something
more than a minute. The results shown in Figure 5
highlight how our distance constantly outperforms the
ordered tree edit distance from the e�ectiveness point
of view. This di�erences are partly due to the fact that
our distance performs an unordered comparison, and
the �les contain swapped elements. Notice that only
adjacent elements with the same name where swapped
in the test �les, thus respecting the DTD of the data.
Another di�erence is also due to the fact that our mea-
sure ignores internally duplicate data that cannot be
matched, while the tree edit distance accounts for the
cost of deletion of such data.

7 Conclusions
XML data has tree-like nature and �exible structure.
These features have lead to proposals for XML object
identi�cation that exploit tree-edit distances to per-
form approximate comparisons among XML trees.

The tree-like nature and �exible structure of XML

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

10% 15% 20% 25% 30% 35% 40% 45%

% of data changes

F
-s

c
o

re

xmldist treedist

Figure 5: Results for experimental set 3: comparison
between tree edit distance and structure aware XML
distance



0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100

% differences

P
re

c
is

io
n

deletion textchange swap

(a)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% differences

R
e

c
a

ll

swap textchange deletion

(b)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100

% differences

F
-s

c
o

re

deletion textchange swap

(c)
Figure 6: Precision, recall and f-score for experimental set 2

data are serious issues in XML object Identi�cation.
Such features have lead to proposals that exploit tree-
edit distances to perform approximate comparisons of
XML trees. However, tree-edit distances ignore the
semantics implicit in element labels and nesting re-
lationships. Furthermore, while tree-distances for un-
ordered trees are better suited to perform approximate
comparisons of XML data, their use is computation-
ally infeasible. In this paper, we have de�ned a new
distance for XML data, the structure aware XML dis-
tance, that overcomes these issues. The distance com-
pares only portions of XML data trees whose structure
suggest similar semantics. Furthermore, it performs
comparison on unordered trees, without incurring in
high computational costs. We have presented an algo-
rithm to measure the distance between two trees, and
discussed its complexity, that is polynomial. We also
presented an experimental evaluation of our measure
as the basis of an object identi�cation approach.

Our measure is suited for detecting similar objects
when the scheme of objects is approximately the same,
as in the case of a single data source, or several data
sources on which a schema integration activity has al-
ready been performed. We are investigating how to
add more �exibility without sacri�cing the gain in ef-
�ciency we have obtained. We also plan to investigate
other issues related to the use of tree distances for
XML comparison. In [4], the authors suggest the use
of ontology-based techniques to evaluate the cost of re-
labelling nodes. How to balance the e�ects of string-
comparison-based and ontology- based cost evaluation
seems far from trivial.

References
[1] Philip Bille. A survey on tree edit distance and related

problems. Theor. Comput. Sci., 337(1-3), 2005.

[2] Sudarshan S. Chawathe, Anand Rajaraman, Hector
Garcia-Molina, and Jennifer Widom. Change detec-
tion in hierarchically structured information. InSIG-
MOD, Montreal, Canada, 1996.

[3] Gregory Cobena, Serge Abiteboul, and Amélie Mar-
ian. Detecting changes in xml documents. In ICDE,
San Jose, CA, 2002.

[4] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh
Srivastava, and Ting Yu. Approximate xml joins. In
SIGMOD, Madison, Wisconsin, 2002.

[5] Tao Jiang, Lusheng Wang, and Kaizhong Zhang.
Alignment of trees - an alternative to tree edit.Theor.
Comput. Sci., 143(1):137�148, 1995.

[6] James Munkres. Algorithms for assignment and trans-
portation problems. SIAM Journal on Computing,
5(1), March 1957.

[7] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31�88, 2001.

[8] Stanley M. Selkow. The tree-to-tree editing problem.
Inf. Process. Lett., 6(6):184�186, 1977.

[9] Dennis Shasha, Jason Tsong-Li Wang, Kaizhong
Zhang, and Frank Y. Shih. Exact and approximate al-
gorithms for unordered tree matching. IEEE Transac-
tions on Systems, Man, and Cybernetics, 24(4), 1994.

[10] Felix Naumann Sven Puhlmann, Melanie Weis. Xml
duplicate detection using sorted neighborhoods. In
EDBT, Munich, Germany, 2006.

[11] Kuo-Chung Tai. The tree-to-tree correction problem.
J. ACM, 26(3), 1979.

[12] Levenshtein V.I. Binary codes capable of correcting
deletions, insertions, and reversals. Cybernetics and
Control Theory, 10:707�710, 1966.

[13] Melanie Weis and Felix Naumann. Dogmatix tracks
down duplicates in xml. In SIGMOD, Baltimore,
Maryland, USA, June 14-16, 2005.

[14] Melanie Weis and Felix Naumann. Detecting dupli-
cate objects in xml documents. In IQIS,Paris, France,
2004.

[15] Kaizhong Zhang. A constrained edit distance between
unordered labeled trees. Algorithmica, 15(3), 1996.

[16] Kaizhong Zhang, Richard Statman, and Dennis
Shasha. On the editing distance between unordered
labeled trees. Inf. Process. Lett., 42(3), 1992.

[17] Kaizong Zhang and Dennis Shasha. Tree pattern
matching. In Apostolico and Galil, editors, Pattern
Matching in Strings, Trees, and Arrays.Oxford Uni-
versity Press, 1997.



QUEST: QUery-driven Exploration of Semistructured
Data with ConflicT s and Partial Knowledge∗

Yan Qi K. Selçuk Candan Maria Luisa Sapino Keith W. Kintigh
Comp. Sci. and Eng. Comp. Sci. and Eng. Dip. di Informatica Sch.of Human Evol.&Social Change
Arizona State Univ. Arizona State Univ. Univ. of Torino Arizona State Univ.

yan.qi@asu.edu candan@asu.edu mlsapino@di.unito.it kintigh@asu.edu

Abstract

An important reality when integrating sci-
entific data is the fact that data may often
be “missing”, partially specified, or conflict-
ing. Therefore, in this paper, we present
an assertion-based data model that captures
both value-based and structure-based “nulls”
in data. We also introduce the QUEST sys-
tem, which leverages the proposed model for
Query-driven Exploration of Semistructured
data with conflicT s and partial knowledge.
Our approach to integration lies in enabling
researchers to observe and resolve conflicts in
the data by considering the context provided
by the data requirements of a given research
question. In particular, we discuss how path-
compatibility can be leveraged, within the con-
text of a query, to develop a high-level under-
standing of conflicts and nulls in data.

1 Motivation and Related Work

Through a joint effort of archaeologists and computer
scientists, we are developing an integrated frame-
work of knowledge-based collaborative tools that will
provide the foundation for a shared information in-
frastructure for archaeology and contribute substan-
tially to a shared knowledge infrastructure of sci-
ence [21]. Today, the incapacity to integrate data
across projects cripples archaeologists’ and other sci-
entists’ efforts to recognize phenomena operating on
large spatio-temporal scales and to conduct crucial
comparative studies [20, 21]. A major challenge with
integration of data is that the meaning of an archaeo-
logical observation is rarely self-evident.

∗Supported by NSF Grant “Enabling the Study of Long-
Term Human and Social Dynamics: A Cyberinfrastructure for
Archaeology”

1.1 Incompleteness and Inconsistencies

An important reality when integrating archaeological
data is that entries (archaeological observations and
interpretations) may often be “missing” or only par-
tially specified. For example, one may not be able to
associate a bone collected at a given site to the species
and may use vague terms or references to a hierarchi-
cally higher concept in the biological taxonomy. Thus,
researchers reach conflicting conclusions, not just be-
cause their primary data differ, but because they op-
erationalize interpretive concepts differently [20].

Within the context of our efforts to determine the
needs and challenges associated with archaeological
information integration, a working group of domain
experts selected datasets representing archaeological
fauna recovered from two excavations in the western
US [28]. The goal of the effort was to integrate these
two datasets into one by using ontologies to map data
codes to concepts shared by the datasets and to resolve
the ambiguities (as much as possible) using ontologies.
One outcome of this effort was the understanding that,
even after a careful study of the data sets by the do-
main experts, there were parts of the data that could
not be successfully mapped (e.g., while use of the ac-
tual taxonomic categories was consistent, investigators
differed in how they dealt with bones that could not be
fully identified). Nevertheless, in the context of a par-
ticular research question, archaeologists could identify
reasonable means of addressing these inconsistencies.

Thus, reconciling data and classification schemes
entails developing novel data integration techniques to
allow query dependent integration, despite inherent in-
consistencies. Our goal is to develop a tool to allow a
researcher to extract sensibly integrated observations
and consistent variables from potentially incomplete
and inconsistent data archive. During query process-
ing, the repository needs to integrate data from mul-
tiple sources, note and resolve conflicting and missing
data. Where there are discrepancies or missing data,
the system needs to allow the researcher to interpret
results and resolve conflicts as she sees appropriate.



1.2 Related Work

In general, there are many different types of null val-
ues (e.g., existential, maybe, place holder, and par-
tial), each of which reflects different knowledge or
intuitions about why a particular piece of informa-
tion is missing [8]. An early attempt at modeling
semistructured data with missing and partial data
is presented in [23]; authors used an object-based
model, where null, or-valued, and partial set objects
are used to handle partial and missing knowledge in
semi-structured data. Although it is richer than stan-
dard semistructured data models, such as Object Ex-
change Model (OEM) [24, 7], and Document Object
Model (DOM) [1], this model is more focused on value
nulls and does not capture inconsistencies and missing
knowledge in the structure of the data. In contrast,
we propose a new model for semi-structured databases
where different types of null values are represented uni-
formly. Each entry has an associated assertion; intu-
itively, an entry may be thought of as being in the
database iff the corresponding assertion is true. Al-
though the idea of using assertions (constraints) to
handle null values in relational databases is not new
(Imielinski-Lipski [15, 16], Liu [22], Candan [8]), the
use of constraints for a unified way of handling dif-
ferent types of nulls within the context of hierarchical
data and metadata is an open problem.

Knowledge integration from diverse sources involves
matching and integration. There is extensive work in
the area of matching schemas and data when integrat-
ing independent sources. Our focus, in this paper,
however is not on the matching, but on dealing with
conflicts that arise during integration. Conflict reso-
lution has also been studied in the context of active
databases and production rule systems [3, 17]. Most
of these study what to do when multiple active pro-
duction rules with conflicting heads request that an
atom be both added and deleted simultaneously. In
contrast, we attempt to evaluate queries and resolve
conflicts in answers to queries spanning multiple data
sources. Furthermore, unlike the related work in this
area, we will explore the application of these within
semi-structured data and metadata.

In their work on nondeterministic choices in logic
programming languages, Zaniolo [31, 32] and his col-
leagues suggest that in logic database languages, one
may wish to express the fact that only one of sev-
eral possible ways of satisfying an atom is nonde-
terministically selected. They then use this to de-
fine a choice semantics for logic programs with nega-
tion. Multiple model semantics, like the 2-valued, sta-
ble model semantics,[12], or the 3-valued finite failure
stable model semantics [13] associate multiple, equally
likely, models to the given knowledge base, each one
corresponding to a possible context, or a possible
consistent scenario described by the knowledge base.
Problem solvers interact with truth maintenance sys-

tems (TMSs) [9], that record and maintain the reasons
for the possible context (belief sets) under considera-
tion. Sentences are associated with their justifications,
which indicate what assumptions need to be changed
if they need to be invalidated. In this paper, we show
that we can leverage the special hierarchical structure
of the data and knowledge taxonomies to develop ef-
ficient and specialized algorithms, rather than having
to use general purpose truth maintenance solutions.
We use path query instances to provide contexts in
which conflicts can be resolved. Like us, Piazza [14]
and HepToX [5] also recognize that it is unrealistic to
expect an independent data source entering informa-
tion exchange to agree to a global mediated schema or
to perform heavyweight operations to map its schema
to every other schema in the group. Unlike these,
however, we recognize that while collating information
from multiple sources, the knowledge that is acquired
may be incomplete or inconsistent either in data val-
ues, structural relationships between data elements, or
both. Yet, since the base data reflect what is currently
known, data and interpretations from different sources
may be important to keep as is, even when they may
be conflicting with each other. We argue that an ulti-
mate integrated view of multiple data sets is often not
possible, and in fact is often not needed. Therefore,
unlike related work [27, 10] in repairing inconsistencies
in XML data using available external domain knowl-
edge, such as functional dependencies or DTDs, our
aim is to maintain the inconsistencies in the data and
allow the researcher to resolve conflicts within the con-
text of a given query.

1.3 Contributions of this Paper

Effective use of archaeological data requires on-the-fly
data integration, where discrepancies or incomplete in-
formation is properly dealt with within the context of
the given query. In this paper, we first present a data
model which captures not only value-based, but also
structure-based nulls in semistructured data and meta-
data. In particular, we suggest that it is most effec-
tive to reconcile data source observations with data
requirements of a query rather than attempting global
reconciliation of data sources. We refer to this as query
driven ad hoc data integration and exploration [19].
This enables us to constrain the incompatibilities of
the data within the context of the question itself to
reduce the complexity of the problem. In this pa-
per, we also present an overview of a system, called
QUEST, which we are developing to leverage the pro-
posed model for exploratory research on the incom-
plete and conflicting data, based on the query driven
ad hoc data integration and exploration paradigm. We
are currently developing efficient algorithms to process
queries on (null-valued) semi-structured data in the
presence of a multitude of such alternatives, without
having to materialize all alternatives.



2 Assertion-based Data Representa-
tion and Basic Null Assertions

To provide a uniform treatment to value and structure-
nulls, we shred the semistructured data into its object
nodes. Shredding is used in relational storage of XML
data, where each node is represented as a tuple of the
form 〈node id, label, type, value, parent id〉 [11, 29].
The model we describe below is reminiscent of well ac-
cepted node-labeled semi-structured data models, such
as DOM [1] and their shredding into tuples [11, 29].

2.1 Constraint-based Data Representation

Let I denote the set of object node identifiers and let D
be the domain of node tags1. We represent hierarchical
data as a set, N , of object nodes, where each object
node n ∈ N is represented as a 3-tuple (id, tag, pid):

• n.id ∈ I is the unique id of the object node,

• n.tag ∈ D ∪ I is its tag, and

• n.pid ∈ I ∪ {�} is its parent’s identifier.

If n.pid = �, then n is referred to as the root of the
data. If n.tag ∈ I, then its value is an object reference.
The object nodes in N are constrained such that they
collectively form a tree structure:

C1. No node can be its own parent: ∀ni ∈ N, ni.id 	=
ni.pid.

C2. No two distinct nodes can have the same ID:
∀ni 	= nj ∈ N, ni.id 	= nj .id.

C3. All non-root nodes have a parent in the document:
∀ni ∈ N, (ni.pid = �) ∨ (ni.pid ∈ I).

C4. There is only one root: ∀ni ∈ N, (ni.pid = �) →
(	 ∃nj 	= ni nj.pid = �)

C5. Parent relationship between two nodes is captured
by attribute “pid”: ∀ni, nj ∈ N, parent(ni, nj) ↔
(ni.id = nj .pid).

C6. Ancestor relationship between two nodes is defined
using the parent relationship:
∀ni, nj ∈ N, ancestor(ni, nj) ↔
∃m1, m2, . . . , mK ∈ N, K ≥ 0, s.t.

parent(ni, m1) ∧ parent(m1, m2) ∧
. . . ∧ parent(mK , nj).

C7. There are no cycles in the data: ∀ni, nj ∈ N,
ancestor(ni, nj) → ¬ancestor(nj , ni).

These constraints describe hierarchically structured
data without nulls. Next, we discuss how to extend
this constraint model with value- and structure-nulls
in a uniform manner.

1For simplicity of the presentation, we combine label, type,
and value into a single tag.

2.2 Value- and Structure-Nulls

A value-null commonly occurs when the value of a
node can not be determined for certain. E.g.,

• “Node &5’s tag can be 4, 6, or 9.”

is a value null. Structure-nulls, on the other hand, oc-
cur when the structural relationship between the data
nodes can not be determined in certain. For example,

• “Node &5 is a child of node &3 or &4”.
• “Either node &5 or &6 is a child of node &3”.

are structure nulls. When nodes suffer from both
value- and structural uncertainties or inconsistencies,
we refer to these as hybrid-nulls. Naturally, the ob-
ject node based representation in Subsection 2.1 is
not suitable to describe disjunctions or non-existence
requirements that form the basis of various types of
nulls [8]. Therefore, we present a basic choice asser-
tion construct, which forms the basis of nulls.

2.3 Basic Choice Assertions

We refer to a triple, ā = 〈id, tag, pid〉, where id ⊆
I, tag ⊆ (D ∪ I), and pid ⊆ (I ∪ {�}), as a basic
choice assertion (or assertion in short). The set of all
assertions corresponding to a given data is denoted as
A. For example, 〈{&2, &3}, {Cow, Bison}, {&7, &8}〉
is a basic choice assertion. Intuitively, each assertion
in A declares constraints on id, tag, and pid related to
a single object node in N .

Informally, a choice assertion states that “one of all
possible alternatives described by the id, tag, and pid
sets is true”. If all the sets in an assertion are singu-
lar valued (e.g. of the form 〈{&2}, {Bison}, {&7}〉),
then the assertion corresponds to a single object node,
and vice versa: e.g., the object node (&2, Bison,&7)
could be asserted as 〈{&2}, {Bison}, {&7}〉. These
types of assertions are referred to as singular choice
assertions2. We classify the choice assertions into two
categories: positive and negative choice assertions.

2.3.1 Positive Choice Assertions

Positive choice assertions do not contain any empty
sets, but contain at least one non-singular set. For
example, 〈{&1, &2}, {Bison, Cow}, {&3}〉 is a posi-
tive choice assertion. We define the semantics of the
positive assertion, āi = 〈idi, tagi, pidi〉, in terms of a
many-to-1 mapping, μ : A → N ∪ {⊥}, from the set,
A, of assertions to nodes in N , such that

μ(āi) = n ∈ N −→ (n.id ∈ idi) ∧
(n.tag ∈ tagi) ∧
(n.pid ∈ pidi).

The fact that the mapping, μ, is many-to-1 im-
plies that

2Any data without null-values can be represented as a set of
singular assertions.



• each positive assertion describes properties of a
single object node, while

• properties of a single object node may be de-
scribed by multiple assertions.

If μ(āi) = ⊥, then the assertion āi is ignored.

Example 2.1 Let 〈{&1}, {Pelvis}, {&2, &3}〉 be a
choice assertion. Informally, this assertion means that
the value of the object node with id &1 is “Pelvis” and
its parent is either &2 or &3. However, the asser-
tion does not mean that &1 has two parents. In other
words, this assertion is about a single node, whose par-
ent we cannot ascertain without other assertions.

2.3.2 Negative Choice Assertions

Negative choice assertions, on the other hand,
contain at least one empty set. For example,
〈{&1, &2}, {Pelvis}, ∅〉 is a negative assertion. We de-
fine the semantics of a negative assertion in terms of
the following non-existence constraints, corresponding
to various empty set scenarios:
• Scenario: [idi = ∅, tagi �= ∅, pidi �= ∅]

Const.:� ∃n ∈ N s.t. (n.tag ∈ tagi) ∧ (n.pid ∈ pidi).

• Scenario: [idi = ∅, tagi = ∅, pidi �= ∅]
Const.: � ∃n ∈ N s.t. (n.pid ∈ pidi).

• Scenario: [idi = ∅, tagi �= ∅, pidi = ∅]
Const.: � ∃n ∈ N s.t. (n.tag ∈ tagi).

• Scenario: [idi = ∅, tagi = ∅, pidi = ∅]
Const.: � ∃n ∈ N.

• Scenario: [idi �= ∅, tagi = ∅, pidi = ∅]
Const.: � ∃n ∈ N s.t. (n.id ∈ idi).

• Scenario: [idi �= ∅, tagi �= ∅, pidi = ∅]
Const.: � ∃n ∈ N s.t. (n.tag ∈ tagi) ∧ (n.id ∈ idi).

• Scenario: [idi �= ∅, tagi = ∅, pidi �= ∅]
Const.: � ∃n ∈ N s.t. (n.id ∈ idi) ∧ (n.pid ∈ pidi).

2.4 Interpretation of a Set of Assertions

A set, A, of basic choice assertions can be thought of
being composed of a positive assertion set, A+, and
a negative assertion set, A−. An interpretation of A
is a data instance, which (a) satisfies the structural
constraints, describing the hierarchy, in Section 2.1,
(b) conforms to a mapping μ, which satisfies the con-
straints imposed by the positive assertion set, A+, and
(c) satisfies all the non-existence constraints imposed
by the negative assertion set, A−. Given an assertion
set, there may be zero, one, or more interpretations. In
a sense, the positive assertions produce candidate in-
terpretations, while the negative assertions, A−, prune
the space of alternative conforming data instances.

2.5 Compatible Assertions

Assertions that conflict, for example
〈{&1}, {Bison}, {&2}〉 and 〈{&1}, {Cow}, {&3}〉,
may coexist in the data. Thus, we introduce the
concept of compatibility among assertions.

1 1

2

& 5,S & 6,S &7,S

1 1

& 2,E &1,E

1

&3,E

1

2

&2,S &1,S

1

&3,S

2

1
1

Skullba ,1
0 Pelvisba ,

2

Eba vfp ,
1

Eba vft ,
1

Skullba ,
4

4

4

4

&5,E

5
5

Sheepba ,5

&6,E

6
6

Goatba ,5

&7,E

7

7

Cowba ,7

7

7

Bisonba ,7

&8,S

& 8,E

8
8

Mammaliaba ,8

5

6

7

T

8

&9,S

Figure 1: G+ for a set of positive choice assertions

• A pair of positive assertions are compatible if they
do neither lead to the indeterminate tags, nor im-
ply a node with multiple parents or a cycle.

• A positive choice assertion and a negative choice
assertion are compatible, if at least one choice in
the positive assertion can be accepted without vi-
olating the negative constraints.

Note that although it is possible to identify consis-
tent models (i.e., sets which consist of compatible as-
sertions) of a given set of choice assertions, and clean
the data (for instance, by choosing a maximal model
among the alternatives), we argue that (especially in
scientific data integration domain, where consistency
can not be expected during research, until ultimately
one model is shown to be correct) it is more meaning-
ful to refrain from early data cleaning and resolve the
conflicts within the context of the user’s queries.

3 Integrated Representation of a Set of
Positive Assertions

Given a set of assertions, QUEST integrates available
positive assertions in a graph-based representation,
G+, which captures the intended structural relation-
ships between object nodes as well as the choice seman-
tics underlying the nulls. In this section, we provide an
example of this graphical representation. The details
of the model are beyond the scope of this paper.



Example 3.1 Let us consider the assertions,

ba1 = 〈{&1, &2}, {Skull}, {&5, &6}〉
ba2 = 〈{&3}, {Pelvis}, {&7}〉
ba3 = 〈∅, {Deer}, ∅〉
ba4 = 〈{&2}, {Skull}, {&5}〉
ba5 = 〈{&5}, {Sheep}, {&8}〉
ba6 = 〈{&6}, {Goat}, {&8}〉
ba7 = 〈{&7}, {Cow, Bison}, {&9}〉
ba8 = 〈{&8}, {Mammalia}, {	}〉

which outline hierarchical relationships among bones
and taxa. For example, “Skull” belongs to the taxon
“Goat”, which is a branch of “Mammalia”. In detail,
ba1 is a basic choice assertion, informing that there
is an object node, whose tag is “Skull”, but neither
its identifier nor its parent can be exactly determined
(i.e., the position of the skull in the hierarchy is not
exactly identified). Another poorly identified data in-
volves basic choice assertion, ba7, where the tag of the
object node can have just one of the two alternative
values. The negative assertion, ba3, states that there
is no object node in the data with “Deer” as its tag.

The directed graph G+ based on this set of positive
assertions is shown in Figure 1. We use solid-lined
circles to denote the graph vertices corresponding to
known object ids; for each object node there are two
solid vertices (start, S, and end, E). Since each as-
sertion needs to be mapped to a single object node,
dashed vertices in the graph act as mutual exclusion
constraints. The possible values for the object node
tags are shown in rectangular vertices. Below, we de-
scribe the salient points of the G+ using this example.
• First, note that, ba3 can not be represented in G+

as it is not a positive assertion.
• Since ba1 has a non-singleton id, the mutual ex-

clusion nodes 〈fpba1 , vE〉 and 〈ftba1 , vE〉 (for par-
ent and tag respectively) are introduced. Each mu-
tual exclusion node ensures that only one of the
incoming edges supported by a given basic asser-
tion is allowed in a given interpretation of data.

• Some nodes, such as &9, do not have any associ-
ated assertions; thus only the corresponding start
vertices, such as 〈&9, S〉, are included; i.e., it is
impossible to determine their tags or parent with
the available information. In fact, G+ may be
composed of several unconnected sub-graphs.

• There are two different assertions, ba1 and ba4,
describing the parent/child relationship between
nodes labeled &2 and &5.
These two assertions have to be seen as two
non-coordinated statements. Therefore, they nei-
ther support each other nor weaken the respective
claims. More specifically, the non-choice asser-
tion ba4 = 〈{&2}, {Skull}, {&5}〉 does not make
any of the two alternative choices in the assertion
ba1 = 〈{&1, &2}, {Skull}, {&5, &6}〉 any more
likely, until interpreted by a researcher within the
appropriate context.

4 Beyond Basic Assertions

Each positive basic choice assertion describes a con-
straint on the relationship between a node, its tag, and
its parent. Since by definition of the mapping, μ, each
assertion āi is interpreted independently from the oth-
ers, there is no way to correlate the choice statements
that have to hold for more than one node. Thus, any
null which requires a constraint on two or more (non
parent-child) nodes cannot be described using a single
basic choice assertion:

• Nodes &5 and &6 have either &8 or &9 as their
common parent.
This statement requires a mapping, μ, where

(µ(āi) ∈ N → (µ(āi).id ∈ {&5}) ∧ (µ(āi).pid ∈ {&8, &9}))∧
(µ(āj) ∈ N → (µ(āj).id ∈ {&6}) ∧ (µ(āj).pid ∈ {&8, &9}))∧
(µ(āi).pid = µ(āj).pid) .

The last conjunct (μ(āi).pid = μ(āj).pid) is a co-
ordination requirement that can not be captured
using basic choice assertions3.

• Node &2 has either &5 or &6 as its child; if the
child is &5 the tag of the child is “Antelope” and
if it is &6, the tag of the child is “Deer”.
This statement requires a mapping μ, where

(µ(āi) ∈ N → (µ(āi).id ∈ {&5})∧
(µ(āi).tag ∈ {“Antelope′′}) ∧
(µ(āi).pid ∈ {&2}))∧

(µ(āj) ∈ N → (µ(āj).id ∈ {&6})∧
(µ(āj).tag ∈ {“Deer′′}) ∧
(µ(āj).pid ∈ {&2}))∧

(µ(āi).pid �= µ(āj).pid).

Once again, last conjunct (μ(āi).pid 	= μ(āj).pid)
is a coordination requirement4.

• Node &2 has either the set of nodes {&5, &6} as
its children or the set {&7,&8}.
This statement5 requires a mapping, μ, where

(µ(āi) ∈ N → (µ(āi).id ∈ {&5}) ∧ (µ(āi).pid ∈ {2}))∧
(µ(āj) ∈ N → (µ(āj).id ∈ {6}) ∧ (µ(āj).pid ∈ {&2}))∧
(µ(āk) ∈ N → (µ(āk).id ∈ {&7}) ∧ (µ(āk).pid ∈ {&2}))∧
(µ(āl) ∈ N → (µ(āl).id ∈ {8}) ∧ (µ(āl).pid ∈ {&2}))∧
(µ(āi).pid �= µ(āk).pid)∧
(µ(āi).pid �= µ(āl).pid)∧
(µ(āj).pid �= µ(āk).pid)∧
(µ(āj).pid �= µ(āl).pid).

The last four conjuncts require coordination.
3Note that a simpler statement “Node &5 has either &8 or

&9 as its parent” can be captured by a basic assertion of the
form 〈{&5}, D, {&8, &9}〉, plus the structural axiom which en-
forces a single parent to each node.

4Note that the simpler statement “Node &2 has either &5
or &6 as its child” can be captured by a basic assertion of the
form 〈{&5, &6}, D, {&2}〉.

5Note again that a statement “Node &2 has either &5 or &7
as its child” can be captured by a basic assertion of the form
〈{&5, &7}, D, {&2}〉.



Assertions for
Null-va lued

data

1.  Positive
Assertions

User's Request
(path queries) Query Processing

2

4

3. Negative Assertions

Path
Instances

5

6. Incremental
C ompatibility

Checking

User-feedback
and exp loration

Mode l
Analysis

7

8

9 10

Res ult and
Asse rtion

Ranking
1. ...
2. ...
3. ...
.... ..

ba
1 ,c a

1

ba
1 ba

1 b a2

b a
2

ba
2 ,c a

1

&4, S

&5,S &6, S

&7, S

ba
1
,c

a 1

ba
1
,ca

1

ba
2, ca

1

b a2 ,
c a

1

ba1
, ca1

ba2, ca1

&2, E &1, E

b a
1

&3, E

ba2
ba2

b a 1

b a
2

ba
2

&2,S &1,S

b a
1

&3, S

ba2

ba2

ba
1

ba
2

ba
2ba

1

Yanba,1 Yanba,2 Kimba,2

Eba vfp,
1

Eba vfp,2

Eba vft ,
1 Eba

vft ,
2

Yanba,4

ba
4

b
a4

ba
4

Assert ion Graph

2

4

1 3

5

6

Compatibility Graph

Figure 2: Overview of the query evaluation and explo-
ration processes

• Node &5’s tag is either “Antelope” or “Deer”.
Node &6’s tag is either “Antelope” or “Deer”.
Furthermore, &5 and &6 have the same tag.

This statement requires a mapping, μ, where

(µ(āi) ∈ N → (µ(āi).id ∈ {&5})∧
(µ(āi).tag ∈ {“Antelope′′ , “Deer′′})∧

(µ(āj) ∈ N → (µ(āj).id ∈ {&6})∧
(µ(āj).tag ∈ {“Antelope′′, “Deer′′})∧

(µ(āi).tag = µ(āj).tag).

The last conjunct requires coordination.

Comparing the complex statement examples above
with their simpler counterparts, which can be captured
using basic choice assertions, illustrates that the prob-
lem arises from the need to enforce coordinated selec-
tions (among possible alternatives) for multiple nodes.
The implementation of coordinated choice assertions
is beyond the scope of this paper.

5 Query- and Feedback-Driven Explo-
ration Process

Figure 2 shows the outline of the query-driven explo-
ration process underlying the QUEST: first, based on
the available positive assertions, QUEST creates an as-
sertion graph (representing the null-valued document;
see Figure 1). When the user provides a path query,
matching path instances corresponding to the query
and satisfying the pruning constraints imposed by neg-
ative assertions are identified. In a sense

• positive assertions produce path instances. In case
there are conflicts among the given positive as-

sertions, this results in alternative solution mod-
els, consisting of intra-compatible, but pairwise-
incompatible sets of paths.

• negative assertions delete path instances from the
result. Thus, negative assertions can reduce the
size or collapse solution models.

Naturally, the number of these solution models can
be large. Therefore, a particular challenge is to post-
pone the computation and visualization of these al-
ternative solution models until absolutely necessary.
Thus, QUEST helps the user explore the alternative so-
lution spaces in an informed manner without having
access to explicit materializations of the solution mod-
els: QUEST first identifies an initial subset of matches
to the query and constructs (in an incremental way) an
intermediary path compatibility graph during query
evaluation. Once the query is evaluated and the path
compatibility graph is constructed, the user can inter-
act with QUEST to turn on and off various assertions
and observe how the solution set (and the solution
models) are affected. Pairwise compatibility graphs
of logic rules are also used in non-monotonic reason-
ing systems [25]. Unlike these, however, in QUEST, the
compatibility graphs are not only for the base rules (or
assertions), but for the result paths obtained within
the context of a query. This enables the user to explore
the available data within the context of a query and
drill-down to assertions or zoom-out to solution mod-
els. Once the user feedback is reflected on the asser-
tions, the user is provided with a new subset of ranked
results and the feedback-based exploration process is
repeated. Below, we provide sketches of these steps.

5.1 Path Query and Results

Let us focus on path queries of type P {/,//,∗} [2]. In
QUEST, a path query is represented as

q = θ1t1θ2t2 . . . θqtq, θi ∈ {/, //}, ti ∈ D ∪ {∗},
where ti are query tags (including “*” wild-
cards) and θi are parent/child or ances-
tor/descendant axes. An example of such a query
is ′/Mammalia/Sheep/Skull′. Results for a given
path query are included in a set R = {r1, r2, . . . , rm},
where for each ri ∈ R, we have

ri = vi,1[ei,1]vi,2[ei,2] . . . [ei,q−1]vi,q.

Here, vi,j is a label for one vertex in the assertion graph
and ei,j is a set of labels for the assertions supporting
the edge connecting the node vi,j−1 and vi,j . For ex-
ample, the following is a result for the above query:
〈&8, E〉[{〈ba8,−〉}]〈ba8, Mammalia〉[{〈ba8,−〉}]〈&8, S〉[{〈ba5,−〉}]
〈&5, E〉[{〈ba5,−〉}]〈ba5, Sheep〉[{〈ba5,−〉}]〈&5, S〉[{〈ba1,−〉}]
〈fpba1 , vE〉[{〈ba1,−〉}]〈&1, E〉[{〈ba1,−〉}]〈ba1, Skull〉[{〈ba1,−〉}]
〈ftba1 , vE〉[{〈ba1,−〉}]〈&1, S〉.

Note that a valid path cannot contain any loops
and for each data node on the path S and E vertices
as well as the assertion labels need to match.



5.2 Path Compatibility Graph

Because of conflicting assertions, all results satisfying
a path query might not be compatible. For exam-
ple, two paths can assume that a given object node
has different parents or two paths considered together
may imply a loop. Furthermore, the mutual exclu-
sion nodes introduced in Section 3 can render paths
that share a given mutual exclusion node in different
ways incompatible with each other. QUEST captures
the compatibility between paths and sets of paths us-
ing a reflexive and symmetric “∼” relation:

• Given two path instances pi and pj , pi ∼ pj iff the
path instances together do not violate any struc-
tural constraints introduced in Section 2.

• Given a path instance p′ and a set of path in-
stances P = {p1, p2, ..., pN}, p′ ∼ P , if and only if
∀pi ∈ P , p′ ∼ pi.

• Given two sets of path instances P =
{p1, p2, ..., pN} and Q = {q1, q2, ..., qM}, P ∼ Q
if and only if ∀pi ∈ P, pi ∼ Q.

Given a set of paths, P , a compatibility graph, C,
captures all pairwise compatibility relationships.

5.3 Result Exploration

Let us assume that a path query q results in a set R =
{p1, p2, . . . , pN} of paths. As stated above, not all of
these paths are compatible with each other. Therefore,
QUEST provides various result exploration options to
the user to enable her to get a high level understanding
of the available data relative to her query:

• Checking whether a given set, P , of paths is a
model; i.e., checking whether the given set of paths
are compatible with each other. The result set, R,
being a model would imply that the data does not
contain any conflict relative to this query.

• Given a path p and a set of paths P , checking
whether p ∼ P or p 	∼ P .

• Given a path instance p and a set P , computing
the number of path instances in P that are com-
patible with p. This number informs the user re-
garding the degree of compatibility of the path p
with others in P .

• Given a path instance p ∈ P , computing the num-
ber of different models in which p occurs. This
informs the user regarding how supported each
path is with the available knowledge.

• Given a path instance p ∈ P , computing the num-
ber of models that would collapse when p is re-
moved. This informs the user regarding the en-
tropy introduced by p in the integrated system.

Note that, additionally, the models themselves can be
weighed based on their sizes or their compatibilities
with other models. This information, then can be

propagated to the weights of the paths included in
these models. With these, it is possible to rank result
paths and provide users with alternative exploration
opportunities to observe the results, based on differ-
ent definitions of likelihood (Figure 3(a)). The user
can pick and choose between available result paths in
an informed manner and observe the impact to the as-
sertion and path compatibility graphs immediately. In
particular, when a path is marked invalid by the user,
• if the path can be eliminated without affecting

any other paths (by eliminating some choice in an
assertion or by removing an assertion altogether),
then this alternative is executed (Figure 3(b));

• if there is no way to remove it without affecting
the assertions that support other paths, then the
paths that might be impacted and the correspond-
ing assertions are highlighted (Figure 3(c)).

Note that users are not always interested in ranking
the result paths, but in ranking those assertions that
generate and constrain the various solutions and so-
lution models. Therefore, to support ranking of the
assertions, we further propagate the various scores to
the assertions on the paths. This enables the user to
pick and choose between available assertions in an in-
formed manner and observe the impacts of her actions
on the solution immediately.

5.4 Computation

A model, composed of compatible result paths, corre-
sponds to a maximal clique in the compatibility graph.
Maximal cliques in a graph can be exponential in the
number of vertices [26]. There are polynomial time
delay algorithms for enumeration of cliques (i.e., if the
graph of size n contains C cliques, the time to out-
put all cliques is bounded by O(nkC) for some con-
stant k) [18], but in general graphs, C can be expo-
nential in n; for example as many as 3n/3 in Moon-
Moser’s graphs [26]. We, on the other hand, see that
it is possible to avoid enumeration of cliques or find-
ing of the maximal cliques in the entire compatibility
graph, when supporting many of the relevant explo-
ration tasks. For instance, the task of counting the
number of maximal cliques a path occurs in can be per-
formed by counting those maximal cliques containing
only its neighbors. For sparse compatibility graphs,
this can lead to significant gains in computation time.
When the compatibility graph is dense, on the other
hand, the number and sizes of cliques need to be esti-
mated using alternative analysis techniques.

Thus, we are currently developing efficient al-
gorithms to process queries on (null-valued) semi-
structured data in the presence of a multitude of al-
ternative models, without having to materialize all al-
ternatives. In particular, we are exploring polynomial-
time path and assertion ranking techniques based on
structural analysis of the path and assertion compati-
bility graphs.



(a) (b) (c)
Figure 3: (a) Result visualization and exploration screen; (b) elimination of the path #0 changes the assertion
graph accordingly; (c) elimination of path #3, on the other hand, would affect other paths in the result

5.5 Tree Queries

A tree query can be processed navigationally or split
into multiple path queries and their structural joins [4,
30]. In QUEST, tree queries are handled as an extension
of path query processing. After paths that satisfy the
path sub-queries are identified, they need to be put
together to form answers to the tree query. When
paths might be incompatible, each set of paths that is
put together to form an answer must be constrained
to be self compatible. Therefore tree query processing
involves merging of the ranked paths from multiple
subqueries subject to compatibility constraints.

6 Conclusion

In this paper, we presented an assertion-based data
model to describe hierarchical data and meta-data.
We then extended this model with basic choice as-
sertions which enables us to describe various types
of value- and structure-based nulls in a uniform man-
ner. We also highlighted the need for coordinated as-
sertions to describe certain types of nulls. We intro-
duced a graphical representation for hierarchical data
with nulls and discussed how to enable query execution
and query-driven data exploration processes using this
graphical representation. We introduced the concept
of path-compatibility and we highlighted how results
of a query can be leveraged to have develop a high-level
understanding of conflicts in the data. We also pro-
vided an overview of the QUEST system which leverages
the concepts introduced in this paper to support ex-
ploratory research on incomplete and conflicting data.

References
[1] Document object model (dom) level 1 specification.

http://www.w3.org/TR/REC-DOM-Level-1/.
[2] Xquery. http://www.w3.org/TR/xquery/.
[3] R. Agrawal, R. J. Cochrane, and B. G. Lindsay. On maintaining

priorities in a production rule system. VLDB 1991.
[4] S. Al-Khalifa, et al. Structural joins: A primitive for efficient

xml query pattern matching. ICDE, 2002.
[5] A. Bonifati, E.Q. Chang, and L.V. Lakshmanan. Heptox: Mar-

rying xml and heterogeneity in your p2p databases. In VLDB,
2005. Demo.

[6] R. Boppana and M. M. Halldórsson. Approximating maximum
independent sets by excluding subgraphs. SWAT, 1990

[7] P. Buneman, W. Fan, and S. Weinstein. Query optimization for
semistructured data using path constraints in a deterministic
data model. DBPL, pages 208–223, 1999.

[8] K. Candan, J. Grant, and V. Subrahmanian. A unified treat-
ment of null values using constraints. Information Systems
Journal, 98(1-4):99–156, May 1997.

[9] J. Doyle. A truth maintenance system. J.of Artificial Intel.,
12: 231–272, 1979.

[10] S. Flesca, et al. Repairs and consistent answers for xml data
with functional dependencies. Xsym pages 238–253, 2003.

[11] D. Florescu and D. Kossman. Storing and Querying XML Data
using an RDBMS. IEEE Data Eng. Bulletin,22(3):27-34, 1999.

[12] M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. International Conference and Symposium
on Logic Programming. 1988.

[13] L. Giordano, A. Martelli and M.L. Sapino”. Extending nega-
tion as failure by abduction: a 3-valued stable model semantics.
J. of Logic Programming, 1996.

[14] A. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management. In ICDE, 2003.

[15] T. Imielinski and W. Lipski. On representing incomplete infor-
mation in a relational data base. VLDB, 1981.

[16] T. Imielinski and W. Lipski. Incomplete information in rela-
tional databases. JACM, 31(4):761–791, 1984.

[17] Y. E. Ioannidis and T. K. Sellis. Conflict resolution of rules
assigning values to virtual attributes. SIGMOD, 1989.

[18] D. S. Johnson and C. H. Papadimitriou. On generating all
maximal independent sets. Info. Proc. Letters, 27, 1988.

[19] K. W. Kintigh. et al. Enabling the study of long-term human
and social dynamics: A cyberinfrastructure for archaeology.
http://cadi.asu.edu/HSDPosterSlidesLR.ppt.

[20] K. W. Kintigh et al. Workshop on cybertools for archaeological
data integration. http://cadi.asu.edu/, December 2004.

[21] K. W. Kintigh. The promise and challenge of archaeological
data integration. American Antiquity, 2006. in press.

[22] K.-C. Liu and R. Sunderraman. A generalized relational model
for indefinite and maybe information. TKDE, 3(1), 1991.

[23] M. Liu and T. W. Ling. A data model for semistructured data
with partial and inconsistent information. LNCS, 1777, 2000.

[24] J. McHugh, et al. Lore: A database management system for
semistructured data. SIGMOD Record, 26(3):54–66, 1997.

[25] R. E. Mercer and V. Risch. Properties of maximal cliques of a
pair-wise compatibility graph for three nonmonotonic reason-
ing system. In Answer Set Programming, 2003.

[26] J.W. Moon and L. Moser On cliques in graphs. Israel Journal
of Mathematics, 3, 23–28, 1965.

[27] W. Ng. Repairing inconsistent merged xml data. In DEXA,
pages 244–255, 2003.

[28] K. Spielmann, J. Driver, D. Grayson, E. Reitz, S. Kanza, and
C. Szuter. Faunal working group. http://cadi.asu.edu.

[29] I. Tatarinov, et al. Storing and querying ordered XML using a
relational database system. SIGMOD, pages 204–215, 2002.

[30] Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join order
selection for xml query optimization. In ICDE, 2003.

[31] C. Zaniolo. Design and implementation of a logic-based lan-
guage for data-intensive applications. ICLP 1988.

[32] C. Zaniolo. A United Semantics for Active and Deductive
Databases, chapter Rules in Database Systems. 1994.



Column Heterogeneity as a Measure of Data Quality

Bing Tian Dai
National Univ. of Singapore
daibingt@comp.nus.edu.sg

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Beng Chin Ooi
National Univ. of Singapore

ooibc@comp.nus.edu.sg

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

Suresh Venkatasubramanian
AT&T Labs–Research

suresh@research.att.com

ABSTRACT
Data quality is a serious concern in every data management appli-
cation, and a variety of quality measures have been proposed, in-
cluding accuracy, freshness and completeness, to capture the com-
mon sources of data quality degradation. We identify and focus
attention on a novel measure,column heterogeneity, that seeks to
quantify the data quality problems that can arise when merging data
from different sources. We identify desiderata that a column het-
erogeneity measure should intuitively satisfy, and discuss a promis-
ing direction of research to quantify database column heterogeneity
based on using a novel combination ofcluster entropyandsoft clus-
tering. Finally, we present a few preliminary experimental results,
using diverse data sets of semantically different types, to demon-
strate that this approach appears to provide a robust mechanism for
identifying and quantifying database column heterogeneity.

1. MOTIVATION
Data quality is a serious concern in every data management ap-

plication, severely degrading common business practices, and in-
dustry consultants often quantify the adverse impact of poor data
quality in the billions of dollars annually. Data quality issues have
been studied quite extensively in the literature (e.g., [3, 5, 1]). In
particular, a variety of quality measures have been proposed, in-
cluding accuracy, freshness and completeness, to capture the com-
mon sources of data quality degradation [6, 9]. Data profiling
tools like Bellman [4] compute concise summaries of the values
in database columns, to identify various errors introduced by poor
database design; these include approximate keys (the presence of
null values and defaults in a column may result in the approxima-
tion) and approximate functional dependencies in a table (possibly
due to inconsistent values). This vision paper identifies and focuses
attention on a novel measure,column heterogeneity, that seeks to
quantify the data quality problems that can arise when merging data
from different sources.

Textbook database design teaches that it is desirable for a database
column to be homogeneous, i.e., all values in a column should
be of the same “semantic type”. For example, if a database con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CleanDBSeoul, Korea, 2006

tains email addresses, social security numbers, phone numbers, ma-
chine names and IP addresses, these semantically different types
of values should be represented in separate columns. For exam-
ple, the column in Figure 1(a) contains only email addresses and
is quite homogeneous, even though there appears to be a wide di-
versity in the actual set of values present. Such homogeneity of
database column values has obvious advantages, including simplic-
ity of application-level code that accesses and modifies the database.

In practice, operational databases evolve over time to contain a
great deal of “heterogeneity” in database column values. Often, this
is a consequence of large scale data integration efforts that seek to
preserve the “structure” of the original databases in the integrated
database, to avoid having to make extensive changes to the appli-
cation level code. For example, one application might use email
addresses as a unique customer identifier, while another might use
phone numbers for the same purpose; when their databases are
integrated into a common database, it is feasible that the CUS-
TOMER ID column contains both email addresses and phone num-
bers, both represented as strings, as illustrated in Figure 1(b). A
third independently developed application that used, say, social se-
curity numbers as a customer identifier might then add such val-
ues to the CUSTOMERID column, when its database is integrated
into the common database. As another example, two different in-
ventory applications might maintain machine domain names (e.g.,
abc.def.com) and IP addresses (e.g., 105.205.105.205) in the same
MACHINE ID column for the equivalent task of identifying ma-
chines connected to the network. While these examples may appear
“natural” since all of these semantically different types of values
have the same function, namely, to serve as a customer identifier
or a machine identifier, potential data quality problems can arise
in databases accessed and modified by legacy applications that are
unaware of the heterogeneity of values in the column.

For example, an application that assumes that the CUSTOMERID
column contains only phone numbers might choose to “normalize”
column values by removing all special characters (e.g., ‘-’, ‘.’) from
the value, and writing it back into the database. While such a trans-
formation is appropriate for phone numbers, it would clearly man-
gle the email addresses represented in the column and can severely
degrade common business practices. For instance, in our previ-
ous example, the unanticipated transformation of email addresses
in the CUSTOMERID column (e.g., “john.smith@noname.org” to
“johnsmith@nonameorg”) may mean that a large number of cus-
tomers are no longer reachable.

Locating poor quality data in large operational databases is a
non-trivial task, especially since the problems may not be due to
the data alone, but also due to the interactions between the data and
the multitude of applications that access this data (as the previous

1



CUSTOMERID CUSTOMERID CUSTOMERID CUSTOMERID
lkjkjjk@321.zzz.info lkjkjjk@321.zzz.info lkjkjjk@321.zzz.info 123-45-6789

h8742@yyy.com h8742@yyy.com h8742@yui.com 135-79-2468
kkjj+@haha.org kkjj+@haha.org kkjj+@haha.org 159-24-6837

qwerty@keyboard.us qwerty@keyboard.us qwerty@keyboard.us 789-12-3456
555-1212@fax.in 555-1212@fax.in 555-1212@fax.in 987-65-4321
alpha@beta.ga (908)-555.1234 alpha@beta.ga (908)-555.1234

john.smith@noname.org 973-360-0000 john.smith@noname.org 973-360-0000
jane.doe@1973law.us 360-0007 jane.doe@1973law.us 360-0007
gwb.dc@universe.gov 8005551212 gwb.dc@universe.gov 8005551212

jamesbond.007@action.com (877)-807-4596 (877)-807-4596 (877)-807-4596

(a) (b) (c) (d)

Figure 1: Example homogeneous and heterogeneous columns.

example illustrates). Identifying heterogeneous database columns
becomes important in such a scenario, permitting data quality ana-
lysts to then focus on understanding the interactions of applications
with data in such columns, rather than having to simultaneously
deal with the tens of thousands of columns in today’s complex op-
erational databases. If an analyst determines that a problem exists,
remedial actions can include:

† modification of the applications to explicitly check for the
semantic type of data (phone numbers, email addresses, etc.)
assumed to exist in the table, or

† a horizontal splitting of the table to force homogeneity, along
with a simpler modification of the applications accessing this
table to access and update the newly created tables instead.

We next identify desiderata that a column heterogeneity measure
should intuitively satisfy, and discuss a promising direction of re-
search to quantify database column heterogeneity.

2. HETEROGENEITY: DESIDERATA
Consider the example shown in Figure 1. This illustrates many

of the issues that need to be considered when coming up with a
suitable measure for column heterogeneity.

Number of Semantic Types:Many semantically different types
of values (email addresses, phone numbers, social security num-
bers, circuit identifiers, IP addresses, machine domain names, cus-
tomer names, etc.) may be represented as strings in a column, with
no a priori characterization of the set of possible semantic types
present.

Intuitively, the more semantically different types of values there
are in a database column, the greater should be its heterogeneity;
thus, heterogeneity is better modeled as a numerical value rather
than a boolean (yes/no). For example, a column with both email
addresses and phone numbers (e.g., Figure 1(b)) can be said to be
more heterogeneous than a column with only email addresses (e.g.,
Figure 1(a)) or only phone numbers.

Distribution of Semantic Types: The semantically different
types of values in a database column may occur with different fre-
quencies.

Intuitively, the relative distribution of the semantically different
types of values in a column should impact its heterogeneity. For
example, a column with many email addresses and phone numbers
(e.g., Figure 1(b)) can be said to be more heterogeneous than a col-

umn that has mainly email addresses with just a few outlier phone
numbers (e.g., Figure 1(c)), or vice versa.

Distinguishability of Semantic Types: Semantically different
types of values may overlap (e.g., social security numbers and phone
numbers) or be easily distinguished (e.g., email addresses and phone
numbers).

Intuitively, with no a priori characterization of the set of possible
semantic types present in a column, we cannot always be sure that
a column is heterogeneous, and our heterogeneity measure should
conservatively reflect this possibility.

The more easily distinguished are the semantically different types
of values in a column, the greater should be its heterogeneity. For
example, a column with roughly equal numbers of email addresses
and phone numbers (e.g., Figure 1(b)) can be said to be more het-
erogeneous than a column with roughly equal numbers of phone
numbers and social security numbers (e.g., Figure 1(d)), due to the
greater similarity between the values (and hence the possibility of
being of the same unknown semantic type) in the latter case.

3. QUANTIFYING HETEROGENEITY
We now discuss approaches to quantify database column hetero-

geneity that meet the desiderata outlined above.
Number of Semantic Types: A first approach to obtaining a

heterogeneity measure is to use ahard clustering. By partitioning
values in a database column into clusters, we can get a sense of the
number of semantically different types of values in the data. How-
ever, merely counting the number of clusters does not suffice to
quantify heterogeneity. Two additional issues, as outlined above,
make the problem challenging: the relative sizes and the distin-
guishability of the clusters. A few phone numbers in a large collec-
tion of email addresses (e.g., Figure 1(c)) may look like a distinct
cluster, but should not impact the heterogeneity of the column as
much as having a significant number of phone numbers with the
same collection of email addresses (e.g., Figure 1(b)). Again, a so-
cial security number (see the first few values in Figure 1(d)) may
look similar to a phone number, and we would like the heterogene-
ity measure to reflect this overlap of sets of values, as well as be
able to capture the idea that certain data might yield clusters that
are close to each other, and other data might yield clusters that are
far apart.

Distribution of Semantic Types: To take into account the rel-
ative sizes of the (possibly multiple) clusters,cluster entropyis a
better measure for quantifying heterogeneity of data in a database
column than merely counting the number of clusters. Cluster en-

2



tropy is computed by assigning a “probability” to each cluster equal
to the fraction of the data values it contains, and computing the en-
tropy of the resulting distribution [2]. Consider a hard clustering
T = ft1; t2; : : : tkg of a set ofn valuesX, where clusterti hasni

values, and denotepi = ni=n. Then thecluster entropyof the hard
clusteringT is the entropy of the cluster size distribution, defined
as
P

pi ln(1=pi). By using cluster entropy, the mixture of email
addresses and phone numbers in column Figure 1(b) would have a
higher value of heterogeneity than the data in Figure 1(c), which
consists of a few phone numbers in a collection of mainly email
addresses.

Distinguishability of Semantic Types:The cluster entropy of a
hard clustering does not effectively take into account distinguisha-
bility of semantic types in a column. For example, given a column
with an equal number of phone numbers and social security num-
bers (e.g., Figure 1(d)), hard clustering could either determine the
column to have one cluster (in which case its cluster entropy would
be 0, which is the same as that of a column with just phone num-
bers) or have two equal sized clusters (in which case its cluster
entropy would beln(2), which is the same as that of a column with
equal numbers of phone numbers and email addresses). Intuitively,
however, the heterogeneity of such a column should be somewhere
in between these two extremes to capture the uncertainty in assign-
ing values to clusters due to the syntactic similarity of values.Soft
clusteringhas the potential to address this problem; each data value
in soft clustering has the flexibility of assigning a probability distri-
bution for its cluster membership, instead of belonging to a single
cluster (equivalently, assigning its entire probability distribution to
a single cluster), as in hard clustering. Heterogeneity can now be
computed as the cluster entropy of the soft clustering.

To summarize, the desiderata that a column heterogeneity mea-
sure should depend on the number, the distribution and the distin-
guishability of the semantic types of string values in a column have
the potential of being satisfied by using a novel combination of
cluster entropyandsoft clustering. We next discuss some promis-
ing results that we have obtained by following this research direc-
tion.

4. PRELIMINARY RESULTS
As a concrete realization of our vision, we present a few ex-

perimental results using diverse data sets of semantically different
types, mixed together in various ways, to provide different levels of
heterogeneity.

Data Sets: We consider mixtures of four different data sets.
email is a set of 509 email addresses collected from attendees
at the 2001 SIGMOD/PODS conference,ID is a set of 609 em-
ployee identifiers,phone is a diverse collection of 3064 telephone
numbers, andcircuit is a set of 1778 network circuit identi-
fiers. Strings inID andphone are numeric (phone data contains
the period as well). Strings inemail andcircuit are alphanu-
meric, and may contain special characters like ‘@’ and ‘-’.

Soft Clustering: We will use theInformation Bottleneck Method,
developed by Tishby et al. [8], and implemented by Slonim in his
thesis as the algorithmiIB [7], to compute a soft clustering of
the data sets. Intuitively,iIB takes as input a joint distribution
(X; Y ), wherex 2 X represents a string value in the data set,
y 2 Y is chosen to represent tokens (q-grams) extracted from the
string values, and the joint distribution reflects an entropy weight-
ing of the tokens. The output ofiIB is a cluster membership distri-
butionp(T jx) for eachx, representing the conditional probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

I(
T

;Y
) /

 I(
X

;Y
)

I(T;X) / H(X)

The Normalized Relevance-Compression Curve of the Email_ID Data

K=10
K=20
K=30
K=40
K=50
K=75

K=100
K=150
K=200
K=250
K=300

x

Figure 2: Rate-Distortion curve for example data.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1  1  10

C
lu

st
er

 E
nt

ro
py

beta

Cluster Entropy

email
id

circuit
phone

email_id
email_circuit
email_phone

id_circuit
id_phone

circuit_phone
email_id_circuit
email_id_phone

email_circuit_phone
id_circuit_phone

ALL

Figure 3: Cluster entropy as a function offl. The x-axis plots a
normalized version offl on a logscale.

that string valuex is placed in clustert 2 T .

Canonical Rule: iIB uses a parameterfl that trades off cluster
quality against cluster compression; increasingfl increases clus-
ter quality while decreasing cluster compression. Interestingly,for
all the data sets, there is a unique value offl given by fl⁄ =
H(X)=I(X;Y ) (whereH(X) is the entropy of the data valuesX
andI(X;Y ) is the mutual information between the data valuesX
and the tokensY ), which marks the “point of diminishing returns”;
after thisfl value, the loss we suffer from reducing the (normalized)
cluster compression is not paid for by a commensurate increase in
(normalized) cluster quality. This behavior can be observed in the
rate distortion curve for our example data, shown in Figure 2; this
curve is always concave, and the point on the curve with a slope of
1 identifiesfl⁄. This is also the point that is the closest to the(0; 1)
point, which is the point representing perfect quality with no space
penalty.

Cluster Entropy: Using the soft clustering output ofiIB for
different values offl in the vicinity of fl⁄, and computing hetero-
geneity by combining estimates of the cluster entropies of the var-
ious hard clusterings derived from the soft clustering via the soft
clustering distribution, we empirically observed that the cluster en-
tropy is minimized atfl⁄. This behavior can be observed in Fig-
ure 3. Further, the relative ordering of cluster entropy values ob-
tained atfl = fl⁄ is consistent with the expected relative hetero-
geneities of these data sets, as shown in Figure 4. Specifically, all
the individual data sets have very small cluster entropies, and are
distinguishable from the mixtures. Further, mixtures of two data

3



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.94  0.96  0.98  1  1.02  1.04  1.06  1.08  1.1

C
lu

st
er

 E
nt

ro
py

beta

Cluster Entropy

email
id

circuit
phone

email_id
email_circuit
email_phone

id_circuit
id_phone

circuit_phone
email_id_circuit
email_id_phone

email_circuit_phone
id_circuit_phone

ALL

Figure 4: Cluster entropy as a measure of heterogeneity. The
x-axis plots a normalized version offl on a logscale.

sets in general have lower cluster entropy than mixtures of three
and four data sets. We observe that as the number of elements
in the mixture increases, the heterogeneity gap decreases, and that
the separations are not strict for the more heterogeneous sets; this
is natural, as individual data sets may have characteristics that are
somewhat similar (for example,ID andphone ).

Validating the Soft Clustering: Cluster entropy appears to cap-
ture our intuitive notion of heterogeneity. However, it is derived
from a soft clustering returned by theiIB algorithm. Does that
soft clustering actually reflect natural groupings in the data? It turns
out that this is indeed the case. In Figure 5, we display bitmaps that
visualize the clusterings obtained for different mixtures. In this rep-
resentation, columns are clusters, rows are data values, and darker
probabilities are larger. For clarity, we have reordered the rows so
that all data elements coming from the same source are together,
and we reordered the columns based on their distributional simi-
larities. To interpret the figure, recall that each row of a bitmap
represents the cluster membership distribution of a data point. A
collection of data points having the same cluster membership dis-
tributions represent the same cluster. Thus, notice how the clusters
separate out quite cleanly, clearly displaying the different data mix-
tures. Also observe how, without having to specifyk, the number
of clusters,iIB is able to separate out the groups. Further, if we
look at Figure 5(d), we notice how the clusters corresponding to
ID andphone overlap and have similar cluster membership distri-
butions, reinforcing our observation that they form two very close
(not well-separated) clusters.

To summarize the experimental results, our novel combination
of cluster entropyandsoft clusteringappears to provide a robust
mechanism for identifying and quantifying database column het-
erogeneity.

5. CONCLUSION
In this vision paper, we identified a new data quality measure,

column heterogeneity, and outlined a general approach to quan-
tify this measure in database columns. The rapid identification
of heterogeneous columns in a database with tens of thousands of
columns provides a unique opportunity to understand and charac-
terize the quality of data in today’s complex operational databases,
using the tools of information theory.

6. REFERENCES
[1] C. Batini, T. Catarci, and M. Scannapieco. A survey of data

(a) (b)

(c) (d)

Figure 5: Soft Clustering of email /ID , email /circuit ,
circuit /phone , email /ID /circuit /phone mixtures.

quality issues in cooperative information systems. InER,
2004. Pre-conference tutorial.

[2] T. M. Cover and J. A. Thomas.Elements of information
theory. Wiley-Interscience, New York, NY, USA, 1991.

[3] T. Dasu and T. Johnson.Exploratory data mining and data
cleaning. John Wiley, 2003.

[4] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining database structure or how to build a data quality
browser. InSIGMOD, 2002.

[5] T. Johnson and T. Dasu. Data quality and data cleaning: An
overview. InSIGMOD, 2003. Tutorial.

[6] G. Mihaila, L. Raschid, and M.-E. Vidal. Querying “quality
of data” metadata. InProc. of IEEE META-DATA
Conference, 1999.

[7] N. Slonim.The Information Bottleneck: Theory and
Applications. PhD thesis, The Hebrew University, 2003.

[8] N. Tishby, F. Pereira, and W. Bialek. The information
bottleneck method. InProceedings of the 37-th Annual
Allerton Conference on Communication, Control and
Computing, pages 368–377, 1999.

[9] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. InCIDR, 2005.

4



Generic Entity Resolution with Data Confidences

David Menestrina
dmenest@cs.stanford.edu

Omar Benjelloun
benjello@cs.stanford.edu

Hector Garcia-Molina
hector@cs.stanford.edu

Stanford University

ABSTRACT
We consider the Entity Resolution (ER) problem (also known
as deduplication, or merge-purge), in which records deter-
mined to represent the same real-world entity are succes-
sively located and merged. Our approach to the ER problem
is generic, in the sense that the functions for comparing and
merging records are viewed as black-boxes. In this context,
managing numerical confidences along with the data makes
the ER problem more challenging to define (e.g., how should
confidences of merged records be combined?), and more ex-
pensive to compute. In this paper, we propose a sound and
flexible model for the ER problem with confidences, and
propose efficient algorithms to solve it. We validate our
algorithms through experiments that show significant per-
formance improvements over naive schemes.

1. INTRODUCTION
When data from different sources is cleansed and inte-

grated, often multiple input records refer to the same real-
world entity, e.g., to the same customer, the same product
or the same organization. Entity resolution (ER) identifies
the records that refer (or are likely to refer) to the same
entity, and merges these records. A merged record becomes
a “composite” of the source records. In general, a merged
record needs to be compared and possibly merged with other
records, since the composition of information may now make
it possible to identify new relationships. For instance, say
record r1 gives the name and driver’s license of a person,
while record r2 gives an address and the same driver’s license
number. Say we merge r1 and r2 based on the matching
driver’s license. Now we have both a name and an address
for this person, and this combined information may make
it possible to connect this merged record with say r3, con-
taining a similar name and address. Note that neither r1

nor r2 may match with r3, because they do not contain the
combined information that the merged record has. Entity
resolution is also known as deduplication and record linkage.

Often, numerical confidences (or data quality) play a role

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CleanDB, Seoul, Korea, 2006

in entity resolution. For instance, the input records may
come from unreliable sources, and have confidences or qual-
ity associated with them. The comparisons between records
may also yield confidences that represent how likely it is that
the records refer to the same real-world entity. Similarly, the
merge process may introduce additional uncertainties, as it
may not be certain how to combine the information from
different records. In each application domain, the interpre-
tation of the quality or confidence numbers may be different.
For instance, a confidence number may represent a “belief”
that a record faithfully reflects data from a real-world entity,
or it may represent how “accurate” a record is.

Even though ER is a central problem in information inte-
gration, and even though confidences are often an integral
part of resolution, relatively little is known about how to
efficiently deal with confidences. Specifically, confidences
may make the ER process computationally more expensive,
as compared to a scenario where confidences are not taken
into account. For instance, without confidences, the order
in which records are merged may be unimportant, and this
property can be used to find efficient ER strategies. How-
ever, confidences may make order critical. For instance, say
we merge r1 to r2 and then to r3, giving us a record r123.
Because r1 and r2 are “very similar”, we may have a high
confidence in the intermediate result, which then gives us
high confidence in r123. However, say we merge r1 to r3 and
then to r2, giving us record r132. In this case, r1 and r3

may not be “that similar”, leading t a lower confidence r132.
Records r123 and r132 may even have the same attributes,
but may have different confidences because they were de-
rived differently. Thus, ER must consider many more po-
tential derivations of composite records.

Our goal in this paper is to explore ways to reduce the
high computational costs of ER with confidences. We wish
to achieve this goal without making too many assumptions
about the confidence model and how confidences are com-
puted when record are merged. Thus, we will use a generic
black-box model for the functions that compare records, that
merge records, and that compute new confidences. We will
then postulate properties that these functions may have: if
the properties hold, then efficient ER with confidences will
be possible. If they do not hold, then one must run a more-
general version of ER (as we will detail here). Since we
use generic match and merge functions, the algorithms we
present can be used in many domains. All that is required
is to check what properties the match and merge functions
have, and then to select the appropriate algorithm.

The contributions of this paper are the following:



• We define a generic framework for managing confidences
during entity resolution (Sections 2 and 3).

• We present Koosh, an algorithm for resolution when con-
fidences are involved (Section 4).

• We present three improvements over Koosh that can sig-
nificantly reduce the amount of work during resolution:
domination, packages and thresholds. We identify prop-
erties that must hold in order for these improvements to
be achievable (Sections 5, 6, and 7).

• We evaluate the algorithms and quantify the potential
performance gains (Section 8).

2. MODEL
Each record r consists of a confidence r.C and a set of

attributes r.A. For illustration purposes, we can think of
each attribute as a label-value pair, although this view is
not essential for our work. For example, the following record
may represent a person:

0.7 [ name: “Fred”, age: {45, 50}, zip: 94305 ]
In our example, we write r.C (0.7 in this example) in front

of the attributes. (A record’s confidences could simply be
considered as one of its attributes, but here we treat confi-
dences separately to make it easier to refer to them.) Note
that the value for an attribute may be a set. In our example,
the age attribute has two values, 45 and 50. Multiple values
may be present in input records, or arise during integration:
a record may report an age of 45 while another one reports
50. Some merge functions may combine the ages into a sin-
gle number (say, the average), while others may decide to
keep both possibilities, as shown in this example.

Note that we are using a single number to represent the
confidence of a record. We believe that single numbers (in
the range 0 to 1) are the most common way to represent
confidences in the ER process, but more general confidence
models are possible. For example, a confidence could be
a vector, stating the confidences in individual attributes.
Similarly, the confidence could include lineage information
explaining how the confidence was derived. However, these
richer models make it harder for application programmers
to develop merge functions (see below), so in practice, the
applications we have seen all use a single number.

Generic ER relies on two black-box functions, the match
and the merge function, which we will assume here work on
two records at a time:

• A match function M(r, s) returns true if records r and s
represent the same entity. When M(r, s) = true we say
that r and s match, denoted r ≈ s.

• A merge function creates a composite record from two
matching records. We represent the merge of record r
and s by 〈r, s〉.

Note that the match and merge functions can use global
information to make their decisions. For instance, in an
initialization phase we can compute say the distribution of
terms used in product descriptions, so that when we com-
pare records we can take into account these term frequencies.
Similarly, we can run a clustering algorithm to identify sets
of input records that are “similar.” Then the match func-
tion can consult these results to decide if records match. As
new records are generated, the global statistics need to be
updated (by the merge function): these updates can be done
incrementally or in batch mode, if accuracy is not essential.

The pairwise approach to match and merge is often used
in practice because it is easier to write the functions. (For
example, ER products from IBM, Fair Isaac, Oracle, and
others use pairwise functions.) For instance, it is extremely
rare to see functions that merge more than two records at a
time. To illustrate, say we want to merge 4 records contain-
ing different spellings of the name “Schwartz.” In principle,
one could consider all 4 names and come up with some good
“centroid” name, but in practice it is more common to use
simpler strategies. For example, we can just accumulate all
spellings as we merge records, or we can map each spelling to
the closest name in a dictionary of canonical names. Either
approach can easily be implemented in a pairwise fashion.

Of course, in some applications pairwise match functions
may not be the best approach. For example, one may want
to use a set-based match function that considers a set of
records and identifies the pair that should be matched next,
i.e., M(S) returns records r, s ∈ S that are the best can-
didates for merging. Although we do not cover it here, we
believe that the concepts we present here (e.g., thresholds,
domination) can also be applied when set-based match func-
tions are used, and that our algorithms can be modified to
use set-based functions.

Pairwise match and merge are generally not arbitrary
functions, but have some properties, which we can leverage
to enable efficient entity resolution. We assume that the
match and merge functions satisfy the following properties:

• Commutativity: ∀r, s, r ≈ s ⇔ s ≈ r and if r ≈ s then
〈r, s〉 = 〈s, r〉.
• Idempotence: ∀r, r ≈ r and 〈r, r〉 = r.

We expect these properties to hold in almost all applica-
tions (unless the functions are not property implemented).
In one ER application we studied, for example, the imple-
mented match function was not idempotent: a record would
not match itself if the fields used for comparison were miss-
ing. However, it was trivial to add a comparison for record
equality to the match function to achieve idempotence. (The
advantage of using an idempotent function will become ap-
parent when we see the efficient options for ER.)

Some readers may wonder if merging two identical records
should really give the same record. For example, say the rec-
ords represent two observations of some phenomena. Then
perhaps the merge record should have a higher confidence
because there are two observations? The confidence would
only be higher if the two records represent independent ob-
servations, not if they are identical. We assume that in-
dependent observations would differ in some way, e.g., in
an attribute recording the time of observation. Thus, two
identical records should really merge into the same record.

3. GENERIC ENTITY RESOLUTION
Given the match and merge functions, we can now ask

what is the correct result of an entity resolution algorithm.
It is clear that if two records match, they should be merged
together. If the merged record matches another record, then
those two should be merged together as well. But what
should happen to the original matching records? Consider:
r1 = 0.8[name : Alice, areacode : 202]
r2 = 0.7[name : Alice, phone : 555-1212].

The merge of the two records might be:
r12 = 0.56[name : Alice, areacode : 202, phone : 555-1212]

In this case, the merged record has all of the information



in r1 and r2, but with a lower confidence. So dropping the
original two records would lose information. Therefore,
to be conservative, the result of an entity resolution algo-
rithm must contain the original records as well as records
derived through merges. Based on this intuition, we define
the correct result of entity resolution as follows.

Definition 3.1. Given a set of records R, the result of
Entity Resolution ER(R) is the smallest set S such that:

1. R ⊆ S,

2. For any records r1, r2 ∈ S, if r1 ≈ r2, then 〈r1, r2〉 ∈ S.

We say that S1 is smaller than S2 if S1 ⊆ S2. The termi-
nology “smallest” implies that there exists a unique result,
which is proven in the extended version of this paper [15].

Intuitively, ER(R) is the set of all records that can be
derived from the records in R, or from records derived from
them. A natural “brute-force” algorithm (BFA) for comput-
ing ER(R) involves comparing all pairs, merging those that
match, and repeating until no new records are found. This
algorithm is presented formally in the extended version of
this paper [15].

4. KOOSH
A brute-force algorithm like BFA is inefficient, essentially

because the results of match comparisons are forgotten after
every iteration. As an example, suppose R = r1, r2, r1 ≈ r2,
and 〈r1, r2〉 doesn’t match anything. In the first round, BFA
will compare r1 with r2, and merge them together, adding
〈r1, r2〉 to the set. In the second round, r1 will be compared
with r2 a second time, and then merged together again. This
comparison is redundant. In data sets with more records,
the number of redundant comparisons is even greater.

We give in Figure 1 the Koosh algorithm, which improves
upon BFA by removing these redundant comparisons. The
algorithm works by maintaining two sets. R is the set of
records that have not been compared yet, and R′ is a set of
records that have all been compared with each other. The
algorithm works by iteratively taking a record r out of R,
comparing it to every record in R′, and then adding it to
R′. For each record r′ that matched r, the record 〈r, r′〉 will
be added to R.

Using our simple example, we illustrate the fact that re-
dundant comparisons are eliminated. Initially, R = {r1, r2}
and R′ = ∅. In the first iteration, r1 is removed from R
and compared against everything in R′. There is nothing
in R′, so there are no matches, and r1 is added to R′. In
the second iteration, r2 is removed and compared with ev-
erything in R′, which consists of r1. Since r1 ≈ r2, the two
records are merged and 〈r1, r2〉 is added to R. Record r2 is
added to R′. In the third iteration, 〈r1, r2〉 is removed from
R and compared against r1 and r2 in R′. Neither matches,
so 〈r1, r2〉 is added to R′. This leaves R empty, and the
algorithm terminates. In the above example, r1 and r2 were
compared against each other only once, so the redundant
comparison that occurred in BFA has been eliminated.

The Koosh algorithm correctly computes ER(R). More-
over, it is efficient. No other algorithm that computes ER(R)
can perform fewer comparisons. These facts are proven in
the extended version of this paper.

Theorem 4.6. Koosh is optimal, in the sense that no
algorithm that computes ER(R) makes fewer comparisons.

1: input: a set R of records
2: output: a set R′ of records, R′ = ER(R)
3: R′ ← ∅
4: while R 6= ∅ do
5: r ← a record from R
6: remove r from R
7: for all r′ ∈ R′ do
8: if r ≈ r′ then
9: merged← 〈r, r′〉

10: if merged 6∈ R ∪R′ ∪ {r} then
11: add merged to R
12: end if
13: end if
14: end for
15: add r to R′

16: end while
17: return R′

Algorithm 1: The Koosh algorithm for ER(R)

5. DOMINATION
Even though Koosh is quite efficient, it is still very ex-

pensive, especially since the answer it must compute can
be very large. In this section and the next two, we explore
ways to tame this complexity, by exploiting additional prop-
erties of the match and merge functions (Section 6), or by
only computing a still-interesting subset of the answer (us-
ing thresholds, in Section 7, or the notion of domination,
which we introduce next).

To motivate the concept of domination, consider the fol-
lowing records r1 and r2, that match, and merge into r3:
r1 = 0.8[name : Alice, areacode : 202]
r2 = 0.7[name : Alice, phone : 555-1212].
r3 = 0.7[name : Alice, areacode : 202, phone : 555-1212].

The resulting r3 contains all of the attributes of r2, and its
confidence is the same. In this case it is natural to consider a
“dominated” record like r2 to be redundant and unnecessary.
Thus, a user may only want the ER answer to contain only
non-dominated records. These notions are formalized by the
following definitions.

Definition 5.1. We say that a record r dominates a rec-
ord s, denoted s ≤ r, if the following two conditions hold:

1. s.A ⊆ r.A
2. s.C ≤ r.C

Definition 5.2. Given a set of base records R, the non-
dominated entity-resolved set, NER(R) contains all records
in ER(R) that are non-dominated. That is, r ∈ NER(R)
if and only if r ∈ ER(R) and there does not exist any s ∈
ER(R), s 6= r, such that r ≤ s.

Note that just like ER(R), NER(R) may be infinite. In
the case that ER(R) is finite, one way to compute NER(R)
is to first compute ER(R) and then remove dominated rec-
ords. This strategy does not save much effort since we still
have to compute ER(R). A significant performance im-
provement is to discard a dominated record as soon as it
is found in the resolution process, on the premise that a
dominated record will never participate in the generation of
a non-dominated record. This premise is stated formally as
follows:



• Domination Property: If s ≤ r and s ≈ x then r ≈ x and
〈s, x〉 ≤ 〈r, x〉.

This domination property may or may not hold in a given
application. For instance, let us return to our r1, r2, r3 ex-
ample at the beginning of this section. Consider a fourth
record r4 = 0.9[name : Alice, areacode : 717, phone :
555-1212, age : 20]. A particular match function may decide
that r4 does not match r3 because the area codes are dif-
ferent, but r4 and r2 may match since this conflict does not
exist with r2. In this scenario, we cannot discard r2 when
we generate a record that dominates it (r3), since r2 can still
play a role in some matches.

However, in applications where having more information
in a record can never reduce its match chances, the domina-
tion property can hold and we can take advantage of it. If
the domination property holds then we can throw away dom-
inated records as we find them while computing NER(R).
We prove this fact in the extended version of this paper.

5.1 Algorithm Koosh-ND
Koosh can be modified to eliminate dominated records

early as follows. First, Koosh-ND begins by removing all
dominated records from the input set. Second, within the
body of the algorithm, whenever a new merged record m is
created (line 10), the algorithm checks whether m is domi-
nated by any record in R or R′. If so, then m is immediately
discarded, before it is used for any unnecessary comparisons.
Note that we do not check if m dominates any other records,
as this check would be expensive in the inner loop of the al-
gorithm. Finally, since we do not incrementally check if m
dominates other records, we add a step at the end to remove
all dominated records from the output set.

Koosh-ND relies on two complex operations: removing
all dominated records from a set and checking if a record is
dominated by a member of a set. These seem like expensive
operations that might outweigh the gains obtained by elim-
inating the comparisons of dominated records. However,
using an inverted list index that maps label-value pairs to
the records that contain them, we can make these operations
quite efficient.

The correctness of Koosh-ND is proven in the extended
version of this paper.

6. THE PACKAGES ALGORITHM
In Section 3, we illustrated why ER with confidences is

expensive, on the records r1 and r2 that merged into r3:

r1 = 0.8[name : Alice, areacode : 202],

r2 = 0.7[name : Alice, phone : 555-1212],

r3 = 0.56[name : Alice, areacode : 202, phone : 555-1212].

Recall that r2 cannot be discarded essentially because it
has a higher confidence than the resulting record r3. How-
ever, notice that other than the confidence, r3 contains more
label-value pairs, and hence, if it were not for its higher con-
fidence, r2 would not be necessary. This observation leads us
to consider a scenario where the records minus confidences
can be resolved efficiently, and then to add the confidence
computations in a second phase.

In particular, let us assume that our merge function is
“information preserving” in the following sense: When a
record r merges with other records, the information carried
by r’s attributes is not lost. We formalize this notion of

“information” by defining a relation “v”: r v s means that
the attributes of s carry more information than those of r.
We assume that this relation is transitive. Note that r v s
and s v r does not imply that r = s; it only implies that
r.A carries as much information as s.A.

The property that merges are information preserving is
formalized as follows:

• Property P1: If r ≈ s then r v 〈r, s〉 and s v 〈r, s〉.
• Property P2: If s v r, s ≈ x and r ≈ x, then 〈s, x〉 v
〈r, x〉

For example, a merge function that unions the attributes
of records would have properties P1 and P2. Such functions
are common in “intelligence gathering” applications, where
one wishes to collect all information known about entities,
even if contradictory. For instance, say two records report
different passport numbers or different ages for a person. If
the records merge (e.g., due to evidence in other attributes)
such applications typically gather all the facts, since the
person may be using fake passports reporting different ages.

Furthermore, we assume that adding information to a
record does not change the outcome of match. In addition,
we also assume that the match function does not consider
confidences, only the attributes of records. These character-
istics are formalized by:

• Property P3: If s v r and s ≈ x, then r ≈ x.

Having a match function that ignores confidences is not
very constraining: If two records are unlikely to match due
to low confidences, the merge function can still assign a low
confidence to the resulting record to indicate it is unlikely.
The second aspect of Property P3 rules out “negative evi-
dence”: adding information to a record cannot rule out a fu-
ture match. However, negative information can still be han-
dled by decreasing the confidence of the resulting record.

The algorithm of Figure 2 exploits these properties to per-
form ER more efficiently. It proceeds in two phases: a first
phase bypasses confidences and groups records into disjoint
packages. Because of the properties, this first phase can be
done efficiently, and records that fall into different packages
are known not to match. The second phase runs ER with
confidences on each package separately. We next explain
and justify each of these two phases.

6.1 Phase 1
In Phase 1, we may use any generic ER algorithm, such as

those in [2] to resolve the base records, but with some addi-
tional bookkeeping. For example, when two base records r1

and r2 merge into r3, we combine all three records together
into a package p3. The package p3 contains two things: (i) a
root r(p3) which in this case is r3, and (ii) the base records
b(p3) = {r1, r2}.

Actually, base records can also be viewed as packages.
For example, record r2 can be treated as package p2 with
r(p2) = r2, b(p2) = {r2}. Thus, the algorithm starts with
a set of packages, and we generalize our match and merge
functions to operate on packages.

For instance, suppose we want to compare p3 with a pack-
age p4 containing only base record r4. That is, r(p4) =
r4 and b(p4) = {r4}. To compare the packages, we only
compare their roots: That is, M(p3, p4) is equivalent to
M(r(p3), r(p4)), or in this example equivalent to M(r3, r4).
(We use the same symbol M for record and package match-
ing.) Say these records do match, so we generate a new



1: input: a set R of records
2: output: a set R′ of records, R′ = ER(R)
3: Define for Packages:
4: match: p ≈ p′ iff r(p) ≈ r(p′)
5: merge: 〈p, p′〉 = p′′ :

with root: r(p′′) = 〈r(p), r(p′)〉
and base: b(p′′) = b(p) ∪ b(p′)

6: Phase 1:
7: P ← ∅
8: for all records rec in R do
9: create package p:

with root: r(p) = rec
and base: b(p) = {rec}

10: add p to P
11: end for
12: compute P ′ = ER(P ) (e.g., using Koosh) with the

following modification: Whenever packages p, p′ are
merged into p′′, delete p and p′ immediately, then pro-
ceed.
Phase 2:

13: R′ ← ∅
14: for all packages p ∈ P ′ do
15: compute Q = ER(b(p)) (e.g. using Koosh)
16: add all records in Q to R′

17: end for
18: return R′

Algorithm 2: The Packages algorithm

package p5 with r(p5) = 〈r3, r4〉 and b(p5) = b(p3) ∪ b(p4)
= {r1, r2, r4}.

The package p5 represents not only the records in b(p5),
but also any records that can be derived from them. That
is, p5 represents all records in ER(b(p5)). For example, p5

implicitly represents the record 〈r1, r4〉, which may have
a higher confidence that the root of p5. Let us refer to
the complete set of records represented by p5 as c(p5), i.e.,
c(p5) = ER(b(p5)). Note that the package does not contain
c(p5) explicitly, the set is just implied by the package.

The key property of a package p is that the attributes of
its root r(p) carry more information (or the same) than the
attributes of any record in c(p), that is for any s ∈ c(p),
s v r(p). This property implies that any record u that does
not match r(p), cannot match any record in c(p).

Theorem 6.3. For any package p, if a record u does not
match the root r(p), then u does not match any record in
c(p).

This fact in turn saves us a lot of work! In our example,
once we wrap up base records r1, r2 and r4 into p5, we do not
have to involve them in any more comparisons. We only use
r(p5) for comparing against other packages. If p5 matches
some other package p8 (i.e., the roots match), we merge the
packages. Otherwise, p5 and p8 remain separate since they
have nothing in common. That is, nothing in c(p5) matches
anything in c(p8).

6.2 Phase 2
At the end of Phase 1, we have resolved all the base

records into a set of independent packages. In Phase 2
we resolve the records in each package, now taking into ac-
count confidences. That is, for each package p we compute
ER(b(p)), using an algorithm like Koosh. Since none of the
records from other packages can match a record in c(p), the

ER(b(p)) computation is completely independent from the
other computations. Thus, we save a very large number of
comparisons in this phase where we must consider the dif-
ferent order in which records can merge to compute their
confidences. The more packages that result from Phase 1,
the finer we have partitioned the problem, and the more
efficient Phase 2 will be.

6.3 Packages-ND
As with Koosh, there is a variant of Packages that handles

domination. To remove dominated records from the final
result, we simply use Koosh-ND in Phase 2 of the Packages
algorithm. Note that it is not necessary to explicitly remove
dominated packages in Phase 1. To see this, say at some
point in Phase 1 we have two packages, p1 and p2 such that
r(p1) ≤ r(p2), and hence r(p1) v r(p2). Then p1 will match
p2 (by Property P3 and idempotence), and both packages
will be merged into a single one, containing the base records
of both.

7. THRESHOLDS
Another opportunity to reduce the resolution workload

lies within the confidences themselves. Some applications
may not need to know every record that could possibly be
derived from the input set. Instead, they may only care
about the derived records that are above a certain confidence
threshold.

Definition 7.1. Given a threshold value T and a set of
base records R, we define the above-threshold entity-resolved
set, TER(R) that contains all records in ER(R) with con-
fidences above T . That is, r ∈ TER(R) if and only if
r ∈ ER(R) and r.C ≥ T .

As we did with domination, we would like to remove
below-threshold records, not after completing the resolution
process (as suggested by the definition), but as soon as they
appear. However, we will only be able to remove below-
threshold records if they cannot be used to derive above-
threshold records. Whether we can do that depends on the
semantics of confidences.

As we mentioned earlier, models for the interpretation of
confidences vary. Under some interpretations, two records
with overlapping information might be considered as inde-
pendent evidence of a fact, and the merged record will have
a higher confidence than either of the two base records.

Other interpretations might see two records, each with
their own uncertainty, and a match and merge process which
is also uncertain, and conclude that the result of a merge
must have lower confidence than either of the base records.
For example, one interpretation of r.C could be that it is
the probability that r correctly describes a real-world entity.
Using the “possible worlds” metaphor [13], if there are N
equally-likely possible worlds, then an entity containing at
least the attributes of r will exist in r.C × N worlds. With
this interpretation, if r1 correctly describes an entity with
probability 0.7, and r2 describes an entity with probability
0.5, then 〈r1, r2〉 cannot be true in more worlds than r2, so
its confidence would have to be less than or equal to 0.5.

To be more formal, some interpretations, such as the ex-
ample above, will have the following property.

• Threshold Property: If r ≈ s then 〈r, s〉.C ≤ r.C and
〈r, s〉.C ≤ s.C.



Given the threshold property, we can compute TER(R)
more efficiently. In the extended version of this paper, we
prove that if the threshold property holds, then all results
can be obtained from above-threshold records.

7.1 Algorithms Koosh-T and Koosh-TND
As with removing dominated records, Koosh can be easily

modified to drop below-threshold records. First, we add an
initial scan to remove all base records that are already below
threshold. Then, we simply add the following conjunct to
the condition of Line 10 of the algorithm:

merged.C ≥ T

Thus, merged records are dropped if they are below the
confidence threshold.

Theorem 7.2. When TER(R) is finite, Koosh-T termi-
nates and computes TER(R).

By performing the same modification as above on Koosh-
ND, we obtain the algorithm Koosh-TND, which computes
the set NER(R) ∩ TER(R) of records in ER(R) that are
neither dominated nor below threshold.

7.2 Packages-T and Packages-TND
If the threshold property holds, Koosh-T or Koosh-TND

can be used for Phase 2 of the Packages algorithm, to ob-
tain algorithm Packages-T or Packages-TND. In that case,
below-threshold and/or dominated records are dropped as
each package is expanded.

8. EXPERIMENTS
To summarize, we have discussed three main algorithms:

BFA, Koosh, and Packages. For each of those basic three,
there are three variants, adding in thresholds (T), non-dom-
ination (ND), or both (TND). In this section, we will com-
pare the three algorithms against each other using both
thresholds and non-domination. We will also investigate
how performance is affected by varying threshold values,
and, independently, by removing dominated records.

To test our algorithms, we ran them on synthetic data.
Synthetic data gives us the flexibility to carefully control the
distribution of confidences, the probability that two records
match, as well as other important parameters. Our goal in
generating the data was to emulate a realistic scenario where
n records describe various aspects of m real-world entities
(n > m). If two of our records refer to the same entity, we
expect them to match with much higher probability than if
they referred to different entities.

To emulate this scenario, we assume that the real-world
entities can be represented as points on a number line. Rec-
ords about a particular entity with value x contain an at-
tribute A with a value “close” to x. (The value is normally
distributed with mean x, see below.) Thus, the match func-
tion can simply compare the A attribute of records: if the
values are close, the records match. Records are also as-
signed a confidence, as discussed below.

For our experiments we use an “intelligence gathering”
merge function as discussed in Section 6, which unions at-
tributes. Thus, as a record merges with others, it accumu-
lates A values and increases its chances of matching other
records related to the particular real-world entity.

To be more specific, our synthetic data was generated
using the following parameters (and their default values):

1

10

100

1000

10000

100000

1000000

10000000

 0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8

Nu
m

be
r o

f c
om

pa
ris

on
s 

(x
 1

00
0)

Threshold

BFA-TND
Koosh-TND

Packages-TND
Packages-TND phase 2

Figure 1: Thresholds vs. Matches

• n, the number of records to generate (default: 1000)

• m, the number of entities to simulate (default: 100)

• margin, the separation between entities (default: 75)

• σ, the standard deviation of the normal curve around
each entity. (default: 10)

• µc, the mean of the confidence values (default: 0.8)

To generate one record r, we proceed as follows: First,
pick a uniformly distributed random integer i in the range
[0, m−1]. This integer represents the value for the real-word
entity that r will represent. For the A value of r, generate
a random floating point value v from a normal distribution
with standard deviation σ and a mean of margin ·i. To gen-
erate r’s confidence, compute a uniformly distributed value
c in the range [µc−0.1, µc +0.1] (with µc ∈ [0.1, 0.9] so that
c stays in [0, 1]). Now create a record r with r.C = c and
r.A = {A : v}. Repeat all of these steps n times to create n
synthetic records.

Our merge function takes in the two records r1 and r2,
and creates a new record rm, where rm.C = r1.C × r2.C and
rm.A = r1.A ∪ r2.A. The match function detects a match
if for the A attribute, there exists a value v1 in r1.A and
a value v2 in r2.A where |v1 − v2| < k, for a parameter k
chosen in advance (k = 25 except where otherwise noted).

Naturally, our first experiment compares the performance
of our three algorithms, BFA-TND, Koosh-TND and Pack-
ages-TND, against each other. We varied the threshold val-
ues to get a sense of how much faster the algorithms are
when a higher threshold causes more records to be discarded.
Each algorithm was run at the given threshold value three
times, and the resulting number of comparisons was aver-
aged over the three runs to get our final results.

Figure 1 shows the results of this first experiment. The
first three lines on the graph represent the performance of
our three algorithms. On the horizontal axis, we vary the
threshold value. The vertical axis (logarithmic) indicates
the number of calls to the match function, which we use as a
measure of the work performed by the algorithms. The first
thing we notice is that work performed by the algorithms
grows exponentially as the threshold is decreased. Thus,
clearly thresholds are a very powerful tool: one can get high-



1

10

100

1000

10000

100000

 0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8

Nu
m

be
r o

f m
er

ge
s 

(x
 1

00
0)

Threshold

BFA-TND
Koosh-TND

Packages-TND

Figure 2: Thresholds vs. Merges

confidence results at a relatively modest cost, while comput-
ing the lower confidence records gets progressively more ex-
pensive! Also interestingly, the BFA-TND and Koosh-TND
lines are parallel to each other. This means that they are
consistently a constant factor apart. Roughly, BFA does 10
times the number of comparisons that Koosh does.

The Packages-TND algorithm is far more efficient than the
other two algorithms. Of course, Packages can only be used
if Properties P1, P2 and P3 hold, but when they do hold,
the savings can be dramatic. We believe that these savings
can be a strong incentive for the application expert to design
match and merge function that satisfy the properties.

We also compared our algorithms based on the number of
merges performed. In Figure 2, the vertical axis indicates
the number of merges that are performed by the algorithms.
We can see that Koosh-TND and the Packages-TND are still
a great improvement over BFA. BFA performs extra merges
because in each iteration of its main loop, it recompares all
records and merges any matches found. The extra merges
result in duplicate records which are eliminated when they
are added to the result set. Packages performs slightly more
merges than Koosh, since the second phase of the algorithm
does not use any of the merges that occurred in the first
phase. If we subtract the Phase 1 merges from Packages (not
shown in the figure), Koosh and Packages perform roughly
the same number of merges.

In our next experiment, we compare the performance of
our algorithms as we vary the probability that base records
match. We can control the match probability by changing
parameters k or σ, but we use the resulting match probabil-
ity as the horizontal axis to provide more intuition. In par-
ticular, to generate Figure 3, we vary parameter k from 5 to
55 in increments of 5 (keeping the threshold value constant
at 0.6). During each run, we measure the match probabil-
ity as the fraction of base record matches that are positive.
(The results are similar when we compute the match prob-
ability over all matches.) For each run, we then plot the
match probability versus the number of calls to the match
function, for our three algorithms.

As expected, the work increases with greater match prob-
ability, since more records are produced. Furthermore, we
note that the BFA and Koosh lines are roughly parallel, but
the Packages line stays level until a quick rise in the amount

100

1000

10000

100000

1000000

 0.003 0.004 0.005 0.006 0.007 0.008 0.009  0.01  0.011 0.012 0.013

Nu
m

be
r o

f C
om

pa
ris

on
s 

(x
 1

00
0)

Match Probability

BFA-TND
Koosh-TND

Packages-TND

Figure 3: Selectivity vs. Comparisons

of work performed once the match probability reaches about
0.011. The Packages optimization takes advantage of the
fact that records can be separated into packages that do not
merge with one another.

In practice, we would expect to operate in the range of
Figure 3 where the match probability is low and Packages
outperforms Koosh. In our scenario with high match prob-
abilities, records that refer to different entities are being
merged, which means the match function is not doing its
job. One could also get high match probabilities if there
were very few entities, so that packages do not partition
the problem finely. But again, in practice one would expect
records to cover a large number of entities.

9. RELATED WORK
Originally introduced by Newcombe et al. [17] under the

name of record linkage, and formalized by Fellegi and Sun-
ter [9], the ER problem was studied under a variety of names,
such as Merge/Purge [12], deduplication [18], reference rec-
onciliation [8], object identification [21], and others. Most of
the work in this area (see [23, 11] for recent surveys) focuses
on the “matching” problem, i.e., on deciding which records
do represent the same entities and which ones do not. This
is generally done in two phases: Computing measures of
how similar atomic values are (e.g., using edit-distances [20],
TF-IDF [6], or adaptive techniques such as q-grams [4]),
then feeding these measures into a model (with parame-
ters), which makes matching decisions for records. Proposed
models include unsupervised clustering techniques [12, 5],
Bayesian networks [22], decision trees, SVM’s, conditional
random fields [19]. The parameters of these models are
learned either from a labeled training set (possibly with the
help of a user, through active learning [18]), or using unsu-
pervised techniques such as the EM algorithm [24].

All the techniques above manipulate and produce numer-
ical values, when comparing atomic values (e.g. TF-IDF
scores), as parameters of their internal model (e.g., thresh-
olds, regression parameters, attribute weights), or as their
output. But these numbers are often specific to the tech-
niques at hand, and do not have a clear interpretation in
terms of “confidence” in the records or the values. On the
other hand, representations of uncertain data exist, which
soundly model confidence in terms of probabilities (e.g., [1,



10]), or beliefs [14]. However these approaches focus on
computing the results and confidences of exact queries, ex-
tended with simple “fuzzy” operators for value comparisons
(e.g., see [7]), and are not capable of any advanced form
of entity resolution. We propose a flexible solution for ER
that accommodates any model for confidences, and proposes
efficient algorithms based on their properties.

Our generic approach departs from existing techniques in
that it interleaves merges with matches. The first phase of
the Packages algorithm is similar to the set-union algorithm
described in [16], but our use of a merge function allows the
selection of a true representative record. The presence of
“custom” merges is an important part of ER, and it makes
confidences non-trivial to compute. The need for iterating
matches and merges was identified by [3] and is also used
in [8], but their record merges are simple aggregations (sim-
ilar to our “information gathering” merge), and they do not
consider the propagation of confidences through merges.

10. CONCLUSION
In this paper we look at ER with confidences as a “generic

database” problem, where we are given black-boxes that
compare and merge records, and we focus on efficient algo-
rithms that reduce the number of calls to these boxes. The
key to reducing work is to exploit generic properties (like the
threshold property) than an application may have. If such
properties hold we can use the optimizations we have studied
(e.g., Koosh-T when the threshold property holds). Of the
three optimizations, thresholds is the most flexible one, as it
gives us a “knob” (the threshold) that one can control: For a
high threshold, we only get high-confidence records, but we
get them very efficiently. As we decrease the threshold, we
start adding lower-confidence results to our answer, but the
computational cost increases. The other two optimizations,
domination and packages, can also reduce the cost of ER
very substantially but do not provide such a control knob.

11. REFERENCES
[1] D. Barbará, H. Garcia-Molina, and D. Porter. The

management of probabilistic data. IEEE Transactions
on Knowledge and Data Engineering, 4(5):487–502,
1992.

[2] O. Benjelloun, H. Garcia-Molina, J. Jonas, Q. Su, and
J. Widom. Swoosh: A generic approach to entity
resolution. Technical report, Stanford University, 2005.

[3] I. Bhattacharya and L. Getoor. Iterative record
linkage for cleaning and integration. In Proc. of the
SIGMOD 2004 Workshop on Research Issues on Data
Mining and Knowledge Discovery, June 2004.

[4] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data
cleaning. In Proc. of ACM SIGMOD, pages 313–324.
ACM Press, 2003.

[5] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. In Proc. of ICDE,
Tokyo, Japan, 2005.

[6] William Cohen. Data integration using similarity joins
and a word-based information representation
language. ACM Transactions on Information Systems,
18:288–321, 2000.

[7] Nilesh N. Dalvi and Dan Suciu. Efficient query
evaluation on probabilistic databases. In VLDB, pages

864–875, 2004.

[8] X. Dong, A. Y. Halevy, J. Madhavan, and E. Nemes.
Reference reconciliation in complex information
spaces. In Proc. of ACM SIGMOD, 2005.

[9] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64(328):1183–1210, 1969.

[10] Norbert Fuhr and Thomas Rölleke. A probabilistic
relational algebra for the integration of information
retrieval and database systems. ACM Trans. Inf.
Syst., 15(1):32–66, 1997.

[11] L. Gu, R. Baxter, D. Vickers, and C. Rainsford.
Record linkage: Current practice and future
directions. Technical Report 03/83, CSIRO
Mathematical and Information Sciences, 2003.

[12] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In Proc. of ACM
SIGMOD, pages 127–138, 1995.

[13] Saul Kripke. Semantical considerations on modal
logic. Acta Philosophica Fennica, 16:83–94, 1963.

[14] Suk Kyoon Lee. An extended relational database
model for uncertain and imprecise information. In
Li-Yan Yuan, editor, VLDB, pages 211–220. Morgan
Kaufmann, 1992.

[15] David Menestrina, Omar Benjelloun, and Hector
Garcia-Molina. Generic entity resolution with data
confidences (extended version). Technical report,
Stanford University, 2006.

[16] A. E. Monge and C. Elkan. An efficient
domain-independent algorithm for detecting
approximately duplicate database records. In DMKD,
pages 0–, 1997.

[17] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and
A. P. James. Automatic linkage of vital records.
Science, 130(3381):954–959, 1959.

[18] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In Proc. of ACM
SIGKDD, Edmonton, Alberta, 2002.

[19] Parag Singla and Pedro Domingos. Object
identification with attribute-mediated dependences. In
Proc. of PKDD, pages 297 – 308, 2005.

[20] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147:195–197, 1981.

[21] S. Tejada, C. A. Knoblock, and S. Minton. Learning
object identification rules for information integration.
Information Systems Journal, 26(8):635–656, 2001.

[22] Vassilios S. Verykios, George V. Moustakides, and
Mohamed G. Elfeky. A bayesian decision model for
cost optimal record matching. The VLDB Journal,
12(1):28–40, 2003.

[23] W. Winkler. The state of record linkage and current
research problems. Technical report, Statistical
Research Division, U.S. Bureau of the Census,
Washington, DC, 1999.

[24] W. E. Winkler. Using the EM algorithm for weight
computation in the fellegi-sunter model of record
linkage. American Statistical Association, Proceedings
of the Section on Survey Research Methods, pages
667–671, 1988.



Circumventing Data Quality Problems
Using Multiple Join Paths

Yannis Kotidis
Athens University of

Economics and Business
kotidis@aueb.gr

Amélie Marian
Rutgers University

amelie@cs.rutgers.edu

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

ABSTRACT
We propose the Multiple Join Path (MJP) framework for obtaining
high quality information by linking fields across multiple databases,
when the underlying databases have poor quality data, which are
characterized by violations of integrity constraints like keys and
functional dependencies within and across databases. MJP asso-
ciates quality scores with candidate answers by first scoring indi-
vidual data paths between a pair of field values taking into account
data quality with respect to specified integrity constraints, and then
agglomerating scores across multiple data paths that serve as cor-
roborating evidences for a candidate answer. We address the prob-
lem of finding the top-few (highest quality) answers in the MJP
framework using novel techniques, and demonstrate the utility of
our techniques using real data and our Virtual Integration Proto-
type testbed.

1. INTRODUCTION
In any large organization, there are many database-centric appli-

cations, with overlapping features and functionality, ranging from
sales and ordering tools to inventory and provisioning applications.
These applications have authority over different pieces of data, and
the difficulty of integrating legacy applications into a unified ap-
plication for a given task typically results in the data being spread
across multiple, autonomously managed databases. For instance, a
multitude of ordering and provisioning tools can lead to customer
accounts and billing data being present in different databases de-
pending on, among other things, location, type of customer, etc.
This fragmentation of data makes investigations across these databases
problematic. A standard technique used for the task of querying
across databases is the join path, linking two data fields, possibly
in different databases, through intermediate data. Given a value for
one of the data fields, a join path enables the identification of values
reachable in the other field using the join path.

Compounding the difficulty of querying across databases is the
prevalence of data quality problems, within and across databases
(see, e.g., [6]). A typical phenomenon is the existence of dupli-
cate, default and null values in columns of database tables that are
supposed to be treated as primary/foreign keys, due to the inability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CleanDBSeoul, Korea, 2006

to enforce integrity constraints across independent databases. For
instance, a provisioning database may have a place-holder (i.e., a
field) for storing customer contact information. However, often this
field is empty (null values) or populated with dummy (default) val-
ues, since this information is of no immediate use for the applica-
tion that deals with inventory and provisioning and which oversees
this data. Data inconsistencies (e.g., multiple records with the same
key value) are widespread, and can often be traced back to human
errors, e.g., during manual data entry. Default values and data in-
consistencies are examples of poor data quality prevalent in large
databases.

1.1 VIP: Motivating Example
VIP is an integration platform, developed at AT&T, covering

more than 30 legacy systems. It was developed in an effort to pro-
vide a platform for doing quick investigations and resolving dis-
putes (due to data inconsistencies) between different applications.

A basic query that often arises in VIP is of the form “given the
value of a fieldX, find the value of a fieldY ”. For instance, when
processing telecom data, an example query is: given the telephone
number (TN) of a customer that shows up in a sales application
(SALES), find the circuit id of the attached line. Since circuit ids
are not part of SALES application, the users need to access the in-
ventory application INVENTORY that can look up circuit ids using
a provisioning order number (PON). Users have access to a front-
end web interface that provides authentication and allows querying
the underlying inventory dataset by pasting a single PON value into
a form. The same front-end can also retrieve circuit information
when queried using a TN, but the internal mapping is incomplete
and contains inconsistencies. Thus, we need to devise additional
strategies for locating the target circuit id by considering other ap-
plications that we may have access to.

By examining patterns of user interactions with the SALES, OR-
DERING, PROV and INVENTORY applications, we have been
able to compute the schema graph, depicted in Figure 1, to help an-
swer the query; the meaning of the numbers along the edges will be
made clear when discussing our experimental results. PROV is an
application that maintains provisioning records, while ORDERING
is an ordering tool used primarily for small-business customers. Ta-
ble 1 describes the fields depicted in the schema graph of Figure 1.
The combined size of the databases behind these four applications
is in the order of 100 million records.

The schema graph provides multiple paths to link a TN value in
SALES to a CircuitID in INVENTORY. We list here a few of them:

† Using a TN value in SALES, we obtain PON values, based on
the “intra-application” edge (SALES.TN, SALES.PON) depicted
in Figure 1. We then access the INVENTORY application using
these PON values and the “inter-application” edge (SALES.PON,
INVENTORY.PON). There, we look up CircuitIDs using the

1



5364/99

1136/176

1008/472

1008/472

1008/472

309/199

6809/474

6199/259 301/16

301/166199/259

6500/275

1008/472

5364/99

1008/472

309/199

INVENTORY.CircuitID

INVENTORY.PON

SALES.ORN

SALES.TN

SALES.BAN

SALES.CustName

SALES.PON

PROV.CustName

PROV.PON PROV.SubPON

ORDERING.ORN

ORDERING.TN

INVENTORY.TN

Figure 1: Schema graph for subset of VIP

Field Name Description
TN Telephone Number under investigation
BAN Billing Account Number (primary key in biller)
CustName Customer name (in biller and provisioning)
PON Provisioning Order Number (key in

provisioning applications)
SubPON subsequent/related Provisioning Order Number

(links multiple provisioning records for a customer)
ORN Order Number (key in ordering applications)
CircuitID Circuit the line is attached to

Table 1: Description of Fields in Figure 1

(INVENTORY.PON, INVENTORY.CircuitID) intra-application
edge in INVENTORY. This corresponds to the left-most path in
the schema graph.

† Given a TN in SALES, we can look up the customer name.
This may be done directly, or via the billing account number
for the customer. Notice that due to internal inconsistencies
the two methods might give us different results. We can then
input the customer name in the PROV application to retrieve
all known PONs for the customer (from the PON and SubPON
fields) which can be then used to probe INVENTORY, as in the
first case. This corresponds to the set of middle paths in the
schema graph of Figure 1.

† Small-business customers typically have multiple working tele-
phone lines sharing the same circuits. For such customers, we
can obtain the order number (ORN) in SALES, probe ORDER-
ING and get all other lines ordered by the customer. Using this
set of telephone numbers, we can probe INVENTORY multiple
times. Even though, as explained, the internal TN-to-CircuitID
mapping in INVENTORY is often incomplete, we can use the
expanded set of all TNs in the customer order to try and find
matching circuit ids in INVENTORY. This corresponds to the
right-most path in the schema graph of Figure 1.

Given the different schema graph paths that link the TN input
field (in SALES) to the CircuitID output field (in INVENTORY),
which join pathshould be used to identify query answers?

1.2 Multiple Join Path Framework
When querying across multiple databases, in the presence of data

quality problems, choosing any one join path results in missing an-
swers, but choosing multiple join paths may lead to conflicting an-

swers, especially when only a single answer is expected. Efficiency
of query answering is also a concern. For instance, the return of a
default value by an application may result in a significant number
of probes to applications that follow it in a join path. Furthermore,
different join paths that share edges need to be processed in a coor-
dinated manner so that we avoid probing with the same input values
multiple times.

TheMultiple Join Path(MJP) framework proposed in this paper
resolves these problems as follow:

† It takesall join paths in the schema graph into account.

† Each data path (schema path instance) isscored, taking the qual-
ity of integrity constraints (keys, functional dependencies), pos-
sibly across multiple databases/applications, and the quality of
the data with respect to the integrity constraints into account.

† Multiple data paths between the same TN, CircuitID value pairs
are treated as corroborating evidences, and data path scores are
agglomerated to yield scores for CircuitID values.

† All join paths are considered when deciding the next application
to probe. Intersecting data paths help re-use results of other join
paths and reduce the number of probes to the applications.

† The top-few (typically 1) matches are returned as the desired
answers. The schema graph and the computed data paths are
used to prune unnecessary accesses to the applications.

When we are interested only in the top-few matches, it is ex-
tremely expensive to repeatedly probe the legacy applications, one
schema graph edge at a time, to find all matching answers. This
leads to the main technical problem addressed in this paper, the
Multiple Join Path Problem:

Given a schema graph identifying multiple join paths
between fieldX and fieldY , and a valueX = x, find
the top-few values ofY that are reachable fromX = x
using the schema join paths.

The contributions of our paper are as follows:

† We introduce the MJP framework, and an agglomerative scoring
methodology, to quantify answer quality in the presence of data
quality problems arising due to integrity constraint violations
in primary and foreign key columns, across multiple databases
(Section 2).

† We develop novel techniques to limit the probing of legacy ap-
plications to efficiently compute the top-few answers to the MJP
Problem. The agglomerative scoring methodology essentially
renders previous mechanisms for computing top-k answers in-
applicable for our problem (Section 3).

† Finally, we evaluate our techniques using real data and our VIP
testbed. In particular, we demonstrate both the utility of the ag-
glomerative scoring methodology in the presence of data quality
problems, and the efficiency of our algorithmic techniques for
computing top-few answers. In our real telecom example, we
observe a reduction in the number of probes to the legacy appli-
cations by a factor of up to 18 in some cases (Section 4).

2. THE MJP PROBLEM
In this section, we introduce the Multiple Join Path framework,

and our agglomerative scoring methodology, to quantify answer
quality in the presence of data quality problems in multiple databases.

2



2.1 Queries and Answers
A basic query of interest is of the form “given the value of a field

X, find values of a fieldY ”, whereX andY refer to specific fields
of individual applications. For instance, when processing telecom
data, example queries include:

† Q1: given the telephone number of a customer (in SALES), find
the circuit id (in INVENTORY) that the line is attached to.

† Q2: given a circuit id (in INVENTORY), find the customer names
(in SALES) whose telephone numbers attach to this circuit id.

In the case of query Q1, one would expect there to be exactly one
resulting answer. Since multiple telephone numbers may be at-
tached to a circuit, query Q2 may have more than one answer. In
both cases,X andY are fields in different databases, so we need
to establishjoin paths that link these two fields. There may be
multiple possible join paths between any two given fields, and the
schema graph, discussed next, identifies these possibilities.

2.2 Schema and Data Graphs
A schema graph is a 3-tuple(G; X; Y ), where:

† G = (V; E) is a directed acyclic graph, whose nodesV =
fX; Y; : : :g are labeled by field names of accessible applica-
tions, andE ‰ V £ V are directed edges.

† X 2 V is the unique source (no incoming edges), andY 2 V is
the unique sink (no outgoing edges) ofG.

A directed edge(v1; v2) 2 E is referred to as anintra-application
edge, ifv1 andv2 are fields in the same application; otherwise, it
is an inter-application edge. A directed pathP from X to Y in
G is referred to as ajoin path. For instance, the schema graph of
Figure 1 has six possible join paths from SALES.TN to INVEN-
TORY.CircuitID, which can be used to answer query Q1. Thus,
join paths in a schema graph identify different ways in which a
basic query can be answered.

To ensure that join paths yield meaningful associations, not spu-
rious correlations, we focus attention on the case where (i) all nodes
in the schema graph (except, possibly, for source and sink nodes)
are (possibly approximate) primary keys or foreign keys in their
respective applications, (ii) inter-application edges correspond to
(approximate primary key, approximate foreign key) associations,
and (iii) intra-application edges are incident on an approximate pri-
mary key.

Given a specific valuex of the source nodeX (e.g., telephone
number, 555-5555, in query Q1), all join paths in the schema graph
need to be explored to find all matchingy values for the sink node
Y (i.e., particular circuit ids). Intuitively, the data graph, defined
below, captures these data associations. Given a schema graph
(G; X; Y ), adata graphis a triple(GD; XD; YD), where:

† GD = (VD; ED) is adirected acyclic graph, whose nodesVD

have labels of the formT:A:v, such thatT:A 2 V andv is a
value of fieldT:A, andED ‰ VD £ VD are directed edges such
that(T1:A1:v1; T2:A2:v2) 2 ED ) (T1:A1; T2:A2) 2 E.

† XD 2 VD is the unique source ofGD, corresponding to value
x of source nodeX of G, andYD ‰ VD is a subset of the sink
nodes ofGD, corresponding to valuesyi of sink nodeY of G.

For instance, given the schema graph of Figure 1, an example
data graph is shown in Figure 2. There are two paths in this data
graph from source node SALES.TN.555-5555 to the answer de-
picted by sink node INVENTORY.CircuitID.c1. Both these data
paths correspond to the leftmost join path in the schema graph

  SALES.ORN.o1

INVENTORY.PON.pon1

SALES.PON.pon3SALES.PON.pon2SALES.PON.pon1

SALES.TN.555−5555

INVENTORY.CircuitID.c1

INVENTORY.PON.pon2

Figure 2: Data graph for query SALES.TN=555-5555

of Figure 1. Two additional nodes are present in this data graph,
SALES.PON.pon3 and SALES.ORN.o1 (corresponding to schema
graph nodes SALES.PON and SALES.ORN), which do not join
with values in INVENTORY.PON and ORDERING.ORN, respec-
tively. Note that the data graph can have multiple or no nodes cor-
responding to any specific node in the schema graph.

2.3 Scoring Answers
In a perfect world, the applications would have no internal data

quality problems, and our basic query (givenX = x, find Y ) could
be answered correctly by following all the join paths across the
multiple applications starting fromX = x, and taking the union of
all theY values that are reached along these individual join paths.
But data quality problems are prevalent in large data-centric appli-
cations. For example, a primary key field (like the billing account
number (BAN) field) may only be anapproximatekey [6]. Simi-
larly, a functional dependency expected of an intra-application edge
in the schema graph may be violated. As an example, we might find
that the same telephone number is associated with two customer
names due to manual data-entry errors in the SALES application.

So we are faced with the considerable challenge of answering
our basic querieswithout a priori knowledge of which values in the
underlying databases are clean, and which ones are not. To meet
this challenge, we employ a probabilistic technique that scores data
edges using values in the range[0 : : : 1]. Thus, the score of a data
edge(T1:A1:v1; T2:A2:v2) represents our belief that the associ-
ation between valuesv1 andv2 of fieldsT1:A1 andT2:A2 is cor-
rect. We will describe later how these scores are obtained. What
is important is that this probabilistic interpretation of the scores al-
lows us to combine scores across a data path.

Recall that a data path is just a sequential composition of data
edges. Using a probabilistic interpretation of the data edge scores,
assuming independence of the data edges in a data path, thescore
of a data pathis defined to be the product of the scores of the
constituent data edges. More formally, ifsc1; sc2; : : : ; scn are the
scores of the constituent data edges of a data pathP , then the score
of P is given by:

sequential com(sci; 1 • i • n) = Πn
i=1(sci) (1)

As will be explained, this probabilistic interpretation assigns scores
on data paths using data quality metrics on the edges. Thus, a high
quality data path will get high scores independent of the length
of the path, unlike, e.g., techniques like [1]. In fact, it is easy to
see that the latter technique is just a special case of our framework
when all data edges are scored with the same value in(0; 1).

An answer may be corroborated by multiple data paths, and our
scoring methodology agglomerates the scores of these data paths,
usingparallel composition, to compute the score of aY value. For
example in Figure 2 there are two data paths from SALES.TN.555-
5555 to answer INVENTORY.CircuitID.c1. Different data paths
are considered independent evidences and their scores are com-
bined in a probabilistic manner. Formally, ifsc1; sc2; : : : ; scn are
the scores of individual data pathsPi; 1 • i • n, between two
nodes in the data graph, then, to ensure that all scores are in[0; 1],

3



the score of the parallel composition of thePi’s is given by:

parallel com(sci; 1 • i • n) = s1 + s2¡ (s1 ⁄ s2) (2)

wheres1 = sc1 ands2 = parallel com(sci; 2 • i • n).
Finally, the score of aY value yi is the score of the parallel

composition of all the data paths from the sourceX:x to the sink
Y:yi. This agglomerativescoring takes into considerationall the
data paths that corroborate an answer.

Other combining functions may also be used without affecting
the generality of the proposed methodology. The process that we
describe in Section 3 requires the following two monotonicity prop-
erties, which allow for a broad selection of scoring functions:

† Property 1:the score of a data path is a non-increasing func-
tion of the scores of the constituent data edges.

† Property 2: the score of an answer is a non-decreasing func-
tion of the scores of the constituent data paths.

2.4 Data Edge Scores
Without a priori knowledge of the internals of the applications,

or expertise on the quality of specific data items, our approach is
to rely on expected functional dependencies between the exported
data fields. For instance, in the telecom example, we expect a tele-
phone number to uniquely identify a customer. Thus, when probing
the SALES application, if we get two customer names for an as-
signed TN, this is a violation of an expected functional dependency
and we should assign a lower score to the instantiated data edges.

Recall that intra-application schema edges (T:A; T:B) capture
associations where at least one ofT:A andT:B is an approximate
key in the corresponding applicationT . Assume, without loss of
generality, thatT:A is the approximate key. Then the edge cap-
tures aforward functional dependency(FFD) from T:A to T:B.
Assume also that while answering a posed query, due to internal
data quality problems, the following data edges are instantiated:
(T:A:v1; T:B:v11), (T:A:v1; T:B:v12) and(T:A:v2; T:B:v21).
It is then obvious that the two different valuesT:B:v11, T:B:v12
associated withT:A:v1 are witnesses thatT:A:v1 is in violation of
the FFD and therefore data edge(T:A:v2; T:B:v21) should have a
higher score than edges(T:A:v1; T:B:v11) and(T:A:v1; T:B:v12).

Let f(T:A:v1; T:B:v1i); i = 1; : : : g be the set of data edges
instantiated for valueT:A:v1 following this schema edge, and let
j:j denote the size of a set. To achieve the desired behavior, the
score of each data edge (T:A:v1; T:B:v1i) is set to:

sc(T:A:v1; T:B:v1i) =
1

jf(T:A:v1; T:B:v1i); i = 1; : : : gj (3)

The case when the schema edge captures abackward functional
dependency(BFD) is handled symmetrically:

sc(T:A:v1i; T:B:v1) =
1

jf(T:A:v1i; T:B:v1); i = 1; : : : gj (4)

Finally, when bothT:A andT:B are approximate keys, the edge
captures asymmetric functional dependency(SFD) and the score is
computed as:

sc(T:A:vi; T:B:vj) =
1

jf(T:A:vi; T:B:⁄)g [ f(T:A:⁄; T:B:vj)gj
(5)

where ’*’ means any value and is used to capture all data edges
emanating fromT:A:vi (resp. leading toT:B:vj).

For an inter-application schema edge(T1:A; T2:A), the score of
a data edge corresponding to this schema edge is always 1, since the
association between the fields is assured by the schema graph. An
interesting extension is to considerapproximate matchingbetween

values of fieldA in applicationsT1 andT2. In that case the score
of the inter-application data edge is adjusted by using some notion
of error metric (e.g., normalized edit distance or tf.idf for strings)
between the values.

2.5 Multiple Join Path Problem
Our goal is to locate high quality information across multiple

databases, in the presence of data quality problems. Since the dif-
ferentY values that are reached from a givenX value may have
very different scores, we are interested only in the top-few matches.
When we are interested only in the top-few matches, it is extremely
expensive to repeatedly probe the legacy applications, one schema
graph edge at a time, to find all matching answers, only to eventu-
ally discard the low scoring answers.

This leads to the main technical problem addressed in this paper,
referred to as theMultiple Join Path(MJP) Problem:

Given a schema graph identifying multiple join paths
between fieldX and fieldY , and a valueX = x,
find the top-few values ofY (with the highest scores)
reachable fromx using the multiple join paths.

Conventional top-k evaluation requires exact scores to be re-
turned along with the matching answers, resulting in a ranking
of thek results. In our agglomerative scoring methodology, since
any unexplored data path could eventually corroborate a knownY
value, resulting in a score increase (however slight), one would not
be able to perform any early pruning for the MJP Problem, if one
insisted on returning exact scores.

A more promising approach is where one can return top-k an-
swers, where each answer is associated with a score range, and the
result is asetof answers, not a ranking. In Section 3, we shall dis-
cuss novel solutions to the MJP Problem, and subsequently exper-
imentally validate the utility and efficiency of our approach using
real data and the VIP testbed.

3. THE MJP PROBLEM: SOLUTION

3.1 Incremental Data Graph Computation
Given a specific valuex of the source nodeX in the schema

graph, the data graph is initially instantiated with a unique (source)
nodeXD = X:x. For each newly inserted data nodeTD in the data
graph (excluding those in setYD of sink nodes), we create the set
openedges(TD) to be the set of all schema edgese 2 E that em-
anate from the corresponding nodeT in the schema graph. As an
example, for the schema graph shown in Figure 1 and for TN = 555-
5555 being the TN in queryQ1, the data graph is instantiated with a
single node SALES.TN.555-5555. The setopenedges(SALES.TN.555-
5555)will then include the following schema edges: (SALES.TN,
SALES.PON), (SALES.TN, SALES.BAN),
(SALES.TN, SALES.CustName) and (SALES.TN, SALES.ORN).

An open nodein the data graph is any nodeTD, not in YD,
for which the setopenedges(TD) is not empty. Our algorithms
will proceed by carefully choosing an open nodeTD and select-
ing one of the edgese in set openedges(TD) to explore. Fol-
lowing an intra-application edge(T:A; T:B) for open nodeT:A:u
results in probing applicationT and retrieving a set of values for
field T:B. For each unique valuevi of attributeT:B in the re-
sult of this probe, we add a new nodeT:B:vi to the data graph
and generate setopenedges(T:B:vi). We further instantiate the
data edge(T:A:u; T:B:vi) and compute its score. In Figure 3,
we depict the data graph after exploring schema edge (SALES.TN,
SALES.PON) for open node SALES.TN.555-5555. The applica-
tion in this case returned three distinct values for SALES.PON:
pon1, pon2 and pon3.

4



LDW.PON.pon1 LDW.PON.pon2 LDW.PON.pon3

LDW.TN.555−5555

Figure 3: Data graph, after processing of edge (SALES.TN,
SALES.PON)

Following an inter-application edge(T1:A; T2:A) does not in-
cur additional probes to the applications. Values of fieldT1:A that
do not appear in applicationT2 will not generate any new data
nodes when a follow-up intra-application edge is processed. In ei-
ther case, after edgee is explored it is removed fromopenedges(TD).

We adopt a simple cost model that enumerates the number of
probes to the applications while expanding the data graph to answer
the user query. This cost model is reasonable in the absence of
internal knowledge of the behavior of the applications.

3.2 Scheduling of Open Nodes
While building the data graph, we often have many open nodes

to explore, each with at least one unexplored edge inopenedges().
We thus need a strategy that will lead to early pruning when com-
puting top-k answers.

Since the data graph(GD; XD; YD) has a strong correspondence
with the schema graph, we can pick the next open node/schema
edge to explore using standard graph searching techniques like depth-
first-search (DFS) or breadth-first-search (BFS) guided by the schema
graph. Such techniques however are oblivious to the statistics we
can collect both at the schema graph as well as at the (incomplete)
data graph while processing the query. As is demonstrated by our
experiments in Section 4, this results in substantially more probes
to the applications. In what follows, we describe a greedy schedul-
ing technique that is based on the notion of themaximum benefitof
unexplored paths that go through open nodes.

Benefit computation involves two components. The first uses the
statistics accumulated in the data graph to compute the score of all
paths leading to an open node. The second component calculates
the best way that the data graph can be augmented when following
unexplored edges from an open node on the way to an answer. The
fusion of these two components provides our benefit metric.

At each step, our algorithm maintains this benefit metric per open
node/schema-edge in the data graph and schedules the next move
using this metric. At an abstract level, our methodology for pro-
cessing a user query can be summarized as follows:

† Start from the sole instance of source nodeXD and expand one
data node at a time. For any open nodeTD, maintain the multiset
of scores along data paths fromXD to TD.

† By associating open nodeTD with its schema nodeT , we can
quantify theresidual benefitof an unexplored schema edgee in
openedges(TD) as the maximum possible contribution of the
subgraph fromXD to any possible data node in setYD, passing
throughTD using instances ofe in the data graph.

As an example, we consider the data graph of Figure 3. For open
node SALES.TN.555-5555 there are three unexplored edges in the
setopenedges(SALES.TN.555-5555): (SALES.TN, SALES.BAN),
(SALES.TN, SALES.CustName), and (SALES.TN, SALES.ORN).
Figure 4 shows the maximal subgraph that can be generated by
exploring these edges in a way that maximizes the score of an
answer. In this figure there are five paths from SALES.TN.555-
5555 to schema node INVENTORY.CircuitID. For each pathPi, a
schema edge is only instantiated once (since all edges are treated as
FFD/SFD). However, a schema edgee0 may generate one distinct

           

INVENTORY.TN

ORDERING.TN

ORDERING.ORD

PROV.SubPON

SALES.TN.555−5555

INVENTORY.PON

SALES.ORDSALES.CustName

SALES.CustName

SALES.BAN

PROV.CustName

INVENTORY.CircuitID

INVENTORY.PON INVENTORY.PON INVENTORY.PON

PROV.PONPROV.SubPONPROV.PON

PROV.CustName

Figure 4: Maximum paths for unexplored edges of node
SALES.TN.555-5555, after processing of edge (SALES.TN,
SALES.PON)

data edge for each pathPi that containse0. As an example, schema
edge (PROV.CustName, PROV.PON) instantiates two distinct data
edges in Figure 4.

Given one or more open nodesTD in the data graph, we pick the
next edge to explore as the one that maximizes our benefit metric.
This is ourmaximum benefitpolicy, MAXB. In our experiments we
see that MAXB outperform DFS and BFS, by a factor of up to 18:1.

3.3 Pruning Criteria
Unlike conventional top-k evaluation, where exact scores of an-

swers are returned, for our MJP framework a more promising ap-
proach is to return the top-few answers, where each answer is asso-
ciated with a score range. We distinguish between two versions of
the problem:

† The exact top-k setYD = (y1; : : : ; yk) is returned. For each
answeryi, we provide a score range[smin(yi) : : : smax(yi)].

† The top cluster of answers that is guaranteed to contain the top-
k values is returned. Each answer is associated with a score
range. We call this thetop-fewevaluation. Top-few is valuable
when doing quick ad hoc investigations, since it allows for more
pruning because of the weaker stopping condition.

Let y 2 YD be an answer present in the (incomplete) data path.
Let scores(y) = (sc1; sc2; : : : ; scn) be the scores of all data paths
from XD to y. Then, the minimum score of answerY = y is the
parallel composition of the scores of all known paths toy:

smin(y) = parallel com(sci; 1 • i • n) (6)

The maximum score of answery is computed by additionally con-
sidering the maximum benefit of each open node and unexplored
edge in the data graph, as discussed previously.

Through similar arguments we can compute the range of scores
[smin(yunseen) : : : smax(yunseen)] of an answeryunseen that we
have not encountered in our evaluation as[0 : : : max contribution].
The lower bound is trivial (when no new answer exists). The upper
bound follows easily if we consider that all paths from the open
nodes in the data graph terminate to a new answeryunseen.

In a naive evaluation of the MJP Problem we stop when all open
nodes in the data graph have been explored. However, one may
stop earlier without exploring all open nodes, depending on the
version of the problem. Assume setY contains all answers that
we have seen so far and alsoyunseen (a placeholder for some an-
swer we have not yet encountered). Thus,Y=YD

Sfyunseeng. We
order the answers inY using their minimum scores asy1; y2; : : : ,
wheresmin(yi) ‚ smin(yj) wheni < j. This order also implies

5



smax(yi) ‚ smax(yj). If setY contains more thank answers, we
may stop further processing under the following condition:

† In top-k evaluation, we stop whensmax(yk+1) • smin(yk).
That is, the upper bound on the score of thek+1’th candidatey
value is no larger than the score of the currentk’th candidate.

† In the top-few evaluation, we may stop ifsmax(yunseen) •
smin(yk). If this condition holds then any new answer can-
not possible be scored higher that our currentk’th candidateyk.
Thus, the top cluster is identified and we return thoseyi’s with
smax(yi) ‚ smin(yk).

4. EXPERIMENTS
In this section, we experimentally evaluate our solution using

our VIP testbed. Due to lack of space we provide detailed results
for one query in our real dataset (query Q1, Section 2.1). Results
for other queries between pairs of nodes in the schema graph of
Figure 1 were similar. Our main experimental results can be sum-
marized as follows:

† Real datasets have a multitude of data quality problems and no
join path is immune to these problems. Using a fixed path or
the maximum path for answering a query can lead to missing
answers (low recall). That is why, in our MJP framework, all
paths are considered.

† The data graphs can be fairly large (for instance when default
values are encountered). Our scheduling techniques based on the
maximum benefit metric achieve substantial pruning by elimi-
nating a large number of candidate paths from evaluation.

The rest of this section is organized as follows. In Section 4.1 we
illustrate that real applications are faced with significant data qual-
ity problems. When joining data across diverse applications, we
typically find many answers, even when a single answer is expected
(for instance a single CircuitID for a TN in Q1). Thus, ranking is
required to help users identify the correct answer. In Section 4.2 we
demonstrate that top-1 answers typically have several instantiated
data paths leading to them and an agglomeration of their scores is
needed. An important observation is that even join paths with small
schema weights in their edges are useful in determining top-1 an-
swers. In Section 4.3 we demonstrate that using our benefit metric
results in substantially fewer probes to the applications, often by a
factor of 1:18. Using the top-few execution model, this reduction
is further increased by a factor of 2.

4.1 Nature and Quality of Data
We used traces of real user queries and obtained a random sam-

ple of 150 TNs that users ran investigations upon. We then used
the schema graph to obtain circuit ids for these TNs (i.e., using
k=1). We noticed that there is a large number of TNs (56) that
return no matching circuit ids. This is because (i) the INVENTORY
dataset is incomplete and (ii) the provisioning key is often missing
in SALES, forcing join paths either through customer names (Cust-
Name) or order numbers (ORN). The distribution is heavy-tailed,
as there are many TNs for which we obtain 50 or more circuits
through the schema graph. The maximum number of circuits re-
turned for a single TN was 257. It is clear that most queries return
a lot of answers. In fact only 2 TNs returned just one circuit! Thus,
we need to be able to prune the long lists of matching circuit ids in
order to provide meaningful answers to the user.

Using answer scores, we classify user queries into the following
classes (in parentheses we show the number of TNs in each class).

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Fr
eq

ue
nc

y 
C

ou
nt

Number of Parallel Paths

 

"Top-1 Answers"

Figure 5: Number of parallel paths in top-1 answers

† hH: heavyHitters(10): These are the top-10 queries (TNs) ranked
by the number of matching circuits in our data. TNs in that group
returned between 128 and 257 circuits.

† oL: oneLarge(47): This is the subset of TNs that returned one
circuit id with score at least 1% and zero or more circuits with
scores less that this threshold.1

† mL: manyLarge(4): This set of TNs have at least 5 matching
circuits with score at 1% or higher.

† mS: manySmall(8):This set of TNs returned at least 5 answers,
while no answer had score greater or equal to 1%.

† aA: anyAnswer(94): All TNs with any matching circuits.

† nA: noAnswer(56): These are TNs for which no answer (cir-
cuits) can be obtained from the data.

4.2 Benefit of Agglomerative Scoring
We now address the utility of our agglomerative scoring method-

ology. In Figure 5 we plot the number of parallel data paths that
contribute to the top-1 answer for each TN with a non-empty an-
swer (setanyAnswer ). For the 94 top-1 answers, there is an av-
erage of 10 parallel paths per answer (for a total of 946), out of
which roughly 2.5 parallel paths per answer (for a total of 229) are
significant (score of the path is greater than 10% of final score). In
contrast, when looking at all answers for each TN there are on the
average just 1.7 parallel paths contributing to each answer.

A natural question one may ask is whether all the schema join
paths are really relevant, or if one of them dominates in its con-
tribution to the final scores. In Figure 1, we annotate the schema
graph edges with two numbers. The first is the number of data
paths leading to an answer that instantiated this edge. The second
number is for top-1 answers only. Some interesting observations
on the nature of the data can be drawn by interpreting these num-
bers. First, paths that go through the SALES.PON node are more
likely to end up in a top-1 answer: 199 out of 309 overall. Simi-
larly, probing the ORDERING application leads to a top-1 answer
in almost half the cases. In contrast, many paths that use instances
of nodes SALES.BAN, SALES.CustName do not end up in top-1
answers. However, it is still beneficial to include these nodes in
the schema graph. We notice that 275/946 top-1 paths (paths that
result in a top-1 answer) go through instances of these nodes. If we
remove these nodes from the schema graph along with all paths that

1The low value of the threshold has been chosen to capture as many
potentially relevant answers as possible, given the scoring method-
ology.

6



7 − 1

 7 − 1

138 − 14

138 − 14

267 − 15

312 − 1

312 − 1

312 − 1

312 − 1

50 − 9

50 − 9

95 − 6

122 − 0

145 − 15

122 − 0

312 − 1

INVENTORY.CircuitID

INVENTORY.PON

SALES.PON

SALES.TN

SALES.ORNSALES.BAN

SALES.CustName

INVENTORY.TN

PROV.CustName

PROV.PON PROV.SubPON

ORDERING.ORN

ORDERING.TN

Figure 6: Aggregate Path Statistics for top-1 answers (setsoneLarge
- manySmall )

Top-1 Top-few
k =1 DFS BFS MAXB DFS BFS MAXB

aA 246.9 245.4 125.1 47.1 244.9 97.3 24.6
hH 724.1 722.9 453.0 109.5 722.3 359.6 56.1
oL 261.0 259.1 104.6 14.6 251.4 95.5 14.1
mL 365.8 365.4 249.8 40.0 326.8 136.8 19.3
mS 258.5 258.5 253.8 184.8 258.5 231.7 119.6
nA 24.6

Table 2: Cost of top-1/top-few evaluation

use them, then for the 94 queries with non empty top-1 answers, 8
return no result while for 77 the top-1 answer differs.

We next discuss the issue if there is any correlation between the
join paths used and the class of queries. In Figure 6 we aggregate
at the schema level the number of paths in top-1 answers for sets
oneLarge (first number next to an edge) andmanySmall (sec-
ond number). The number of paths in setoneLarge is larger
because more TNs belong to that set (47 compared to 8 in set
manySmall ). In the case of setoneLarge , paths through OR-
DERING schema nodes appear in more than half of the cases.
However, again paths through the PROV dataset using customer
names are significant in top-1 answers. In setmanySmall there is
only one top-1 answer with a path through ORDERING. Most of
the paths (9 out of 15) go through the (SALES.TN,SALES.BAN)
edge and subsequently to PROV, joining on the CustName attribute.

4.3 Efficiency of Top-k Evaluation

We use the number of probes to the applications to determine the
efficiency of top-k evaluation. In Table 2, we present the average
number of probes per TN during the top-k evaluation, fork=1. We
also present the average number of probes when all circuits were
requested (k=1). For scheduling the next open node to explore,
we tested the MAXB policy (discussed in Section 3) as well as the
standard DFS and BFS orders obtained from the schema graph.

Top-1 evaluation, using MAXB, reduces the number of probes
by a factor of more than 5, on the average, for TNs with match-
ing circuit ids. A large number of queries (56/150) returned no
answer, and for these queries top-1 evaluation cannot prune any
paths. For the remaining TNs the greatest benefits arise for subset
oneLarge . These are TNs for which one circuit stands out from

Top-1
k =1 DFS BFS MAXB

aA 207/1189 206/1188 130/1109 59/679
hH 903/1189 902/1188 618/1109 162/679
oL 305/1189 304/1188 141/890 23/231
mL 415/793 414/793 327/625 52/83
mS 310/1128 310/1128 306/1106 237/629
nA 47/232

Table 3: Avg and Max Data Graph Size (edge setED)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 C

os
t

k

 

"manyLarge.all"
"manyLarge.varyk"

Figure 7: Query cost, varying k (manyLarge set)

the answer set and, thus, we can expect a lot of pruning during
top-1 evaluation. Here, the MAXB policy reduces the cost of pro-
cessing by a factor of 18:1 compared to the case wherek=1. For
the setmanyLarge , savings are smaller but still substantial (9:1).
Even in the case of setmanySmall , MAXB results in significant
pruning. These are TNs for which a large number of circuits with
very low scores were discovered. Looking at the instance graphs of
these TNs we observed that most were due to a default value of field
BAN in SALES, resulting in many matching customer names when
following the intra-application (SALES.BAN, SALES.CustName)
edge. Because of our scoring mechanism, all these paths were as-
signed very low scores and MAXB was able to prune a substantial
number of them. In contrast, DFS for top-1 is almost as bad as get-
ting all answers. This is because DFS follows deep paths through
the schema graph to the end without concern of the current scores
leading to an open node or potential benefits of open paths. BFS is
slightly better since all paths are explored in unison.

In Table 3, we show the average (first number) and maximum
(second number) size of the data graph for the same experiment.
We notice that fork=1 the data graph size is on the average 207
with a maximum instance of 1189 (edges). Thus, evaluation of
Multiple Join Path queries in our framework has very modest re-
quirements in terms of memory usage. We further notice that top-1
evaluation with the MAXB policy reduces these numbers by a fac-
tor of up to 13:1. This reduction of the data graph size will become
significant in a multi-user environment when the server processes
several queries at a time.

In Figure 7, we plot the query cost, varyingk between 1 and
10. For comparison, we also show the cost whenk=1 (flat line).
It is interesting that there is a drop in query cost fork=5. This
suggests that the size of the top-cluster is, on the average, around
five (circuits per TN) with the last 3 having similar scores. Thus,
for k=3 or 4, additional queries are required to distinguish among
them, while whenk=5, we can stop earlier and report all of them.

In Table 2 we show the cost of the top-few execution, fork=1.
The top-few execution, allows us to stop a query at an earlier stage,

7



when a superset containing the top-k cluster has been identified. As
in the top-1 case, the MAXB policy by far outperforms the other
alternatives. Comparing the numbers with the top-1 case, we see
that we get a reduction in evaluation cost by a factor of two on the
average. In most cases the number of answers returned to the user
is very small, typically one. There are only 5 instances where we
see more than 10 and all of them are for TNs with many small,
indistinguishable, answers.

5. RELATED WORK
Scheuermann et al. [14] consider querying multiple database paths

by allowing for some uncertainty in the attribute correspondences
between databases in a multidatabase system. They return multiple
query results ranked by some degree of confidence in the answer.
However, to the best of our knowledge, our work is the first to take
into account similar results from multiple paths as corroborating
evidence and using this information to rank query results.

There has been much work in addressing the problem of identi-
fying keyword query results in an RDBMS and ranking them based
on some quality metric [8, 1, 2, 10, 9]. In such scenarios, the user
queries multiple relations for a set of keywords and gets back tu-
ples that contain all keywords, ranked by a measure of the proxim-
ity of the keywords. DBXplorer [1] and DISCOVER [10] use index
structures coupled with the DBMS schema graph to identify answer
tuples and rank answers based on thenumber of joinsbetween the
keywords. Our framework can also benefit from auxiliary struc-
tures like indexes and materialized views to speed up processing.
BANKS [2] creates a data graph (a similar graph is used by [8]),
containing all database tuples, allowing for a finer ranking mecha-
nism that takes prestige (i.e., in-link structure) as well as proximity
into account. Hristidis et al. [9] use an IR-style technique to assign
relevance scores to keyword matches and take advantage of these
relevance rankings to process answers in a top-k framework that
allows for efficient computations through pruning. As with prox-
imity search techniques, we consider all possible join paths and,
as in [9], we want to allow for pruning of irrelevant data paths in
order to speed up query execution time. A key difference with pre-
vious proximity search techniques is that none of these techniques
deal with data quality issues, or agglomerate scores of multiple data
paths that contribute to the same answer.

Top-k query evaluation algorithms that aim at identifying thek
highest ranking answers to a query have been proposed for a va-
riety of scenarios: multimedia [7, 11], web [12], expensive pred-
icates [4], and RDBMS [3, 11]. Adaptive top-k strategies [4, 12]
dynamically choose which operation to perform next based on cur-
rent tuple scores and estimated statistics. In this paper, we use such
adaptive techniques to select which join paths to investigate next.
Most existing top-k techniques focus on cases where answer tuples
can be mapped into a single relation, with all attributes values ac-
cessible through a unique ID, and rank the result tuples according
to a predefined aggregation function (e.g.,min or weighted-sum).
While some of the proposed techniques [13, 11] apply to scenarios
involving joins, and therefore deal with a potential explosion in the
number of tuples, we are not aware of any top-k technique that does
not consider each possible answer tuple as a single entity.

Traditional top-k techniques require exact top-k answer scores
to be returned. In contrast, NRA [7], which only considers sorted
accesses to multimedia sources, allows for the top-k answers to be
returned as soon as they are identified, along with their possible
range of scores. We use this relaxed stopping condition for our top-
k evaluation, and present another efficient stopping condition:top-
few, which returns a set of answers that are guaranteed to contain
the bestk answers.

Recently, Chaudhuri et al. [5] investigated the problem of rank-
ing answers of database queries that are not very selective (Many-
Answersproblem) and propose a ranking function based on Proba-
bilistic Information Retrieval ranking models. Our scoring func-
tions also have a probabilistic interpretation and, similar to [5],
ranking is proposed in order to prune a potentially large answer set.
However, while in [5] the problem arises from loosely constrained
queries, the complexity of our problems stems from (i) the exis-
tence of multiple join (schema) paths that can potentially link two
attributes in the same or different databases, and (ii) low data qual-
ity that further increases the number of instantiated data paths for a
given query. Approximating top-k answers, by offering guaranteed
answer quality wrt the correct top-k scores [7, 4], or probabilistic
guarantees [15], is an issue we do not address here.

6. CONCLUSIONS
This paper addressed the Multiple Join Path problem, of finding

high quality query results that can be reached from a query node,
by following one or more join paths in the schema graph, across
multiple databases, in the presence of data quality problems. The
framework proposed in this paper scores each data path that in-
stantiates the schema join paths, taking data quality with respect to
specified integrity constraints into account. Multiple data paths be-
tween the same nodes are treated as corroborating evidences, and
data path scores are agglomerated to yield scores for matching an-
swers. We develop novel techniques to efficiently compute the top-
few answers within the Multiple Join Path framework, taking the
agglomerative scoring mechanism into consideration. We evaluate
our techniques using real data and our Virtual Integration Prototype
testbed, and demonstrate both the utility of the agglomerative scor-
ing methodology, and the efficiency of our algorithmic techniques
for computing top-few answers.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for

keyword-based search over relational databases.ICDE, 2002.
[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using BANKS.ICDE,
2002.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries
over relational databases: Mapping strategies and performance
evaluation.ACM TODS, 27(2), 2002.

[4] K. C.-C. Chang and S.-W. Hwang. Minimal probing: Supporting
expensive predicates for top-k queries.SIGMOD, 2002.

[5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic
ranking of database query results.VLDB, 2004.

[6] T. Dasu and T. Johnson.Exploratory data mining and data cleaning.
John Wiley, 2003.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware.PODS, 2001.

[8] R. Goldman, N. Shivakumar, S. Venkatasubramanian,
H. Garcia-Molina. Proximity search in databases.VLDB, 1998.

[9] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style
keyword search over relational databases.VLDB, 2003.

[10] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search
in relational databases.VLDB, 2002.

[11] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join
queries in relational databases.VLDB, 2003.

[12] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over
web-accessible databases.ACM TODS, 29(2), 2004.

[13] A. Natsev, Y. Chang, J. R. Smith, C. Li, and J. S. Vitter. Supporting
incremental join queries on ranked inputs.VLDB, 2001.

[14] P. Scheuermann, W.-S. Li, and C. Clifton. Multidatabase query
processing with uncertainty in global keys and attribute values.
JASIS, 49(3), 1998.

[15] M. Theobald, G. Weikum, R. Schenkel. Top-k query evaluation with
probabilistic guarantees.VLDB, 2004.

8



In-network Outlier Cleaning for Data Collection in
Sensor Networks

Yongzhen Zhuang and Lei Chen
Hong Kong University of Science and Technology

{cszyz, leichen}@cse.ust.hk

Abstract

Outliers are very common in the environmen-
tal data monitored by a sensor network con-
sisting of many inexpensive, low fidelity, and
frequently failed sensors. The limited battery
power and costly data transmission have in-
troduced a new challenge for outlier clean-
ing in sensor networks: it must be done in-
network to avoid spending energy on trans-
mitting outliers. In this paper, we propose
an in-network outlier cleaning approach, in-
cluding wavelet based outlier correction and
neighboring DTW(Dynamic Time Warping)
distance-based outlier removal. The clean-
ing process is accomplished during multi-hop
data forwarding process, and makes use of the
neighboring relation in the hop-count based
routing algorithm. Our approach guarantees
that most of the outliers can be either cor-
rected, or removed from further transmission
within 2 hops. We have simulated a spatial-
temporal correlated environmental area, and
evaluated the outlier cleaning approach in it.
The results show that our approach can effec-
tively clean the sensing data and reduce out-
lier traffic.

1 Introduction

A sensor network is equipped with thousands of inex-
pensive, low fidelity motes, which can easily generate
sensing errors. The abnormal unreal sensor readings
generated in a temporally or permanently failed sensor
is called outliers. In many cases, outliers introduce er-
rors in sensing queries and sensing data analysis. For
example, a Sum query is less accurate if a large value
outlier is counted. In addition, transmitting outliers to
the sink is useless, adds additional traffic burden to the
network, and consumes precious sensor energy without
any benefit. Outlier cleaning tries to capture the out-
liers, correct or remove them from the data stream.
Outlier cleaning in sensor networks is challenging be-
cause data are distributed among a large amount of

sensors. It is for sure that outlier detection can be
conducted centrally after all the data are collected to
the sink. However, it is not energy efficient to transmit
outliers, especially when the network size is large. For
example, if an outlier is routed through a 15-hop path
to the sink, the energy used to transmit this 15-hop
datum is wasted. Therefore, in-network outlier clean-
ing tries to detect outliers during the data collection
process as early as possible along the routing path of
the data. It either corrects the outlier or removes it
from further forwarding. Eventually, an outlier-free
data stream is provided to the sensor network appli-
cations.

In this paper, we propose an in-network outlier
cleaning approach for data collection over sensor net-
works. We can correct short simple outliers in 0 hop
and remove long segmental outliers within 2 hops. We
adopt wavelet approximation to correct short, occa-
sionally appeared outliers. Since these short outliers
are of high frequency, they can be corrected if we
use the first few wavelet coefficients to represent the
sensing series. An extraordinary advantage of using
wavelet representation is that it can greatly reduce
the dimension of the sensing data, as a consequence,
reduces the energy cost of transmitting these data. If
an outlier is a long segmental outlier, we can detect
it by comparing its similarity with the neighboring
nodes, given the nature that environmental data are
spatially correlated [1]. Similarity is measured by Dy-
namic Time Warping (DTW) distance, which can cap-
ture the shape similarity in the elastic shifting sensing
series [2]. The sensing series are routed as before to
the sink, using a hop-count based routing algorithm
[3]. The detection is conducted within 2 forwarding
hops. A sensing series is not forwarded, if it is dis-
similar with its network neighbors. Outlier cleaning
requires in-network data processing on the individual
sensor mote. In sensor networks, it is admitted that
data processing is more economical than data trans-
mission [4]. The outlier cleaning process adds O(KN)
running time on each sensor. In the erroneous sensor
network, this energy cost is trivial compared to that
of the reduced traffic.



The remainder of this paper is organized as follows:
Section 2 provides the background of outlier cleaning
in sensor network data collection. In Section 3, we
describe our in-network outlier cleaning approach in
detail. Section 4 presents the evaluation results. Sec-
tion 5 discusses the related work, and we conclude this
paper in Section 6.

2 Background and Overview
2.1 Sensor Network
In recent years, wireless sensor networks have been
growing as a platform for environmental monitoring in
agriculture fields, battle fields, wild forests, coal mine
tunnels, and so on [5, 6, 7]. Sensors are massively de-
ployed to cover a wide geographical area. They have
the capability of sensing the area, performing some
computation, transmitting and forwarding the data to
a centralized sink node. However, these small sensors,
also called motes, have their limitations. Two of the
most important ones are the limited battery power and
the high transmission cost. These limitations make the
design of sensor network data processing challenging.
It is commonly recognized that in-network processing
(aggregation) is beneficial [8, 9, 10, 11]. Part of the
data processing is performed earlier, when the data
are still in the network. Notice that the centralized
approach processes the data only after all of them are
collected to the sink. In in-network processing, each
sensor takes up some computation according to the ap-
plications (e.g. query processing, data collection, event
detection, and so on). The sensors try to compute and
send the “aggregated” results to reduce network traf-
fic. Since data transmission is the most costly opera-
tion in sensors [4], compared with it, the energy cost
of in-network computation is trivial and negligible.

2.2 Data Collection
Sensor network applications can be classified into sev-
eral categories. One kind of popular applications is
query processing, which sends out a SQL-like query to
the distributed sensors, and expects them to answer
it by sending back the results to a sink node [8]. An-
other is event detection, in which a sensing report is
triggered not by a query, but by the occurrence of an
event [12]. Such an event can be a fire in a forest, a
gas leakage in a coal mine, or a flood in an agriculture
field. The third kind of applications is data collection,
which is considered in this paper. These applications
collect the entire sensing data over a long time, and
store them centrally in a centralized database. So-
phisticated data processing and analysis, which is not
suitable to be run in sensors, can be carried out in
the central server. Data collection is required in many
scientific applications, where a scientist usually wants
to record the historical monitoring data of the whole
geographical area for his/her research. For example, a
research for the cause of a freshet would need soil PH,
river level, and humidity data over several years. In

this paper, the design of our outlier cleaning approach
is described based on the data collection applications.
However, the idea of using wavelet-based outlier cor-
rection and neighboring DTW distance-based outlier
removal can be modified to apply to query processing
and event detection applications without losing gener-
ality.

2.3 Outlier Definition
In this paper, outliers of sensing data are referred to
as abnormal sensed values that are from out of or-
der sensors. The nature of environmental monitor-
ing shows that sensing series are always temporally
and geographically similar. Thus, outliers are those
weird sensor readings that are dissimilar with the oth-
ers. More specifically, we define two kinds of outliers
based on this observation:

Short simple outlier A short simple outlier is a
high frequency noise or error. It is usually repre-
sented as an abnormal sudden burst and depres-
sion, which is dissimilar to the other part of the
same sensing series.

Long segmental outliers A long segmental outlier
is the erroneous sensed readings that last for a
certain time period. It is unreal and cannot reflect
the environmental change of its monitoring area
during that time period.

2.4 Outlier Cleaning
Outlier cleaning in this paper means both outlier cor-
rection and removal. In outlier correction, each sensor
tries to correct a sensing series that contains outliers.
The outlier value is substituted by a close approxi-
mation of the real value. It then sends the corrected
sensing data to the sink. On the other hand, outlier
removal discards the sensing data that are detected to
have outliers, and are largely damaged or considered
to have little usage. Intuitively, the two outlier clean-
ing approaches should be connected in series. One ap-
proach should correct the sensing data first, and the
other one should then be used to detect long segmen-
tal outliers. It is not valid to simply delete the out-
liers, because many of them, containing only a little,
short, occasionally appeared outliers are still usable af-
ter correction. Every piece of sensing data is valuable
in a data analysis. It is only when the outliers in the
sensing series are too erroneous to correct, then dis-
carding this sensing series becomes the only choice to
save transmission power. Mapping into the outlier de-
finition above, the short simple outlier is much easier
to be corrected, and the long segmental outlier need
to be removed when it is not correctable.

2.5 Temporal and Spatial Similarity
The environmental data collected from widely distrib-
uted sensors are by their nature similar temporally



and spatially [13]. This temporal and spatial simi-
larity has special meaning in outlier cleaning. Given
a sensing series, a short simple outlier is easy to be
identified by human observation because it is shown
as a sudden change and extremely different from the
rest of the data. Theoretically, this sudden burst or
depression is of high frequency in the frequency do-
main. They can be removed by de-noising techniques
that transform the data into another domain where
the high frequency noise and the low frequency true
data can be separated. A long segmental outlier that
lasts for a certain time period is not easy to be de-
tected by only examining one sensing series, because
it is hard to tell whether it is an outlier or the true
data are changing in that pattern. However, making
use of the spatial similarity of the sensing data, the
outlier sensor should stand out when compared with
the other sensors that monitor the same area. Here
we make an assumption that sensors are largely and
redundantly deployed, and each sensing area is moni-
tored by several sensors. Therefore, an environmental
change in an area will have similar, not necessary the
same, effect on all the geographically close sensors.

3 Outlier Cleaning
We propose two outlier cleaning approaches:

1. using wavelet-based approach to correct outliers;

2. using neighboring DTW distance-based similarity
comparison to detect and remove outliers.

These two outlier cleaning approaches are intended
for in-network data processing within sensor networks.
However, they are also applicable to centralized outlier
cleaning.

3.1 Outlier Correction
Wavelet analysis has long been acknowledged as an
efficient de-noising approach. A time series is trans-
formed into the time-frequency domain. The wavelet
coefficients represent a gradually refined resolution of
the original time series. Most of the energy and infor-
mation of the data are concentrated in a small number
of coefficients, usually the first few coefficients. The
sensing noises and errors are of high frequency and
reside in high-order coefficients. Therefore, the true
data and outliers, which are a kind of noise, can be
separated in the wavelet space.

In outlier cleaning, simple short outliers can be cor-
rected by wavelet de-noising. Figure 1 shows an ex-
ample of using 5, 10, 20, or 30 wavelet coefficients to
represent a sensing series with 128 points, which has
an outlier at the 48th point. We can observe that the
fewer the coefficients used, the smoother and coarser
the wavelet restored sensing series. Choosing an ap-
propriate number of coefficients, 10 or 20, we can re-
move the outlier while keeping a close approximation
of the original sensing series.

Figure 1: Outlier correction (Using k= 5, 10, 20, or 30

wavelet coefficients to represent the sensing series. The gray

curve is the sensing series with an outlier occurring at the 48th

point. The bold curve is the restored sensing series.)

In addition, wavelet transform also acts as a di-
mension reduction method. Transmitting the selected
wavelet coefficients instead of the original sensing se-
ries can reduce data traffic by more than a magnitude.
Moreover, wavelet transform, like DWT, only takes
O(n) running time, which is a reasonable computa-
tional complexity for small limited devices like sensors.

By a small modification, the outlier correction ap-
proach can be applied to the case that the exact values
of the non-outlier points are required. This means the
raw sensing data should be sent to the sink instead of
the smaller amount of wavelet coefficients. Correction
is done by comparing the original sensing series (with
possible outlier contained) with the wavelet restored
sensing series. An outlier threshold is predefined by
the user. If at a point p, the difference between the
original and restored values is larger than the outlier
threshold, p is counted as an outlier. We then use the
restored value at p to correct the outlier value, and
send out this corrected series. However, transmitting
the raw data is not energy efficient in sensor networks,
which will only be used when a specific application re-
quires so. In the rest of this paper, we will stay with
the preferred approach of transmitting wavelet coeffi-
cients.

3.2 Outlier Removal
Long segmental outlier detection is based on the neigh-
boring similarity measurement. We notice that envi-
ronmental change is not isolated, which means any
change (increasing or decreasing) will affect a close
area instead of only a single point. Since sensors are
always densely and redundantly deployed, nearby sen-
sors will have similar patterns. Here we assume that
each environmental area is monitored by several sen-
sors. The idea of outlier detection is to compare a
sensing series with that of its neighbors. If a sens-
ing series has a similar counterpart among one of its



Figure 2: Spatially similar sensing series: sensors in the

gray region are monitoring the same environmental area, and

therefore have similar sensing series. The circled sensor is an

outlier sensors, which can be known from its distinct sensing

series.

neighbors, it is not an outlier because the probabil-
ity of two failed sensors to generate similar erroneous
series is very small. If a sensing series does not have
any similar counterpart among its neighbors, it is higly
possible to be an outlier sensor. Figure 2 plots an ex-
ample of a spatially similar region, in which all the
sensors should have similar sensing series. The circled
sensor, which is quite different from the other sensors
around it, is detected as an outlier sensor.

We use Dynamic Time Warping distance (DTW)
to measure the similarity of two sensing series. The
reason for not using the simpler Euclidean distance
is that: (a) first, sensors in a network are loosely syn-
chronized, so the sensing series are not aligned exactly;
(b) second, there are different delays for different sen-
sors to detect an environmental change, e.g. a fire
occurs at one sensor takes a little while to spread to
its neighbors. Due to the above two reasons, Euclidean
distance is not suitable for measuring the similarity of
sensing series.

DTW is a method that can compare two time se-
ries having elastic shifting on the time axis. They are
considered to be similar, although out of phase. In
Figure 3, the two time series are of similar shape, but
not aligned in the time axis. Euclidean distance com-
pares the ith point of one series with the ith point of
the other, and reports a dissimilar result. However,
DTW distance compares the dynamic warped points
as shown in the figure, and therefore can capture the
similar shape of the two series. The DTW algorithm
are based on dynamic programming. The classic DTW
algorithm takes O(n2) time to warp two time series
each with n points. This quadratic algorithm is too
much for limited sensing devices. In practice, accu-
rate approximation like FastDTW is installed in the
sensors, which can run in linear time and space [14].

3.3 Centralized Cleaning Process
Centralized outlier cleaning is carried out after all the
data are collected to the sink. Outlier cleaning is done
step by step:

Figure 3: Euclidean distance and DTW distance

1. transform the sensing series to the wavelet do-
main;

2. reconstruct the sensing series using the first few
coefficients;

3. compare the original series with the restored series
to detect outlier points;

4. use the value in the restored series to correct the
outlier points;

5. compare the sensing series with that of its geo-
graphically close neighbors;

6. detect an outlier sensing series if it is dissimilar
with its neighboring series.

3.4 In-network Cleaning Process
The above outlier cleaning process can be moved down
to the network level. It depends on the underlying data
routing, so that the distributed sensors can clean the
outliers during the data collection process.

3.4.1 Data Routing

In almost all techniques for in-network aggregation,
a routing tree or graph based on hop count is estab-
lished. Data are propagated from sensors to a sink
through a minimum hop-count path [3]. This mini-
mum hop-count based routing is constructed as fol-
lows: The sink broadcasts an initial message to the
sensor network, containing a hop count parameter. All
the sensors receiving this message select the sender
(now is the sink) as their parent. They then increase
the hop count parameter by one, and rebroadcast the
message. Finally, the message is propagated to the en-
tire network, and each sensor is assigned a hop count
number. During the data collection, a current hop
count number is sent with the data message. By this
means, the message is routed through the reversed
path, which is a hop count decreasing path, to the sink
as illustrated in Figure 4(a). For the sake of aggrega-
tion, sensors are loosely synchronized and the data are
collected hop by hop up to the sink. All the sensors
with hop count number N are scheduled to transmit
at a time period. Sensors with hop count number N-1
are scheduled in the next time period after the hop
count N sensors have transmitted their data.

In this routing algorithm, each sensor can obtain
some local topology information. Assume that sen-
sor A has hopcount = N . First, A knows its direct



Figure 4: Topology of the in-network outlier cleaning

parents, the nodes who propagated the initial message
with hopcount = N − 1 to it. Second, A knows its
siblings, who are the nodes that propagated the ini-
tial message with hopcount = N . Third, A knows
its direct children, the nodes from whom a data mes-
sage was received with hopcount = N + 1. The above
information is obtained defaultly in the routing pro-
tocol. Besides these, the sensor will actively keep a
sibling list for each of its children. The child node at-
taches its sibling list with the first data message sent
to the parents, therefore, the sibling list for each child
is known by the parent.

3.4.2 Neighboring Relation

Unlike the centralized approach, in in-network aggre-
gation, each individual sensor does not know its geo-
graphically nearest neighbors. The neighboring nodes
considered in in-network outlier cleaning are the chil-
dren, one-hop away siblings, and parents.

The parent-sibling-child relation is set up in the
data routing. As illustrated in Figure 4(b), parents,
children, and siblings can cover the four major direc-
tions of a sensor - up, down, left, and right. We can
detect a outlier sensor by comparing it with its net-
work neighbors in the four directions.

3.4.3 Cleaning Process

In the outlier cleaning process, wavelet-based outlier
correction is done by each sensor, and the neighboring
DTW similarity is compared along the routing path of
the data that goes to the sink.
At the sensor level, each sensor

1. transforms the sensing series to the wavelet do-
main, and

2. selects the first few coefficients to transmit.

At the network level, sensor A receives its children’s
sensing series, and decides which to forward and which
to delete. The outlier detection process is as follows”

1. Sensor A reconstructs the children sensing series
from their wavelet coefficients.

2. A calculates the DTW similarity of its children’s
sensing series and itself’s.

(a) If they have similar sensing series, both A
and those similar children are flagged as
Non-outlier.

(b) If all the children series are dissimilar, A is
flagged as Unknown, since other neighbors
need to be compared before making an out-
lier decision for A’s sensing series.

3. When A’s sensing series is transmitted to its par-
ent B. For a child’s sensing series flagged as Un-
known, B compares it first with the series of the
siblings of this child, then with the sensing series
of B itself. Remember that a sibling list for each
child is maintained when the routing paths are set
up.
(a) If there is a similar sensing series to that of

this Unknown child, it is not an outlier and
should be forwarded.

(b) If all the sensing series are dissimilar, this
child is finally detected as an outlier after
comparing with all its network neighbors.
The sensing series of this child is removed
from the forwarding list.

For each sensor, it’s sensing series is compared with
those of its children when it receives the children’s
sensing series. The comparison of siblings and parents
is done by the parent sensors. In the case when a sen-
sor node has multiple parents, each parent would con-
duct its comparison independently. An outlier sensing
series can be detected and removed by all the parents.

4 Evaluation
We have simulated a sensor network of about 900 sen-
sors deployed in a grid topology. The transmission
range of each sensor covers the upper, lower, left, right,
upper and lower left, and upper and lower right sen-
sors. The environmental sensing series of each sensor
is generated from a temporal-spatial model. We have
conducted simulations to evaluation our outlier clean-
ing approach under several evaluation metrics.

4.1 Evaluation Dataset
The evaluation datasets are generated from a model
that simulates an area with temporal-spatial corre-
lated environment. A number of points called event
trigger have been placed in the simulation area. The
sensed value of the event trigger follows a random
walk. The location of the event trigger is also a ran-
dom walk on the 2D simulation area. The value of
a sensor at time t is the weighted combination of the
values of the event triggers, where the weight is the
inverse of the normalized distance between the tar-
get point and the event trigger point. Figure 5 plots
a snapshot of the changing environment on a square
monitoring area at a certain time. The values on the
vertical axis are the current sensing readings. Finally,



Figure 5: A snapshot of a temporal-spatial correlated area

outliers are added to the dataset as random errors. An
outlier may affect only one data point in the sensing
series, or affect a segment lasting for a certain time pe-
riod. Different amounts of outliers can be introduced,
distributed randomly in the area and in time. These
outliers can be of different lengths. We have adjusted
the model parameters and generated several environ-
mental datasets in the simulation.

4.2 Evaluation Metrics
correction ratio It measures how much the outliers

are corrected in order to be closer to the real value.
Given the error of the outlier value, and the er-
ror of the corrected value, the correction ratio is
calculated as follows:

cratio =
outlier error− corrected error

outlier error

precision and recall This metric is used to mea-
sure the performance of outlier detection using
DTW based outlier removal. Precision is the ra-
tio of the correctly detected outliers and the total
number of the detected outliers. Recall is the ra-
tio of the correctly detected outliers and the total
number of outliers.

transmission bytes We use the total number of
transmission bytes in the network to measure the
reduced traffic amount. This can represent the
amount of energy saved in data transmission.

4.3 Results
In this section, we will evaluate our in-network outlier
cleaning approach in different scenarios. If not explic-
itly specified, the default parameters listed in Figure
6 are used in the simulation.

4.3.1 Outlier Correction Ratio

We first evaluate the wavelet-based outlier correction
approach when choosing different number of wavelet
coefficients to represent the sensing series. We have
added different amounts of outliers into the simulation
scenarios - 500, 1000, 1500, and 2000 outliers. Each
outlier was a single burst. The percentage of outliers

network size 30× 30
the number outlier sensors 300
sensing series length 128
outlier length 10 ∼ 100
the number of wavelet coeffi-
cients

10

DTW threshold 20

Figure 6: Default parameters in the simulation. We test
the change of the parameters in our evaluation.

Figure 7: Correction ratio of wavelet-based correction

in the dataset was 0.42% ∼ 1.74%. Figure 7 plots the
simulation results. The more the wavelet coefficients
used, the finer the granularity. The high order wavelet
coefficients can capture the outlier burst, so the cor-
rection ratio keeps decreasing. On the other hand, if
too few wavelet coefficients are used, the restored sens-
ing series is too coarse to correct the outlier. The best
correction ratio exists at 5 coefficients. Choosing 5 to
12 coefficients can give a correction ratio of over 90%.
To have a good approximation of the original sensing
series, we have chosen 10 coefficients in the rest of the
simulations.

4.3.2 DTW Threshold

In neighboring DTW distance-based outlier removal,
we have used a DTW threshold to decide whether two
sensing series are similar or not. If their DTW distance
is smaller than the DTW threshold, they are regarded
as similar sensing series, and vice versa. We have sim-

Figure 8: Recall and precision in changing DTW threshold



Figure 9: Recall and precision in changing outlier amount

ulated the different setting of DTW threshold and the
results are shown in Figure 8. The precision of de-
tecting outliers can be very high when using a thresh-
old larger than 10. However, recall keeps decreasing
because when the threshold is high some outliers are
mistakenly counted as valid data.

4.3.3 Outlier Amount

We have also simulate different amount of outliers. As
in Figure 6, the length of these outliers is randomly
chosen from 10 to 100. The number of outliers in-
creases from 100 to 800. We have limited each sensor
to have at most one outlier. Hence, 800 outliers means
8/9 sensors suffer from failure. Figure 9 shows that
both recall and precision are high. They are almost
not affected by the amount of outliers.

4.3.4 Outlier Segment Length

In all the other scenarios, the length of an outlier seg-
ment was randomly chosen in the region [10, 100]. In
this part, we have tested how the outlier length would
affect outlier cleaning. We have explicitly set the out-
lier length to be 10 to 100 in different runs of simu-
lations, and compared their results. The simulation
results are plotted in Figure 10. Precision remains
high under different outlier lengths, which means our
algorithm rarely reports non-outlier sensors as out-
liers. However, recall is low when the outlier length
is short, which means many of the true outliers are
not detected. One possible reason is that the shorter
outliers have already been corrected by wavelet ap-
proximation. We have justified this by examining the
missing outliers (undetected outliers) to see how many
of them are corrected by wavelet-based outlier correc-
tion. Figure 11 shows the total amount of detected
and corrected outliers, where an outlier is counted as
corrected if its error after correction is smaller than
1.0.

4.3.5 Traffic Reduction

Finally, we have evaluated the amount of traffic re-
duction in the outlier cleaning process. Since only 10
wavelet coefficients have been used for each 128 point

Figure 10: Recall and precision in changing outlier seg-
ment length

Figure 11: The total amount of corrected and removed
outliers

long time series, the traffic reduction in wavelet correc-
tion is about 92.19%. If an outlier is detected, the traf-
fic of transmitting and forwarding this outlier is saved.
Since a sensor is normally routed through a multihop
path to the sink, one outlier detection will save several
hops of transmission. Figure 12 shows that with the
increasing number of outliers, the amount of reduced
traffic in DTW-based outlier removal is also increas-
ing.

5 Related Work
Outlier detection is a fundamental issue in data man-
agement. Hawkins defines outlier as an observation
that deviates a lot from other observations, and is

Figure 12: The percentage of traffic reduction



very possible to be generated from a different mech-
anism [15]. Thus, outlier detection is also called de-
viation detection. Most of the outlier detection tech-
niques are based on data mining. Hodge and Austin
classified a variety of outlier detection methods into
three categories in their survey paper [16]: Unsuper-
vised clustering based on distance and density, which
determines the outliers with no prior knowledge of the
data [17]; supervised classification that required pre-
labelled data and a machine learning process [18]; and
semi-supervised methods that can tune the detection
model incrementally as new data arrive [19]. Most of
the proposed outlier detection approaches are central-
ized and off-line. They cannot be applied to sensor
network applications directly.

Only a few papers have tried to address in-network
outlier detection in the context of sensor networks.
Palpanas et al. have proposed an in-network approach
for distributed online deviation detection for stream-
ing data [20]. However, this approach highly depends
on the existence of high capacity sensors to manage
groups of other sensors and perform outlier detection.
Another related work proposed by Branch et al. uses
a non-parametric, unsupervised method to detect out-
liers. They also use the distance-based metrics in the
detection [21]. Hida et al. proposed a method to
perform outlier detection in query processing (such
as Max and Avg), so that query aggregation can be
more reliable [22]. These approaches do not combine
the temporal spatial similarity in outlier detection, be-
cause they detect outliers as a single value. However,
in this paper we try to detect outliers in a number
of time series. As a first step, we use wavelet based
outlier correction and DTW distance-based outlier re-
moval, which can be thought of as a distance based
approach. This requires that the data in the whole
area exhibit the same distribution, and the user should
have some knowledge of the data to set an appropriate
threshold. Our future work tries to address the outlier
problem when the data are of different distribution. In
this case, a single threshold may not be appropriate,
and a sophisticated statistical model is required [23].

6 Conclusions
In this paper, we have presented an in-network out-
lier cleaning approach for sensor network data collec-
tion applications, using wavelet based outlier correc-
tion and DTW distance-based outlier removal. We
have considered the spatial-temporal correction of en-
vironmental data; we not only detected but also tried
to correct the outliers; we were able to remove the
outliers within 2 network forwarding hops and reduce
a large amount of the traffic. We have evaluated our
approach under comprehensive simulations.

References
[1] S. Shekhar, C. T. Lu, and P. Zhang, “Detecting graph-

based spatial outliers: Algorithms and applications,” in

SIGKDD, 2001.

[2] Berndt and Clifford, “Using dynamic time warping to find
patterns in time series,” in KDD Workshop, 1994.

[3] J. Al-Karaki and A. Kamal, “Routing techniques in wireless
sensor networks: a survey,” IEEE Wireless Comm., no. 4,
pp. 6–28, 2004.

[4] G. Pottie and W. Kaiser, “Wireless integrated network
sensors,” Communications of the ACM, vol. 43, no. 5, p.
51C58, 2000.

[5] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler,
“Wireless sensor networks for habitat monitoring,” Intel
Research, Tech. Rep. IRB-TR-02-006, Jun. 2002.

[6] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer,
“A reactive soil moisture sensor network: Design and field
evaluation,” International Journal of Distributed Sensor
Networks, vol. 1, 2005.

[7] L. M. Ni, Y. Liu, Y. C. Lau, and A. Patil, “Landmarc:
Indoor location sensing using active rfid,” ACM Wireless
Networks, vol. 10, no. 6, pp. 701–710, November 2004.

[8] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tag:
a tiny aggregation service for ad-hoc sensor networks,” in
OSDI, 2002.

[9] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysan-
this, “Balancing energy efficiency and quality of aggregate
data in sensor networks,” in VLDB, 2004.

[10] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and
deltas: Efficient and robust aggregation in sensor network
streams,” in SIGMOD, Baltimore, Maryland, USA, 2005.

[11] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate
aggregation techniques for sensor databases,” in ICDE,
Boston, Massachusetts, USA, 2004.

[12] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour map
matching for event detection in sensor networks,” in SIG-
MOD, 2006.

[13] D. Nychka, W. Piegorsch, and L. Cox, Case Studies in
Environmental Statistics. Springer, New York, 1998.

[14] S. Salvador and P. Chan, “Fastdtw: Toward accurate dy-
namic time warping in linear time and space,” in KDD
Workshop, 2004.

[15] D. Hawkins, Identification of Outliers. Chapman and Hall,
1980.

[16] V. Hodge and J. Austin, “A survey of outlier detec-
tion methodologies,” Artificial Intelligence Review, vol. 22,
no. 2, pp. 85–126, October 2004.

[17] Rousseeuw and A. Leroy, Robust Regression and Outlier
Detection, 3rd ed. J. Wiley, New York, 1996.

[18] G. Williams, R. Baxter, H. He, S. Hawkins, and Lifang.Gu,
“A comparative study of rnn for outlier detection in data
mining,” in ICDM, 2002.

[19] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan,
“Semi-supervised adapted hmms for unusual event detec-
tion,” in CVPR, 2005.

[20] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos, “Distributed deviation detection in sensor
networks,” ACM SIGMOD, vol. 32, no. 4, pp. 77–82, Oc-
tober 2003.

[21] J. W. Branch, B. K. Szymanski, C. Giannella, R. Wolff,
and H. Kargupta, “In-network outlier detection in wireless
sensor networks,” in ICDCS, 2006.

[22] Y. Hida, P. Huang, and R. Nishtala, “Aggregation query
under uncertainty in sensor networks,” Department of Elec-
trical Engineering and Computer Science. University of
California, Berkeley, Tech. Rep., 2004.

[23] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos, “Online outlier
detection in sensor data using non-parametric models,” in
SIGMOD, 2006.



 
The Bellman Data Quality Browser 

 
 

Divesh Srivastava 
 

AT&T Labs – Research 
divesh@research.att.com 

 
 
 

Keynote Talk Abstract 

Data quality is a serious concern in complex industrial-scale databases, which often have 
thousands of tables and tens of thousands of columns. Commonly encountered problems 
include missing data (null values), duplicates and default values in columns supposed to 
treated as keys, data inconsistencies (violation of functional dependencies), and poor 
quality join paths (lack of referential integrity). Compounding the data quality problems 
are incomplete and out-of-date metadata about the database and the processes used to 
populate the database. These problems make the task of analyzing data particularly 
challenging. To effectively address such problems, we have built the Bellman data 
quality browser at AT&T. Bellman profiles the database and computes concise statistical 
summaries of the contents of the database, to identify approximate keys, frequent values 
of a field (often default values), joinable fields with estimates of join sizes paths, and to 
understand database dynamics (changes in a database over time). In this talk, I'll describe 
the technology underlying Bellman and how it is used to help make sense of complex 
databases.  

 

mailto:divesh@research.att.com


������� ���
	��
������� ��������	������������ �! �"�"#���$�

%'&)(+*-,/.
0213.�45.
65&87:9 ;$*5&)08&)<=13>?*-,?4545>?4 @A08.
454B13CED545F

GIHKJLJNMNOQP/R�STOVUWR�SWXLHEYEZ
MN[]\^HE_
Ua`NHb\dce_eRQJLRQf�XgHbY

hji�kQlnmeo-p?l

q�O+UTOr\KJgHbOV_eXL_efrsrOutvXL_�wQRQJLwQH�UTceHxOQ\Ey�[]XLYWXzUTXgR�_{Z]OVU
YWRQs|HvH^}�RQSWU~R�S�HK���?HK_/Y�H�Z-RV�2ceXLfQcn��y
[]OVJLXgU�t
�eOVUTO]�
� []\dc
�eO+UdO�\EOV_�YWHKSTwQH~_eRVU�RQ_eJLt�UWR�\^R�SWSTHE\^UaXg_/�nXz�
w�XL�e[]OVJ2HESWSTRQSdYEZ�Pe[nU�OQJLYWR
UWR�XLs3�]SWR+w�H�UTceH�STHKJLXLOV�
PeXLJgXgU�t�s3Rn�nHEJ{��R�Sa�eO+UdOrY�R�[eSd\^HEYE���aR+��HEwQHKSbZ�UWc]HKSTH
c]O�Y-P/HEHK_rJLXzUWUWJLHaSTHEYWHEOQST\dc~Xg_
UWRxUWceX�Y�J�O+UWUWHKS�SWR�JgH���R�S
OQ\Ey
[eXgSTHE�
�eOVUTOe�r��_
UTceXLY~Y�c]RQSWU��/OV�?HKS$�IHv�nH^�]_]H
O|_eHE���]O+UTOr\KJgHbOV_eXL_ef|s|Rn�nHKJNUWc]OVU�OVJLJgR+�2Y�O|[/Y�HES
UWR�HEY�UWXLsrO+UWH~UWc]H~w+OVJL[eH~RV����[eSWUWc]HKS��eO+UdO�OQ\Ey
[eXLYWXg�
UWXLRQ_�Xg_�UWceH~��OQ\KH�RQ��Y��?HE\KXz�?\xPe[]YWXL_eHEYTY��nHE\KXLYWXgR�_]YE�
� Yr�]O+UTO�X�YrOQ\Ky
[eXLSTHE�:Z-UTceH�SWHEJgX�OVP]XgJLXzU�t�s|Rn�nHEJ�RV�
YWRQ[eSd\^HbY�X�Y�[e���eOVUWHE�v[]Y�XL_ef3GIOut�HEYWXLOQ_3UWHE\dc]_eXLy
[eHbYKZ
UWc�[]Y|OQXL�nXL_ef�UWceH�[]YWHKS3Xg_�P/RQUWcj�nHKw�HKJLRQ�eXL_efASTHEOV�
YWRQ_]OQPeJgH��eSTRQP]OQPeXgJLXgU�t3s|Rn�nHEJLY���RQS�[e_/\^HKSWUTOQXg_��eO+UdO
OV_/�~XL_rXLs3�]SWR+w�XL_ef�UWceH2y
[]OQJgXgU�t�RQ�/UTc]O+U��]O+UTO]� � Jz�
UWc]RQ[ef�c��IHx�nR|_eRVUa�eHEOVJ:c]HKSTH���XgUWc�UTceH$�eSTRQPeJLHKs
RV���]_]�nXL_ef�RQ�nUTXgsrOVJ�s|H^UTceRn�eY���RQS�[nUTXgJLXg�EXg_]f�HK���
UWHESW_/OVJ��]O+UTO�Y�R�[eSd\^HEYEZ]�IH~�eR�Y�c]R+� c]R+��RQ[eSa��RQSW�
srOVJLXg�bO+UTXgR�_�STHE�n[]\KHEY$\KJgHbOV_eXL_ef�UWR�O���HEJgJg�¡Y�UW[/�nXgHb�
RQ�eUWXLs3XL�EOVUWXLRQ_��eSTRQPeJLHKs��

¢ £�¤ lnme¥�¦a§ap?le¨�¥ ¤
©=ceHE_��eHE\^X�YWXgR�_]Y�s�[/Y�U2P?H$srOQ�nH$��XgUWceR�[nU2fQR�Rn��Xg_n��R�SWsrOV�
UWXLRQ_NZ+XzU-X�Y�\KSWXgUWX�\KOQJQUTR�ª�_eR+��ceR+��s~[]\dcxUTceHIXg_n��R�SWsrOVUWXLRQ_�OVU
c]OQ_]��\KOV_�P?H�UWST[]Y�UTHE�:��`NR3UWc]XLY�HE_]�:ZnUTHE\dce_]XLy
[eHbY�UWRrsrOV_e�
OVf�H�OQ_]��Xgs|�eSTR+wQH��eO+UdO|y�[/OVJLXzU�trc]Ouw�H�P?HKHE_��nHKw�HKJLRQ�?HE�vP�t
UWc]H��eO+UdOVP]O�Y�H�STHEYWHEOQST\dc�\^R�s3s~[e_eXgU�tQ��q�OVUTO«\KRQSTSWHb\¬UT_eHEYTY
\KOQ_�P?H�\KOV�eUW[eSTHE����XzUTc�XL_
UWHKf�SWXgU�t�\^R�_]Y�UTSTOQXg_
UdY�­g®^¯¡Z���ceXLJLH
�eOVUTOvy
[]OQJgXgU�t�OQ_]�A\KRQ_n�/�eHK_]\KH�\KOQ_AP/H3\KOQ�nUW[eSTHE��XL_A�eSTRQPe�
OVP]XgJLXLY�UWX�\��]O+UTOQP]OQYWHEY�°�HQ� f]�5­g®Q®VZ±®b²b¯�³¬��©�R�SWª�RQ_A\KRQ_]Y�UWSdOVXL_
U
STHK�]OQXgS�°�HQ� f]�
­ ´nZbµ+¯�³{OQ_]��RQ_$�e[eSTfQXL_ef2�n[]�eJgX�\KOVUWHbY�°�H�� f/��­ ¶nZb·+¯�³
YW[e�e�?RQSWUTY�UTceHxOV[nUTRQsrO+UTHE��Xgs|�eSTR+wQHEs|HK_
U�RV�-�eO+UdO3y
[]OQJgXgU�tQZ
��RQS�H^�eOVs|�eJLH2P�t|SWHEs|R+w
XL_ef$[e_]JgXLªQHEJgt~UW[e�]JgHbY�R�S�X��nHK_
UWXg��t�Xg_]f
�nX�YWYWXLs3XLJ�OVSNSTHK�]SWHbY�HE_�UdO+UTXgR�_]Y{RQ�nUWceH�YWOQs|H�HK_
UTXzU�t����2R+�IHKw�HKSbZ
UWc]H��eSTRQPeJLHKs RV�e\^R�_e_eHb\¬UWXL_ef2�eOVUTO2\KJgHbOV_eXL_ef�UTR�UWceHI�nHE\KXLYWXLRQ_
srOVª�XL_efa�eSTRn\^HbYWYNXzU-Y�[]�e�/R�S�UdYNc/OQY�_eRVU±P/HEHK_~Y�UW[/�nXgHb�xXL_~OQ_
t
�nHKUTOVXLJ)� � XLs3XLJ�OVSTJgt�Z:JgXgU�UTJgHrO+UWUWHE_�UTXgR�_�c]O�Y�P/HEHK_���R�\K[]YWHE�AR�_
¸e¹Vº UTR��nHEwQHEJgR��A�eSTRQP]OQPeXgJLX�Y�UTXL\$s|Rn�nHEJLY���RQS��eOVUTO�RQS º�¸e»K¼
UWR�HK���?HK_/��HK}?R�S�U�RQS�s|RQ_eHEt�UWR�O�\Ky
[eXLSWH~fQR�Rn���eOVUTO]��©
H
_eR+�½XL_
UWSTRn�n[]\^H�O
ST[e_e_eXL_ef�H^�eOVs|�eJLH�UWR�XgJLJL[]Y�UTSTOVUWH�UWc]HEYWH
X�YWYW[eHEY3OV_/��s|RVUWXLw+O+UTH�O�s3Rn�nHEJ�RV���eOVUTO�\^JLHEOV_]Xg_ef
�nSTXgw�HK_
P�t�¾K¿�ÀdÁ ¼�» ÀdÀ�Â »dÃ Á�À¬Á ¹+¼ À¬�

Ä�Å{ÆeÇ�È5É�Ê�Ë?Ì'Í�RQ_]YWXL�eHKSrO�c�t��?RVUWc]H^UWX�\KOQJIUWHKJLHE\KRQs|s�[]_eXz�
\KOVUWXLRQ_]Y|YWHKSTw�XL\KH��eSTR+w�XL�nHESEZ � ÍIÎ�ÏÐ`�HKJLHE\KRQs�� � ÍIÎAÏÐXLY
XL_�UTHKSTHEY�UWHb�«XL_�Pe[]XgJ��nXL_ef
O���XLSWHEJgHbYWY~_eH^U��IRQSTª�Xg_ � JLP?HKSWUTOeZ
��ceX�\dc�SWHby
[eXgSTHEYIUTceH�\KRQ_]Y�UWST[]\¬UTXgR�_�RV��\^HEJgJL[eJ�OVS�UTR+��HESTYE��`�R
YWHKHrXg��XgU~\EOV_�Pe[eXLJL��O�_]H^U��IRQSTªA��XzUTc«Y�[eÑr\KXgHE_
U~\KOQ�]OQ\KXzU�t�Z
� ÍIÎAÏ�SWHby
[eXgSTHEY��eOVUTO~RQ_�UWceHxYWXzUTHEY�Ouw+OVXLJLOQPeJLHa��R�S�\KHKJLJg[]JLOQS
UWR+�IHKSdYEZ�OQ_]��UWceH�UTR+��HESTY�UWc]HKt�\EOV_�Y�[]�e�/R�S�Ub�
� ÍIÎAÏ�c]O�Y�RQPnUdOVXL_eHE��\KOVUTOQJgR�f�YIRV�±�/R
YWYWXgP]JgHxYWXzUTHEYI��STRQs

U��IR2\^RQ_/Y�[eJgUWXL_efa\KRQs|�]OQ_eXgHbYKZuOV_/��STHK�]SWHbY�HE_�UdY�UWc]XLYNXg_n��R�SWsrOV�
UWXLRQ_�Xg_vUWceH�U���R�UTOQPeJgHbY�RQ��Ò±Xgf�[eSTHx®Q�-`�ceH�UTOQPeJgHbY�\KRQ_n��R�SWs
UWR3UTceH���RQJLJgR+��XL_efrYT\dceHKsrOeÓ

Ô�Õ×Ö�ØuÙ�Ú/Û+ÜTÕgÝeÞ±Õàß+Ö á
âeã¬äNåEæàç�è+ébåbÞ:Ö�Ö)êQënØ^ì
í+înïbð ñ XLY2UWceH3�nHKHb��_�[es�P?HKSa��RQS�O�Y�XgUWH3OV_]��ò�ò)ó
ôVõxfQXLwQHbY

UWc]HxU�t��/H3RV�-UTR+��HESTY2XzU$\KOQ_AY�[e�]�/R�S�UbÓröW�2XLfQc/÷|��RQS�OvceXLfQce�
\KOQ�]OQ\KXzU�t�UWR+�IHKSbZ�öWM{R+�2÷���R�S3OAJgR+����\KOQ�]OQ\KXzU�t�UWR+�IHKSbZ±OQ_]�
ödÍIø�÷�Xg�NUTceHxYWXzUTH�X�YaÍ�[eSTSWHE_�UTJgtvøa_]Ouw+OVXLJLOQPeJLHQZ�Pe[nU2srOutrP?H
OVP]JgH$YW[e�e�?RQSWUaO3\KHKJLJ�UWR+�IHKS�XL_�UWceH���[nUT[eSTHQ�
`�ceH��eO+UdOBYW[efQf�HEY�UTY�UTc]O+U
RQ_eH�RQS
P/RQUWcùJLX�Y�UdY
OQSWH�RV�

JLR+�Ðy
[]OVJLXgU�tQ�v`�R���c/O+UxH^��UTHK_
U�\KOQ_�HK��X�Y�UWXL_efA�eO+UdO�\^JLHEOV_e�
XL_ef�UWHb\dce_eX�y�[]HEYrP?H�OV�]�eJgXLHE��UTR � ÍIÎAÏ2ú Yr�eSTRQP]JgHEsrû � Y
s|HK_
UWXLRQ_]HE��OVP?R+wQHQZ�RQ_eH�\KJLO�YWY3RV��UWHb\dce_eX�y
[eHEYr�nHbOVJ�Y|��XzUTc
�]_]�eXg_ef!üdýQý?þ ¹Kÿ Á��|ü�� » �rü�� ÃT¸]» À|OV_]��SWHb\^R�_]\^XLJgXL_ef
HK_
UWXgUWXLHEY
OQ\KSWR
YWY��eO+UdO�YWRQ[eSd\^HbYa­ ¶nZ�·+¯¡�5�aR+��HEwQHESEZ
Y�[]\dc�ö�STHE\^R�ST�3JLXg_]ª��
OVf�HE÷��]SWR�PeJgHEsrY~OQSWH�_eRVUrOV_«X�YTY�[eH�ceHESWH�Z�OQY~��H�c]OuwQH�OQY��
YW[es|HE�
UWc/O+UxUTceH í+înïbð ñ XL_n��R�SWsrO+UTXgR�_�XLYx\KRQSTSWHb\¬Ub��°��¡��UTceXLY
OQYTYW[es|�nUWXLRQ_��eR
HbYN_]RVU�c]RQJ��:ZVOV�e�]SWRu�nXLs|OVUWH-srO+Ud\dceHEY�s|Xgf�c
U
P?H2[]YWHE�~UWR$PeSTXL_ef�UWceH��eO+UdO�UWR�UWc]HaY�UdO+UTH2Y�ceR+��_3XL_|UWceH2HK���
OVs|�eJLHQ�×³
� YWHE\^R�_]��\^J�OQYTY�RV�±UWHb\dce_eX�y�[]HEYIUWc/O+Uas|XLfQc
U2P/HxOQ�e�eJLXgHb�

OVSTH Ãd¹+¼ À��8þWüVÁ ¼ ��þ » ýeüVÁ þ�UWHb\dce_eX�y
[eHEY�­ ´]Z�µV¯)� `NRB��RQSTsrOVJg�
XL�KH�UWceX�Y�HK�eOVs|�eJLH�O�Y�O
\^RQ_/Y�UTSTOQXg_
U�STHK�]OQXgS~�eSTRQPeJLHKs�Z-RQ_]H
s|Xgf�c
U~\^R�s3�][nUWHrUTceH�[]_eXgR�_�RV���NÇ	��

�=OV_]��������Ê���Z±OQ_]�
UWc]HK_«OQYTYWHKSWU$O�ª�HKt�\KRQ_]Y�UWSdOVXL_
U���SWR�s í+înïbð ñ UTR�� î�� õ��Lò8ó
ôVõ
RQ_jUTceH�STHEYW[eJgUWXL_ef�UdOVPeJLHQ�ù`�ceH��eO+UdO«\^R�[eJL��UTceHK_BP/H�SWHK�
�]OQXgSTHE��P�t�HKXgUWceHES3�eHKJLH^UWXL_ef�UW[e�eJLHEY3R�S�s|Rn�nXz��t�XL_ef�w+OQJg[eHbYK�
Í�RQ_/Y�X��nHKS3OV�e�]Jgt�XL_ef�HKXgUWceHES3OQ�e�eSTR�O�\dc�UTR � XgUWH�®b²n®���Í�HKSW�
UTOQXg_]Jgt�Z2UWc]H�ª�HKtj\^RQ_/Y�UTSTOQXg_
U�\EOV_!P?H
SWHE�]OVXLSWHb�jP�tj�eHKJLH^U��
XL_ef�HEXzUTceHKS�UTceH��{Ç���
���RQS������±Ê��3UW[e�]JgH3��RQS � XgUWH�®u²n®QZ�R�S
P�t�\dc]OQ_efQXL_ef�OjöWMNR+�2÷�wuOQJg[]H|UWR!öT�2XLfQc]÷]ZNRQS�w
X�\^Hrw�HKSdYWO]�
�2R+�IHKw�HKSbZ�Y�XL_]\^HAUWceHESWHAX�Y�_eR«HKw�X��nHK_/\^H�UTR«��OuwQR�SvOV_�t�RV�
UWc]HEYWH�STHK�]OQXgSdYKZb_eHEXzUTceHKS5�nHKJLH^UTH^�)UW[e�]JgH�\^R�_]Y�UTSTOQXg_
UNSTHK�/OVXLSN_eR�S
O+UWUWSTXgP][nUWHK�)s|Rn�nXg�/\KOVUWXLRQ_xSTHK�]OQXgS�XLY�JLXgª�HKJLtaUTR�ceHEJg� � ÍIÎAÏAXL_
UWc]XLY2\EOQYWHQ�
� R�Rn��STHK�]OQXgS��nHb\^X�Y�XLRQ_]Y$\KRQ[eJ��AP?HrsrOQ�nH3Xg��UTceHrY�R�[eST\KH

XL_]Y�UdOV_]\KHEY���HESWH�HK_eSTXL\dc]HE����XgUWcùSTHKJLXLOQPeXLJgXgU�t�Xg_n��R�SWsrOVUWXLRQ_



�NÇ	� 
��
í+înïbð ñ � î�� õ��Lò8ó
ôVõ
®u²n® öW�2XLfQc/÷
®u² � öWMNR+�2÷
®Eµ�� ödÍIøa÷
®���� ödÍIøa÷
®b·Q· öWMNR+�2÷
²��Q´ öWMNR+�2÷

������Ê��
í+înïbð ñ � î�� õ��Lò8ó
ôVõ
®u²n® öWMNR+�2÷
®u² � öWMNR+�2÷
®Eµ�� öW�2XLfQc/÷
®���� ödÍIøa÷
®b·Q· öWMNR+�2÷

Ò±XLfQ[eSTH|®QÓ�Ï��nOQs|�eJgH$YWXzUTH$�eO+UdOe�
fQXLw�Xg_]f�UTceHr�eSTRQP]OQPeXgJLXgU�t�UWc]OVU$O�UW[]�eJgHrR�S$O+U�UTSWXLPe[nUTH|wuOQJg[]H
X�Y�\KRQSTSWHb\¬UE� � []\dc�Xg_n��R�SWsrOVUWXLRQ_�\KRQ[eJ��rP?H�s|Rn�nHKJLHE�{Z���R�S�HK���
OVs|�eJLHQZ+XL_~Oa�eSTRQP]OQPeXgJLX�Y�UTXL\��eO+UdO2s|Rn�nHKJ�­z®�®VZ�®b²b¯¡� � \KSWXgUWX�\KOQJ
y
[eHEY�UWXLRQ_NZ�ceR+�IHKw�HKSbZNX�Y$ceR+�ÐUWceX�Y~SWHEJgX�OVPeXLJLXzU�t�Xg_n��R�SWsrOVUWXLRQ_
�IRQ[eJ��AP?H|RQPnUdOVXL_eHE�:��©=c]O+U$�eSTRQP]OQPeXLJgXgUWXLHEY�Y�c]RQ[eJ��AP?HrOQY��
YWXgf�_eHE��UTR«HEO�\dc��?R�YTYWXgPeJLHAw+OVJL[eH���R�Svò�ò)ó�ôVõA��RQS�YWXgUWH«®u²n®bû
Òe[]S�UTceHKSTs|RQSTHQZnceR+��\KOQ_��IHxOQYTYWXgf�_�\KRQ_n�/�eHK_]\KH�UTRrRQ[eSaSWHK�
JLXLOQPeXgJLXgU�tAHEY�UWXLsrO+UWH3UTR�STH	�/HE\¬U�UTceHvOVs|RQ[]_�U�RV��YW[e�e�?RQSWUWXL_ef
�eOVUTO���H|c]Ouw�H3YWHKHE_/û Í�JLHEOQSWJLtQZ:�IHrs�[]Y�Ux�nX�Y�UTXg_ef�[eX�Y�c
UWc]H
\KO�Y�H�XL_���c]XL\dc�s�[]\dc�ceX�Y�UTRQSTXL\EOVJ:�eOVUTO3Y�[e�]�/R�S�UdYIUWceH$[e_]SWHK�
JLXLOQPeXgJLXgU�t
RQ� �����±Ê��v��STRQs UTceH�\EOQYWH���ceHESWH�UWceHESWH�XLY~JgXgU�UTJgH
�eOVUTO�Ouw+OVXLJLOQPeJLHQ��`NRAc]HKJL� � ÍIÎAÏ2Z±O��eO+UdOA\^JLHEOQ_eXg_]fAY�tnY��
UWHEs s�[]Y�U�c]OuwQH�P/RQUWc�O~Y�UTSTOVUWHEfQt3UWR3�nHKw�HKJLRQ��O~SWHEJgX�OVP]XgJLXzU�t
s|Rn�nHKJ)ZIOQ_]�jO
�IOut�UTR�HEY�UWXLs|OVUWH�OV_/��O���
�[]Y�UrUWceHA\KRQ_n�]�
�nHE_]\^H$XL_�UTceH$s|Rn�nHKJ)�
q�O+UTOASWHEJgX�OVPeXLJLXzU�t�HEY�UWXLs|OVUWHbY�\KOQ_�P/H�Xgs|�eSTR+wQHb�
P
t
RQPe�

UTOQXg_]Xg_ef��eO+UdO«w�X�O«H^��UTHKST_]OVJ�Y�R�[eSd\^HEYE� Ò]RQS�H^�eOVs|�eJLHQZ2P�t
RQPeUTOVXL_eXL_efvUTceH|\^RQSTSTHE\¬U�OV_]YW�IHKS2��R�S�YWXgUWH�®b²n®�Z � ÍIÎ�ÏB\KOQ_
ceHEJg��Xgs|�eSTR+wQH�XzUdY�STHKJLX�OVPeXLJgXgU�t|s|R��eHKJ)�-�¡� �{Ç���
��AUW[eST_]YIRQ[eU
UWR�P/H�\^R�SWSTHE\^UEZ � ÍIÎAÏ�s|Xgf�c
U~OQYTY�[]s3H�XzU3XLY~s|RQSTHvJgXLªQHEJgt
UWc/O+U �NÇ	��

��XLY�\^RQSTSTHE\¬U-R�_|YWXgUWH$®Kµ��eZQOQ_]�3Xz��UTceXLY�UWR�R�UW[]SW_]Y
RQ[eU±UTR�P/HIUWc]H�\EOQYWH�°�RQS-�?HKSTc]OV�/YN��R�S-Y�HEwQHKSdOVJ
s|RQSTH�UT[e�eJLHEYd³¬Z
� ÍIÎAÏ�srOutx\dceR�R�YWH�UTRaUTSW[]Y�U �{Ç���
���ú YNw+OVJL[eH���RQS�YWXzUTH�²��Q´]�
� _$XLs|�/R�S�UdOV_
U{UTSTO��nH^�¡RV}�X�Y�UTc
[/Y{P?H^U��IHKHK_�UTceH�HK�n�/Hb\¬UWHb�

XLs3�]SWR+w�HKs|HK_
U|Xg_=�eOVUTO�y
[]OVJLXgU�t«RQPnUdOVXL_eHE��P�t�\KRQ_]YW[eJgUWXL_ef
H^��UTHKST_]OVJ�Y�R�[eSd\^HEY�OV_]�«UWceH�H^�n�/HE_]YWH�RQ�a�eO+UdO�OQ\Ey
[eXLYWXgUWXLRQ_
��STRQs UWc]HEYWH�YWRQ[eSd\^HbYK��Ï���X�Y�UWXL_ef�YWtnY�UTHKsrY3RV}�HKS3_eHKXgUWceHESrO
��OutrUWR�y
[]OQ_
UWXg��tvUWc]HxH^�n�?HE\¬UTHE��XLs|�eSWR+w�HKs|HK_
U�_eR�SaO|�IOut
UWR�HEY�UWXLs|OVUWH�UWceH~wuOQJg[]HxRV�-UTc]O+UaXLs|�eSTR+wQHKs|HE_�Ub���¡��Ov\^STHE�n�
XLPeJgH�YWRQ[eSd\^H�RV}�HKSTHE� � ÍIÎAÏ O��?HKSW��HE\¬U�JLXLY�UEZ�ceR+� s~[]\dc
YWceRQ[eJ�� � ÍIÎ�Ï!P?H~��XLJgJLXL_ef�UTR��/Outnû�©
H|OVSTfQ[eH�UWc]OVU�UTceXLY
y
[eHEY�UWXLRQ_~\KOV_�RQ_eJLt�P/H�OV_]YW�IHKSTHE�$\^R�_]\^STH^UTHKJLt���XgUWc3O2s|Rn�nHKJ
RV�nUTceH�¾K¿�À¬Á ¼?» ÀdÀIÂ »dÃ Á�ÀdÁ ¹V¼ À{��O�\^Hb�:��`�R2XLJgJL[]Y�UWSdO+UWH�UWceX�Y��/R�Xg_
UEZ
�IH�STH^UT[eST_�UTRrRQ[eS�HK�nOQs|�eJgH�Ó
Ä�Å{ÆeÇ�È5É�Ê!Ë�
�� ��� 

� ���±Ê���Ì � ÍIÎAÏ�c]O�YxOA\KSWXgUWX�\KOQJ��nH^�
\^X�YWXgR�_�UWR�s|OQªQH�Ó � ceRQ[]JL��XgU�Pe[eXLJL��Ov_eHE��_eH^U��IRQSTª�XL_ � Jz�
P?HKSWUTO�û�`�ceHESWHxX�Y�O|�e�nHE��R+w�HKSTceHEO���RV�2®��]Z �����]Z �����rÍIOV_]OV�
�nX�OV_��nR�JgJ�OVSdY���RQSxPe[]XgJ��nXL_ef�UWceHr_]H^U��IRQSTª?ZN��ceXgJLHrRQ_/\^H|UWc]H
_eHKU���R�SWª�XLY�Pe[eXLJzU�UWc]HKSTH���XLJgJ±P/H3Ov_eHKU��eSTRV�]UaRV���n®����]Z �����
��RQS�HEO�\dc3c]Xgf�cn�¡\EOV�]O�\^XgU�txUTR+��HES�OV_]���Q¶��]Z �����a��RQS�HbOQ\dc|JLR+���
\KOQ�]OQ\KXzU�t�UWR+�IHKSb�
Í�JLHEOQSWJLtQZ-HESWSTRQSdY$XL_�UWceH��eOVUTOA\EOV_«c]Ouw�H
Or�nSdOVsrO+UTXL\�XLs|�]OQ\^U�R�_�UTceH�\KRQSTSWHb\¬Ua\dceR�XL\KH���RQS�UTceXLY��nHE\KXz�
YWXgR�_{�±`�c]HKSTH�X�Y5_eR��nRQ[ePeU±UTc]O+U � ÍIÎ�Ï�\EOV_|�nH^UTHKSTs3XL_eHIUWc]H
y
[]OVJLXgU�t�RQ�-UWceX�Y��eO+UdO�OQ_]�A\^R�SWSTHE\^UaXgUEÓ2XgU�\EOV_�YWHK_/��OvSTHK�e�
STHEYWHK_
UTOVUWXLwQH|RQ[nU$UTRAY�[]SWw�HKtAHbOQ\dc�Y�XgUWH�Z±OQ_]��\KRQ_
UTO�\¬UxHbOQ\dc
YWXzUTH�R+��_eHESE�5GI[nUIUWceX�Y�X�Y�O+U�OV_�Ouw�HKSdOVf�H�\KR�Y�U�RQ����®��������?HKS
STHE\^R�ST�{�

�2R+�ÐY�ceR�[eJ�� � ÍIÎAÏ'�eSTRn\^HKHb�]û � ceRQ[]JL��XzU$XLfQ_eR�SWH~UWc]H
STXLYWª$\KOV[/Y�Hb�xP�t�UWceHIJLR+��y
[]OVJLXzU�t$�eOVUTO�OV_]��srOVªQH�UWceX�Y5�nHE\KXz�
YWXgR�_�P?H^��R�SWH5UdOVª�XL_ef2OV_�t�\KJgHbOV_eXL_ef2O�\¬UWXLRQ_?û � ceR�[eJ���XzU�y
[eHESWt
O|Y�srOQJgJ:_�[es~P/HES2RV��UW[e�eJLHEYaOV_]��UWc]HK_��nHE\KXL�eHbû�©=ceX�\dc�UW[n�
�eJLHEYrYWceRQ[]JL��P/H�YTOVs|�eJLHE�:ZIOV_]����STRQs ��c]OVUrYWRQ[]ST\KHbû���S
YWceRQ[eJ���XzU�YTOVs|�eJLH�s3R�SWH�UTc]OV_�RQ_]\KHQZ��nHK�?HK_/�nHK_
UvRQ_�UWc]H
STHEYW[eJzUdY�RQ�{�eSTXgR�S�YTOVs|�eJLHEYdû�`�ceH�y
[eHbY�UTXgR�_vRV� º�¸ ü���Â�ü���ü � ¹
Ã��g» ü ¼ OQ_]�
��ceHK_�XLYxO�\^ST[]\^X�OVJ�R�_eHr��R�S�OV_�t�R�SWf
OV_eXL�EOVUWXLRQ_
srOV_]OQfQXL_ef��nHE\KXLYWXgR�_n��\^STXzUTXL\EOVJ-�eO+UdOe�r��_�fQHE_eHKSdOVJ)Z:UTceHv�eO+UdO
srOut�Xgs|�]O�\¬U�srOV_�tA�nHE\KXLYWXLRQ_]YEZ{OV_]��UWc]HKSTH~srOut�P?H3srOQ_
t
H^��UTHKST_]OVJ]YWRQ[]ST\KHEY�Ouw+OVXLJ�OVPeJLH���XzUTcv��ceX�\dc|UWRxw+OQJgX��eO+UTH��eOVUTO]Z
HEO�\dc���XgUWc«O��eXz}�HKSTHK_
U�STHKJLXLOQPeXLJgXgU�tQ�v©
H�YWHKH3UWc/O+U�HEwQHK_�XL_
UWc]XLY$YWXgs|�eJLH|H^�eOVs|�eJLH~UWceHv\KRQSTSWHb\¬U�\KJgHbOV_eXL_ef��/R�JgX�\^t�XLY���OQS
��STRQs½R�P
w�XLRQ[]YE�
��_|UWc]XLY���R�SWªx�IH2�eSTRQ�?R�YWH2O�_eHE�j�]O+UTO�\^JLHEOV_]Xg_ef���SdOVs|HK�

�IRQSTªùfQHbOVSTHE�ÐUWR+��OVSd�eY��nHE\KXL�eXg_ef ��ceXL\dc HK��UWHKST_]OQJ��eO+UdO
UWR�y
[eHKSTtQZ2P/OQYWHE�jRQ_BXzUdY�XLs|�]OQ\^U�R�_!Pe[]YWXg_]HEYTY��nHb\^X�Y�XLRQ_/Y
OV_/��XzUdY�w+OQJg[eH�Xg_�[e���eO+UTXg_ef�UWceH��eOVUTO�STHKJLXLOQPeXLJgXgU�t�s3Rn�nHEJ8�
��[eS$��SdOVs|HE��R�SWª�XL_]\^JL[]�nHbYxO���RQSTsrOVJ�s|Rn�nHEJ�RV�2Ê
Å 
EÊ� ���Æ]É
�
�!�" ��QÊ��QZ�Xg_���ceX�\dc�O�y
[eHESWt�RQ_�OV_
H^��UWHESW_/OVJ�YWRQ[eSd\^H3HK_n�
UTOQXgJ�YaO�\^R
Y�Ub��©�H~s3Rn�nHEJ �! �#/Æ � �%$QÆ 

� ����ÆeÉ&��Ê�� � ��� ��� �xO�Y
OQ\^UWXLRQ_]Y���ceR
Y�H3SWHE�IOQST�]YaOVSTH3P]OQYWHE��R�_�y
[eHESWXLHEYE��`�ceX�Y�OVJg�
JLR+�2Y{[]YNUWR�y�[/OV_
UWXg��taUTceHIP/HE_eH^�eU±RV�]�eOVUTO�\^JLHEOV_]Xg_ef�OQ\¬UTXgR�_]YE�
��[eS�s|Rn�nHKJ-RQ� �
�!�" ��QÊ' +Ê�É �8Æ)( �8É � 
+*�Xg_]\KJg[/�nHEY$O��]OQSTOQs3HK�
UWHESWXL�KHb�=�eO+UdO«s|Rn�nHKJ�XL_!��ceX�\dcjUWceH��]OVSdOVs|H^UTHKSdYv\KOQ_!P?H
HEY�UWXLsrO+UTHE�vP/OQYWHE�vR�_�\^[]SWSTHK_
U�ª�_eR+��JLHE�efQHQZ
XL_]\^JL[]�nXL_efr�eO+UdO
��STRQs�H^��UWHESW_/OVJ�Y�R�[eST\KHEYE� � Y�R�Jg[nUTXgR�_$UWRaUWceH�\^JLHEOQ_eXL_efa�eSTRQPe�
JLHKs#��XgJLJeUTceHK_v\KRQ_]YWXLY�U�RV�{O3ÀKü��aý � Á ¼�, ý ¹�� Á Ã�- UWHEJgJLXL_efx��ceX�\dc
H^��UTHKST_]OVJ��eO+UdO$UTR~y
[eHKSTt|P]OQYWHE�vRQ_rUTceH�\K[eSTSWHE_�UISWHEJgX�OVP]XgJLXzU�t
HEY�UWXLsrO+UTHEY�OV_/��UTceH$RQSTf�OQ_eXL�EO+UTXgR�_vw+OVJL[eH�RV�-�eO+UdOe�
��_jUWc]XLY�Y�c]RQSWUv�]OV�?HKS���H�\KRQ_]\KHK_
UWSdO+UTH�RQ_=f�Xgw�XL_ef�UWc]H

��RQSTsrOVJ:s|Rn�nHKJ)Z]OQ_]���nR|_eRVUa�nX�YT\^[]YTY�Y�R�Jg[eUWXLRQ_�UWHE\dc]_eXLy
[eHbYK�
�2R+�IHKw�HKSbZ���Hx�nR|XL_]�nX�\KOVUWH$ceR+� RQ[eS�_]RVUWXLRQ_�RV�-Or\^JLHEOQ_eXL_ef
�?RQJLXL\Kt�STHE�e[]\^HbY2UTceH~\KJgHbOV_eXL_ef��]SWR�PeJgHEs UTR�O���HEJgJg�¡Y�UW[/�nXgHb�
�eSTRQPeJLHKs½OQSWHbOeZ�UWc]OVU�RV�/.�üVþ10 ¹�2433»dÃ Á�À¬Á ¹+¼65 þ ¹bÃd» ÀdÀ » À�­z®��u¯)�

7 8:9 p:¨�k�¨�¥ ¤<; ¦2m]¨>= 9N¤@?BAC9 o ¤ ¨ ¤EDGF meoIH 9�J ¥�mLK
��_AUTceX�Y$Y�Hb\¬UWXLRQ_���H|�nHEYT\^STXLP/H3Ov��SdOVs|HK�IRQSTª���RQS$qaHb\^X�Y�XLRQ_e�
�nSTXgw�HK_�Í�JLHEOQ_eXL_ef]Z-XL_«UTceH���R�SWs RQ��ONM �g» ü ¼ Á ¼�,O5 þ ¹ ¾ �g» �~Z
\^R�_]YWXLY�UWXL_ef|RV��UWceH���R�JgJLR+��Xg_]f|\KRQs|�?RQ_eHE_�UdYKÓ
P O�STHKJ�O+UTXgR�_]OVJIY�XLfQ_/O+UW[]SWH|��R�S�UTceH�R�P]Y�HESWw�HE���eOVUTOAOQ_]�UTSW[eHx�]O+UTO
P OQ_'HESWSTRQS�s|R��eHKJxf�Xgw�XL_ef�Oj�nX�Y�UWSTXgPe[eUWXLRQ_ RQ_ HKSTSWR�STYEZ
�?R�YTY�XLPeJLtv��XgUWc�ceX��e�nHK_��]OQSTOQs|H^UWHESTY

P OÐY�HKU�RV���]O+UTO Y�R�[eST\KHEY«UWc]OVU�\KOQ_½P?H y
[eHESWXLHE�#UTR
f�H^U�ceXLfQceHES���y
[]OVJLXgU�txXg_e��RQSTs|OVUWXLRQ_|RQ_3UTceH�UTOQSWf�H^U��eOVUTO]Z
OQJgR�_ef~��XgUWcA\KR�Y�U2OV_]��y
[]OVJLXzU�t�Xg_n��R�SWsrOVUWXLRQ_���RQS�UWc]HEYWH
YWRQ[eSd\^HbY

P O~Y�HKUIRQ�NPe[]YWXg_]HEYTYI�eHE\^X�YWXgR�_]Y���XgUWc�OQYTY�Rn\KXLOVUWHE�vSWHE�IOQST���[e_/\¬UWXLRQ_/Y
� Y�R�Jg[nUTXgR�_�UWR�Oa\^JLHEOQ_eXL_efa�eSTRQP]JgHEs'X�Y�OQ_xRQ�eUWXLs|OQJ Ã��g» ü ¼ Á ¼�,
ý ¹�� Á Ã�- UWc]OVU��nHb\^X��nHEYEZV��R�S�HKw�HKSTtx�/R
YWYWXLPeJgH�c]XLY�UWR�SWt~RV�:Y�R�[eST\KH
�eOVUTO�YTOVs|�eJLXL_ef]Z?��ceH^UTceHKS�UWRvUTOVª�H~OvYTOVs|�eJLXL_ef�O�\¬UWXLRQ_NZ/R�S
UWR|srOVª�H$O3\dc]RQX�\^H���RQS�R�_eH�RQS�s|RQSTH�Pe[]YWXg_eHbYWY��eHE\^X�YWXgR�_]YK�



©
H$_eR+�'�nX�YT\^[]YTY�HEO�\dc�RV�±UWc]HEYWH$HKJLHKs|HK_
UTY�XL_��nH^UdOVXLJ8�
��Ê�É8Æ 
�� ���±ÆeÉ���Æ 
EÆ�� � �±Ê�É ��[eS-�eOVUTO�s|Rn�nHKJnX�Y-O�YWXLs~�

�eJLH�s|R��eHKJ���RQSrXL_
UWHEfQSdO+UWHb��STHKJ�O+UTXgR�_]OVJ��eOVUTO]���¡U�\KRQ_]YWX�Y�UdY
RV�xO
�e�nHb��YT\dceHEs|O�� OQ_]�jO«Y�HKU���� ï RV�xYWRQ[eSd\^HbYK�B`�c]H
YT\dceHKsrO�� \^R�_]YWXLY�UTY�RV��Ov�/_eXzUTHvY�HKU$RV��STHKJ�O+UTXgR�_]YKZ{O�srOV�e�
�eXL_ef�	bò�òaO�YWYWRn\^X�O+UWXL_ef|��XgUWcAHbOQ\dc�STHKJ�O+UWXLRQ_�
#OvYWH^U�	bò�òK°

$³
RV�-O+UWUWSTXgP][nUWHbYKZeO|srOV�]�eXg_]f�� î�� O�YWYWRn\^X�O+UTXg_ef3��XgUWc�HEO�\dc��
XL_�	bò�ò^°�
$³�O��nR�s|OQXg_�� î�� °��n³^Z:��ceXL\dc�\KOV_�P/H3HKXgUWceHES�XL_n�e�
_eXgUWH�°�ú Y�UTSWXL_ef]úLZ±ú XL_
UEúLZ±ú STHEOVJ)úLZ/HKUT\V�×³�R�S2�]_eXgUWH�Z:OV_]�AO�Y�[eP/Y�HKU
� õ^óe°�
$³���	bò�ò^°�
$³±SWHE�eSTHEYWHK_
UWXL_ef�O��nX�Y�UWXL_efQ[eX�YWceHE�3ªQHEt$RV��
~�
� _�Á ¼ À��¡ü ¼?Ãd» RV�NO�SWHEJLOVUWXLRQ_�
 XLYIO�YWH^UIRV�:UT[e�eJLHEYEZn��ceHKSTH

OaUW[e�eJLH�Xg_/\^JL[]�nHEY-O�w+OVJL[eHIXg_�� î�� °
��³N��R�S±HbOQ\dc���Xg_�	bò�òK°�
$³¬�
� ,��g¹ ¾dü � Á ¼ À ��ü ¼�Ãd» Xg_/\^JL[]�nHEYaO|SWHEJLOVUWXLRQ_�Xg_/Y�UdOV_]\KH���RQS2HbOQ\dc
STHKJ�O+UWXLRQ_ 
 XL_!� OV_/��HEO�\dc«Y�R�[eST\KH�" � ï XL_#� � ï ��©
H�\KOQ_
HEy
[eXLw+OVJLHK_
UWJLt=�eSTHEYWHK_
U�O�f�JgR�P]OVJ�XL_]Y�UdOV_]\KH
O�Y�RQ_eH�Y�HKU�RV�
UW[]�eJgHbYKZa��ceHKSTHAHEO�\dcjUW[e�]JgH�$3c/OQY�O�Y�R�[eSd\^HAOV_]_eRVUdO+UWXLRQ_NZ
" � ï °�$�³&%���� ï � � fQJLRQP]OQJnXg_]Y�UTOQ_]\^H�X�Y-STHEy
[eXLSWHb�xUTR$c]OuwQH�HbOQ\dc
RV�5XgUTY�STHKJ�O+UWXLRQ_�XL_]Y�UdOV_]\KHEY�YTO+UTXLY���trUWc]H$ªQHKt�\^RQ_/Y�UTSTOQXg_
UTYE�
`�ceHESWH3XLY$O��nX�Y�UWXL_efQ[eX�YWceHE�
Y�R�[eSd\^H�" � ï('*),+.- SWHE�eSTHEYWHK_
UWXL_ef

UWc]HxUWST[eH�Z?R�S�O�\¬UW[/OVJ)Z?�eOVUTO�wuOQJg[]HEYE�a©
H�JLH^U0/ í2143 P/H~UWc]H
YWH^U�RQ�]fQJLRQP/OVJQXL_]Y�UTOQ_]\^HbY{��R�S�O2f�Xgw�HK_�YT\dceHEs|O]�{©
H�[]YWH&/65bUTR
SdOV_ef�H�R+w�HKS�f�JgR�P]OVJ{XL_]Y�UTOQ_]\^HbYKZ7" � ï UWRvSdOV_ef�H$R+wQHES�YWRQ[]ST\KHEYEZ
OV_/��
�UTRrSTOQ_efQH�R+wQHES�STHKJ�O+UTXgR�_]YE�±©
H$��STXzUTH8/65:9 " � ï ��RQS�UWc]H
XL_]Y�UdOV_]\KHEY���XzUTcBY�R�[eSd\^H�" � ï XL_!f�JgR�P]OVJ2XL_]Y�UTOQ_]\^H�/65�Z2OQ_]�
/65:9 " � ï °�
$³a��RQS�UTceHrXg_/Y�UdOV_]\KHrRV��
 Xg_ /65{��XgUWc«YWRQ[eSd\^H�" � ï �
� XLwQHK_|O�Y�R�[eST\KH�XL_]Y�UTOV_/\^H<;���RQS-O�SWHEJLOVUWXLRQ_=
j�IH�JgHKU � õKó�°
;
³
�nHE_eRVUTH�UWceH$YWH^U2RV�5ªQHEtvw+OVJL[eHEY���XgUW_]HEYTY�Hb�:�
��Æ 
EÆ>��Ê�É ��Æ)( ��É ��
 *@?  +ÆeÇ�Ê2A �  CB
©�H��]SdY�Ua�nHKw�HKJLRQ��O

fQHE_eHKSdOVJ�s|R��eHKJ�RV�~�]O+UTO�y
[]OVJLXzU�tjXL_B��ceX�\dcBYWRQ[eSd\^H
�eO+UdO
y
[]OVJLXgU�t�s|Rn�nHKJ�Y�\EOV_jP/H�\^RQs|�e[eUWHE�jP/OQYWHE�jRQ_=Y�UTOQ_]�eOVSd�
G�OutQHbY�X�OV_�SWHbOQYWRQ_eXL_ef/��©
HxUWc]HK_A�nX�YW\K[]YTYaOvYW�/Hb\^Xg�/\$s|Rn�nHKJ
��ceX�\dc�\^RQ[]JL��P/H$[/Y�Hb��XL_�Or\^RQ_/\^STH^UWH�YWH^U�UTXg_]f]�
��[eS�HKSTSTRQSIs3Rn�nHEJLY�OQSWH��eSTRQP/OVPeXLJgXgU�tv�nX�Y�UTSWXLPe[nUTXgR�_]Y�R+wQHES

fQJLRQP/OVJIXg_]Y�UTOQ_]\^HbY�­ �nZI®u²b¯¡� � _�OVJgUWHESW_]OVUWXLwQH���R�[eJL��P/H�UTR
O+UWUTO�\dc��eSTRQP]OQPeXLJgXgUWXLHEY�UWR�O+UWUWSTXgP][nUWH�w+OVJL[eHEY�­g®Q®¬¯¡�5ÒeRQS5HK�nOQs3�
�eJLHQZe\KRQ_]YWXL�eHKS�UWceH�UW[e�]JgH���RQS�YWXzUTH~®u²n®�Xg_�UWceH �NÇ	��

��UTOQPeJLH
RV�aÒ±XLfQ[eSTH�®�� ��_eH�\^R�[eJL�«H^�n�eJLXL\KXzUTJgt«Y�UTOVUWHvUTc]O+U~UWceHESWH�XLY
OV_ � �ED \dc]OQ_]\^H�UWc]OVU�UWceH�w+OVJL[eH�RV� � î�� õ��Lò)ó�ôVõ�XLY�O�\¬UT[]OVJLJgt
F M{R+�$úLZ/O�®u¶2D \dc/OV_]\KH$UWc]OVUaXgU�X�Y F,GIH úgZ�OV_]��O�¶2D \dc]OV_]\KH
UWc/O+U$XzU�X�Y F �2XLfQcNúg���aR+��HEwQHESEZ:YW[]\dc�O��nXLY�UWSTXLPe[nUWXLRQ_
RQ_
O+UW�
UWSTXLPe[nUWH�w+OVJL[eHEY3\KOQ_«P?H��nHESWXLwQHb����STRQs O��eXLY�UWSTXgP][nUWXLRQ_«R�_
fQJLRQP/OVJ�Xg_/Y�UdOV_]\KHEYE�
Í�JLHEOVSTJLtQZ�O
�nHE\KXLYWXLRQ_�srOQªQHKS|��XLJgJ�_]RVUrfQHE_eHKSdOVJLJgt�ª�_eR+�

UWc]H��]SWR�P]OVPeXLJLXzU�tv�nX�Y�UWSTXgPe[eUWXLRQ_�J RQ_�fQJLRQP]OQJ?XL_]Y�UTOQ_]\^HbYK� � Y
�nX�YW\K[]YTY�Hb�jHEOVSTJLXgHESEZ��IH�YWHKHKª�UWR�Y�[]�e�/R�S�U�O�³r[]_]\^HES�UdOVXL_�U�t
OVP?RQ[eU�UTceH~�]SWR�P]OVPeXLJLXzU�t��nX�Y�UTSWXLPe[nUTXgR�_�J OV_]��P/³�UTceHrOVPeXLJg�
XgU�t�UWR�\dc]OQSTO�\¬UWHESWXL�KH�OV_]��[e���eO+UTH�UTc]O+Ur[e_/\^HKSWUTOQXg_
U�t���`�R
�nR�UWc]XLY$�IH|OQ�nR��nUxO�Y�UTOQ_]�eOQST��GIOut�HEYWXLOQ_�OQ�e�eSTR�OQ\dcN��©
H
OQYTYW[es|H�UWc]OVUvUWceH�HKSTSWR�STY3XL_jUWceHAR�P]YWHKSTwQHE��XL_]Y�UdOV_]\KHAOVSTH
fQHE_eHKSdO+UTHE��P
txYWRQs|H��eSTRQP]OQPeXLJgX�Y�UTXL\��eSTRn\^HEYTYEZ+��ceHKSTH�UTceH��]OV�
SdOVs|H^UTHKSdYv\^R�_�UTSWR�JgJLXL_ef�UWceX�Y��eSWRn\KHEYTY�OVSTH�[e_eª�_eR+��_N� ÒeR�S
H^�eOQs3�]JgH�ZnRQ_eH��]OQSTOQs3HKUWHES�s|XLfQc
U�SWHE�eSWHbY�HE_
U�UTceHxOQ\E\^[eSdOQ\Kt
RV�a�]O+UTOAHK_
UWSTt
\KJgHESWªnY~O+U ������Ê���� � XLwQHK_@K!Y�[]\dc ¸ Á�ÂQÂ »^¼
ý]ü+þWü�� » � » þdÀ�XL_�OQ_�OV�]�eJgX�\KOVUWXLRQ_{Z��IHaJLH^U0LNMPO�P?HaUTceH��eSTR��n�
[]\^U±YW�]OQ\KH�\^RQ_/Y�X�Y�UTXg_]f�RV�]OVJLJQK��)UW[]�eJgHbY{RQ��c]XL�e�eHK_x�]OQSTOQs|H^UWHES
w+OVJL[eHEYEZVOV_/�~\KRQ_]YWXL�eHKS�LNMPOvOQY5O��eSTRQP]OQPeXgJLXgU�t�YW�]O�\^HQ�±`�c�[]YKZ
UWc]H$wuOQJg[]HEY�RQ��UTceHxceX��e�nHE_��/OVSdOVs|H^UTHKSdY�\^RQ_
UTSWR�J�UWceH$�eSTRQPe�

OVP]XgJLXzU�t�RQ��f�JgR�P]OVJ�Xg_/Y�UdOV_]\KHEYEZ5OQ_]��UTceH��]OQSTOQs|H^UWHESxw+OVJL[eHEY
UWc]HKsrY�HEJgw�HEY�JLXgH$XL_�O3�eSWR�P]OVP]XgJLXzU�tvYW�]O�\^HQ�
� _ » þ¬þ ¹ þ � ¹ Â »	� R+wQHES�O�YT\dceHKsrO�� \^R�_]YWXLY�UTY�RV�NO$�eSTRQPe�

OVP]XgJLXzU�t��nX�Y�UTSWXLPe[nUTXgR�_@Rr°TS
³xR�_�/ í21�3 Xg_/�nH^�nHE�«P
t�OV_�HEJz�
HKs|HE_�U8S�XL_�LNMPO±Z�OVJLRQ_]f���XgUWc�O�Y�s|R�RVUTc��eSWR�P]OVP]XgJLXzU�t�R�_
LNMPO±Z{\KOQJgJLHE��UWceH~ý?þ¬Á ¹ þ¬��ÒeR�S�HK�eOVs|�eJLHQZ�Xg_�UWR
YWYWXg_]f�O�\KRQXL_
��XgUWcrOV_|[e_eª�_eR+��_3PeX�OQYEZ+UWc]H��eSWR�P]OVP]XgJLXzU�t�RV�?O�c]HEOQ�~s|Xgf�c
U
P?HPSeZ�OQ_]�3UWc]H��eSWXLRQS-R�_US�s|Out~P/H�O�[e_eXg��RQSTsÐ�nX�Y�UTSWXLPe[nUTXgR�_
°�STHK�]SWHbY�HE_�UTXg_]fxUWc]Hx\KOQYWHa��c]HKSTH��IH�c]OuwQH�_eR|ª
_]R+��JgHb�nfQH�RV�
UWc]HIP]XLO�YT³^��ÒeR�S-Y�R�s3HIY�HKUIVARV�?fQJLRQP]OQJ�XL_]Y�UTOV_/\^HEYEZVOV_/��YWRQs|H
S�XL_WLNMPO±Z��IHa��STXzUTHXJr°
V�YCS
³-��R�S�Rr°�S�³^°ZV�³¬ZnUTceHa�]SWR�P]OVPeXLJg�
XgU�t3RQ�NY�HEHKXL_ef$UTceH�YWH^U<V�RV�{f�JgR�P]OVJ/Xg_]Y�UTOQ_]\^HbY�f�Xgw�HK_vceX��e�nHE_
�]OQSTOQs3HKUWHESTY[Se� � JLYWR]Z���H2��STXgUWHPJr°Z/65�YCS�³±��R�S6Jr°]\^/65`_8Y^S�³¬�
� JgUWc]RQ[ef�cB�IH
\EOV_e_eRQU�R�P]YWHKSTwQHAUTceH�ceX��e�nHK_ �]OQSTOQs3HK�

UWHESTY��nXLSWHb\¬UTJgt�Z:��H|\KOQ_Af�OQXg_�Xg_n��R�SWsrOVUWXLRQ_�OQP/R�[nU�UTceHKs P�t
JLR
R�ª�Xg_ef�O+U2UTceH�STHEYW[eJgUTY2RQ��YWOQs|�eJgXL_ef/�2`�ceH�[e���eOVUWHE���nHK_n�
YWXzU�t���[e_/\¬UWXLRQ_3STHK�eSTHEYWHK_
UTYNRQ[eS5XLs|�eSWR+w�HE�$ª�_eR+��JLHE�efQH�RQ�eUWc]H
ceX��e�nHE_��]OVSdOVs|H^UTHKSdYIfQXLwQHK_�UWc]H$RQP]YWHKSTw+O+UWXLRQ_�RV�-O|Y�HKUXV�RV�
fQJLRQP/OVJ�Xg_/Y�UdOV_]\KHEYEÓ

L 1 � ��aN°�S�³cbdJr°�ô^	���b�S�YQ/65�%WV�³
`�ceX�Y5XLY±UTceH�ý ¹ À�� » þ¬Á ¹ þ�ÂVÁ�À��8þ¬Á�¾K¿ �8Á ¹V¼ RQ_~UWceH�ceX��e�nHE_~�]OQSTOQs3�
H^UTHKS�Y��]O�\^H��2ÒeRQSaH^�eOVs|�eJLHQZ?Xg_�\^RQXL_�UWR
YWYWXL_ef]Z]UWceH~[e�?�]O+UWHb�
�nHE_]Y�XgU�t���[e_]\^UWXLRQ_�UWHEJgJ�Y�[]Y�ceR+��UWR�OQ��
�[/Y�U$RQ[]S��eSTXLRQS�OQY�O
STHEYW[eJzU�RQ�±R�P]Y�HESWw�XL_ef|Y�R�s3H$\KRQXL_�UTR�YTY�HbYK�
e ��� �� +Ê 
EÊ���Æ 
EÆ���Ê�É �8Æ)( ��É � 
 *�� � ��Ê�É{©
H�_eR+�!Y��?H^�

\^X�OVJLXL�KH�R�[eS3fQHK_]HKSdOVJ�s|Rn�nHEJ�UTR�R�_eH�c/Ouw
XL_efAXL_]�nHE�/HE_]�nHE_�U
UW[]�eJgHK�)JLHKw�HKJ±HKSTSWR�S��eSTRQP]OQPeXgJLXgUWXLHEYE�aÒeR�S�YWXgs|�eJLX�\^XgU�tQZ?��H3\^RQ_e�
YWXL�nHES�RQ_eJLt�YT\dceHKsrO�Y�Xg_���ceX�\dc�UTceHx�nR�s|OQXg_�RV�±HKw�HKSTtv_eRQ_e�
ªQHEt�OVU�UWSTXLPe[nUWH$X�Y��/_eXzUTHQ�E�aUWceHESaYT\dceHKsrOQY�\EOV_�P?Hxc]OV_/�nJgHb�
P�t«STHK�eJ�OQ\KXg_ef�UWc]H�[]_eXz��R�SWs �nXLY�UWSTXLPe[nUWXLRQ_jR+w�HKS~UWceH��]_]XzUTH
�nR�s|OQXg_�[]Y�Hb��P?HKJLR+� P
t�O��]SWR�P]OVPeXLJLXzU�t��nX�Y�UTSWXLPe[nUTXgR�_�OV�e�
�eSTRQ�eSTX�O+UWH���RQS�UTceH$�]OQS�UTXL\K[eJLOQS2�nRQsrOQXg_{�
��[eS�HKSTSWR�Sas|Rn�nHKJ±c]OQYaUWc]H���R�JgJLR+��Xg_]f�ceX��e�nHE_��]OQSTOQs3HK�

UWHESTYE��`�ceH��]OVSdOVs|HKUWHKS=SQfg ) h]i j fQXLwQHbY$UTceH��eSTRQP/OVPeXLJgXgU�t�UWc]OVUUWc]H�w+OQJg[eH�RV�5O+UWUWSTXgPe[eUWH0�|RV�±SWHEJLOVUWXLRQ_�
�XL_�Y�R�[eST\KHk" � ï c]O�Y
P?HKHK_�s|Rn�nXg�]HE�:��`�c]H��/OVSdOVs|H^UTHKS&S fg ) h]i l m g fQXLwQHbY�UTceH$�eSTRQP]OV�PeXLJgXgU�t|UWc/O+U�OxUT[e�eJLH�c]O�Y�P?HKHE_�XL_]YWHKSWUWHE��Xg_
UTR~STHKJ�O+UTXgR�_�
 RV�
YWRQ[eSd\^H<" � ï �5`�c]H2�]OVSdOVs|HKUWHKScSQfg ) hni o2-Zp fQXLwQHbY5UWceHa�eSWR�P]OVP]XgJLXzU�tUWc/O+U�O�UW[e�eJLH�c]O�Y�P?HKHE_r�nHKJLH^UTHE����SWR�sùSWHEJLOVUWXLRQ_�
=RV��Y�R�[eST\KH
" � ï �
� UT[e�eJLH~XL_�UTceH��]OQSTOQs|H^UWHES�YW�]OQ\KH�LNMPO�UWc]HK_�\KRQ_
UTOQXg_/Y

O$w+OVJL[eHa��RQS�HbOQ\dcrXL_]Y�UTOV_/\^H2RQ�:UWceHbY�H2�/OVSdOVs|H^UTHKSdY5��RQS�HKwQHESWt
YWRQ[eSd\^H�" � ï Xg_q� � ï Z2HKw�HKSTt�STHKJ�O+UWXLRQ_r
 XL_s�AZaOV_/�jHKwQHESWt
O+UWUWSTXgP][nUWHP��Xg_�	bò�ò^°�
$³^�5`�c]H��eSWXLRQS��eXLY�UWSTXgP][nUWXLRQ_|RQ_�LNMPO�XLY
OUt��eXLY�UWSTXgP][nUWXLRQ_{Z?��ceX�\dcAX�Y2ª�_eR+��_�UWR�P/H3\^RQ_�w�HK_eXLHK_
U2��R�S
\KOQJL\K[eJ�O+UWXLRQ_N����_�R�[eS�HK�eOVs|�eJLHEYEZ��IHvfQHE_eHKSdOVJLJLt�OQYTYW[es|HvO
[e_eXg��RQSTs �nX�Y�UWSTXgPe[eUWXLRQ_�R+w�HKS�UWceH|�]OQSTOQs|H^UWHES$Y��]O�\^H|OQY�UWc]H
�eSTXgR�SE�«�aR+��HEwQHESEZ5�IH�\KRQ[eJ��«HbOQYWXgJLt«OQ\E\^RQs|s|Rn�eO+UTH�RQUWceHES
�eSTXgR�STY�UWc/O+U�SWHE�eSWHbY�HE_
U�HKSTSTRQS�XL_n��R�SWsrO+UTXgR�_vf�OVUWceHESWHb�r[]YWXg_]f
ceX�Y�UTRQSTXL\EOVJ:�eOVUTO|RQS�RQUWceHES�s3HbOV_]YE�
u2R+�'��H$HK�n�eJLOQXg_�ceR+�'UWRv\KRQs|�e[nUTH�UWceH��eSWR�P]OVP]XgJLXzU�t�RV�

YWHKHKXL_ef«OQ_�XL_]Y�UTOQ_]\^Hv;xw2RQ�xO�SWHEJLOVUWXLRQ_s
 ��R�S�Y�R�[eSd\^H�" � ï Z
OQYTYW[es|Xg_efxUWc]OVU��IHaOVSTH2fQXLwQHE_U" � ï Z�UWceH�UWST[eH2XL_]Y�UTOQ_]\^H�;x��R�S

3Z?OQ_]��UWc]H�ceX��e�nHE_��]OQSTOQs3HKUWHESTY<S]�aÒeR�SaHKw�HKSTt�ª�HKt�wuOQJg[]H
�zy OV�e�?HEOQSWXL_ef
Xg_r;/Z�UTceH��eSTRQP]OQPeXLJgXgU�t�UWc/O+U �zy XLYvOQP]YWHK_
U
��STRQs{; w X�Y&S fg ) hni o2-Zp ��ÒeR�S�HKwQHESWtrª�HKtvw+OQJg[eH �zy SWHEs|OQXg_]Xg_ef|XL_



; w ZuUTceH��]SWR�P]OVPeXLJLXzU�t�UWc]OVUNUTceH�_]RQ_n�¡ªQHEt�OVU�UWSTXLPe[nUWHbYNRQ� �zy OVSTH
YWH^U5Xg_�;2w�UWR��]OVSWUWX�\^[]JLOQS�w+OVJL[eHbYNX�Y�O�Y{��R�JgJLR+�2YEÓ:��RQS5O2_eR�_n�¡ªQHKt
O+UWUWSTXgP][nUWH��?Z:UWceH3�eSTRQP]OQPeXLJgXgU�t�UWc]OVU�UTceH|w+OVJL[eH���R�S0��Xg_>;2w
OVf�SWHEHEY-��XgUWcvUWceH2w+OQJg[eH�Xg_�;~X�Y2®���S fg ) h]i j �-`�ceHa�eSWR�P]OVP]XgJLXzU�tUWc/O+U2UTceH�w+OVJL[eH$��R�Sk��Xg_W;xwN��XLJLJNP?H~O|�]OQS�UTXL\K[eJLOQS2w+OVJL[eHxXL_
� î�� °
�n³N�nXg}�HKSTHK_
U���STRQs'UWc]H�R�_eH�XL_ ;�XLY SQfg ) h]i j � ° Y`� î�� °��n³ Y��®b³^�-`�ceH2�eSTRQP]OQPeXLJgXgU�t�UTc]O+U��3_eHK�=ª�HKt3w+OVJL[eHEY�OVSTH�Xg_]YWHKSWUWHb�
XL_�UTRW;2w�XLY��	� 
����
 °TSQfg ) hni l m g ³ � °�®��@SQfg ) h]i l m g ³ � 
�� °�HEOQ\dc
UT[e�eJLHvXg_ ;JLHEOQ�]Y�UTR�O�_eHE� YW�e[eSTXgR�[]Y~UW[e�]JgH�XL_�;xw���XgUWc��eSWR�P]OVP]XgJLXzU�t
SQfg ) h]i l m g ³¬�=�¡���«_eHE� UT[e�eJLHEYvOQSWH�UTR
P?H�XL_]Y�HES�UTHE�:Z�UWc]H�ªQHKt
w+OVJL[eHEYI��R�S�HEOQ\dc�RV��UWceHbY�H$OVSTH�\dceR�YWHK_�STOQ_]�nRQs|JLt|��SWR�s UWc]H
XL_eXzUTXLOQJ�wuOQJg[]HEY�Xg_�HKwQHESWt|XL_
UWHKSTw+OVJ?Xg_�� î�� ° � õ^ón°�
$³�³���;�����R�S
HEO�\dc�RQ�NUTceHEYWH�UW[e�eJLHEYEZnUTceH$_eRQ_e�)ª�HKtrw+OVJL[eH���RQS2OVU�UWSTXLPe[nUWH0�
X�Y�\dceR
Y�HE_�UTRAP?H�O��]OQS�UTXL\K[eJLOQSxw+OVJL[eHr��STRQs � î�� °
��³x��XzUTc
�eSTRQP]OQPeXLJgXgU�tA® � Y,� î�� °��n³ Yz�
`�ceX�Y \KOQJL\K[eJLOVUWXLRQ_ fQXLwQHEY UTceH �eSWR�P]OVP]XgJLXzU�t

Jr°Z/65 9 " � ï 'T) +.-b°�
$³{b ;�� /65 9 " � ï °

�³ b ;2w Y S�³���R�S=O
YWRQ[eSd\^H�" � ï OQ_]� OQ_ HKJLHKs|HE_�U>SBRQ�vLNMPO±� `�ceHj�eSTRQP]OV�
PeXLJgXgU�t�RV��O=��[eJLJrfQJLRQP]OQJ�XL_]Y�UTOV_/\^Hr/65 �jfQXLwQHE_ SBX�Y�UWceHE_
RQPeUTOVXL_eHb� P�t�Ó�� f���� i g ) h ��� ) h	�! g ) h#" $ %'&#( Jr°Z/65 9 " � ï '*) + -E°

�³ b/65 � 9 " � ï('T) +.- °�
$³!��/65:9 " � ï °

$³ bq/65:9 " � ï °�
$³PYCS
³
`�ceH�s|Rn�nHKJNOQP/R+w�H�OQJgJLR+�2Y���RQS�_eRv\KRQSTSWHEJLOVUWXLRQ_vP?H^U��IHKHE_

HKSTSTRQSdY�Xg_�OVU�UTSWXLPe[nUTHEYE�2©�H3\KOQ_�fQHK_]HKSdOVJLXg�EH�UWRvPeSTR�O��nHKSaHKSW�
STRQS�s|Rn�nHEJLY�P�t~�]��XL_ef�O~G�OutQHEYWX�OV_Uu2HKU���R�SWª�­z®b´u¯���XzUTc�[e_n�
ª�_eR+��_A�IHKXLfQc
UTYEZ�Y��?HE\KXz��t�XL_efvUTceH~\KRQ_]�nXgUWXLRQ_/OVJ±�eSWR�P]OVP]XgJLXzU�t
RV��R�_eHvO+UWUWSTXgPe[eUWHvP?HKXL_ef�\KRQSTSWHb\¬U$fQXLwQHE_�UTc]O+U3OV_eRQUWceHES�O+UW�
UWSTXLPe[nUWH~XLY�RQS�X�Ya_eRQU�\KRQSTSWHb\¬UE��`�ceH�[]YWH�RQ��Y�[/\dcA_eH^U��IRQSTªnY
��RQS�s|Rn�nHEJgXL_efrHKSTSTRQSdY�X�YIUWceHxYW[eP)
�Hb\¬U2RQ����[nUT[eSTH$��R�SWª��
e É�Ê�Æ � � � # � � ��Ê�É$q�[eSTXg_ef�UWceH��eOVUTO�\KJgHbOV_eXL_ef«�]SWRQ�

\^HbYWYEZNO��nHE\KXLYWXLRQ_
s|OQªQHES���XLJgJ�YTOVs|�eJLHr�eO+UdO�Y�R�[eST\KHEYEZ��]Out
�
XL_ef«UTR��nR�Y�R/� � f�JgR�P]OVJ�Xg_/Y�UdOV_]\KH�XL_!RQ[eS��eO+UdO«s|Rn�nHKJ
STHK�eSTHEYWHK_
UTY�UWceH��eOVUTO�UWR�P?H��/RQUWHK_
UTXLOQJgJLtvYWOQs|�eJgHb�:Z�_eRVUIUWc]H
�eOVUTO�OVJLSTHEOQ�et�YTOVs|�eJLHE��Xg_jUTceX�Yv�eSTRn\^HEYTYE� `�ceHA�]O+UTO�OVJg�
STHEOQ�et�YTOVs|�eJLHE��X�Y2s|Rn�nHKJLHE�AceHKSTH�OQY�O�ÀKü��aý � Á ¼�,�¸ Á�À�� ¹ þ - Ó
O$��[]_]\¬UTXgR�_��!)
UTc]O+U�srOV�]YIO~YWRQ[]ST\KHP" � ï OQ_]�vO~SWHEJLOVUWXLRQ_�

UWRvO|YWH^UX�!)�°�" � ï�* 
$³IRQ��UT[e�eJLHEYE� � UW[e�]JgHxXL_�UWceHxYWH^U2HEXzUTceHKS
c]O�Y2O|w+OVJL[eH$��RQSaHEOQ\dc�O+UWUWSTXgP][nUWHxRQ� 
~Z]RQS2c]O�Y2O|w+OVJL[eH$��R�S
UWc]H2ªQHEt3OVU�UWSTXLPe[nUWHbY�OV_/�3UWceHa�eXLY�UWXL_efQ[]XLYWceHE�|w+OQJg[eH ¼,+.-#- ��R�S
OVJLJNRQUWceHES�OVU�UWSTXLPe[nUWHbYK� � YWOQs|�eJgXL_efvc]XLY�UWR�SWt��!)�XLY Ãd¹+¼ À¬Á�À0/
� »^¼ ����XgUWc�O�f�JgR�P]OVJ±XL_]Y�UdOV_]\KH�/65:Xg��Z:��RQS�HKw�HKSTt�SWHEJLOVUWXLRQ_v

OV_/��Y�R�[eST\KHU" � ï Z�®b³xHKw�HKSTtAUW[]�eJgH�Xg_��1)I°�" � ï�* 
�³x_eRVU3\^RQ_e�
UTOQXg_]Xg_ef ¼2+2-3- OQJLYWR�OV�e�?HEOQSTY±XL_U/65:9 " � ï °�
$³¬Z
OV_]�|²Q³�Xg��O�UT[e�eJLH
XL_��!)�°T" � ï�* 
$³2�nR�HbYa\^R�_
UTOVXL_ ¼2+2-3- Z]UTceHK_�_eRvUT[e�eJLH�c]Ouw�XL_ef
UWc]HxYWOQs3H�ª�HKt�OQ�e�/HbOVSdYIXg_v/65 9 " � ï °�
$³¬�
©
H�OQYTY�[]s3H
UTc]O+U�R�[eS��nHb\^X�Y�XLRQ_�srOVª�HKS�P?HKf�Xg_]Y���XzUTc

YWRQs|H�YTOVs|�eJLXg_]fAceX�Y�UTRQSTtQZ5��ceX�\dc«��H�SWHK��HKS~UWR
OQY$UTceH
Á ¼ Á�/
�)Á�ü � ÀKü��aý �g» Zn�nHK_eRQUWHb��554 ð ò¬�-`�ceXLY��IRQ[eJ��3U�t��eXL\EOVJLJgt|\^R�_
UTOVXL_
OVJLJ-UTceHv�eO+UdO���SWR�s YWRQs|H|SWHbOQ�nXLJgt
��Ouw+OVXLJLOQPeJgH3Y�R�[eSd\^HEYEZNOQ_]�
_eRr�eOVUTO~��SWR�s HK���?HK_/Y�XLwQH$YWRQ[eSd\^HbYK�
Ï�O�\dc�YWRQ[]ST\KHI" � ï c]OQY�OV_xO�YWYWRn\^X�O+UWHb� Ãd¹ À ��6d¿ ¼�Ã �)Á ¹+¼87 g ) h Ó9;:=<'<xZ?��c]HKSTH 7 g ) h °�KN³2f�Xgw�HEY�UTceH|\^R�Y�U�RQ��YWOQs|�eJgXL_ef�" � ï��RQSxO�fQSTRQ[]��RV��K«UT[e�eJLHEYE�|`�c]H|YTOVs|�eJLXL_ef�\KR�Y�U$s3XLfQc
U$P?H

JLXg_eHbOVS�XL_UK-ZQR�S�s|Xgf�c
U��/HESWc/OV�]Y-STH	�/HE\¬U-UTc]O+UIYWOQs3�]JgXL_efx\KOQ_
P?H��nR�_eH�s|RQSTH�\KR�Y�U��¡H^Ñv\^XLHK_
UWJLt�Xg_!P][eJgª�� u2RQSTsrOVJLJgt��IH
H^�n�?HE\^U�UTc]O+U-Oa[/Y�HES���XLJgJ�_eRQU±P?H�OVPeJLH�UTR�YTOVs|�eJLH�UTceH�OQ\^UW[]OQJ
�eOVUTO�" � ï '*) + -KZ:Pe[eU���XLJLJ±P?H|OVPeJLH�UTR�YTOVs|�eJLH~YWRQ[]ST\KHEY���ceHKSTH
UWc]HA�]OVSdOVs|HKUWHKSdYUS fg ) h]i o2-.p Z<S fg ) hni l m g ZaOQ_]��S fg ) h]i j Z2OVSTH�ª�_eR+��_

OV_/��YWsrOVJLJ8�
� ÀKü��aý � Á ¼�, ü Ã �)Á ¹+¼ ��RQS�OvY�R�[eSd\^H0" � ï X�YaOvSWHEJLOVUWXLRQ_{Z 
~Z

OV_/�
O�YWH^UU\ �zy?>�* 9 9 9 *z�zy�@ _vRQ�Iª�HKt�w+OQJg[eHbY$RV��OV�]�eSWR��eSTXLOVUWH
U�t��/H���RQS�
3��`�ceH�SWHbY�[eJgU~RQ�aOAYTOVs|�eJLXg_ef
OQ\^UWXLRQ_�X�Y~O�Y�HK�
y
[eHK_/\^H�AT$ >B* 9 9 9 * $ @DC ��ceHKSTH&$FE�XLY�HKXgUWceHES�O�UW[e�eJLH���RQS 
B��XzUTc
ªQHEt�w+OQJg[eH �zy E�Z5RQS ¼,+.-#- Z5XL_]�nX�\KOVUWXL_efAUTc]O+U�_]RAUW[]�eJgH���XzUTc
UWc]XLY�w+OQJg[eH�HK��X�Y�UTY�XL_�UTceH$XL_]Y�UdOV_]\KH$RV�[
~�
Ä�Å{ÆeÇ�È5É�ÊHG:Ì�Í�RQ_]YWX��nHKS�OQf�OVXL_~UWceH � ÍIÎ�Ï�H^�eOVs|�eJLHQ�5ÒeR�S
UWc]H��]O+UTOa��STRQs � ��ð ò0I2��_/\V��UWceHESWHIXLY-OQ_�°�[e_eª�_eR+��_/³��eSTRQP]OV�
PeXLJgXgU�t�S��KJLNMPO -.) 'RQTSn- UWc]OVU�UTceH�� î�� õ �gò)ó�ôVõ�O+U�UTSWXLPe[nUTHaX�Y�\KRQSTSWHb\¬Ub���_!OQ�]�nXzUTXgR�_{Z�UWc]HKSTHAXLY�O��eSTRQP]OQPeXLJgXgU�t@S��KJo2-Zp UWc]OVU�O�f�Xgw�HK_
UWST[eH$JLRVUa��OQY��eHKJLH^UWHb�:Z/OQ_]��O|�]OQSTOQs3HKUWHES<S �KJl m g \^R�_
UWSTRQJLJgXL_efceR+��srOV_�t�Y��][eSWXLRQ[/Y�UW[]�eJgHbY�OVSTHxXg_/Y�HES�UTHE�:� � Xgs|XLJLOQSWJLtQZ?��R�S
UWc]Hv�eO+UdO���STRQsVU î 4bõ "^ZN�IH|c]OuwQH�S�WX�LNMPO - ) 'RQFSn- Z S�WX�o2-Zp Z±OV_]��S�WX�l m g�]OQSTOQs3HKUWHESWXL�KXL_ef~UWceH$�eSTRQP/OVPeXLJgXgU�trRV�-OV_�HKSTSTRQSb�
©
H�OVJ�YWRxOQYTY�[es|HaUWc]OVU��IH2c]OuwQH�Ox\^R�SWSTHE\^U�Y�R�[eST\KHQZ
��XzUTc

O3JgXL_eHbOVS2\^R
Y�U��?HKS�UT[e�eJLH$RV�5YWOQs3�]JgXL_ef]�
� [e�]�/R
Y�H2�IH2ª�_eR+����SWR�sÐc]XLY�UWR�SWX�\KOQJ/�eOVUTO�UWc/O+U���R�S�HbOQ\dc

\^R�_]YW[eJzUTXg_]f�\KRQs|�]OQ_
t�P/HKU���HEHK_ ��OV_]��®CD�RV�?UWceH2Ouw+OVXLJ�OVPeJLH
JLRVUTY���R�S�UTceH�\^R�s3XL_ef�tQHbOVS-OVSTH�s|X�YWYWHE�:Z�OV_]��P/HKU���HEHK_ ��OQ_]�
9×¶2DBRV�nUTceH í+înïbð ñ w+OVJL[eHEY±\^R�SWSTHEYW�?RQ_]��UWR�_eRQ_e�)HK��X�Y�UWHK_
UNJLRVUdYK�
�2HE_]\^H��IH2\KOQ_3UTOVª�H�O��eSWXLRQS��eXLY�UWSTXgP][nUWXLRQ_|RQ_�S��KJo2-Zp OV_]��S�WX�o2-Zp
O�[e_]Xz��R�SWs �nX�Y�UTSWXLPe[nUTXgR�_!RQ_jUTceH�XL_
UWHESWw+OVJ3­ � * 9 �e®K¯)Z���ceXLJLH
UTOQª�Xg_ef�O��eSTXgR�S�RQ_�S��KJl m g OV_]��S�WX�l m g OQY$O�[e_eXg��RQSTs �nX�Y�UTSWXLPe[n�
UWXLRQ_�RQ_B­ � * 9 ����¶+¯)�
ÒeRQS~UWc]H�SdO+UTHvRV�as|Rn�nXg�/\KOVUWXLRQ_«RQ�2UWc]H
� î�� õ��Lò)ó�ôVõ�O+U�UTSWXLPe[nUTHQZe�IH�c]OuwQH�_eR3ceXLY�UWR�SWX�\KOQJ:�eO+UdOeZnY�R3�IH
UTOQªQHIUWc]HEYWH�UTR�c]OuwQH�O��eSWXLRQS5UTc]O+U-X�Y5[e_eXg��RQSTs|Jgt3�nXLY�UWSTXLPe[nUWHb�
RQ_�­ � * ®K¯)�
� [e�]�/R
Y�H�UWc]OVU��IH�c]OuwQH�YWOQs3�]JgHb��RQ[eS�RQSdOQ\^JLH�R�_r®����2ªQHKt

w+OVJL[eHEYEZ+OV_]���nH^UTHKSTs3XL_eHb��UWc]OVU±OQJgJ/®���� í+î�ïuð ñ w+OVJL[eHbY:��RQS�UWc]H
� ��ð ò0I3�eO+UdOrOVSTH�w+OQJgX���JgRQUTYEZ/OV_/��UTc]O+U���R�Sa·Q·3RQ��UTceHEYWH$UWc]H
� ��ð ò0IxSTHK�?RQSWU�c]OQYIUTceHx\^R�SWSTHE\^U�wuOQJg[]H���R�S � î�� õ��Lò8ó
ôVõV�
`�ceHE_ �IH�\KOQ_ HbY�UTXgsrO+UTH�O'_eHK� �/R
Y�UTHKSTXgR�S��nX�Y�UTSWXLPe[n�

UWXLRQ_�RQ_!S��KJLNMPO -.) 'RQFSn- fQXLwQHK_�UTceX�Y~YTOVs|�eJLH��eOVUTOAOQ_]��UWc]H�RQPe�YWHKSTwQHE�j�eOVUTO]Z���XzUTc=UWceH��nHK_]YWXgU�t�RQ�0S��KJLKMPO -.) 'RQTSn- _eR+� °�®Y�
S��KJLNMPO -.) 'RQFSn- ³FZ[Z S��KJLNMPO - ) 'RQFSn- ��\ >� °�®]��^?³FZ[ZK^H_�^��` � �
� �±Ê����s��Ê�� � �
� ��� � � YWYWRn\^X�O+UWHb�B��XgUWc�Oj\^JLHEOQ_eXL_ef
�eSTRQPeJLHKs XLY�O �/_eXzUTHBYWH^Us\Ka > 9 9 9FaNb^_!RQ��¾K¿�À¬Á ¼?» ÀdÀjÂ »dÃ Á�/
À¬Á ¹+¼ ÀdZ-��c]HKSTHvHEO�\dc«�nHE\KXLYWXgR�_ca�c]O�Y~OQ_«OQYTY�Rn\^X�O+UTHE�
�]_]XzUTH
YWH^U G I înð ï õ "K°da]³�RV�{\dceRQX�\^HbYK�±Ï�O�\dc|�eHE\^X�YWXgR�_YavOQ_]�|\dceRQX�\^H�e
XL_ G I înð ï õ "K°da]³�c/OQY�OQYTY�Rn\KXLOVUWHE����XzUTc�XgUaO~SWHEJLOVUWXLRQ_]OQJ�y
[eHESWtf�g i h R+wQHESNUTceH�Y�XLfQ_/O+UW[]SWH6�A�±Ï�w+OVJL[]O+UTXg_ef f�g i h RQ_3O|° UWST[eHu³
XL_]Y�UdOV_]\KH ;=fQXLwQHbY�UWceH«R�[nUT\KRQs|H�Xz�|UTceH«�nHE\KXLYWXLRQ_ s|OQªQHES
\dceR�R�YWHEYier��R�S2�nHE\KXLYWXLRQ_ja:�
��_�UTceH � ÍIÎAÏùH^�eOVs|�eJLHQZ-R�[eS�Pe[/Y�XL_eHEYTY��eHE\^X�YWXgR�_ca�XLY

3�kQð5l ñ Z?��XzUTc�\dceR�XL\KHEYme > bmn�õ "�OQ_]�oeqp8bYr î ��`�ceH~SWHE�IOQST�
y
[eHKSTt�O�YWYWRn\^X�O+UWHb�v��XgUWc 3�kQð5l ñ bsn�õ "�X�Y�fQXLwQHE_�P�t f�g i hut Ó

vxw�yzw�{}|Y~��0�K�?� �}�K�����1� �?��� ç¡ãKç]��� �?� �}�K�H�H� ã¬ä � ç)ãEçi��0��� �K�}��� �K�}�}���qv�� æzãK�Vç�3�u�D�~#vxw�yzw�{}|��N� ç ~P�K�;�qv ç¡ãKç �#�u�D� � � ç�å���� w � w
ânã^äNåKæzç�è+ébåu 8¡ ��� �?��¢ �£��� �����~#vxw�yzw�{}| � ��� �K�}�¤�K� ç ~P�N���qv ç¡ãKç �3�u�D�=� � ç�åY��� w � w
ânã^äNåKæzç�è+ébåu 8¡ � ã¬ä ¢ �£� ã¬ä

`�ceH�SWHE�IOQST�!y
[eHESWt!O�YWYWRn\^X�O+UTHE�=��XgUWc 3�kVð5l ñ b¥r î XLYf g i hx¦PbN�]�



e É�Ê�Æ � � � #�� �?É �%� ��Ê���©�H�\EOV_ _eR+� UTOQªQH�O Ã��g» ü ¼ Á ¼�,
ý?þ ¹ ¾ �g» � UWR�P?H�O�UT[e�eJLH�°*� * ��� ï�*�����1 � *x78* 3 ��³^Z���ceHKSTH
� X�Y~OAYT\dceHEs|O]Z ��� ï O�YWH^U�RQ�aY�R�[eSd\^HEYEZ ����1 ��OQ_�HKSTSWR�S
s|Rn�nHKJ:f�Xgw�XL_ef~O3�nX�Y�UTSWXLPe[nUTXgR�_�R+w�HKSIfQJLRQP]OQJ/XL_]Y�UTOV_/\^HEYIRQ� �
��RQS�UWceH�YWRQ[eSd\^HbY$Xg_#��� ï Z 7 OA\KR�Y�Ux��[e_]\^UWXLRQ_{Z�OQ_]���	� O
YWH^U�RV�NPe[/Y�XL_eHEYTYI�nHE\KXLYWXgR�_]YE� � ý ¹�� Á Ã�- ��R�SIO3\^JLHEOQ_eXL_ef��eSTRQPe�
JLHKs X�Y�Ov��[e_/\¬UWXLRQ_��nHb\^X��nXg_]f]Z���RQS�HbOQ\dc�YTOVs|�eJLXL_ef�c]XLY�UWR�SWt�Z
HKXgUWc]HKSxO�YWOQs3�]JgXL_ef�OQ\¬UTXgR�_{Z{R�S�O�\dceR�XL\KH���R�S�R�_eH|RQS�s|RQSTH
RV��UWceHrP][]Y�XL_eHbYWY$�nHb\^X�Y�XLRQ_/YK� � �?RQJLXL\KtAXLY�O�STHE\KXg�?H3UWHEJgJLXg_]f
��c]OVUaY�ceR�[eJ���P?HxYTOVs|�eJLHE��O+UaOQ_
t�Y�UdO+UWH�Ó�fQXLwQHE_�OQ_�Xg_eXgUWX�OVJ
YTOVs|�eJLXg_ef|ceX�Y�UWRQSTt�5 4 ð ò^ZeOQ_]��O~�?RQJLX�\^t�
NZeRQ_]H�\EOV_�OV�e�]Jgt�

STHK�?HEO+UTHE�nJLt�UWRAf�H^U~OAYWHEy
[eHE_]\^H�RV�2ceX�Y�UTRQSTXgHbYxOV_/��\dceRQX�\^HbY
��RQSrP][]Y�XL_eHbYWYv�eHE\^X�YWXgR�_]YKÓW�!) > b 554 ð ò3[]_eXgR�_eHE����XgUWcjUWc]H
STHEYW�/R�_]Y�H�RQ�	
N°n554 ð òW³rR�_q/65gZk�!) p b �1) > [e_eXLRQ_eHb�=��XzUTc
UWc]H�STHEYW�/R�_]Y�H�RV��
�°
�!) > ³�RQ_>/65LZ?H^Ud\V����_AUWc]H��eSTRn\^HEYTYEZ]�IH
RQPeUTOVXL_�JLOQSWf�HKS$OV_/��J�OVSTfQHESxYWOQs3�]JgXL_ef�ceX�Y�UTRQSTXgHbY$OV_]��YWRQs|H
YWHEy
[eHK_/\^H$RV��\dceR�XL\KHEYI��R�SaPe[]YWXL_eHEYTY2�nHb\^X�Y�XLRQ_]YE� � �/R�JgX�\^t�XLY
2 ü � Á�Â�Xz�2R�_«HKw�HKSTt�f�JgR�P]OVJ�XL_]Y�UTOQ_]\^H�/65�XgU~�eSTRn�n[]\KHEY�O�Y�HK�
y
[eHK_/\^HAYW[]\dcjUWc]OVUvHKw�HKSTt�Pe[]YWXL_eHEYTYv�nHb\^X�Y�XLRQ_saNE�Ó�
����
X�Y��nHb\^X��nHE�=HK�eOQ\¬UTJgt�RQ_/\^HQ�ùÒ]RQS�O�w+OVJLXL�j�?RQJLXL\KtQZ��IH�\KOQ_
HKw+OQJg[]OVUWH�XzUdY|H^}�HE\^UWXLwQHK_]HEYTY~R�_�O�fQJLRQP/OVJ�Xg_/Y�UdOV_]\KH�/65�w�X�O
UWc]H Ã ¿ �~¿ � ü��)Á 2u» þ »^º üVþWÂ+Ó�Xz�xUTceH��/R�JgX�\^t=�]SWRn�n[]\KHEY�YWOQs3�
�eJLXg_]f
O�\¬UWXLRQ_/Y�V > 9 9 9 V � ��ceHK_�OV�e�eJLXLHE��RQ_�/65LZ�UTceHK_�UWc]HSTHK��OVSd��X�Y�� E��2b f�g�� i h °Z/65 9 " � ï('*),+.- ³i����� � � 7 ��° Y V��xY ³^Z-��ceHKSTHe�X�Y�UTceH�\dceR�XL\KH|YWHKJLHE\^UWHb�
��RQS�a E ��ceHK_�ST[e_e_eXL_ef��?RQJLXL\Kt�

RQ_�/65eOV_]� 7 ��° Y V��xY ³�X�YIUWc]H�\KR�Y�UIRQ�{UWc]H �"!�#|YTOVs|�eJLHQ�-`�c]OVU
X�YKZ�UTceH|SWHE�IOQST��X�Y�UWc]H3f
OVXL_���STRQs UTceH|Pe[]YWXg_eHbYWY��nHb\^X�Y�XLRQ_/Y
s|Xg_�[]Y�UWceH�UTRVUTOQJ{\^R
Y�U�RV�-YTOVs|�eJLXg_ef/�
`�ceHrf�R�OVJ5RQ��\KJgHbOV_eXL_ef�°�XL_�RQ[eSxYWHK_]YWHb³�X�Y�UTceHK_
UWR��/_]�

UWc]H ¹ ý��)Á��|ü � ý ¹�� Á Ã	- ��RQS�O�\^JLHEOQ_eXL_ef��eSTRQP]JgHEs�ZafQXLwQHK_!OQ_
XL_eXzUTXLOQJ:ceX�Y�UTRQSTtW554 ð ò¬��`�ceX�Y�RQ�nUTXgsrOVJ:�?RQJLX�\^tvsrO+�nXLs|Xg�EHEYIUWc]H
H^�n�?HE\^UWHE�~w+OVJL[eH�RV�/UWceH�STHK��OVSd�:Z+\^R�_]�nXgUWXLRQ_eHb��R�_�UTceH�HKw�HK_
U
UWc/O+U±UWceH�fQJLRQP]OQJQXL_]Y�UdOV_]\KH�X�Y5\^RQ_/Y�X�Y�UTHK_
UN��XgUWc�554 ð ò^��`�ceHIRQ�e�
UWXLsrOVJn�?RQJLXL\Kt�UWHEJgJ�Y�UWceH�\^JLHEOQ_eHKS±UTceH~öWP/HbY�Ud÷��]O+UTOaUWR�YTOVs|�eJLH
XL_�O3�eSTHE\KXLYWH$Y�HE_]YWHQ�

$ %«¤&D ¥�¨ ¤ED'& ¥�mLK
��_�R�[eS{��SdOVs|HE��R�SWª�ZuOaYWRQJL[nUWXLRQ_$UTRaUTceH�\^JLHEOV_]Xg_efa�eSWR�PeJLHKs�XLY
OV_�R��nUWXLsrOVJNY�UWSdO+UTHKfQtv��RQSaOr\KHKSWUTOVXL_�f�OQs3H������nUTXgs|XL�EO+UTXgR�_
Y�UWSdO+UWHEfQXLHEY5��R�S�s|RQSTH2fQHE_eHKSdOVJ]�eJLOQ_e_eXL_efx�eSTRQP]JgHEs|YEZ�YW[]\dcvO�Y
UWc]R�YWH~��R�S$ÎAOVSTªQR+w�q�HE\^X�YWXgR�_)(�SWRn\^HbYWYWHEY3°�Î�q*(�YT³3­ � ¯¡ZNOVSTH
OV�]�eJgX�\KOQPeJLH�ceHKSTHQ� ©�H�_eR+� wQHKSTt�P]SWXLH	�]t�SWHEw�XgHE� ÎAq+(�Y
OV_/�vUTceHKXLSaOV�]�eJgX�\KOVUWXLRQ_�UWRr\^JLHEOQ_eXL_ef]�
� _3ÎAq+(��nHbYW\KSWXLP/HbY�O�f�OQs|H�P/HKU���HEHK_3O2�eJ�OutQHES�OV_/�$UWc]H

HK_�w�XLSWR�_es|HK_
U±XL_3��ceXL\dc~UWc]HI�]JLOut�HKS5\dceR�R�YWHEY±OV_|OQ\¬UTXgR�_~OQ_]�
UWc]H2HK_�w�XgSTRQ_]s3HE_
U-\dc]R
R
Y�HbY-O�SWHbY�[]JzUTXg_efxY�UTOVUWHaO�\K\KRQSd�nXg_]faUTR
O��eSTRQP]OQPeXgJLXgU�t��nX�Y�UTSWXLPe[nUTXgR�_�O�YWYWRn\^X�O+UTHE����XzUTc�UTceH�O�\¬UWXLRQ_N�
Ï�O�\dc$OQ\¬UTXgR�_$c]OQY�OV_xO�YWYWRn\^X�O+UWHb��SWHE�IOQST����[e_]\^UWXLRQ_{Z+OQ_]��UWc]H
fQR
OVJ�RQ��UWceH��eJLOut�HKS$X�Y$UTR�\dceR�R�YWHvO�Y�UWSdO+UWHEfQt�UWc]OVU~srO+�nXg�
s|Xg�EHEY~ceHKS3H^�n�?HE\^UWHE��\^[es~[eJLOVUWXLwQH�SWHE�IOQST�:���¡U~X�Y�HbOQYWt�UTR
UWSdOV_/Y�J�O+UTH2UWc]H�\KJgHbOV_eXL_ef~�eSWR�PeJLHKs ceHESWH�Xg_
UTR~OV_�ÎAq+(2Ó�UWc]H
Y�UTO+UTHEY±RV�]UWceH�ÎAq+(�OVSTH�UWc]H�YTOVs|�eJLXL_ef�c]XLY�UWR�SWXLHEYEZu��ceXgJLH�OQ\^�
UWXLRQ_/Y�OVSTH2YWOQs|�eJgXL_efxO�\¬UWXLRQ_/Y�OV_]�|\dceR�XL\KHEY±��R�S-UWceHaPe[]YWXg_eHbYWY
�nHb\^X�Y�XLRQ_]YE�«`�ceH�STHK��OVSd�eY$��R�S|YTOVs|�eJLXL_ef
O�\¬UTXgR�_]Y~OQSWH�UWc]H
_eHEf�O+UTXgw�H�RV�5UWceH~\^R�Y�U2RV�-YTOVs|�eJLXg_efA°�P]OQYWHE��R�_�UWceH�O�YWYWRn\^Xg�
O+UTHE�$\KR�Y�U:��[e_]\¬UTXgR�_$RV��UWc]H�Y�R�[eSd\^HEYd³¬Zb��ceXLJgH�UWceH�STHK��OVSd�eY?��R�S
�nHb\^X�Y�XLRQ_
OQ\¬UTXgR�_]Y�OVSTH�UTceH|H^�n�?HE\¬UTHE�
w+OVJL[eHEY�RQ��UWc]H|\KRQSTSWHK�

YW�/R�_]�nXL_ef�y
[eHESWXLHEYEZ+��ceHKSTH�UTceHIH^�n�/Hb\¬UdO+UWXLRQ_~XLY±\^R�_]�nXgUWXLRQ_eHb�
RQ_AUWceH3Xg_e��RQSTs|OVUWXLRQ_Aª�_eR+��_A��SWR�s UTceH|YWOQs3�]JgXL_ef�c]XLY�UWR�SWt��
`�ceH2_/OVXLwQH�UWSdOV_/Y�J�O+UTXgR�_~��XLJgJ/t�XgHEJL�rO$w�HKSTtxJ�OVSTfQH�ÎAq+(!°�HK�
�
�?RQ_eHE_�UTXLOQJ:Xg_�UTceHxY�XL�KH�RQ�NUWc]Hx�eO+UdO�³¬� � XLwQHE_�UTceH���OQ\^U�UWc]OVU
UWc]HrP/HbY�UxOVJLfQR�SWXgUWc]s|Y���R�SxY�R�Jgw�XL_ef�f�HK_eHESTOQJ-ÎAq*(�Yr°�P]O�Y�Hb�
RQ_
�nt�_]OVs|X�\3�eSWR�fQSdOVs|s|Xg_]f
³2OQSWH3y
[]OQ�nSdO+UTXL\QZ:RQ_eHr\EOV_e_eRQU
ceR��/H$UTR�[]YWH$UTceH~Y�UWSdOVXLfQc
U���R�SW��OVSd��OQ�e�eSTR�O�\dc�XL_A�eSdOQ\^UWX�\^H��
��_jRQ_ef�RQXL_ef
��R�SWª��IH�OVSTH�XL_�wQHbY�UTXgf
O+UWXL_ef�UWceH�[/Y�H�RV�$OVPe�
Y�UWSdOQ\¬UTXgR�_�UTHE\dce_]XLy
[eHbYKZ�OVJLRQ_ef�UWc]H�JgXL_eHEY|RQ�|­ �eZ�²+¯)ZI��ceX�\dc
srOutvt�XgHEJL��O3s|RQSTH�srOQ_]OVf�HEOVP]JgH��eSTRQPeJLHKs��
, 9.- 9 m 9N¤ p 9 k
/1032	46587�9 Õ×Ö�Ø 9 Û;:=< á?> 58@ :=<A< á6BEß
ÝDC 5 C�ÕEBEßF: 5�G�HJILK8MON;PRQSHJK=T+HVU

W N;P�N�XYNJT[Z3T�5\7 Ý
ÝQÕàÔ�Ûbß"]S^�ØdÔ_<àØTê+á 0a`;`ObF5
/ ca2ed"5?f B;:=ghBKß�Ý 7i5?jk58l ÕàÜYm
Û;<zÔ�ÛEß 5on êQß8B;g$ÕàÜ�ß�ÛbßL]p:�ß
Õ1q�ÛJr�g
B 9 Ô¡Ö_rYBEÜTÖ�ÕàÛbß�Ôsq�ÛJr BKë
ë"r�ÛatQÕAgeBKÖ�Ø�ë"<uBKß
ß�Õzß"vxÕzßw<EBxr�vbØaÔ¡Ö_r�:
Üy]
Ö�:"r�Ø¬Ý�Ô¡Ö�Û+Ü[BEÔ¡Ö�ÕàÜ�Ý�Û;geBEÕàß
Ô 5{z ß}|\~ Ha�YZ�Z_M;Q�KF�;T�HVUwP��=Z��;P��
| N��yQ �o�\��Q����YK"PpZ ~ K8N;PRQSH;K8N�����H;K[UaZ ~ Z3K8�YZsH;K�� ~ PRQ �o�yQSN��O�YK8�PpZy��� QE��Z3K8�3Z á
ë8BJvbØdÔ b;���a�Fb;`�� á 0a`;`��L5

/ �x2e7�5�� B;<àÕ á n+5 Ú]Ø[g 9 ÛQáOBKß�Ý*> 5 >�ÛEÔ�BKÖ�Õ 58� ß�Ö�m
Ø5Ý�ØdÜdÕzÝ"B 9 ÕA<àÕ×Ö)ê
BEß
Ý�ÜdÛ�g$ë"<àØytQÕàÖ8êvÛ;q���:
Ø3r�ê�BKß
ÔV�±Øyr�Õàß=vrÛx�uØyr2Õàß
ÜTÛbß
Ô�ÕàÔ¡Ö�Ødß+Ö
BEß
Ý~Õàß
ÜdÛ;g$ë=<àØTÖ�Ø2Ý"BKÖYB 9 BEÔ�ØdÔ 5�z ßw|�� W � á cJ � ��F5

/ ¡J2ed"5�� m
Û;g$ÕzÜY¢VÕ.BEß
Ý d"5�£ BJr�ÜTÕzß"¢uÛa��Ô_¢VÕ 5¤� ß�Ö�m�Ø�ÜdÛ;g$ë=:QÖYBJ]
Ö�ÕàÛbß8BJ<-ÜdÛ�g$ë"<àØytQÕàÖ8ê�Û;q�g$Õàß
ÕAgeB;<1]�ÜYm8BEß"vbØ�ÕàßVÖ�Øyv;r�Õ×Ö)ê�geBKÕàß"]
Ö�Ødß8BKß
ÜdØBÕàß¥r�Ø[<EBKÖ�ÕàÛbß=B;<AÝ"BKÖYB 9 BEÔ�ØdÔ 5 z ß½Ú 5¦f Øyr�Ö�ÛEÔ�Ô�Õ á7�5�@ :�ß+Ö�Øyr¬ákBKß�Ý�§ 5\4 ÜYm8BJ: 9 á±Ø¬Ý�Õ×Ö�ÛJr�Ôdá �YK=PpZS� ~ Q�PR¨ª©?H��EZ ~ �N;K?�YZ35?4 ë"r�Õàß"vbØyr¬á c; ; ;¡"5

/ ba2 ^ 5.� Û;m
Ødß]á�« 5 >�Bx�VÕA¢F:=geBxr¬á.BEß
Ý 465­¬ ØdÕàß 9 Øyr�v 5¦7 ÜTÛ�g�]
ë8Bxr�ÕzÔ�ÛEß�ÛJq±Ô¡Ö_r�Õàß"v;]8Ý�ÕàÔ¡ÖYBEß�ÜdØ+g$ØWÖ_r�ÕzÜTÔsq�ÛJr�ß8BJg$Øy]�geBKÖ�ÜYm
Õàß=v
ÖYBEÔ_¢VÔ 5�z ß �_�L®wZ[X á c; ; ��F5

/ ¯x2 § 5Jn ØaBEß*BEß
Ý > 5;° ÕA�;BEß 5"£ ÛVÝQØ[<Fg$Õàß
ÕAg$ÕA±aBKÖ�ÕàÛbß2Õàß�geBJr�¢uÛx�
Ý�ØdÜTÕzÔ�ÕàÛEß�ë"r�Û+ÜdØTÔ�Ô�ØdÔ 5=z ß�|\~ Ha�YZ�Z_M;Q�K��;T�HVU\P��=Zs²y³LP��*´ N;PRQSH;K8N����H;KaU[Z ~ Z3K?�YZDH;K�� ~ PRQ �o�yQRN��.�YK"PpZy��� QE��Z3K?�YZ á{ë=B;vbØTÔ 0a ;¯x�=0�0�0 á0a`;`O�F5

/ �a2¤l*5�¬ :=m"r�BEß
Ý�§ 5 >�Ûyµ <A<zØy¢uØ 5{7 ë"r�Û 9 B 9 ÕE<àÕàÔ¡Ö�ÕàÜ�r�Ø[<EB^Ö�ÕzÛEß8BJ<
B;<AvbØ 9 rYB�qLÛ;r�Ö�m�Ø±Õàß+Ö�Ø[v;rYB^Ö�ÕàÛbßaÛ;q�ÕàßLq�Û;r�geB^Ö�ÕàÛbßir�ØTÖ_r�ÕàØ[��BJ<FBEß
Ý
Ý=B^ÖYB 9 BKÔ�Ø$Ô¡êQÔ¡Ö�Ø[g$Ô 5�����¶·© ~ NJK=Ty¸o�YK[Ua¸ � ¨JT�Pp¸ á 0ab Ù 0 ìWÞ ��ca�¯�¯ á 0a`;`O��5

/ �x2	°*5*j�5*£ ÛEß8B;m=BEß 5¹7 Ô_:Lr��uØTê=ÛJq|ë8Bxr�Ö�ÕEB;<×êBÛ 9 Ô�Ø3r���B 9 <àØ
geBJr�¢uÛx��ÝQØdÜdÕàÔ�ÕàÛbß�ëLr�Û+ÜdØdÔ�Ô�ØdÔdÞw§\m
ØdÛJr�ê+á\g$ÛVÝ�Øy<zÔdá\BEß
Ý)B;<1]
vbÛJr�ÕàÖ�m"g$Ô 5o¶�N;K8Na��Z3�eZ3K"P � �yQ�Z3K8�YZ á c;� Þ 03�80[¯ á 0[`��Oc�5

/ `x2e7�5�£ ÛEß=vbØºBEß�Ý ��5�j <E¢;BEß 5 7 ß½Øy»$ÜTÕzØTßVÖ=Ý�Û�geBKÕàß"]
Õàß�Ý�ØTënØdß�ÝQØdß+Ö�B;<AvEÛ;r�Õ×Ö�m=g¹qLÛ;r�ÝQØTÖ�ØdÜTÖ�Õàß=v�BEë�ë"r�ÛatQÕAgeBKÖ�Ø[<×ê
Ý":�ë=<àÕàÜaBKÖ�Ø2Ý"BKÖYB 9 BEÔ�Ø�r�ØdÜTÛ;r�Ý�Ô 5�z ß Ws¼ ¶ W á 0a`;`O�F5

/10a x2	£�5 «.:�Ö�Øyr�geBKß 5s¶�N ~_½ H;¾ W Z��yQ�TYQRH;K |\~ Ha�YZ3T�TyZ3T�¿ W Q�T3� ~ Z3PpZ
� P�Ha�Y�"NJTYPRQR� W ¨;K8N;�+QS� |\~ H�� ~ N;�+�*Q�KF�;5Àd Û�m�ßÁ^�ÕA<àØTêÁÂ4 ÛEß
Ôdá 0a`�`J¡"5

/10�032e7�5�4 Bxr�geBQá �*5�f ØdßJÃ¡Ø[<A<àÛ�:�ß/á 7i56@ BJ<zØy�Vê+á�BEß
Ý dL5 ^�ÕgÝQÛ�g 5
^�ÛJr�¢QÕàß"v g$ÛVÝ�Ø[<àÔÄqLÛ;rk:�ß
ÜdØ3r�ÖYBEÕàßxÝ=B^ÖYB 5Åz ß	|\~ Ha�x¸�HÆU��J� W�Ç
ÈLÉOÉOÊ 58zVj�j�j�� Û�g$ë":�Ö�Øyr 4 Û+ÜdÕàØTÖ)ê+á cJ � �¯F5

/10xca2¤n+5­4 :
ÜTÕE:�BEß
Ý l*5�n BJ<E�VÕ 5Ë¬ Û�:�ß�Ý"BKÖ�ÕàÛbß�ÔaÛJq�ë"r�Û 9 B 9 ÕA<zÕàÔ¡Ö�ÕàÜ
BEß�ÔV�5Øyr�Ô2Ö�ÛD��:
Ø3r�ÕzØTÔ 5Ëz ß � �JÌÄ¶ � WÎÍ É ��Ï |\~ Ha�YZ�Z_M;Q�K��;T	HVUP��=Z ÈLÉOÉ �e����¶ � �JÌÄ¶ � W Q�K=PpZ ~ K?NJPRQSH;K?N;�.�YHJKaUaZ ~ Z3K?�YZ	HJK¶�N;K8Na��Z3�eZ3K"P�HVU+MONJP�N áeë8BJvbØdÔ `�¯��a�F`;¯�� á l Ø3��Ð�Û;r�¢ná l Ð�á
Ñ 4L7 á c; ; ObF587��k£ «�r�ØdÔ�Ô 5

/10a�x2 > 5 Ú 5 ^�Õzß"¢F<zØ3r 5���K	�YK=P ~ HaM;I"�yPRQSH;KDP�H�Ò�N;¨�Z3T�QSNJK	�YKaU[Z ~ Z3K?�YZN;K?M W Z_�yQ�T�QSHJK=5�@ Û;<àÖ¬á">�Õzß�Ø[m8Bxr�Ö¬á"BEß�Ý	^�Õàß
Ô¡Ö�Ûbß]á 0[`O�;cF5



Efficiently Filtering RFID Data Streams

Yijian Bai †∗ Fusheng Wang ‡ Peiya Liu ‡

†UCLA
bai@cs.ucla.edu

‡ Siemens Corporate Research
{fusheng.wang,peiya.liu}@siemens.com

Abstract

RFID holds the promise of real-time identify-
ing, locating, tracking and monitoring phys-
ical objects without line of sight, and can
be used for a wide range of pervasive com-
puting applications. To achieve these goals,
RFID data has to be collected, filtered, and
transformed into semantic application data.
RFID data, however, contains false readings
and duplicates. Such data cannot be used
directly by applications unless they are fil-
tered and cleaned. While RFID data often
arrives quickly and is in high volume, its de-
tection usually demands efficient processing,
especially for those real-time monitoring ap-
plications. Meanwhile, the order preservation
of RFID tag observations are critical for many
applications. In this paper, we propose several
effective methods to filter RFID data, includ-
ing both noise removal and duplicate elimi-
nation. Our performance study demonstrates
the efficiency of our methods.

1 Introduction

RFID (radio frequency identification) technology uses
radio-frequency waves to transfer data between read-
ers and movable tagged objects. Thus it is possible to
create a physically linked world in which every object
can be numbered, identified, cataloged, and tracked.
RFID is automatic and fast, and does not require line
of sight or contact between readers and tagged ob-
jects. With such significant technology advantages,
RFID has been gradually adopted and deployed in a
wide area of applications, such as access control, li-
brary checkin and checkout, document tracking, smart

∗*Work done while visiting Siemens Corporate Research.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CleanDB, Seoul, Korea, 2006

�

���
�
������
�

�

��

L1 L2
L3

L4
L5

L6�

�

���
�
������
�

��

��

L1 L2
L3

L4
L5

L6�

Figure 1: Pervasive Computing with RFID

box [1], highway tolls, supply chain and logistics, se-
curity, and healthcare [2].

One major problem to be solved in pervasive com-
puting is to identify and track physical objects, and
RFID technology is a perfect fit to solve this. By tag-
ging objects with EPC 1 tags that virtually represent
these objects, the identifications and behaviors of ob-
jects can be precisely observed and tracked. RFID
readers can be deployed at different locations and net-
worked together, which provides an RFID-based per-
vasive computing environment. This is illustrated in
Figure 1, where L1 – L6 denote different locations
mounted with readers. Tagged objects moving in this
environment will then be automatically sensed and ob-
served with their identifications, locations and move-
ment paths.

Readers’ observations, however, are raw data and
can contain a lot of duplicate and false readings. Thus
the first step to integrate RFID data into pervasive
computing applications is to filter RFID observations.

RFID data are generated quickly and automatically,
and can be used for real-time monitoring, or accumu-
lated for object tracking. To filter the high volume
real-time RFID data streams, efficient methods are es-
sential, especially for real-time applications.

The filtered RFID data often need to preserve the
original order, i.e., the first observed tagged object will
be output first after filtering. Such order can be criti-
cal for many RFID applications. For example, a nurse
uses a wearable reader to access RFID-tagged medical
items according to medical procedures. The order the
nurse accesses these medical items is critical: wrong
orders may cause a medical error or even lead to fatal

1EPC – Electronic Product Code – is an identification scheme
for universally identifying physical objects, defined by EPC-
Global [3].



result. Thus, the correct ordering of RFID observa-
tions together with a workflow monitoring system will
minimize such errors.

In this paper, we propose effective and efficient algo-
rithms for RFID data filtering, including noise removal
and duplicate elimination.

The paper is organized as follows. We first intro-
duce the background of RFID data filtering in Sec-
tion 2. Then in Section 3 we propose algorithms to
efficiently filter noise from RFID data, including the
problem of order preservation in the output. Next we
discuss algorithms for duplicate merging in Section 4.
Performance study of these methods is discussed in
Section 5, followed by Related Work and Conclusion.

2 Background

Due to the low-power and low-cost constraints of RFID
tags, reliability of RFID readings is of concern in many
circumstances [4, 5]. There are three typical undesired
scenarios: false negative readings, false positive read-
ings and duplicate readings, discussed as follows.

• False negative readings. In this case, RFID tags,
while present to a reader, might not be read by
the reader at all. This can be caused by i) When
multiple tags are to be simultaneously detected,
RF collisions occur and signals interfere with each
other, preventing the reader from identifying any
tags; ii) A tag is not detected due to water or
metal shielding or RF interference.

• False positive readings(or noise). In this case, be-
sides RFID tags to be read, additional unexpected
readings are generated. This can be attributed to
the following reasons. i) RFID tags outside the
normal reading scope of a reader are captured by
the reader. For example, while reading items from
one case, a reader may read items from an adja-
cent case; ii) Unknown reasons from the reader
or environment, for example, one of our readers
periodically sends wrong IDs.

• Duplicate Readings. This can be caused by the
following reasons: i) Tags in the scope of a reader
for a long time (in multiple reading frames) are
read by the reader multiple times; ii) Multiple
readers are installed to cover larger area or dis-
tance, and tags in the overlapped areas are read
by multiple readers; and iii) To enhance reading
accuracy, multiple tags with same EPCs are at-
tached to the same object, thus generate duplicate
readings.

In practice, readings are often performed in mul-
tiple cycles to achieve higher recognition rate [5]. In
this way, false negative readings can be significantly
reduced. Meanwhile, noisy readings (or false positive

readings) generally have a low occurrence rate com-
pared to normal true readings. Thus only those read-
ings that have significant repeats within certain inter-
val are considered to be true readings. This, however,
will further produce much more duplicate readings.

Based on above observations, we develop effective
and efficient RFID data filtering techniques to gener-
ate clean RFID data, which can be further interpreted
and integrated into RFID-based applications. In this
paper, we study two types of filtering: noise is removed
from RFID data (denoising or smoothing), and dupli-
cates are merged into one distinct reading (duplicate
elimination, or merging). We develop algorithms that,
compared to baseline implementations, work more ef-
ficiently while requiring less buffer space for history
storage for both denoising and duplicate elimination.
Furthermore, we discuss the issue of output time or-
dering for denoising and show our method can address
this issue efficiently.

3 Denoising in RFID Data Streams

Based on the discussion above, since multiple read-
ing cycles are performed on tagged objects and noise
readings normally have a low occurrence rate, we pro-
pose sliding window based approaches to solve the
problem. A sliding window is a window with certain
size that moves with time. Suppose the window with
size window size has a time coordinate of [t1, t1 +
window size], after τ , the coordinate will become [t1

+ τ, t1 + window size + τ].
RFID reading tuples will enter the window and get

expired as time moves. Therefore, the noise readings
are readings with count of distinct tag EPC values be-
low a noise threshold. Denoising essentially performs
the following operations: within any time window with
size of window size surrounding an RFID reading, if
the count of the readings with same tag EPC values ap-
pears equal to or above threshold, then the observed
EPC value is not noise and needs to be forwarded for
further processing; otherwise the reading is discarded.
Two parameters used here are window size of a sliding
time window, and a threshold for noise detection.

An RFID observation (reading) is in the form
of: (reader id, tag id, timestamp), which refers to
the EPC [3] of the RFID reader, the EPC of the tagged
object, and the timestamp of this observation respec-
tively. In the algorithms presented below, the key of
a reading can be usually considered to be the pair
of (reader id, tag id) in the reading. For the case
where multiple readers are used to observe same tags,
the key will be tag id.
Baseline Denoising: A Base Approach We
first show a baseline implementation of denoising
as shown in Algorithm 1, which we refer to as
baseline denoising.

In this algorithm, intuitively, for each incoming



Algorithm 1 Baseline denoise (params:
window size, threshold)

1: WINDOWBUFFER ← empty queue {FIFO queue to
hold sliding window of readings}

2: loop {loop forever for next incoming reading}
3: INCOMING ← the next reading
4: append INCOMING to the end of WINDOW-

BUFFER
5: EXPIRETIME ← INCOMING.timestamp - win-

dow size

6: while the head of WINDOWBUFFER is older than
EXPIRETIME do

7: remove the head of WINDOWBUFFER
8: end while

9: COUNT ← count of readings in WINDOW-
BUFFER whose key equals to INCOMING.key

10: if COUNT ≥ threshold then

11: for each of the reading R in WINDOWBUFFER
with key equals to INCOMING.key do

12: if R has not been output before then

13: output R
14: set STATE-OF-OUTPUT as true
15: end if

16: end for

17: end if

18: end loop

reading of value R, we perform a full scan of the pre-
ceding sliding time window of size window size. If R
appears more than threshold times within the win-
dow, we know this is not a noise reading thus we out-
put every R in the window. To ensure a particular
reading is never output more than once, we keep a
state-of-output with each reading in the window
buffer and set it to true once it is output once.

Complexity. Assume on average there are n read-
ings in the sliding window, with k distinct keys. Since
the operations are repeated for each incoming tag read-
ing, we analyze the time cost on a per-reading ba-
sis. The bulk of the time cost is from 4 operations:
inserting the incoming reading into the window, re-
moving expired readings from the window, computing
the count of the readings with the same key, setting
state-of-output and outputting readings of the same
key if threshold condition is satisfied. Since all read-
ings are maintained in the same FIFO (First-In, First-
Out) queue, both insertion of new readings (appending
to the end of queue) and removal of expired readings
(removing from the head of queue) can be considered
constant time ( O(1) ) operations. (Strictly speaking,
expiration is amortized (O(1)) per incoming reading
here, since on average there is only one expiration per
new arrival, although individual incoming reading may
trigger different number of expirations.) On the other
hand, both counting and setting state-of-output
is performed by linearly scanning the full window.
Counting is always performed for each incoming read-
ing, thus the cost is Θ(n). Setting state-of-output

and outputting only occur when threshold condition
is satisfied, thus the cost can be considered to be
bounded by O(n), which leaves the total cost per in-
coming reading to be O(1)+O(1)+Θ(n)+O(n) = Θ(n).

Space Cost. The space cost for the base-
line denoise algorithm is basically the storage for the
sliding window itself, thus Θ(n).

It is natural to see that, with some additional space
cost, we can incrementally maintain an extra counter
for each distinct tag EPC value using a hashtable
(which takes Θ(k) space), thus reduce the counting
cost for each incoming key value. That is, for each in-
coming reading we increment the counter for the cor-
responding key in the hashtable, and for each expired
reading we decrement the counter for the correspond-
ing key. This reduces counting to an O(1) operation,
although we still can not avoid the O(n) operation of
setting states-of-output and outputting readings.

3.1 Lazy Denoising with Output Order Pre-
serving Using Hashtable

There is one problem in the baseline denoise algo-
rithm: the output readings may be out of order if
we output immediately upon determining a reading is
non-noise, i.e., a reading observed earlier may be out-
put later. This affects all further RFID data processing
where correct ordering of observations is critical, such
as complex RFID event detections for real-time RFID
applications and RFID data aggregation [6]. For ex-
ample, we may need to detect a certain sequence of
events, A followed by B, if the order is reversed an
alert has to be raised. In this scenario, not preserving
output ordering of tags will result in both false alerts
and false acceptances.

The following example shows how this out-of-order
problem might happen.

Example 1: out-of-order observations. Suppose two
tags are being read at two readers attached to the same
host computer. Each tag is repeated 10 times with
an interval of 100msec, thus the window size here is
1000msec. A reading is considered to be non-noise if
it appears 6 times out of any 1000msec time-window
around it. Assume the two tag keys are 1 and 2, and
the actual readings appear in sequences as shown in
Table 1, where tag 2 arrives 100msec later after tag 1
arrives. The readings of 4, 5, 8, 9 are noise2.

Although tag 1 and tag 2 both have 2 noise readings
in this example, due to different positions of the noise,
ID 2 is actually determined as a non-noise reading first
(at time 700msec), while ID 1 is determined as a non-
noise later (at time 800msec), although tag 1 arrives
earlier than tag 2. Therefore, if we output readings

2This example also illustrates how to set the window size

parameter for the algorithm. In most cases, this parameter is
dictated by the repeat count of a tag, as well as the interval
between repeats. The other parameter, threshold, however,
will need to be tuned based on error rates.



Time(msec) Tag 1 Reading Tag 2 Reading
100 1
200 4 2
300 1 2
400 1 2
500 5 2
600 1 2
700 1 2*
800 1* 8
900 1 2
1000 1 9
1100 2

Table 1: Arrival Time of Readings for Tag 1 and Tag
2 (* indicates the earliest time point that the reading
can be determined as non-noise)

immediately after we detect them as non-noise, as is
done in the baseline denoise algorithm, we will then
output readings with their timestamps out of order. If
we represent the output as (id, time), then at time
700msec and 800msec the output for this example is:

Time 700: (2,200) (2,300) (2,400) (2,500) (2,600) (2,700)
Time 800: (1,100) (1,300) (1,400) (1,600) (1,700) (1,800)

Clearly, the reading of tag 1 at time 100msec will be
output later than the reading of tag 2 at time 700mec.
This will present a problem for any algorithm that is
dependent on correct time-ordering of readings.

To solve the out-of-order problem, one solution is,
when a reading is determined as non-noise, mark the
reading as non-noise but not output it yet. The output
happens only if a reading marked as non-noise gets ex-
pired from the window. With the FIFO queue for the
window, it is therefore very efficient to output readings
in their correct order.

Algorithm 2 – Lazy denoising – incorporates the
above-mentioned improvements. A hashtable of coun-
ters are maintained for each distinct key value R that is
still present in the sliding window, and the correspond-
ing counter is incrementally updated for each incoming
tuple and expiring tuple. At any point of time, if the
count of R in the window is higher than threshold,
we mark all readings of R as non-noise. To ensure the
correct output order, we delay the output of all non-
noise tuples till they expire from the sliding window.
At this point we know for sure all non-noise tuples will
be in order, since the noise readings that have already
expired will never turn to non-noise to affect the order.

Complexity. With incremental counter mainte-
nance using a hashtable, the cost of counting opera-
tion for each incoming reading is reduced from Θ(n)
to O(1), at the expense of an extra Θ(k) space. With
output-on-expire, it guarantees that the output is in
correct time order at no extra time or space cost. The
cost of hashtable maintenance (inserting and removing
keys from the hashtable) is on-average upper-bounded

Algorithm 2 Lazy denoising (params: window size,
threshold)

1: WINDOWBUFFER ← empty queue {FIFO queue to
hold sliding window of readings}

2: TABLE ← empty hashtable {hashtable to map each
key to a counter}

3: loop {loop forever for next incoming reading}
4: INCOMING ← the next reading
5: mark INCOMING as noise

6: append INCOMING to the end of WINDOW-
BUFFER

7: if the counter at TABLE[INCOMING.key] does not
exist then

8: store a counter at TABLE[INCOMING.key] with
value 1

9: else

10: increment the counter at TA-
BLE[INCOMING.key]

11: end if

12: EXPIRETIME ← INCOMING.timestamp - win-

dow size

13: while the head of WINDOWBUFFER is older than
EXPIRETIME do

14: if the head reading is marked as non-noise then

15: output the head of WINDOWBUFFER
16: end if

17: remove the head of WINDOWBUFFER
18: decrement the counter in TABLE for the corre-

sponding key
19: remove the slot in TABLE if the counter for this

key becomes 0
20: end while

21: COUNT ← counter value at TA-
BLE[INCOMING.key]

22: if COUNT ≥ threshold then

23: for each of the reading R in WINDOWBUFFER
with key equals to INCOMING.key, by reverse
time order do

24: if R is marked as noise then

25: mark R as non-noise

26: else

27: break the for loop
28: end if

29: end for

30: end if

31: end loop

by O(1) for each incoming reading, and due to repeat-
ing, not every incoming reading will introduce a new
key.

Notice that, in general, if each key is repeated for a
fair amount of time (say 10 times, which is common in
practice), and the noise ratio is small (say 1%), then k
can be considered to be an order of magnitude smaller
than n. As the noise ratio gets higher, the difference
between k and n become smaller. If we assume each
tag is repeated for r times, and overall there is a p
percent chance that a reading is noise, then we have
the relationship that k = n ∗ ( 1

r
+ p).

Baseline (Ordered). In the experiments section,



a Baseline (Ordered) algorithm is used for compari-
son with Baseline denoising and Lazy denoising. This
algorithm is exactly the same as Baseline denoising
when searching for non-noise readings, as it scans the
full window each time. However, it also tries to output
tuples in order by only outputting a reading when it
expires from the window. The details of this algorithm
are omitted here since it is a straightforward extension
of Baseline denoising and has exactly the same com-
plexity bounds.

3.2 Eager Denoising: Output Data Early with
Order Preservation

Although output-on-expire is efficient and straightfor-
ward, it does have a negative consequence of intro-
ducing more delay for outputting readings. Instead of
being output on the fly at the time of determination
to be non-noise, a reading will not be output until it
is expired from the sliding window. This could be a
problem if the width of the window is quite long. This
indeed can be improved for situations where a reading
can be output earlier while correct time order can still
be preserved.

In fact, the issue of order disturbance occurs only
if a reading has been output before the change of la-
beling on some earlier reading from noise to non-noise
within the window. Therefore, for a non-noise reading
that we know no other earlier noise reading is present
in the sliding window, we can then safely output it
without the risk of order problems. This technique is
incorporated in Algorithm 3 – Eager denoise.

Algorithm Eager denoise (Algorithm 3) improves
over Algorithm Lazy denoise (Algorithm 2) by out-
putting non-noise readings more eagerly: as soon as
there is no more noise before the non-noise reading
within the sliding window, the non-noise reading is
output. To achieve this, the algorithm keeps track of
the first noise reading (FIRSTNOISE) inside the win-
dow at all times. Then an invariant is kept at the end
of processing each incoming reading, such that all the
non-noise readings before FIRSTNOISE are output,
and all the non-noise readings after FIRSTNOISE are
not. (In the case of no presence of noise, everything
is output at the end of the processing of the incom-
ing reading). To maintain this invariant, each time
FIRSTNOISE changes – either by expiring the reading
out of the window, or due to setting of non-noise when
its key appearance is more frequent than the threshold
– we output all non-noise readings by time order until
we find the next FIRSTNOISE in the window.

Therefore in this algorithm, in a nutshell, for each
incoming reading and each expiring reading we incre-
mentally update the corresponding counter for each
distinct tag EPC value in the hashtable. Once the
counter for value R is higher than threshold, we set
all readings of R in the window to be non-noise. We
immediately output the non-noise reading of value R

Algorithm 3 Eager denoise (params: window size,
threshold)

1: WINDOWBUFFER ← empty queue
2: TABLE ← empty hashtable
3: FIRSTNOISE ← null {keep earliest noise in window}
4: loop {loop forever for next incoming reading}
5: INCOMING ← the next reading
6: mark INCOMING as noise
7: if FIRSTNOISE = null then
8: FIRSTNOISE ← INCOMING
9: end if

10: append INCOMING to end of WINDOWBUFFER
11: if the counter at TABLE[INCOMING.key] does not

exist then
12: initiate TABLE[INCOMING.key] with counter 1
13: else
14: increment TABLE[INCOMING.key]
15: end if
16: EXPIRETIME ← INCOMING.timestamp - win-

dow size
17: SEARCHFIRST ← false
18: while the head of WINDOWBUFFER is older than

EXPIRETIME do
19: if SEARCHFIRST = false ∧ the head reading is

marked as noise then
20: SEARCHFIRST ← true
21: FIRSTNOISE ← null
22: else if SEARCHFIRST = true ∧ the head reading

is marked as non-noise then
23: output the head of WINDOWBUFFER {this is

a non-noise reading after the previous expired
FIRSTNOISE}

24: end if
25: remove the head of WINDOWBUFFER
26: decrement the counter in TABLE for the corre-

sponding key
27: remove the slot in TABLE for 0-counts
28: end while
29: COUNT ← counter value at TA-

BLE[INCOMING.key]
30: if COUNT ≥ threshold ∨ SEARCHFIRST = true

then {If either the threshold condition is met, or
we need a new FIRSTNOISE, scan the window}

31: for each of the reading R still in WINDOW-
BUFFER according to time order do

32: if COUNT ≥ threshold ∧ R.key = INCOM-
ING.key ∧ R is marked as noise then

33: if SEARCHFIRST = false ∧ R = FIRST-
NOISE then

34: SEARCHFIRST ← true
35: FIRSTNOISE ← null
36: end if
37: mark R as non-noise
38: if SEARCHFIRST = true ∨ R.timestamp <

FIRSTNOISE.timestamp then
39: output R {output the newly-determined

non-noise reading, if either the next
FIRSTNOISE is unknown, or it is earlier
than the known FIRSTNOISE}

40: end if
41: else if R is non-noise ∧ SEARCHFIRST = true

then
42: output R {output the existing non-noise

reading, only if the next FIRSTNOISE is not
determined yet}

43: else if SEARCHFIRST = true ∧ R is marked
as noise then

44: SEARCHFIRST ← false
45: FIRSTNOISE ← R
46: if COUNT < threshold then
47: break the while loop
48: end if
49: end if
50: end for
51: end if
52: end loop



once we can determine that there are no more noise
readings before this reading in the sliding window.

Complexity. Compared to Lazy denoise, Ea-
ger denoise performs one more operation: the mainte-
nance of FIRSTNOISE. An extra linear search on the
window is performed whenever FIRSTNOISE changes,
and the search is obviously less frequent than one time
per incoming reading. Therefore the bound of O(n)
processing time per incoming reading still remains the
same.

4 Duplicate Elimination (Merging)

When noise in the readings is eliminated, dupli-
cate readings for the same tag have to be recog-
nized and only the first (or the earliest) one among
all duplicates should be retained. Our duplicate-
elimination (or merging) algorithms take one pa-
rameter – max distance. If a reading is within
max distance in time from the previous reading with
the same key, then this reading is considered a dupli-
cate. Otherwise, it is considered a new reading and is
output.

Algorithm 4 – baseline merge – performs duplicate
elimination by simply keeping a sliding-window of size
max distance. For each incoming reading, if there
exists another reading in the window with the same
key, then it is considered a duplicate, otherwise it is
output as a new reading.

Algorithm 4 Baseline merge (param: max distance)

1: WINDOWBUFFER ← empty queue {FIFO queue to
hold sliding window of readings}

2: loop {loop forever for next incoming reading}
3: INCOMING ← the next reading
4: EXPIRETIME ← INCOMING.timestamp -

max distance
5: while the head of WINDOWBUFFER is older than

EXPIRETIME do
6: remove the head of WINDOWBUFFER
7: end while
8: go through WINDOWBUFFER to look for another

reading with the same key as INCOMING
9: if nothing is found then

10: output INCOMING
11: end if
12: append INCOMING to the end of WINDOW-

BUFFER
13: end loop

Complexity In baseline merge, a linear scan is per-
formed on the full window for each incoming reading,
therefore the time cost is Θ(n). The space cost is sim-
ply the window itself in a FIFO queue, at Θ(n).

Baseline merge is intuitive and can be also easily re-
alized in some systems that support the concept of slid-
ing windows. For example, a SQL-based DSMS(Data
Stream Management System) can code baseline merge
as the following continuous query, assuming a data
stream schema of Readings(key, time):

SELECT key, time
FROM Readings R1

Algorithm 5 Hash merge (param: max distance)

1: TABLE ← empty hashtable {hashtable to store the
last appearance time for each key}

2: loop {loop forever for next incoming reading}
3: INCOMING ← the next reading
4: if INCOMING.timestamp - TA-

BLE[INCOMING.key] > max distance then
5: output INCOMING
6: end if
7: update TABLE[INCOMING.key] to be INCOM-

ING.timestamp
8: end loop

WHERE NOT EXISTS
( SELECT *

FROM Readings R2
OVER(max distance milliseconds PRECEDING R1)
WHERE R2.key = key
AND R2.time <> time)

Baseline merge carries a Θ(n) time cost per incom-
ing reading, and a Θ(n) space cost, both of which can
be further improved. In fact, it is straightforward to
see that it is not necessary to keep a max distance win-
dow worth of readings in order to determine whether
an incoming reading is a duplicate. All that needs
to be maintained is a timestamp to indicate the last
time a reading with the same key as the incoming
reading appears. If the distance between the incom-
ing timestamp and the last timestamp is larger than
max distance, then we treat it as a new reading and
output it.

Algorithm 5 uses a hashtable to keep the last ap-
pearance timestamp for each distinct key value. For
each incoming reading, its timestamp is compared to
the corresponding entry for this key in the hashtable,
and the reading is determined to be a new tag reading
if the key does not appear in the table, or the time
distance is larger than threshold.

Complexity. Since the hashtable keeps one en-
try per distinct key value, the average space cost is
now Θ(k), compared to Θ(n) of base merge. Further-
more, the time cost per incoming reading is now re-
duced to O(1) for hashtable lookup, instead of a full
scan of Θ(n). The cost of maintaining the hashtable
is less than O(1) on-average for each incoming tuple,
since not every incoming/expiring tuple will cause in-
sertion/deletion of keys from the hashtable.

5 Performance Study

For experiments, a random RFID reading generator
was created, which generates RFID tag reading ac-
cording to a Poisson process. The Poisson process gen-
erates tag readings with random arrival time, while the
arrival time conforms to a Poisson distribution with a
chosen average tag arrival rate. Each generated tag
reading repeats for 10 times, with some chosen noise
level (a certain percentage of the reading are noise).



Figure 2: Noise Elimination: Delay under Different
Arrival Rates

5.1 Performance of Denoising under Different
Arrival Rates

In the first experiment, we study the performance of
the various algorithms under different tag rates. The
random generator is fixed with the following parame-
ters: each tag reading repeats 10 times, with 200 mil-
liseconds gap between the repeats, and a 5 percent of
tag readings are noise. The average tag arrival rates
tested include: 1 tag/sec, 5 tags/sec, 50 tags/sec and
500 tags/sec. (With repeats set to 10/tag, the total
reading arrival rates are 10/sec, 50/sec, 500/sec and
5000/sec, respectively.) Average filtering delay over all
output readings is used to measure the performance of
the algorithms.

In Figure 2, four algorithms are used to filter the
reading to perform denoising. Baseline (Unordered)
corresponds to the Baseline denoise algorithm pre-
sented above, which performs denoising without any
optimization, and output the readings in incorrect
timestamp order. Baseline (Ordered) is a modified ver-
sion of the Baseline denoise algorithm, which also per-
forms denoising without any optimization, but outputs
the readings in correct orders by outputting at the time
of expiring from sliding window. Lazy denoise and Ea-
ger denoise are exactly as described above, and both
output readings in correct time order.

All four algorithms function correctly to filter out
the noise readings, and the three ordered-output al-
gorithms also proved to maintain the correct order-
ing. Figure 2 shows the performance of the algorithms
in terms of average delay of readings. Baseline (Un-
ordered) works well with low tag rates, because it com-
pletely ignores the output time order issue and there-
fore has the advantage of output immediately on de-
tection. Its performance degrades under high tag rate
situations due to large overhead of linear scanning of
the large sliding window under high rates. Baseline
(Ordered) has the worst performance of all, since it
has no optimization, while it still tries to maintain
the timestamp ordering. Lazy denoise performs bet-
ter than Baseline (Ordered) under high loads because

Figure 3: Noise Elimination: Delay under Different
Noise Percentage

it utilizes hashtables to reduce the overhead. Ea-
ger denoise has the best performance of all, since it
not only utilizes the hashtable optimization, but also
outputs readings as soon as they are safe to output.
Overall, Eager denoise has the best performance un-
der all load conditions.

5.2 Performance of Denoising under Different
Noise Ratio

The Baseline (Unordered), Lazy denoise and Ea-
ger denoise algorithms are studied for the performance
under different noise ratio. The random generator is
fixed with the following parameters: each tag reading
repeat 10 times, with 200 milliseconds gap between
the repeats, and overall tag arrival rate is 1/second.
Then different noise ratios are tested, including 1%,
5%, 20% and 50%.

Again, from Figure 3, Baseline (Unordered) works
well in terms of performance since it ignores the or-
dering issue and outputs immediately upon detection,
but its output readings are in incorrect time order.
Lazy denoise has to wait until the readings get ex-
pired from the sliding window, therefore it has the
largest delay. The interesting observation is that, un-
der low noise ratio, Eager denoise works almost as well
as Baseline (Unordered), although it maintains the
correct output time order. That is because when noise
ratio is low, it is more likely for a non-noise reading
to be output early under Eager denoise, when there
is no more noise preceding it in the sliding window.
However, as noise ratio gets higher, Eager denoise gets
closer to Lazy denoise since there are more and more
noise readings present to prevent early outputting.
Nonetheless, overall Eager denoise always works bet-
ter than Lazy denoise.

5.3 Performance of Duplicate Elimination

We study the performance of the two duplicate elim-
ination algorithms (Baseline merge and Hash merge)
under different tag arrival rates. The random gen-
erator is fixed with the following parameters: each



Figure 4: Duplicate Elimination: Delay under Differ-
ent Arrival Rates

tag reading repeat 10 times, with 200 milliseconds
gap between the repeats, and a 0 percent noise (since
here we are testing duplication elimination only, noise
are presumed already removed by previous filtering).
Then the performance is tested under different average
tag arrival rates, including 10 tags/sec, 50 tags/sec,
250 tags/sec and 1000 tags/sec. (With repeats set
to 10/tag, the total reading arrival rates are 100/sec,
500/sec, 2500/sec and 10000/sec, respectively.)

Both algorithms are able to eliminate duplicate
readings and only output the corresponding read-
ing once. However, it is clear from Figure 4 that
Hash merge is far-superior than the baseline imple-
mentation. The delay is basically negligible even under
an arrival rate of 10,000 readings/sec (1000 tags/sec)
for Hash merge, while Baseline merge starts to cause
large delays after tag rate reaches 500 readings/sec(50
tags/sec).

6 Related Work

RFID data filtering needs to remove noise and dupli-
cate from continuous high volume RFID data streams
generated from RFID readers. Such filtering is essen-
tial to provide accurate data used for RFID-enabled
pervasive applications. While RFID data filtering
is supported in RFID Middleware systems such as
[7, 8, 9], large volume real-time RFID data streams
demand more efficient approaches for filtering these
data.

RFID data processing is a hybrid of event process-
ing and stream processing. Past work on event detec-
tion and processing – such as [10, 11] – is not con-
cerned with processing speed and memory manage-
ment issues, where events are normally generated from
databases and different from events from high-speed
event streams. On the other hand, past work on data
stream processing and continuous query optimization
[12, 13, 14] assumes accurate stream sources and is not
concerned with RFID application-specific issues, such
as the existence of noisy and duplicate readings.

In [15], a probability-based approach is provided to
detect duplicate in web click streams. This approach

can not be applied to RFID data, since accuracy is
among the top priority for RFID data processing.

7 Conclusion

In this paper, we identify the problem of RFID data fil-
tering and develop efficient methods to eliminate noise
and duplicate from RFID observations. Specially, for
noise filtering (denoising or smoothing), we propose
an approach for more efficiently maintaining the orig-
inal time order of observations in the output; and for
duplicate elimination, the approach that we formulate
can minimize memory requirement for history buffer-
ing. We then perform experiments to validate our ap-
proaches through simulated RFID data generator and
demonstrate that our approaches are effective and ef-
ficient. Our approach of data filtering is essential to
provide clean and correct RFID data before they can
be further processed, transformed, and integrated for
RFID-enabled pervasive applications. The techniques
also provide an important reference for building RFID
Middleware [7, 8, 9] where filtering is a critical com-
ponent.

References
[1] M. Lampe and C. Flrkemeier. The Smart Box Appli-

cation Model. In PerCom, 2004.
[2] Siemens to Pilot RFID Bracelets for Health Care.

http://www.infoworld.com/article/04/07/23/HNrfid
implants 1.html, July 2004.

[3] EPC Tag Data Standards Version 1.1. Technical re-
port, EPCGlobal Inc, April 2004.

[4] J. Brusey et. al. Reasoning About Uncertainty in Lo-
cation Identification with RFID. In RUR at IJCAI,
August 2003.

[5] H. Vogt. Efficient Object Identification with Passive
RFID Tags. In Pervasive, 2002.

[6] F. Wang and P. Liu. Temporal Management of RFID
Data. In VLDB, 2005.

[7] C. Bornhoevd et. al. Integrating Automatic Data Ac-
quisition with Business Processes - Experiences with
SAP’s Auto-ID Infrastructure. In VLDB, 2004.

[8] Oracle Sensor Edge Server. http://www.oracle.com
/technology/products/iaswe/edge server.

[9] Sybase RFID Solutions. http://www.sybase.com/rfid,
2005.

[10] S. Chakravarthy et. al. Composite Events for Active
Databases: Semantics, Contexts and Detection. In
VLDB, 1994.

[11] N. H. Gehani et. al. Composite Event Specification
in Active Databases: Model & Implementation. In
VLDB, 1992.

[12] R. Motwani et. al. Query processing, approximation,
and resource management in a data stream manage-
ment system. In CIDR, 2003.

[13] Sam Madden et. al. Continuously adaptive continuous
queries over streams. In SIGMOD, 2002.

[14] D. Abadi et. al. Aurora: A new model and architec-
ture for data stream management. VLDB Journal,
12(2), 2003.

[15] A.Metwally et. al. Duplicate Detection in Click
Streams. In WWW, 2005.



Cleansing Databases of Misspelled Proper Nouns

Arturas Mazeika Michael H. Böhlen
arturas@inf.unibz.it boehlen@inf.unibz.it

Faculty of Computer Science, Free University of Bozen-Bolzano
Dominikanerplatz 3, I-39100 Bozen-Bolzano, Italy

Abstract

The paper presents a data cleansing technique for
string databases. We propose and evaluate an
algorithm that identifies a group of strings that
consists of (multiple) occurrences of a correctly
spelled string plus nearby misspelled strings. All
strings in a group are replaced by the most fre-
quent string of this group. Our method targets
proper noun databases, including names and ad-
dresses, which are not handled by dictionaries.

At the technical level we give an efficient solu-
tion for computing the center of a group of strings
and determine the border of the group. We use in-
verse strings together with sampling to efficiently
identify and cleanse a database. The experimental
evaluation shows that for proper nouns the cen-
ter calculation and border detection algorithms
are robust and even very small sample sizes yield
good results.

1 Introduction

The high-dimensional nature of the string space puts for-
ward a number of problems that do not exist in the numeric
domain. However, besides the added complexity, strings
also offer unique opportunities. In this paper we describe a
solution that takes advantage of the high-dimensional space
to clean databases of proper nouns, i.e., strings that do not
occur in dictionaries.

Since strings are elements of a high-dimensional space
the distance between any two strings is typically large. An
exception are misspelled strings, which tend to be located
near correctly spelled strings. The combination of these
two properties means that small hyper-spheres can be used
to cluster a string database. The hyper-spheres are far from
each other, and each hyper-sphere encloses the correctly
spelled string and the nearby misspelled strings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,requires prior
specific permission and/or a fee.

CleanDB, Seoul, Korea, 2006

Figure 1 illustrates the setting for strings george, syd-
ney, and jacob, together with misspelling of these strings.
We describe a solution to group misspellings of a string by
identifying the border and center of a hyper-sphere.

george

georqe

george

qeonqe

geonge

qeonge

georgue

sydny
sydney

sydni
gacob

jakab
gacop

jocob

jacop
jacob

jakob

jacab jacob

border

Figure 1: Database of Proper Nouns with Misspellings

The border detection algorithm is based on thestring
proximity graph(cf. Section 4.1), which captures the prop-
erties of proper noun databases with misspellings. The
string proximity graph shows that in the immediate neigh-
borhood of a string the number of strings is growing be-
cause of the misspellings. As we further increase the neigh-
borhood the number of strings does not grow. There are no
misspellings in this area and the other strings are further
away because of the high-dimensional nature of the string
space. The point at which the clusters stops to grow indi-
cates the border of a group of misspelled strings.

The computation of the border and center is done in par-
allel. We start with a random string that has not yet been
processed and identify all strings that are within distance
one from this string. Next we adjust the center of the clus-
ter and increase the radius. The adjustment of the center
makes the method more robust, so that it also applies to
groups of strings that are not far away from each other. As
soon as an increase of the radius does not further increase
the number of strings we have found a group and proceed
with another string that has not yet been processed. The
process stops when all the strings have been grouped.

The contributions of the paper are the following:

• We introduce a new cleansing technique for string data
with typos. The solution is based on the (i) border de-
tection and (ii) the center adjustment. The computa-
tion of the distance between strings is done with the
help of q-grams of strings (substrings of length q).
The center of the cluster is modeled as a bag of the



most frequent substrings of length q of the strings in
the group. Thus, the center reflects the substrings that
are common for the strings and neglects substrings
that are the result of infrequent misspelling.

• We use inverse strings (IS) to determine close-by
strings and to compute the border of the cluster. In-
verse strings associate with each q-gram the string IDs
that contain the q-gram. Even with inverse strings the
computational complexity of the border detection is
combinatorial wrt the length of the center string and
radius of the cluster. We use sampling to approximate
the border detection. This yields a linear complexity
wrt the size of the sample.

• We provide experimental result for the border detec-
tion and data cleansing algorithms. We show that the
border detection is robust and that even small sam-
ple sizes ensure good approximations of the border of
clusters and a low cleansing error.

The organization of the paper is the following. Section 2
presents related work. Q-grams and inverse strings are re-
viewed in section 3. Border detection and computation of
the center string are introduced in section 4. Approxima-
tion of the border with the help of IS data structure and
sampling are described in section 5. Section 6 presents the
algorithm of the cleansing of the data. We give an experi-
mental evaluation in section 7. Finally, section 8 concludes
the paper and offers future work.

2 Related Work
Fuzzy retrieval is the closest related work to our approach.
Fuzzy retrieval algorithms get as input a string and thresh-
old, and output strings that are within the given threshold.
Chaudhuri et al. [2] introduce an algorithm that retrieves
tuples that exactly match the query string with a high prob-
ability. Jagadish et al [10] and Ciaccia et al. [4] propose a
family of index structures that support exact, prefix, and ap-
proximate queries on multi-string attributes. Jin et al. [12]
propose an index structure that supports mixed types (string
and non-string) of attributes for approximate retrieval.

Automatic spell checking techniques [13, 9] compare a
potentially misspelled word with the words in a dictionary
or a model based on the dictionary. They output a correc-
tion (or a set of corrections) for a given error threshold or
r number of requested answers. Ifr is given the dictionary
(or the model) is queried a number of times for different
incremental thresholds until the sizer is reached. In this
paper we show how to automatically compute the thresh-
old (border of the cluster).

Efficient approximation of selectivity for a given string
and edit distance (overlap threshold) is investigated in [11].
This provides important statistical information about the
string data. In this paper we focus on precise computation
of the center and the border of a cluster, though both our
border detection and approximate selectivity solutions can
be combined. Our border detection algorithm can query for

approximate string selectivity, and use the result to detect
border of the cluster. Then inverse strings can be used to
cluster and cleanse the data.

There is a large body of work in the area of the simi-
larity metrics for string attributes. Such measures include
edit distance [8] q-grams, cosine similarity [6, 3, 7] and
its variants [5, 14]. Ananthakrishna [1] proposes a textual
similarity function for strings.

3 Background
3.1 Q-grams

Definition 3.1 [q-grams.] The q-grams of a stringα are
obtained by sliding a window of sizeq over the characters
of α. Since at the beginning and at the end of the string
we have fewer characters thanq, we extend the string by
prefixing it with q − 1 occurrences of # and suffixing it
with q−1 occurrences of $. We assume that symbols # and
$ do not occur in the input strings.

Example 3.1 [q-grams.] Letα = george and q=2. The
q-grams of stringα are

B(george) = {#g1, ge1, eo1, or1, rg1, ge2, e$1}.

In order to distinguish different occurrences of the same
2-gram we associate each q-gram with a sequence num-
ber (displayed as a superscript). For example, 2-gramge1

denotes the substring at the beginning of the string, and
2-gramge2 denotes the substring at the end of the string
(positions 5–6 of the input string).

3.2 String Overlap

Overlaps of q-grams quantify the closeness of strings. The
more two bags overlap, the closer the strings are to each
other. We define the overlap of two strings as the number
of q-grams they share.

Definition 3.2 [Overlap of stringsα andβ]. Let α andβ
be two strings. Then the overlap of the strings is

o(α, β) = |B(α) ∩B(β)|,

where|X | denotes the cardinality of setX .

Our clustering strategy is based on the overlap between
strings. We cluster strings together if they have a high over-
lap, and we assign strings to different clusters if the overlap
between strings is low.

Example 3.2 [Overlap of strings.] Letα1 = jacob,α2 =
jacop,β1 = syndni,β2 = syndny. Then

o(jacob, jacop) = |{#j1, ja1, ac1, co1}| = 4

Since the overlap between the strings is high, we assignα1

andα2 to one cluster. Similarly, sinceo(sydny, sydni) = 4,
β1 andβ2 are clustered together. On the other hand, since
o(sydny, jacob) = 0, stringsα1, α2, β1, β2 are not put into
one cluster.



3.3 Inverse Strings

Inverse strings associate with each q-gramκ all string IDs
that containκ as a q-gram.

Definition 3.3 [Inverse string.] Letα1, . . . , αn be a
dataset andκ be a q-gram. The inverse string is the set
of all strings (string IDs) that haveκ as a q-gram:

IS(κ) = {αi : κ ∈ B(αi)}

Example 3.3 [Inverse string.] Let the input database con-
sists of six strings:α1 = jacob, α2 = jacop, α3 = jakob,
α4 = sydny, α5 = sydni, α6 = sydney. The bags of
2-grams for each string are:

B(α1) = B(jacob) ={#j
1
, ja

1
, ac

1
, co

1
, ob

1
, b$1}

B(α2) = B(jacop) ={#j
1
, ja

1
, ac

1
, co

1
, op

1
, p$1}

B(α3) = B(jakob) ={#j
1
, ja

1
, ak

1
, ko

1
, ob

1
, b$1}

B(α4) = B(sydny) ={#s
1
, sy

1
, yd

1
, dn

1
, ny

1
, y$1}

B(α5) = B(sydni) ={#s
1
, sy

1
, yd

1
, dn

1
, ni

1
, i$1}

B(α5) = B(sydney) ={#s
1
, sy

1
, yd

1
, dn

1
, ne

1
, ey

1
, y$1}

The inverse string structure for all 2-grams is:

IS(#j
1) = {α1, α2, α3} IS(#s

1) ={α4, α5, α6}

IS(ja1) = {α1, α2, α3} IS(sy1) ={α4, α5, α6}

IS(ac
1) = {α1, α2, α3} IS(yd

1) ={α4, α5, α6}

IS(co1) = {α1, α2, α3} IS(dn
1) ={α4, α5, α6}

IS(ob1) = {α1, α2, α3} IS(ny
1) ={α4}

IS(b$1) = {α1, α3} IS(y$1) ={α4, α6}

IS(ak
1) = {α3} IS(ni

1) ={α5}

IS(p$1) = {α2} IS(i$1) ={α5}

IS(ko
1) = {α3} IS(ne

1) ={α5}

IS(op1) = {α2} IS(ey1) ={α5}

The inverse strings data structure pre-clusters strings.
Intuitively, the example database consists of two clusters
with data distributed around centersα1 = jacob andα5 =
sydney. The inverse strings structure reflects the clusters:
part of inverse strings consists of string IDs from the first
cluster (cf. the first column), while the other parts consists
of the IDs of the second cluster (cf. the second column).

4 Cluster Computation

This section presents our clustering technique. First, we
formalize the computation of the borderb for each cluster
(cf. Section 4.1). Second, we formalize the computation of
centerζ of the cluster (cf. Section 4.2).

4.1 Border Detection

Assume a center stringζ of a cluster. The border detec-
tion algorithm aims to find the smallest radius that separates
strings of this cluster from strings of other clusters. Since
we compare strings with the help of overlaps, this border is
the smallest overlapo that separates the cluster from other
cluster.

The border is computed by examining|Cd(ζ)| = |{α :
o(α, ζ) ≥ d}|, i.e., the number of strings that have an over-
lap of at leastd with ζ. Consider the following example.

Example 4.1 [Border detection.] We continue examle 3.3.
Let ζ = jacob, q=2. We compute the database strings that
have all 2-grams in common (overlap iso = 6) with jacob:
C6(jacob) = {α1}, the database strings that have all but
one 2-gram:C5(jacob) = {α1}. Similarly:

C4(jacob) = {α1, α2, α3}
C3(jacob) = {α1, α2, α3}
C2(jacob) = {α1, α2, α3}
C1(jacob) = {α1, α2, α3}
C0(jacob) = {α1, α2, α3, α4, α5, α6}.

Figure 2 shows the size of|Cd(jacob)| as overlapo de-
creases (cf. AxisX from right to left). For large overlaps
(o = 5−6) the size of the cluster increases. Then the cluster
size stops to increase for a range of the overlaps (o = 1−4).
This is an indication that the border of the cluster has been
reached. As the overlap is further decreased the cluster
starts to include points from other clusters resulting in a
very fast increase of its size (o = 0− 1).

S
iz

e 
of

 th
e 

C
lu

st
er

0 1 2 3 4 5 6
Overlap

Figure 2: The String Proximity Graph

We compute the largest range of a constant size of the
cluster (cf.o = 1− 4 in Figure 2), and take the right end of
the interval as the border.

The border detection algorithm takes a center stringζ
and finds the borderb of the cluster. We extend the notion
of border detection for a bag of q-grams. Letq = 2. Then
the following expressions are equivalent:

(i) b is the border for center stringζ = jacob

(ii) b is the border for the 2-gramsB(jacob) =
{#j1, ja1, ac1, co1, ob1, b$1}.



The extension of the border detection allows us to
query for borders of centers that do not necessarily cor-
respond to a database string (for example for a bag
{#j1, ja1, aX1, co1, ob1, b$1}). The motivation for this
generalization comes from the computation of the center
for a cluster and is discussed in detail in Section 4.2.

The following summarizes and defines the detection of
the border.

Definition 4.1 [Detection of the Border.] LetB be a (cen-
ter) bag andCd(B) = {α : o(B(α), B) ≥ o}, o =
|B|, |B| − 1, |B| − 2, . . . , 0. Let ij , ij + 1, . . . , ij + kij

the longest sequence of unvarying sizes of the cluster:

|Cij (B)| = |Cij+1(B)| = · · · = |Cij+kij
(B)|.

Then the border of the cluster with centerB is b = ij.

4.2 Computation of the Center

The border detection algorithm provides a simple and ef-
fective strategy to compute clusters in string data. One
starts with a string in the database and selects the border
that separates the cluster from the other clusters. If the
initial string was chosen close to the center of the cluster,
the border detection will yield good and robust results (cf.
ζ = jacob, Figure 3(a)). If one chooses the initial string
close to the border, two separate clusters might be assigned
to one cluster (cf.ζ = jocop, Figure 3(a)).

jacop

jakop

jacab
jazab

iacob

jacub

sydneizydnei

sydney

jacob
jocop

b

(a) Cluster with Center Stringζ = jacob

jacop

jakop

jacab
jazab

iacob
jacob

jocop
jacub

sydneizydnei

sydney

b

(b) Cluster with Center Stringζ = jocop

Figure 3: Border Detection for Different Center Strings

The computation of the exact center for a given bag of
stringsB is expensive. One needs to compute distances
between all strings inB and choose the one that minimizes
the sum of distances from the center to other strings from
B. We transform all strings into the space of bags of q-
grams, and find the center bag there. The following exam-
ple illustrates the computation.

Example 4.2 [Computation of the center for a given set of
bags.] We continue Example 4.1. Letα1, α2, andα3 be
a set of strings. Then the set of bags for the strings is the
following:

B(α1) = B(jacob) = {#j1, ja1, ac1, co1, ob1, b$1}
B(α2) = B(jakob) = {#j1, ja1, ak1, ko1, ob1, b$1}
B(α3) = B(jacap) = {#j1, ja1, ac1, ca1, ap1, p$1},

Our aim is to find a bag that represents bagsB(α1),
B(α2), andB(α3). We compute such a bag in the follow-
ing way. We compute the overall histogram for the set of
bags, and neglect the infrequent 2-grams. The histogram of
all 2-grams is presented in Figure 4 with the 2-grams in the
second row, and the number of occurrences of the 2-gram
in the first row.

3 3 3 3 2 1
#j1 ja1 ac1 ob1 b$1 co1

1 1 1 1 1
ak1 ko1 ca1 ap1 p$1

Figure 4: Histogram of 2-grams

The size of the center bag of 2-grams is determined by
the average sizeS of the input bagsB(α1), B(α2), and
B(α3). Therefore, the center bag is the following:

Bc = {#j1, ja1, ac1, ob1, b$1, co1}.

Note that the center bag might consist q-grams that cor-
respond to typos in the input dataset. These occurrences do
not decrease the quality of clustering. In fact, the opposite
holds, since we are looking for a center bag that represents
all the strings in the cluster as precisely as possible.

The following formalizes the computation of the center
bag for a set of input bags.

Definition 4.2 [Center bag.] LetB1, B2, . . . , Bk be a set
of input bags. Let

A =
|B1|+ |B2|+ · · ·+ |Bk|

k

be the average size of bagsB1, B2, . . . , Bk. Let

h(κ) = |{Bi : κ ∈ Bi}|

be the histogram value of q-gramκ. Let κ1, κ2, . . . , κm be
an ordered sequence of q-grams ofB1∪B2∪· · ·∪Bk such
thath(κi) ≥ h(κi+1). Then the center bagB is the set of
q-grams:

B = {κ1, κ2, . . . , κA}.

5 Sampling of Inverse Strings
In this section we show how to use inverse strings to iden-
tify strings that have an overlap with the center string above



a given threshold. First, we develop a mathematical for-
mula that shows how to identify strings of high overlap.
The result has combinatorial complexity. Second, we ap-
proximate the computation of high overlap strings with a
help of sampling.

The IS data structure allows to quickly identify database
strings that have selected q-grams in common. For exam-
ple, if one wants to find all string IDs that share all 2-grams
with the string jacob, one needs to compute the following
expression:

IS(#j1) ∩ IS(ja1) ∩ IS(ac1) ∩ IS(co1) ∩ IS(ob1) ∩ IS(b$1)

Similarly, if one wants to identify strings that contain all
but one 2-gram of jacob, one needs to compute the follow-
ing:

IS(ja
1
) ∩ IS(ac

1
) ∩ IS(co

1
) ∩ IS(ob

1
) ∩ IS(b$

1
)

[

IS(#j
1
) ∩ IS(ac

1
) ∩ IS(co

1
) ∩ IS(ob

1
) ∩ IS(b$

1
)

[

IS(#j
1
) ∩ IS(ja

1
) ∩ IS(co

1
) ∩ IS(ob

1
) ∩ IS(b$

1
)

[

IS(#j
1
) ∩ IS(ja

1
) ∩ IS(ac

1
) ∩ IS(ob

1
) ∩ IS(b$

1
)

[

IS(#j
1
) ∩ IS(ja

1
) ∩ IS(ac

1
) ∩ IS(co

1
) ∩ IS(b$

1
)

[

IS(#j1) ∩ IS(ja1) ∩ IS(ac1) ∩ IS(co1) ∩ IS(ob1)

Definition 5.1 [Computation of strings of high overlap
with the help of the IS data structure.] LetB be a cen-
ter bag, such thatκ1, κ2, . . . , κo ∈ B, ando be the overlap
threshold. Let

O(κ1, . . . , κo) = IS(κ1) ∩ IS(κ2) ∩ · · · ∩ IS(κo). (1)

The IDs of strings that have at leasto q-grams fromB can
be computed with the following equation:

[

κ1,κ2,...,κo∈B

O(κ1, . . . , κo) (2)

whereκ1, κ2, . . . , κo are different q-grams ofB.

The computation of the strings of high overlap with the
help of the IS data structure is expensive. Let|B| be the
size of the bag of q-grams, ando be the desired overlap
threshold. Then the computational complexity of the com-
putation iso ·

(

|B|
o

)

number of set operations (cf. equa-
tion (2)). We approximate the computation of equation (2)
with the help of sampling. We select a small sample of
different o-tuples(κi

1, κ
i
2, . . . , κ

i
o), i = 1, 2, . . . , S, where

S is the size of the sample, and compute the union of the
intersections:

S
⋃

i=1

IS(κi
1) ∩ IS(κi

2) ∩ · · · ∩ IS(κi
o) (3)

Example 5.1 [Computation of strings of high overlap with
the help of the IS data structure and sampling.] We
continue example 4.2. Let the center bag beB =
{#j1, ja1, ac1, co1, ob1, b$1} (the bag of string jacob). Let
the overlap threshold beo = 5 (all 2-grams except one) and
let the sample size beS = 3.

The computation of approximated strings is done in
three steps. First, we generateS = 3 random 5-tuples from
B:

κ1 = (κ1
1, . . . , κ

1
5) = (ja1, ac1, co1, ob1, b$1)

κ2 = (κ2
1, . . . , κ

2
5) = (#j1, ac1, co1, ob1, b$1)

κ3 = (κ3
1, . . . , κ

3
5) = (#j1, ja1, ac1, co1, ob1)

Second, we compute the intersections for the5-tuples:

U1(κ
1) = IS(ja1) ∩ IS(ac

1) ∩ IS(co1) ∩ IS(ob1) ∩ IS(b$1)

= {α1, α2, α3} ∩ {α1, α2, α3} ∩ {α1, α2, α3}

∩ {α1, α2, α3} ∩ {α1, α2, α3} ∩ {α1}

= {α1}.

Similarly, U1(κ
2) = {α1} andU1(κ

3) = {α1}. Finally,
we compute the union:

U(κ1) ∪ U(κ2) ∪ U(κ3) = {α1}.

Therefore, the approximate database strings with over-
alpo = 5 and higher to the center string jacob are{α1}.

6 Algorithm
This section presents the algorithm of our data cleansing
method. The algorithm cleanses data in 4 steps. First the
algorithm initializes the variables (cf. block 1, Figure 5),
then it clusters the string data (cf. block 2), merges overlap-
ping clusters (cf. block 3), and finally it replaces the strings
of a cluster with the most frequent string of the cluster (cf.
block 4).
Input:

D = {α1, α2, . . . , αn}:database of strings
q:size of q-grams
S:sample size

Output:
α1, α2, . . . , αn:cleansed strings

Body:
1. Initialize the clustered strings

Clustered Strings=∅, Clusters = ∅
2. Scan database strings. For each α ∈ D do

2.1 If α ∈ Clustered Strings then start a new iteration with the
next DB string (go to step 2). Otherwise compute initial
center bag:B = B(α), max border: bm = |B|. Initialize
the current cluster O = ∅

2.2 For each overlap threshold o = bm − 1, . . . , 1 do
2.2.1 Compute approximate strings with center bag B

and overlap threshold o. For i = 1, 2, . . . , S
2.2.1.1 Generate κ1, . . . , κo o-tuple of q-grams
2.2.1.2 Compute the overlap strings

O = O ∪ O(κ1 , . . . , κo) (cf. Eq (1))
2.2.2 Update the center of the cluster.

2.2.2.1 For each α ∈ O, for each κ ∈ B(α) do
update histogram h[κ] ← h[κ] + 1

2.2.2.2 Sort h[κ] in descdending order
2.2.2.3 Compute the average length of the strings

A =
P

α∈B len(α)/|B|
2.2.2.4 Assign the top A q-grams of the histogram

to the center bag B
2.2.3 Record the cluster for overlap o:

2.2.3.1 Cluster[o] = B
2.3 Find the longest sequence ib, ib + 1, . . . , ib + ∆

such that |Cluster[ib]| = · · · = |Cluster[ib + ∆]|
2.4 Update the clustered strings

Clustered Strings = Clustered Strings ∪ Cluster[ib]
2.5 Insert a new cluster to the set of clusters

Clusters = Clusters ∪ {Cluster[ib]}
2.6 Empty h[κ], O, B

3. Merge overlapping clusters. For each Ci, Cj ∈ Clusters do

if Ci ∩ Cj 6= ∅ then Ci ← Ci ∪ Cj
4. Clean the clusters. For each cluster Ci ∈ Clusters do

4.1 Find the most frequent string ϕ in Ci.
Replace all strings α ∈ Ci with ϕ.

Figure 5: Data Cleansing Algorithm



Block 2 (cf. Figure 5) clusters the string data. It starts
with a non clustered stringα (block 2.1) and computes
string IDs that have overlap with the center string (cf. Fig-
ure 2) for different overlap thresholds. For each over-
lap o the algorithm computes the strings of high overlap
(block 2.2.1), and adjusts the center bag of the cluster (cf.
block 2.2.2, Section 4.2). Then the method detects the bor-
der of the cluster (block 2.3), inserts the newly found clus-
ter (block 2.4), and removes the IDs of clustered strings
from the database (block 2.5). Four data containers are
used to implement the clustering step: histogram of q-
grams for the current clusterh[κ] (cf. definition 4.2), center
bagB, set of strings that have overlapo and higher wrt the
center bagB (the container increases aso decreases), and
set of strings for each overlap thresholdo (the container is
not affected by the increase ofo). All containers are main
memory data structures and are implemented as sorted as-
sociated containers for fast point-queries.

Block 3 merges overlapping clusters and block 4
cleanses clusters with the most frequent string of the clus-
ter (the reasoning is that most of the strings are entered
correctly, and the data consists only of a smaller number
of strings with typos). Alternatively, one can identify the
stringζ that shares the largest number of q-grams with the
center bag, and use stringζ as the correct string for cleans-
ing.

The intersection of inverse stringsIS(κ1)∩· · ·∩IS(κd)
(Block 2.2.1.2) is the most expensive part of the algorithm.
We implemented and tested four different approaches of the
computations of the intersection. Letκ1, κ2, . . . , κo be a
sequence of the q-grams of a center string (in some random
order). Then the implemented strategies are the following:

(i) Scan all inverse strings simultaneously, i.e., leti =
(i(κ1), i(κ2), . . . , i(κo)) be an index vector that scans
(IS(κ1), IS(κ2), . . . , IS(κo)). If all the components
of indexi point to the same string ID, then the cluster
size is incremented, and all components ofi are incre-
mented. Otherwise, only indexi(κi) is incremented,
if IS(κi) contains the smallest string ID. Note that
we require that inverse strings are ordered according
to the string ID.

(ii) Organize the computation of the intersection as a se-
quence of intersections of two inverse strings, for e.g.:

((IS(κ1) ∩ IS(κ2)) ∩ IS(κ3)) ∩ IS(κ4)

The strategy can be formalized in the following way.
Let INi+1 = INi ∩ IS(κi+1), i = 2, . . . , o, IN1 =
IS(κ1), then

IS(κ1) ∩ IS(κ2) ∩ · · · ∩ IS(κo) = INo(κo)

(iii) The same strategy as (ii) though the sequence is
sorted started with the smallest inverse string, i.e.,
|IS(κi)| ≤ |IS(κi+1)|.

(iv) Similar strategy to (ii), though intersections are orga-
nized into a bushy tree:

(

(

IS(κ1) ∩ IS(κ2)
)

∩
(

IS(κ3) ∩ IS(κ4)
)

)

The following recurrent equations formalizes the
computation:

IN0
i ← I(κi)

IN j
i+1 ← IN j−1

2i−1 ∩ IN j−1
2i

IN j
⌊o/2j⌋ ← IN j

⌊o/2j⌋ ∩ IN j−1

⌊o/2j−1⌋ iff 2j 6 |o

wherei = 1, 2, . . . , ⌊o/2j⌋, j = 1, . . . , log2 o. Then
the intersection can be rewritten as follows:

IS(κ1) ∩ · · · ∩ IS(κo) = IN
log2 o
1 .

The results on different datasets has showed that strat-
egy (ii) outperformed the other strategies by at least 30%.
Therefore, we used strategy (ii) in our experiments. How-
ever, other alternatives might be more beneficial for dis-
tributed environment and in connection with caching tech-
niques (cf. strategy (iv)).

7 Experiments
We organize the experiments in two sub-sections. First, we
evaluate border detection criteria (cf. Section 7.1) and then
we evaluate our cleansing method (cf. Section 7.2). We use
synthetic datasets with different parameters in our exper-
iments. Three classes of databases were generated in the
experiments: (i) a class of databases with different number
of clusters (nc), (ii) a class of databases with different clus-
ter sizes (cs), and (iii) a class of databases with different
radius of clusters (radius). All datasets were generated in
the following way. First we generatednc number of cen-
ter strings far away from each other. Then for each center
string we generatedcs number of strings ine edit distance1

from the center string, where0 ≤ e ≤ radius.

7.1 Border Detection

Figure 6 shows the experiments for our border detection
algorithm for different number of clusters (cf. Figure 6(a)),
cluster sizes (cf. Figure 6(b)), radius of the cluster (cf. Fig-
ure 6(c)), and sample size (cf. Figure 6(d)). All figures
varies overlap from aroundo = |B| = 35 to o = 1 (cf.
Axis X from right to left in Figure 6).Y axis reports the
fraction of the size of the cluster that is covered by the
overlap thresholdo. There are three intervals of overlaps
in the graphs: an intervalI< of overlapso that does not
cover the entire cluster (cf. interval35–17, Figure 6(b)),
interval I= of overlaps that cover exactly the cluster (cf.
rage16–4, Figure 6(b)), and intervalI> of overlaps that

1edit distance between stringα and stringβ is the smallest number of
character- insertions, deletions, and substitutions required in order to get
stringα from stringβ.



cover more strings than there are in the cluster (cf. range
3–0, Figure 6(b)). The border detection works if there is a
(relatively long) interval of overlaps that covers the cluster
exactly.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5  10  15  20  25  30  35

C
lu

st
er

 S
iz

e,
 %

Overlap Threshold o

nc=10
nc=100

nc=1000
nc=50000

(a) Number of Clusters

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5  10  15  20  25  30  35
C

lu
st

er
 S

iz
e,

 %
Overlap Threshold o

cs=50
cs=100
cs=500

cs=1000

(b) Cluster Size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5  10  15  20  25  30  35

C
lu

st
er

 S
iz

e,
 %

Overlap Threshold o

radius=1
radius=2
radius=4
radius=6
radius=8

(c) Radius of Clusters

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  5  10  15  20  25  30  35

C
lu

st
er

 S
iz

e,
 %

Overlap Threshold o

ss=5
ss=10
ss=50

ss=100
ss=500

(d) Sample Size

Figure 6: Border Detection

Border detection algorithm successfully identifies bor-
ders of clusters provided a sufficient sample size.

The robustness of the algorithm is not affected by the
cluster size (cf. Figure 6(b)). Indeed, the length of inter-
val I= depends on the distance between the borders of the
clusters and does not depend on the cluster size.

The robustness of the border detection is almost invari-
ant to the number of clusters (cf. Figure 6(a)). As the num-
ber of clusters increases from10 to 50, 000 the start of in-
tervalI= shifts from16 to 13. However, the impact of the
shift is negligible compared to the length ofI=, and there-
fore the border detection ensures robust results.

Radius of clusters (cf. Figure 6(c)) and sample size
(cf. Figure 6(d)) impacts more significantly the robustness
of border detection. The length ofI= proportionally de-
creases as the radius decreases (by two for each decrease
in radius). Decrease of the sample size lowers the shape
of the curve, decreases the length ofI=, and in turn de-
creases the robustness of the border detection. However,
we want to have the sample size as small as possible, since
the smaller sample size means a lower computational time
of data cleansing.

Figure 6(d) confirms that very small samples can be
used to approximate the border detection robustly (cf.ss =
10 with the total number

(

35

17

)

≈ 4.5 × 109 of intersection
computations (cf. equation (1)) for the overlap threshold
o = 17!)

The default parameters in the series of experiments
were: length of stringsl ≈ 30, number of clusternc = 100,
cluster sizecs = 50, sample sizess = 100, cluster radius
radius = 3.

7.2 Cleansing

We evaluate our cleansing algorithm for different cluster
sizes (cf. sub-section 7.2.1) and different number of clus-
ters (cf. sub-section 7.2.2). Two measurement are recorded
for the experiments: relative error (recorded in relative
number of misclustered strings compared to the total num-
ber of strings in the clusters) and clustering time (seconds).

7.2.1 Different Cluster Sizes

As the cluster size increases, the relative clustering error
decreases (cf. Figure 7(a)). This is because the border de-
tection algorithm is very effective, and the number of cor-
rectly clustered strings increases vs. the total number of
strings in the cluster.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1000 750 500 250

R
el

at
iv

e 
E

rr
or

, %

Cluster Size

ss=10
ss=20
ss=30
ss=50

(a) Relative Error

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 1000 750 500 250

C
lu

st
er

in
g 

T
im

e,
 (

se
c)

Cluster Size

ss=10
ss=20
ss=30
ss=50

(b) Clustering Time

Figure 7: Different Cluster Sizes

The clustering time increases linearly as the number of
strings per cluster increases (cf. Figure 7(b)). However a
lower sample size does not necessarily mean a faster clus-
tering time. This is because inadequately small sample size
increases the number of total clusters, and in turn increases
the number of iterations of the algorithm.

The default parameters in this series of experiments
were: length of stringsl ≈ 30, number of clusternc = 100,
cluster radiusradius = 3.

7.2.2 Different Number of Clusters

The relative error increases very slightly as the number of
strings increases, (cf. Figure 8(a)). This is because the
sharp borders between the inverse strings of different clus-
ters gets blurred as the number of clusters increases. Note
that our sampling technique is very effective: even a very
small increase of the sample size (cf.ss = 10 andss = 20)
significantly reduces the relative error.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1000 750 500 250 0

R
el

at
iv

e 
E

rr
or

, %

Number of Clusters

ss=10
ss=20
ss=30
ss=50

(a) Relative Error

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1000 750 500 250 0

C
lu

st
er

in
g 

T
im

e,
 (

se
c)

Number of Clusters

ss=10
ss=20
ss=30
ss=50

(b) Clustering Time

Figure 8: Different Cluster Sizes



The clustering time (cf. Figure 8(b)) increases linearly
as the number of clusters increases. In contrast to the clus-
ter size experiment (cf. Section 7.2.1) the clustering time
for smaller samples does not exceed the clustering time for
larger samples, since the number of clusters is very large
compared to the size of the clusters.

7.3 Real World Data

This section evaluates the border detection algorithm for
real world company names (database with around 15 char-
acter long strings) and company addresses (database with
around 30 character long strings). Both databases con-
sists of clusters that are far away from each other and a
small number of strings within the clusters (cf. Figure 9).
There is a large range of overlap levels for which the clus-
ter size is constant (cf.o=[20–7] for the company names
and o=[22–7] for the company addresses), and therefore
our border detection algorithm detects the border correctly
even for very small sample sizes. Our clustering algorithm
detected small clusters (1–3 strings per cluster) for the com-
pany names and larger clusters (3–30 strings per cluster) for
company addresses.

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10 12 14 16 18 20

C
lu

st
er

 S
iz

e

Overlap Threshold o

ss=5
ss=10
ss=20
ss=50

(a) Company Names

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

C
lu

st
er

 S
iz

e

Overlap Threshold o

ss=5
ss=10
ss=20
ss=50

(b) Company Addresses

Figure 9: String Proximity Graph for Real World Data

Intuitively, our data cleansing algorithm produces good
cleansing results for string data with large distances be-
tween centers of clusters and small distances within the
clusters. Examples of such datasets are databases of com-
pany names and company addresses. Our data cleansing
algorithm is less applicable for natural language databases.
In such databases two strings that are close to each other
might have a very different meaning and therefore should
be assigned to different clusters (for example “air” and
“aim”, or “spouse” and “mouse”). In natural language
databases spelling based and dictionary based techniques
are more appropriate. For proper noun databases typically
no dictionaries exists and the proposed solution is the pre-
ferred choice.

8 Conclusions and Future Work
In this paper we present our results of a new data cleans-
ing algorithm. Data cleansing is done in two steps. First,
the string data is clustered by identifying center and border
of hyper-spherical clusters, and second, the cluster strings
are cleansed with the most frequent string of the cluster.
Clustering starts with a non-clustered string and computes
the borderb of the cluster. All strings within the overlap

thresholdb from the center of the cluster are assigned to
one cluster. Experiments show that the border detection is
robust provided a sufficient sample size.

There are a number of research directions for future
work. One can further progress the IS data structure. Our
investigation indicates that very few q-grams of the center
strings are sufficient to identify strings of the cluster. An
algorithm that robustly finds the identifying q-grams of the
cluster is an interesting challenge.

The data cleansing method is robust if the distance be-
tween the clusters is large compared to the diameters of the
clusters. In order to improve the precision for databases
with small distances between the clusters one can introduce
a number of string representatives for each cluster.

References
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating

fuzzy duplicates in data warehouses. InVLDB, pages 586–
597, 2002.

[2] S. Chaudhuri, K. Ganjam, V. Ganti, and R .Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In
SIGMOD, pages 313–324, 2003.

[3] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity estima-
tion for string predicates: Overcoming the underestimation
problem. InICDE:, pages 227–239, 2004.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In
VLDB, pages 426–435, 1997.

[5] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison
of string metrics for matching names and records. InData
Cleaning Workshop in Conjunction with KDD, 2003.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. InVLDB, pages 491–
500, 2001.

[7] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava.
Text joins in an rdbms for web data integration. InWWW,
pages 90–101, 2003.

[8] D. Gusfield. Algorithms on strings, trees and sequences:
Computer science and computational biology. Cambridge
University Press, Cambridge, UK, 1997.

[9] V. J. Hodge and J. Austin. A comparison of standard spell
checking algorithms and a novel binary neural approach.
TKDE, 15(5):1073–1081, 2003.

[10] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective
multi-dimensional indexing for strings. InSIGMOD, pages
403–414, 2000.

[11] L. Jin and C Li. Selectivity estimation for fuzzy stringpred-
icates in large data sets. InVLDB, pages 397–408, 2005.

[12] L. Jin, C. Li, N. Koudas, and A. K. H. Tung. Indexing mixed
types for approximate retrieval. InVLDB, pages 793–804,
2005.

[13] K. Kukich. Technique for automatically correcting words in
text. ACM Comput. Surv., 24(4):377–439, 1992.

[14] S. Sahinalp, M. Tasan, J. Macker, and Z. Ozsoyoglu. Dis-
tance based indexing for string proximity search. InICDE,
2003.


