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Abstract

The object identification problem is particu-
larly hard for XML data, due to its struc-
tural flexibility. Tree edit distances have been
proposed for approximate comparisons among
XML trees. However, such distances ignore
the semantics implicit in XML data structure,
and their use is computationally infeasible for
unordered data. In this paper, we define a new
distance for XML data, the structure aware
XML distance, that overcomes these issues,
together with a polynomial-time algorithm to
calculate it, and we present experimental re-
sult that prove its effectiveness and efficiency.

1 Introduction

The object identification problem is a central problem
arising in data cleaning and data integration, where
different objects must be compared to determine if
they refer to the same real-world entity, even in the
presence of errors such as misspellings. As the spread
of the XML format as a data model increases, the need
to develop effective strategies for XML object identifi-
cation grows.

XML documents often represent complex, nested
data, and schema languages for XML allow great flex-
ibility in how such values are represented inside a doc-
ument. XML data representations may allow for op-
tional values, and lists of values whose length is not
known schema-wise. Functions for approximate XML
data comparisons must thus be able to cope both with
errors at the level of textual data values and with
structural flexibility. The hierarchical nature of XML
data has lead to the use of tree edit distances([1]) to
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compare XML documents for various purposes, like
detection of differences in versions of XML documents
([2],]3])- Some proposals also address the object iden-
tification problem ([4]). Tree edit distances in their
original form give great importance to topological fea-
tures of trees, but are not well suited when node labels
and their nesting have semantics and data structure
is somewhat regular. Another issue is that, due to
the infeasibility of tree edit distance measures for un-
ordered trees ([16]), such proposals are usually based
on versions of the tree edit distance for ordered trees.
Notice that, while the XML data model is indeed or-
dered, the presence of unbounded lists of values and
optional elements in the data motivates for the adop-
tion of unordered comparisons when looking for ap-
proximate matches. As an example, consider an ele-
ment defined by the following DTD element definition:
<IELEMENT SHOP (NAME, ADDRESS?, PHONENUM«)> Here, an object
representing a shop may contain zero or more phone
numbers. The order in which phone numbers are listed
is irrelevant, or however unspecified, so two objects
representing the same shop might contain the same
set of phone numbers in different order. Requiring
that elements correspond to each other in an ordered
way may lead to miss some of the similarities among
those objects.

We propose a novel distance measure for XML data,
the structure aware XML distance, that copes with
the flexibility which is usual for XML documents, but
takes into proper account the semantics implicit in
structural information. The structure aware XML dis-
tance treats XML data as unordered. Nonetheless,
differently from other distances for unordered trees,
it can be computed in polynomial time. In this pa-
per, we formally define the structure aware XML dis-
tance, we present an algorithm to measure the dis-
tance, prove its correctness and its computational cost,
and we perform experiments to test the effectiveness
and efficiency of our distance measure as a comparison
function for XML object identification.

The rest of this paper is organized as follows. In
Section 2 we review some related work. In Section 3
we first motivate the introduction of a new distance,



showing with examples how approaches based on clas-
sical tree edit distance fail to respect the semantics
of XML data and then define formally the structure
aware XML distance. In Section 4 we introduce some
theoretical properties of our distance and in Section 5
we present an algorithm to calculate it and we show
its correctness and its time complexity. Section 6 de-
scribes experimental results. In Section 7 we draw
some conclusions and describe some future work.

2 Related Work

The object identification problem has been extensively
studied for relational data (with the name of record
matching or record linkage problem), but the corre-
spondent problem for semi-structured data has only
recently drawn some attention. Most proposals for
XML object identification are structure oblivious, in
the sense that they rely on some kind of flattening
of document structure to perform comparisons. In
[14], XML objects are flattened and compared us-
ing string comparison functions. In the DOGMATIX
framework([13]), data is extracted from an XML docu-
ment and stored in relations called object descriptions.
Tuples of two object descriptors containing data with
the same XPath are classified as similar or contradic-
tory using string edit distance, and object descriptions
similarity is assessed taking into account the number of
similar and contradictory tuples. The approach in [10]
is similar, but comparisons of two objects take into ac-
count also approximate similarity results of descendant
objects. Structure aware approaches rely on distance
measures based on the tree structure of XML, like tree
edit distances (see [1] and below in this section). In
particular, the authors of [4] integrate string compar-
ison functions into the classic tree edit distance for
ordered trees to compute approximate joins on XML
documents.

The notion of tree edit distance for ordered trees is
due to Tai ([11]). The problem has also been extended
to unordered trees ([16, 9]) and many other variations
have been proposed (see e.g. [8, 5, 15]). Most versions
of the edit distance problem allow polynomial-time al-
gorithms for the case of ordered trees, but become NP-
hard for the unordered case([16]). The tree alignment
distance([5]) is a restricted version of edit distance. In
tree alignment, trees are first made isomorphic (ignor-
ing node labels) with the insertion of nodes labelled
with spaces, and then overlayed. A cost function is
defined on pairs of labels and the cost of an alignment
is the sum of the costs of opposing labels. An optimal
alignment is an alignment of minimum cost. Differ-
ently from the distance we propose in this paper, tree
alignment considers insertions of nodes and overlays
nodes with different labels, and it is NP-Hard for un-
ordered trees.

Tree edit distances have been employed also for data
and document change detection [2, 3]. The problem

has connections with object identification, but in that
context XML documents are mostly modelled as or-
dered trees, edit operations are extended to entire sub-
trees, and the focus is on efficiently finding an edit
seript to represent the changes.

3 A Structure-Aware Approach to
XML Object Identification

Approaches to solve the object identification problem
generally make use of some kind of distance function to
detect the similarity of two objects. In record match-
ing techniques proposed for the relational model, at-
tribute values are often compared using string compar-
ison functions ([7]). XML documents can be modelled
as node labelled trees. This hierarchical, tree-like na-
ture justifies the proposal of similarity measures that
integrate string comparison functions with tree edit
distances ([1]). However, tree distances are not fully
able to capture the semantics of XML data, as they
do not keep into account the semantics and structural
relationships among XML elements.

In this section, we first show some weaknesses that
classic tree edit distances suffer when used to compare
XML data, and then define a new notion of distance
for XML data, the structure-aware XML distance, as
the basis of an approach to XML object identification.

3.1 Tree Distances

Given a set of edit operations on labelled trees (i.e.
node insertions, deletions and relabelling) and a func-
tion that assigns a cost to each operation, the tree edit
distance between two trees is defined ([11]) as the min-
imum cost sequence of tree edit operations required to
transform one tree to another.

Comparison of XML data based on tree distances
has been proposed for various purposes ([4, 2, 3]).
The authors of [4] perform approximate comparison of
XML data with the tree edit distance defined above,
using a string comparison function to compute the cost
of node relabelling. This approach has the advantage
of keeping into account the tree structure of XML data.
However, the use of tree edit distance for this purpose
has some drawbacks. The examples in Figure 1 illus-
trate two of them. First, consider the XML data trees
a) b) and c¢). Tree c¢) represents the same data as
tree a), and also contains some additional information.
Tree b), instead, represents different data. However,
the tree distance between a) and ¢) is greater than the
distance between a) and b). Consider now trees d)
and e). Here, a person is represented with its parents
and an optional list of friends. When measuring the
tree edit distance between such two trees, a minimal
distance is obtained by deleting from treed) the entire
parent subtree, relabelling node friends into parents
and matching its leaves to two of the nodes of the par-
ent subtree of tree e). This behaviour clearly violates
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Figure 1: Two issues in classical tree edit distance-
based XML comparisons

the semantics implicit in node labels. These problems,
in addition to the need of performing unordered com-
parisons efficiently, motivate the introduction of a new
distance measure for XML data.

3.2 XML Structure-aware Distance

In this section, we give an intuitive description of how
the issues highlighted in the previous section can be
overcome, and then formalize the intuition to define a
new distance for XML data. Notice that, throughout
this section and in the rest of this paper, we consider
XML trees as unordered. The above examples show
that, when comparing XML trees, a good choice is to
match subtrees that have similar structure and that
are located under the same path from the root. These
can be indeed interpreted as clues of the same seman-
tics. If two trees have exactly the same structure, and
only differ by the textual values present on the leaves,
we can overlay the trees so that nodes with the same
path match. When multiple overlays are possible, then
we choose one such that the distance among textual
values on the leaves is minimal. If the structure of
the two trees differ, due to additional information, we
can still realize an overlay as above by deleting extra
subtrees that do not match well.

The following definitions make the notion of overlay
introduce above more formal. We assume a model of
XML objects as labelled trees. All leaves are labelled
with the same special label 7. Given a leafl, its textual
value (different from its label) is denoted by text(l).

Definition 1 (Overlay) An overlay O of Ty and T,
is a non-empty set of pairs of nodes from Ty and Ts
with the following properties: Yv;, v, € T;,Yn; € T; —
leaves(T;),i = 1,2,

if (v1,v2), (V],v5) € O, then vy =0 iff va =v, (1)
if (v1,v2) € O, then path(vy) = path(ve) (2)
(n1,m2) € O iff Juy,v2 s.t. ny = parent(vy) A (3)

“joh?‘ \ﬂlisa,\ <pary’ “tom"/’“lisa” san /“jona"“tom” Karl”
N ~N—_ -~
_ ~

Figure 2: A maximal overlay of two trees

ng = parent(vy) A {vy,v9) € O

Where path(v;) denotes the sequence of node labels
label(root;) ... label(v;) encountered when traversing
T; from the root to node v;.

If (v,w) € O we say that v and w match. If a node
is not matched with any other node, we say that it is
deleted. Informally, an overlay matches nodes from Ty
to nodes from T, one-to-one, so that nodes or leaves
are matched only if they have the same path from the
root. Two non-leaf nodes can be matched iff they are
ancestors of two leaves that are matched. Notice that
this implies that, if a node is deleted, all its descen-
dants are also deleted. It also implies that an overlay
of two trees exists only if there exist two leavesl; € Ty
and [y € T with the same path from the root. We say
that two trees are comparable if they have at least one
overlay.

Definition 2 (Maximal overlay) An overlay O of
two trees is maximal if there is no other overlay O’
such that O C O'.

Consider the two trees in Figure 2. In the figure,
nodes are marked in breadth-first visit order, re-
spectively with numbers and lowercase letters. Up-
percase letters beside nodes denote labels, and leaf
labels are not shown, while quoted strings denote
their textual values. An example of overlay is O =
{(1,a),(3,b),(6,e)}. This overlay is not maximal,
since there exist other overlays that contain it. An
example of maximal overlay that includes O is the
overlay shown in the figure using dashed lines O, =
{(1,a), (2,0), (3,b), (5,9).(6,€)}.  Intuitively, O, is
maximal since it is not possible to add another line
from a node of T7 to a node of T not already touched
by a line while maintaining overlay properties. No-
tice, however, that more than one maximal overlay
may exist between two trees. For the trees in Figure
2, another maximal overlay is obtained by matching
node 5 with node f rather than node g. Another one

is 0. = {(1,a),(2,¢),(3,d), (5,9),(6,2), (7, h) }.
Definition 3 (Cost of a match) Let sdist(s1, s2)

be a string comparison function. The cost of match
for two nodes v, w is:

| sdist(text(v), text(w)) if v,w are leaves
How =10 otherwise



Definition 4 (Cost of an overlay) The cost of an
overlay O is defined as o = me)eo Hos -

Definition 5 (Optimal overlay) An overlay O of
two trees is optimal if it is mazimal and there is no
other mazimal overlay O’ such that Tor < To.

Consider again the trees in Figure 2. The cost
of the overlay O, showed in the figure is given by
the sum of distances of textual values on matching
leaves. Using for instance the common string edit
distance ([12]), their distance can be calculated as
sdist(“john”,“jona”) + sdist(“lisa”,“lisa”) = 2+ 0 =
2. The cost for overlay O/, defined above is instead
given by sdist(“john” “jona”) + sdist(“lisa”, “kar]”) +
sdist(“mary”, “tom”) = 10. Actually, O, is an optimal
overlay for the two trees. Notice that more than one
optimal overlays may exist for two trees. In this ex-
ample, the overlay obtained by O. by matching leaf
5 with leaf f instead of leaf ¢ is still optimal, as the
string “john” has the same distance from the strings
“jan” and ‘“jona”. It is worthwhile to notice that, if two
given data trees are comparable, i.e. there is at least
an overlay for them, then from the above definitions
it follows that there is also a maximal overlay and an
optimal overlay for them.

Definition 6 (Structure aware XML distance)
The structure aware XML distance of two comparable
XML trees Th and Ty is defined as the cost of an
optimal overlay of Ty and Ts.

Notice that, when applied to the trees in the exam-
ple given in Figure 1, this distance works as expected.
Trees a) and b) are incomparable, while the distance
of trees a) and c) is zero. In the case of trees d) and
e), the distance only considers the differences among
those leaves that it is meaningful to compare, giving
as a result the least distance between names present
under the nodes parents.

4 Properties of Overlays

In the next section, we present an algorithm to mea-
sure the structure aware distance defined in section 3.
In this section, we describe some properties of overlays
that are useful to prove its correctness. In particular,
we show that an optimal overlay of two trees 77 and
T5 can be found by determining an assignment among
the children of their roots such that the sum of the
costs of optimal overlays for the corresponding sub-
trees is minimal (Theorem 4). To prove this result,
we first show that the cost of an overlay of two trees
can be rewritten in terms of the cost of overlays of the
children of their roots (Theorems 1 and 2).

For space reasons, we omit the proofs of some
theorems and only sketch other proofs. Through-
out, this section, we denote with 77,75 two compa-
rable data trees, with ri,7o their roots, and with

v, wj, i € [1,deg(r1)],j € [1,deg(r2)] the children of
r1 and ro, respectively. Furthermore, given a node v,
we denote with T'(v) the tree rooted at v. We call the
trees T'(v;) and T'(w;) the first-level subtrees of T1 and
T5 respectively.

Theorem 1 Let O be an overlay of Ty, Tz. If (v,w) €
O, then the set Oy, = {{y,2) € Oly € T(v),z €
T(w)} is an overlay of T(v) and T(w). Moreover, if
O is mazimal then also O, ,, is mazimal. We say that
Oy w 1 the overlay induced by O on T(v) and T(w).

Proof sketch: To show that O, is an overlay of
T(v) and T(w), we show that properties (1),(2) and
(3) of overlays are respected. The fact that O, ., is
also maximal can be proved by contradiction. If there
exist another overlay of T'(v) and T(w) O, ,, D Oy w,

then there exists another overlay O’ D O, and thus O
is not maximal. m

Theorem 2 Let O be an overlay of two trees Ty, Ts.
Then

O=(r,m)u( |J

{(vi,w;)}€O
V(vi, wj), (Vn, wi) € O, Oy w; N Oy g, = D (5)

O’l)i ,Wy ) (4)

Proof sketch: (4) By definition, Oy, ., C O
and thus (ry,7r9) U (Um’wﬁeo Oy, ;) C O. It re-
mains to show that the reverse inclusion holds, i.e.
that for any match (y,2) € O,(y,z) € {(r1i,r2)} U
(U(vs,w,y€0 Oviw; - This can be shown reasoning on
the depth of (y, z).(5) can be proved showing that for
any two overlays Oy, w;, € Oy, w,, if their intersection
is not empty, then necessarily v; = v, and w; = w;. =

In other words, an overlay of 77 and 75 is a partition
of the overlays it induces on its first-level subtrees and
the couple (ri,r3).

Theorem 3 The cost of a maximal overlay O is the
sum of the costs of all the overlays Ov““,j induced on
its first level subtrees.

Proof:  Follows immediately from Theorem 2. =
From this result it follows, trivially, that an overlay
is optimal only if the overlays induced on its first
level subtrees are all optimal. Notice that the re-
verse does not hold in general. As an example, con-
sider the overlay shown in Figure 4. It is easy to
see that the overlays Oz, and O, . are both opti-
mal since sdist(“john”,“joe”)+sdist(“mary”, “mark”) <
sdist(“john”, “mark”) + sdist(“mary”,“joe”). However,
the overlay of 77 and T shown in the picture is not
optimal, since another overlay with cost 0 can be ob-
tained by matching node 3 with ¢ and node 4 with
b. In order to reach a necessary and sufficient con-
dition for the optimality of an overlay, we introduce
a few more definitions. Given two trees T} and 715, a
first-level assignment of T1 and T» is a set of couples
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Figure 3: The overlay of T7 and T5 is not optimal, even
if all the overlays induced on subtrees are optimal

(v;,w;) such that each node of each tree is coupled
with at most another node of the other one, and the
trees T'(v;) and T'(v;) are comparable. The concept of
maximality defined for overlays can be easily extended
to first level assignments. It is easy to prove that an
overlay is maximal iff includes a maximal assignment.
By defining the cost of a maximal first-level assign-
ment as the sum of the costs of the overlays of first
level trees whose roots are coupled in the assignment,
the concept of optimality can also be extended to first-
level assignments. Given this definition, we can now
present the main result of this section:

Theorem 4 An overlay O is optimal iff it contains
an optimal first-level assignment A and the overlays
induced on its first level subtrees are all optimal.

Proof sketch: Maximality follows from the max-
imality of A. From the optimality of A and of the
overlays induced of first level subtrees it follows, by
Theorem 3, that the overlay is also optimal. m

The previous result gives an operative way to build
an optimal overlay of two trees 77 and T». A maximal
assignment can be obtained by first matchingr; with
ro and then matching a children of r1 with a children
of 7o until no more matches are possible. Two nodesv;
and w; are matched only if T'(v;) and T'(v;) are compa-
rable. In this case, an optimal overlay is built for7 (v;)
and T'(w;) by applying the same process, recursively,
up to the leaves. All possible maximal assignments
must be built and evaluated, and an optimal one must
be chosen.

5 Structure Aware XML Distance
Measurement

In this section, we introduce an algorithm to measure
the structure aware XML distance defined in Section 3,
and prove its correctness and its worst case complexity.

Algorithm 1 analyzes two comparable trees recur-
sively, starting from the roots. If the roots are leaf
nodes, a distance measure for their associated text
values is returned. Such function is denoted by the
procedure sdist() in the algorithm. Otherwise, the al-
gorithm considers their children, and computes a dis-
tance for each couple of subtrees rooted at children

Algorithm 1 dist(Ty,Ts)

if isLeaf(r1) and isLeaf(rz) then
return sdist(text(r1), text(ra))
else
xmldist := oo
for all ! in labels(children(rl) U children(r2)) do
for all v; € children;(r1) do
for all w; € children;(r2) do
Dyli, j] = dist(T(v;), T(wy))
end for
end for
assignment; := findAssignment(D;[])
for all (h,k) € assignment; do
if xmldist = oo then
xzmldist :== 0
end if
xmldist := xmldist + D;[h, k]
end for
end for
return zmldist
end if

with the same label, recursively. After all distances
have been calculated, the algorithm must assign each
node to another node with the same label, minimizing
the overall cost. This is an assignment problem and
can be solved using a variation of the well-known Hun-
garian Algorithm ([6]). In the algorithm, this task is
performed by a call to procedure findAssignment().
In particular, given a matrix of distances, the proce-
dure returns a set of assignments containing couples of
indices of assigned nodes. For ease of presentation, in
the algorithm we denote the set of all children of node
v having label [ with children;(v). Results of distance
calculations for a certain set of children having label
l are stored in an array named D;. The distance is
initially set to oo, and reset to 0 only in the case that
there is at least one assignment of root children.

From the results given in the previous section and
the definition of structure aware XML distance given
in section 3 it follows immediately that:

Theorem 5 Algorithm 1 correctly computes the
structure aware XML distance of two comparable trees.

In order to understand the computational cost of the
algorithm, let us consider a case in which all the leaves
of the tree have the same path, and the data trees are
maximal. We consider distance calculation among two
trees 77 and T>. We denote with deg; and degs their
respective degrees and with L1, Ly their sets of leaves.

Let T{, T4 be two subtrees of T1 and T rooted at
level I, and let 71,75 be their roots. In order to com-
pute their distance, we must choose a match among
the children of v} and 75 such that the the sum of
distances for corresponding subtrees is minimal. As-
suming that we have already calculated all pairwise
distances, we need to solve an instance of the linear
assignment problem. The Hungarian algorithm gives
a solution in cubic time, so the cost of an assignment
is O((degy + dego)?).

To compute all distance measurements, we pro-
ceed bottom up, starting from the leaves and calcu-



lating all pairwise distances among all nodes at each
level. At level depth — 1, before performing the assign-
ment phase we must compute distances among tex-
tual values. These are computed in constant time
(w.r.t. the size of the trees). At upper levels, we
already know the distances among nodes at lower
levels, so we just need to perform the assignment
phase. In total, the assignment phase is repeated
(IT1| = |L1]) x (|T2] — |L2]) times. Thus, the overall
cost is O((|Ty| — | L1|) x (|Te| — | L2|) x (degy + deg2)?).
When there is more than one path for leaf nodes, the
calculation is less expensive.

6 Experiments

This section presents an experimental evaluation of the
structure aware XML distance introduced in the pre-
vious sections. We tested both effectiveness and ef-
ficiency of our distance as the basis of a comparison
function for XML Object identification.

6.1 Experimental Setting

In the tests, a set of objects contained in an XML
document are compared pairwise for similarity. Two
objects 0;, 0; are classified as similar if dist(o0;,0;) < ¢,
where dist is the structure aware XML distance and t
is a fixed threshold. The string comparison function
we use is the string-edit distance([12]). We performed
three sets of tests. Tests in the first and second set aim
at determining how good is our measure at correctly
identifying similar objects under various experimental
conditions. The third set was performed to compare
our distance with the tree-edit distance used in [4].

6.2 Data Sets

The experiments were performed on a synthetic data
set created with ToXGene'. The objects compared
for similarity represented persons, defined as in the
following DTD element declarations:

<!ELEMENT PERSON (NAME, MIDDLENAME*, SURNAME, ADDRESS)>
<!ELEMENT ADDRESS (STREET, CITY, COUNTRY, EMAIL*, PHONENUMx)>

all elements not defined above contained PCDATA.
Textual data values were taken from the XMark bench-
mark; middlename, email and phonenumber optional
elements were limited to a maximum of respectively
to 2, 2, and 4 instances for each person. We started
from a clean data set of 300 distinct person objects. In
all experiments, for each person object another similar
object was created (duplication rate = 100%). In order
to create similar objects under controlled conditions,
we have developed a small tooP that allows to produce
objects that differ from the original by a given rate of
internal data deletions, text changes, and internal data
duplications, and element swaps. Internal data dele-
tions are leaf deletion. By internal data duplication

Lwww.cs.toronto.edu /tox /toxgene
2www.dis.uniromal.it/milano/duplicatecreator

we mean that a portion of an object (e.g. an mid-
dlename element or an address subtree) is duplicated
inside the object. These internal duplicates receive the
same amount of changes as other duplicates, except for
internal duplication. Text changes consisted of dele-
tions, insertions and character swaps. We inserted a
minimum of 2 errors for each text modification. The
specific kind of errors were chosen randomly with equal
probability (e.g. a character deletion and a swap, or
two swaps).

Notice that change rates mentioned in the tests re-
fer to the rate of changes for each duplicate. That is,
all duplicates differ from their original, and the change
rate refers to which percentage of the data present in
a duplicated object has received such changes. As an
example, a deletion rate of 20% means that in the
duplicate of a certain object 20% of the leaves were
deleted. A text change of 10% means that 10% of the
textual values present on leaves that were not deleted
are altered with a certain number of deletions, inser-
tions and character swaps.

6.3 Experimental Set 1

A first set of experiments tested how the effectiveness
of our measure varies depending on the chosen thresh-
old. Effectiveness is measured in terms of the f-score:

Fscore =2 - recall - precision/(recall + precision)

Where recall is the percentage of matches identified by
the algorithm, and precision is the percentage of actual
matches among those declared by the algorithm.

We let the threshold vary over a wide range of val-
ues, and performed the test for files in which the dif-
ferences among duplicate object are set as follows:

case | deletion rate | text change rate
1 10% 10%
2 10% 20%
3 20% 20%
4 20% 30%

Observe that the last one is a rather critical situa-
tion: a duplicate for an object with 10 leaves has 2
leaves removed and three of the remaining leaves con-
tain errors. The results for this set of experiments
are shown in Figure 4. A first observation that must
be done is that in all cases the measure achieves an f-
score of 100% for some threshold values. Thus, the dis-
tance shows high effectiveness as an object identifica-
tion comparison function. It is also worthwhile to no-
tice that all the curves in Figure 4 show a wide plateau
in which the f-score stay at its maximum value. Since,
in real-use conditions, determining the right thresh-
old is mainly a matter of experience and it is often
infeasible to evaluate various thresholds, the relative
insensibility of the distance to threshold variation in a
wide range of threshold must be considered as a posi-
tive feature. The curves in the graph appear grouped
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Figure 4: Results for experimental set 1: fscore depen-
dency on similarity threshold

in two sets, corresponding to the two values of deletion
rate used in the experiment. This behavior means that
the distance is more sensible to a variation in the data
available for comparison than to diffused errors over
the data itself.

6.4 Experimental Set 2

Our second set of experiments was performed to de-
termine how our distance is influenced by a variation
in the kind and amount of differences among similar
objects. The threshold was fixed to a value of 10,
and the rate differences introduced in duplicate objects
were varied independently. Figures 6(b), 6(a) and 6(c)
show respectively the trend of the recall, precision and
f-score measures for these tests. Each graph contains
different curves, each one relative to a specific kind of
differences. Different kinds of changes affect in differ-
ent way the behavior of the measure. From the graphs
it appears that a high rate of deletions affects precision
but not recall. This is due to the fact that deletions re-
duce the amount of comparable information available
to determine if two objects are similar. On the other
hand, high text change rates mainly influence recall,
since a high rate of errors may introduce high differ-
ences in comparable features of objects. The measure
is completely insensible to swaps of elements. This is
not surprising, since it compares unordered trees.

6.5 Experimental Set 3

We described in section 3 some issues related to or-
dered tree edit distances when used in an object iden-
tification context, and we claimed that our distance
is both more efficient and effective than such class of
distances. Our third set of experiments confirms this
claim. We tested our distance measure and the ordered
tree-edit distance over the same set of files, and com-
pared both execution time and f-score. The algorithm
used for the ordered tree edit distance is described in
[17], and the cost function was modified to account

for textual value comparison as proposed in [4]. More
specifically, the cost for relabelling, insertion and dele-
tion for leaves was evaluated based on the same string
comparison function used in our measure. For internal
nodes, a unit cost function was used. The files used
in the tests contained duplicates produced by applying
to each object all the four kinds of changes described
in section 6.2, with the same change rate for each dif-
ference. Thus, a data change rate of 10% means that
each duplicate has data deletion, text changes, inter-
nal duplication, and element swap rates all set to 10%.
We let the change rate vary from 10% to 45% at in-
tervals of 5%. The threshold was fixed. The graphs
shown in Figure 5 refer to the results obtained for the
best possible choice of a threshold for both measures.
The differences in execution time for the two distances
were dramatic. To perform the comparison over a to-
tal of 600 objects the ordered tree edit distance took
approximately 7,5 hours while, on the same machine
and for the same data, our distance takes something
more than a minute. The results shown in Figure 5
highlight how our distance constantly outperforms the
ordered tree edit distance from the effectiveness point
of view. This differences are partly due to the fact that
our distance performs an unordered comparison, and
the files contain swapped elements. Notice that only
adjacent elements with the same name where swapped
in the test files, thus respecting the DTD of the data.
Another difference is also due to the fact that our mea-
sure ignores internally duplicate data that cannot be
matched, while the tree edit distance accounts for the
cost of deletion of such data.

7 Conclusions

XML data has tree-like nature and flexible structure.
These features have lead to proposals for XML object
identification that exploit tree-edit distances to per-
form approximate comparisons among XML trees.
The tree-like nature and flexible structure of XML

1,0 4

00 o

10% 15% 20% 25% 30% 35% 40% 45%
% of data changes

—s—xmldist -- =--treedist

Figure 5: Results for experimental set 3: comparison
between tree edit distance and structure aware XML
distance
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Figure 6: Precision, recall and f-score for experimental set 2

data are serious issues in XML object Identification.
Such features have lead to proposals that exploit tree-
edit distances to perform approximate comparisons of
XML trees. However, tree-edit distances ignore the
semantics implicit in element labels and nesting re-
lationships. Furthermore, while tree-distances for un-
ordered trees are better suited to perform approximate
comparisons of XML data, their use is computation-
ally infeasible. In this paper, we have defined a new
distance for XML data, the structure aware XML dis-
tance, that overcomes these issues. The distance com-
pares only portions of XML data trees whose structure
suggest similar semantics. Furthermore, it performs
comparison on unordered trees, without incurring in
high computational costs. We have presented an algo-
rithm to measure the distance between two trees, and
discussed its complexity, that is polynomial. We also
presented an experimental evaluation of our measure
as the basis of an object identification approach.

Our measure is suited for detecting similar objects
when the scheme of objects is approximately the same,
as in the case of a single data source, or several data
sources on which a schema integration activity has al-
ready been performed. We are investigating how to
add more flexibility without sacrificing the gain in ef-
ficiency we have obtained. We also plan to investigate
other issues related to the use of tree distances for
XML comparison. In [4], the authors suggest the use
of ontology-based techniques to evaluate the cost of re-
labelling nodes. How to balance the effects of string-
comparison-based and ontology- based cost evaluation
seems far from trivial.
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Abstract

An important reality when integrating sci-
entific data is the fact that data may often
be “missing”, partially specified, or conflict-
ing. Therefore, in this paper, we present
an assertion-based data model that captures
both wvalue-based and structure-based “nulls”
in data. We also introduce the QUEST sys-
tem, which leverages the proposed model for
Query-driven Exploration of Semistructured
data with conflicT's and partial knowledge.
Our approach to integration lies in enabling
researchers to observe and resolve conflicts in
the data by considering the context provided
by the data requirements of a given research
question. In particular, we discuss how path-
compatibility can be leveraged, within the con-
text of a query, to develop a high-level under-
standing of conflicts and nulls in data.

1 DMotivation and Related Work

Through a joint effort of archaeologists and computer
scientists, we are developing an integrated frame-
work of knowledge-based collaborative tools that will
provide the foundation for a shared information in-
frastructure for archaeology and contribute substan-
tially to a shared knowledge infrastructure of sci-
ence [21]. Today, the incapacity to integrate data
across projects cripples archaeologists’ and other sci-
entists’ efforts to recognize phenomena operating on
large spatio-temporal scales and to conduct crucial
comparative studies [20, 21]. A major challenge with
integration of data is that the meaning of an archaeo-
logical observation is rarely self-evident.
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1.1 Incompleteness and Inconsistencies

An important reality when integrating archaeological
data is that entries (archaeological observations and
interpretations) may often be “missing” or only par-
tially specified. For example, one may not be able to
associate a bone collected at a given site to the species
and may use vague terms or references to a hierarchi-
cally higher concept in the biological taxonomy. Thus,
researchers reach conflicting conclusions, not just be-
cause their primary data differ, but because they op-
erationalize interpretive concepts differently [20].
Within the context of our efforts to determine the
needs and challenges associated with archaeological
information integration, a working group of domain
experts selected datasets representing archaeological
fauna recovered from two excavations in the western
US [28]. The goal of the effort was to integrate these
two datasets into one by using ontologies to map data
codes to concepts shared by the datasets and to resolve
the ambiguities (as much as possible) using ontologies.
One outcome of this effort was the understanding that,
even after a careful study of the data sets by the do-
main experts, there were parts of the data that could
not be successfully mapped (e.g., while use of the ac-
tual taxonomic categories was consistent, investigators
differed in how they dealt with bones that could not be
fully identified). Nevertheless, in the context of a par-
ticular research question, archaeologists could identify
reasonable means of addressing these inconsistencies.
Thus, reconciling data and classification schemes
entails developing novel data integration techniques to
allow query dependent integration, despite inherent in-
consistencies. Our goal is to develop a tool to allow a
researcher to extract sensibly integrated observations
and consistent variables from potentially incomplete
and inconsistent data archive. During query process-
ing, the repository needs to integrate data from mul-
tiple sources, note and resolve conflicting and missing
data. Where there are discrepancies or missing data,
the system needs to allow the researcher to interpret
results and resolve conflicts as she sees appropriate.



1.2 Related Work

In general, there are many different types of null val-
ues (e.g., existential, maybe, place holder, and par-
tial), each of which reflects different knowledge or
intuitions about why a particular piece of informa-
tion is missing [8]. An early attempt at modeling
semistructured data with missing and partial data
is presented in [23]; authors used an object-based
model, where null, or-valued, and partial set objects
are used to handle partial and missing knowledge in
semi-structured data. Although it is richer than stan-
dard semistructured data models, such as Object Ex-
change Model (OEM) [24, 7], and Document Object
Model (DOM) [1], this model is more focused on value
nulls and does not capture inconsistencies and missing
knowledge in the structure of the data. In contrast,
we propose a new model for semi-structured databases
where different types of null values are represented uni-
formly. Each entry has an associated assertion; intu-
itively, an entry may be thought of as being in the
database iff the corresponding assertion is true. Al-
though the idea of using assertions (constraints) to
handle null values in relational databases is not new
(Imielinski-Lipski [15, 16], Liu [22], Candan [8]), the
use of constraints for a unified way of handling dif-
ferent types of nulls within the context of hierarchical
data and metadata is an open problem.

Knowledge integration from diverse sources involves
matching and integration. There is extensive work in
the area of matching schemas and data when integrat-
ing independent sources. Our focus, in this paper,
however is not on the matching, but on dealing with
conflicts that arise during integration. Conflict reso-
lution has also been studied in the context of active
databases and production rule systems [3, 17]. Most
of these study what to do when multiple active pro-
duction rules with conflicting heads request that an
atom be both added and deleted simultaneously. In
contrast, we attempt to evaluate queries and resolve
conflicts in answers to queries spanning multiple data
sources. Furthermore, unlike the related work in this
area, we will explore the application of these within
semi-structured data and metadata.

In their work on nondeterministic choices in logic
programming languages, Zaniolo [31, 32] and his col-
leagues suggest that in logic database languages, one
may wish to express the fact that only one of sev-
eral possible ways of satisfying an atom is nonde-
terministically selected. They then use this to de-
fine a choice semantics for logic programs with nega-
tion. Multiple model semantics, like the 2-valued, sta-
ble model semantics,[12], or the 3-valued finite failure
stable model semantics [13] associate multiple, equally
likely, models to the given knowledge base, each one
corresponding to a possible context, or a possible
consistent scenario described by the knowledge base.
Problem solvers interact with truth maintenance sys-

tems (TMSs) [9], that record and maintain the reasons
for the possible context (belief sets) under considera-
tion. Sentences are associated with their justifications,
which indicate what assumptions need to be changed
if they need to be invalidated. In this paper, we show
that we can leverage the special hierarchical structure
of the data and knowledge taxonomies to develop ef-
ficient and specialized algorithms, rather than having
to use general purpose truth maintenance solutions.
We use path query instances to provide contexts in
which conflicts can be resolved. Like us, Piazza [14]
and HepToX [5] also recognize that it is unrealistic to
expect an independent data source entering informa-
tion exchange to agree to a global mediated schema or
to perform heavyweight operations to map its schema
to every other schema in the group. Unlike these,
however, we recognize that while collating information
from multiple sources, the knowledge that is acquired
may be incomplete or inconsistent either in data val-
ues, structural relationships between data elements, or
both. Yet, since the base data reflect what is currently
known, data and interpretations from different sources
may be important to keep as is, even when they may
be conflicting with each other. We argue that an ulti-
mate integrated view of multiple data sets is often not
possible, and in fact is often not needed. Therefore,
unlike related work [27, 10] in repairing inconsistencies
in XML data using available external domain knowl-
edge, such as functional dependencies or DTDs, our
aim is to maintain the inconsistencies in the data and
allow the researcher to resolve conflicts within the con-
text of a given query.

1.3 Contributions of this Paper

Effective use of archaeological data requires on-the-fly
data integration, where discrepancies or incomplete in-
formation is properly dealt with within the context of
the given query. In this paper, we first present a data
model which captures not only wvalue-based, but also
structure-based nulls in semistructured data and meta-
data. In particular, we suggest that it is most effec-
tive to reconcile data source observations with data
requirements of a query rather than attempting global
reconciliation of data sources. We refer to this as query
driven ad hoc data integration and exploration [19].
This enables us to constrain the incompatibilities of
the data within the context of the question itself to
reduce the complexity of the problem. In this pa-
per, we also present an overview of a system, called
QUEST, which we are developing to leverage the pro-
posed model for exploratory research on the incom-
plete and conflicting data, based on the query driven
ad hoc data integration and exploration paradigm. We
are currently developing efficient algorithms to process
queries on (null-valued) semi-structured data in the
presence of a multitude of such alternatives, without
having to materialize all alternatives.



2 Assertion-based Data Representa-
tion and Basic Null Assertions

To provide a uniform treatment to value and structure-
nulls, we shred the semistructured data into its object
nodes. Shredding is used in relational storage of XML
data, where each node is represented as a tuple of the
form (node_id,label, type, value, parentid) [11, 29].
The model we describe below is reminiscent of well ac-
cepted node-labeled semi-structured data models, such
as DOM [1] and their shredding into tuples [11, 29].

2.1 Constraint-based Data Representation

Let I denote the set of object node identifiers and let D
be the domain of node tags'. We represent hierarchical
data as a set, IV, of object nodes, where each object
node n € N is represented as a 3-tuple (id, tag, pid):

e n.id € I is the unique id of the object node,
e n.tag € DUI is its tag, and
e n.pid € TU{T} is its parent’s identifier.

If n.pid = T, then n is referred to as the root of the
data. If n.tag € I, then its value is an object reference.
The object nodes in IV are constrained such that they
collectively form a tree structure:

C1. No node can be its own parent: Yn; € N,n;.id #
n;.pid.

C2. No two distinct nodes can have the same ID:
Vn; 75 n; € N, n;.id 75 TLJZd

C3. All non-root nodes have a parent in the document:
VYn; € N, (n;.pid = T) V (n;.pid € I).

C4. There is only one root: ¥n; € N, (n;.pid =T) —
(An; #n; njpid=T)

Cb. Parent relationship between two nodes is captured
by attribute “pid”: ¥n;,n; € N,parent(n;,n;) <
(n;.id = nj.pid).

C6. Ancestor relationship between two nodes is defined
using the parent relationship:
Vn;,n; € N,ancestor(n;,n;) <
dmi,me,....,mg € N K >0, s.t
parent(n;, m1) A parent(my, ma) A
... A parent(mg,n;).

C7. There are no cycles in the data: Vn;,nj € N,
ancestor(n;, n;) — —ancestor(n;, n;).

These constraints describe hierarchically structured
data without nulls. Next, we discuss how to extend
this constraint model with value- and structure-nulls
in a uniform manner.

1For simplicity of the presentation, we combine label, type,
and value into a single tag.

2.2 Value- and Structure-Nulls

A value-null commonly occurs when the value of a
node can not be determined for certain. E.g.,

e “Node &5’s tag can be 4, 6, or 9.”

is a value null. Structure-nulls, on the other hand, oc-
cur when the structural relationship between the data
nodes can not be determined in certain. For example,

e “Node &5 is a child of node &3 or &4”.
o “Either node &5 or &6 is a child of node &3”.

are structure nulls. When nodes suffer from both
value- and structural uncertainties or inconsistencies,
we refer to these as hybrid-nulls. Naturally, the ob-
ject node based representation in Subsection 2.1 is
not suitable to describe disjunctions or non-existence
requirements that form the basis of various types of
nulls [8]. Therefore, we present a basic choice asser-
tion construct, which forms the basis of nulls.

2.3 Basic Choice Assertions

We refer to a triple, @ = (id,fag, pid), where id C
I, tag C (D UI), and pid C (I U{T}), as a basic
choice assertion (or assertion in short). The set of all
assertions corresponding to a given data is denoted as
A. For example, ({&2, &3}, {Cow, Bison}, {&7,&8})
is a basic choice assertion. Intuitively, each assertion
in A declares constraints on id, tag, and pid related to
a single object node in N.

Informally, a choice assertion states that “one of all
possible alternatives described by the id, fag, and pid
sets is true”. If all the sets in an assertion are singu-
lar valued (e.g. of the form ({&2},{Bison},{&7})),
then the assertion corresponds to a single object node,
and vice versa: e.g., the object node (&2, Bison, &7)
could be asserted as ({&2},{Bison},{&7}). These
types of assertions are referred to as singular choice
assertions®. We classify the choice assertions into two
categories: positive and negative choice assertions.

2.3.1 Positive Choice Assertions

Positive choice assertions do not contain any empty
sets, but contain at least one non-singular set. For
example, ({&1,&2},{Bison,Cow},{&3}) is a posi-
tive choice assertion. We define the semantics of the
positive assertion, a; = (id;, tag,, pid;), in terms of a
many-to-1 mapping, p: A — N U{L}, from the set,
A, of assertions to nodes in N, such that
w(@;)) =n €N — (n.id € id;) A
(n.tag € tag;) A
(n.pid € pid,).

The fact that the mapping, g, is many-to-1 im-
plies that

2Any data without null-values can be represented as a set of
singular assertions.



e cach positive assertion describes properties of a
single object node, while

e properties of a single object node may be de-
scribed by multiple assertions.

If p(a;) = L, then the assertion a; is ignored.

Example 2.1 Let ({&1},{Pelvis}, {&2,&3}) be a
choice assertion. Informally, this assertion means that
the value of the object node with id &1 is “Pelvis” and
its parent is either &2 or &3. However, the asser-
tion does not mean that &1 has two parents. In other
words, this assertion is about a single node, whose par-
ent we cannot ascertain without other assertions.

2.3.2 Negative Choice Assertions

Negative choice assertions, on the other hand,
contain at least one empty set. For example,
({&1, &2}, { Pelvis}, () is a negative assertion. We de-
fine the semantics of a negative assertion in terms of
the following non-existence constraints, corresponding
to various empty set scenarios:
e Scenario: [id; = 0, tag; # 0, pid; # 0]

Const.: An € N s.t. (n.tag € Tag,) A (n.pid € pid,).
e Scenario: [id; = (), tag; = 0, pid; # 0]

Const.: An € N s.t. (n.pid € pid,).
e Scenario: [id; = 0, tag; # 0, pid; = 0]

Const.: An € N s.t. (n.tag € tag;).
e Scenario: [id; = 0, tag; = 0, pid; = (]

Const.: An € N.
e Scenario: [id; # 0, tag; = 0, pid; = 0]

Const.: An € N s.t. (n.id € id;
e Scenario: [id; # 0, tag; # 0, pid; = 0

Const.: An € N s.t. (n.tag € tag;) A (n.id € id;).
e Scenario: [id; # 0, tag; = 0, pid; # 0

Const.: An € N s.t. (n.id € id;) A (n.pid € pid,).

~

2.4 Interpretation of a Set of Assertions

A set, A, of basic choice assertions can be thought of
being composed of a positive assertion set, AT, and
a negative assertion set, A~. An interpretation of A
is a data instance, which (a) satisfies the structural
constraints, describing the hierarchy, in Section 2.1,
(b) conforms to a mapping p, which satisfies the con-
straints imposed by the positive assertion set, AT, and
(c) satisfies all the non-existence constraints imposed
by the negative assertion set, A~. Given an assertion
set, there may be zero, one, or more interpretations. In
a sense, the positive assertions produce candidate in-
terpretations, while the negative assertions, A~ , prune
the space of alternative conforming data instances.

2.5 Compatible Assertions

Assertions that conflict, for example
({&1}, {Bison},{&2}) and ({&1}, {Cow}, {&3}),
may coexist in the data. Thus, we introduce the
concept of compatibility among assertions.
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Figure 1: G for a set of positive choice assertions

e A pair of positive assertions are compatible if they
do neither lead to the indeterminate tags, nor im-
ply a node with multiple parents or a cycle.

e A positive choice assertion and a negative choice
assertion are compatible, if at least one choice in
the positive assertion can be accepted without vi-
olating the negative constraints.

Note that although it is possible to identify consis-
tent models (i.e., sets which consist of compatible as-
sertions) of a given set of choice assertions, and clean
the data (for instance, by choosing a mazimal model
among the alternatives), we argue that (especially in
scientific data integration domain, where consistency
can not be expected during research, until ultimately
one model is shown to be correct) it is more meaning-
ful to refrain from early data cleaning and resolve the
conflicts within the context of the user’s queries.

3 Integrated Representation of a Set of
Positive Assertions

Given a set of assertions, QUEST integrates available
positive assertions in a graph-based representation,
G™, which captures the intended structural relation-
ships between object nodes as well as the choice seman-
tics underlying the nulls. In this section, we provide an
example of this graphical representation. The details
of the model are beyond the scope of this paper.



Example 3.1 Let us consider the assertions,

bar = ({&1, &2}, {Skull}, {&5, &6})
bas = ({&3}, {Pelvis}, {&T})

(
bas = (B, {Deer}, 0)
bas = ({&2}, {Skull}, {&5})
bas = ({&5}, {Sheep}, {&8})
bas = é{&G}, {Goat},{&8})

bar = ({&7},{Cow, Bison}, {&9})
bas = ({&8}, {Mammalia}, {T})

which outline hierarchical relationships among bones
and taxa. For example, “Skull” belongs to the taxon
“Goat”, which is a branch of “Mammalia”. In detail,
bay is a basic choice assertion, informing that there
is an object node, whose tag is “Skull”, but neither
its identifier nor its parent can be exactly determined
(i.e., the position of the skull in the hierarchy is not
exactly identified). Another poorly identified data in-
volves basic choice assertion, bar, where the tag of the
object node can have just one of the two alternative
values. The negative assertion, bas, states that there
is no object node in the data with “Deer” as its tag.
The directed graph GT based on this set of positive
assertions is shown in Figure 1. We use solid-lined
circles to denote the graph vertices corresponding to
known object ids; for each object node there are two
solid wvertices (start, S, and end, E). Since each as-
sertion needs to be mapped to a single object node,
dashed wvertices in the graph act as mutual exclusion
constraints. The possible values for the object node
tags are shown in rectangular vertices. Below, we de-
scribe the salient points of the GT using this example.
e First, note that, bas can not be represented in G*
as it s not a positive assertion.

e Since bay has a non-singleton id, the mutual ex-
clusion nodes (fpya,,vE) and (ftpa,,vE) (for par-
ent and tag respectively) are introduced. Fach mu-
tual exclusion node ensures that only one of the
incoming edges supported by a given basic asser-
tion is allowed in a given interpretation of data.

e Some nodes, such as &9, do not have any associ-
ated assertions; thus only the corresponding start
vertices, such as (&9, S), are included; i.e., it is
impossible to determine their tags or parent with
the available information. In fact, GT may be
composed of several unconnected sub-graphs.

o There are two different assertions, bay and bay,
describing the parent/child relationship between
nodes labeled &2 and &5.

These two assertions have to be seen as two
non-coordinated statements. Therefore, they nei-
ther support each other nor weaken the respective
claims. More specifically, the non-choice asser-
tion bay = ({&2}, {Skull},{&5}) does not make
any of the two alternative choices in the assertion
ba; = {({&1, &2}, {Skull}, {&5,&6}) any more
likely, until interpreted by a researcher within the
appropriate context.

4 Beyond Basic Assertions

Each positive basic choice assertion describes a con-
straint on the relationship between a node, its tag, and
its parent. Since by definition of the mapping, 1, each
assertion a; is interpreted independently from the oth-
ers, there is no way to correlate the choice statements
that have to hold for more than one node. Thus, any
null which requires a constraint on two or more (non
parent-child) nodes cannot be described using a single
basic choice assertion:

o Nodes &5 and &6 have either &8 or &9 as their
common parent.

This statement requires a mapping, p, where

(n(@:) € N — (u(@:).id € {&5}) A (1(@:).pid € {&8,&9})) A
(n(@;) € N — (u(a;).id € {&6}) A (u(a;).pid € {&8,&9})) A
(u(@i).pid = p(a;).pid) .
The last conjunct (p(a;).pid = p(a;).pid) is a co-
ordination requirement that can not be captured

using basic choice assertions?.

e Node &2 has either &5 or &6 as its child; if the
child is &5 the tag of the child is “Antelope” and
if it is &6, the tag of the child is “Deer”.

This statement requires a mapping u, where

(n(ai) € N — (u(ai).id € {&5})A
(1(@;).tag € {“Antelope’’ }) A
(n(aq).pid € {&2}))A
(u(@;) € N — (p(a;).id € {&6})A
(n(@j).tag € {“Deer’’}) A
(u(ay).pid € {&2}))A
(n(@;).pid # p(a;).pid).
Once again, last conjunct (u(a;).pid # p(a;).pid)
is a coordination requirement?.

e Node &2 has either the set of nodes {&5,&6} as
its children or the set {&7,&8}.

This statement® requires a mapping, u, where

(n(@i) € N — (u(@s).id € {&5}) A (u(a@i).pid € {2}))A
(m(a;) € N — (u(@;).id € {6}) A (u(@;).pid € {&2}))A
(n(ar) € N — (u(ak)-id € {&7}) A (u(@r)-pid € {&2}))A
(w(ar) € N — (u(ar).id € {8}) A (u(ar).pid € {&2}))A
(u(@i).pid # p(ax).pid) A

(u(@i).pid # p(ar).pid)A

(u(ay).pid # p(ax).pid) A

(w(ay).pid # p(ay).pid).

The last four conjuncts require coordination.

3Note that a simpler statement “Node &5 has either &8 or
&9 as its parent” can be captured by a basic assertion of the
form ({&5}, D, {&8, &9}), plus the structural axiom which en-
forces a single parent to each node.

4Note that the simpler statement “Node &2 has either &5
or &6 as its child’ can be captured by a basic assertion of the
form ({&5, &6}, D, {&2}).

5Note again that a statement “Node &2 has either &5 or &7
as its child’ can be captured by a basic assertion of the form

({&5, &7}, D, {&2}).
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e Node &5’s tag is either “Antelope” or “Deer”.
Node &6’s tag is either “Antelope” or “Deer”.
Furthermore, &5 and &6 have the same tag.

This statement requires a mapping, pu, where

(1(a:) € N — (u(@s).id € {&5})A
(1(@s).tag € {“Antelope’’, “Deer’' })A
(1(35) € N — (u(ag)-id € {L6})A
(p(aj).tag € {“Antelope’’, “Deer” })A
(u(@i).tag = p(a;)-tag).

The last conjunct requires coordination.

Comparing the complex statement examples above
with their simpler counterparts, which can be captured
using basic choice assertions, illustrates that the prob-
lem arises from the need to enforce coordinated selec-
tions (among possible alternatives) for multiple nodes.
The implementation of coordinated choice assertions
is beyond the scope of this paper.

5 Query- and Feedback-Driven Explo-
ration Process

Figure 2 shows the outline of the query-driven explo-
ration process underlying the QUEST: first, based on
the available positive assertions, QUEST creates an as-
sertion graph (representing the null-valued document;
see Figure 1). When the user provides a path query,
matching path instances corresponding to the query
and satisfying the pruning constraints imposed by neg-
ative assertions are identified. In a sense

e positive assertions produce path instances. In case
there are conflicts among the given positive as-

sertions, this results in alternative solution mod-
els, consisting of intra-compatible, but pairwise-
incompatible sets of paths.

e negative assertions delete path instances from the
result. Thus, negative assertions can reduce the
size or collapse solution models.

Naturally, the number of these solution models can
be large. Therefore, a particular challenge is to post-
pone the computation and visualization of these al-
ternative solution models until absolutely necessary.
Thus, QUEST helps the user explore the alternative so-
lution spaces in an informed manner without having
access to explicit materializations of the solution mod-
els: QUEST first identifies an initial subset of matches
to the query and constructs (in an incremental way) an
intermediary path compatibility graph during query
evaluation. Once the query is evaluated and the path
compatibility graph is constructed, the user can inter-
act with QUEST to turn on and off various assertions
and observe how the solution set (and the solution
models) are affected. Pairwise compatibility graphs
of logic rules are also used in non-monotonic reason-
ing systems [25]. Unlike these, however, in QUEST, the
compatibility graphs are not only for the base rules (or
assertions), but for the result paths obtained within
the context of a query. This enables the user to explore
the available data within the context of a query and
drill-down to assertions or zoom-out to solution mod-
els. Once the user feedback is reflected on the asser-
tions, the user is provided with a new subset of ranked
results and the feedback-based exploration process is
repeated. Below, we provide sketches of these steps.

5.1 Path Query and Results

Let us focus on path queries of type P///*} [2]. In
QUEST, a path query is represented as

0; €{/,//}, ti€ DU{x},

where ¢; are query tags (including “*” wild-
cards) and 6; are parent/child or ances-
tor/descendant axes. An example of such a query
is '/Mammalia/Sheep/Skull’. Results for a given
path query are included in a set R = {r1,r2,...,7m},
where for each r; € R, we have

q = 01t192t2 e thq,

i = vialei]vizleia] .. [eig-1]vig-

Here, v; ; is a label for one vertex in the assertion graph
and e; ; is a set of labels for the assertions supporting
the edge connecting the node v; ;1 and v; ;. For ex-
ample, the following is a result for the above query:
—)}1(&8, S)[{(bas, —) }]
&5, S)[{(bar, =)}

a1, Skull)[{(ba1, —)}]

(&8, E)[{(bas, —) }{bas, Mammalia)[{{bas,
(&5, E)[{(bas, —)}](bas, Sheep) [{ (bas, —) }
(fpvar, ve)[{(ba1, =) }](&1, E)[{(ba1, —)}]
(ftvay, vE)[{(bar, =) }(&1, S).
Note that a valid path cannot contain any loops
and for each data node on the path S and E vertices

as well as the assertion labels need to match.

It
{b



5.2 Path Compatibility Graph

Because of conflicting assertions, all results satisfying
a path query might not be compatible. For exam-
ple, two paths can assume that a given object node
has different parents or two paths considered together
may imply a loop. Furthermore, the mutual exclu-
sion nodes introduced in Section 3 can render paths
that share a given mutual exclusion node in different
ways incompatible with each other. QUEST captures
the compatibility between paths and sets of paths us-
ing a reflexive and symmetric “~” relation:

e Given two path instances p; and p;, p; ~ p; iff the
path instances together do not violate any struc-
tural constraints introduced in Section 2.

e Given a path instance p’ and a set of path in-
stances P = {p1,p2,...,on }, p' ~ P, if and only if
Vpi € P, p' ~ p.

e Given two sets of path instances P =

{p17p27"'7p]\7} and Q = {(]17Q2a-~7(IM}a P~ Q
if and only if Vp; € P,p; ~ Q.

Given a set of paths, P, a compatibility graph, C,
captures all pairwise compatibility relationships.

5.3 Result Exploration

Let us assume that a path query ¢ results in a set R =
{p1,p2,...,pn} of paths. As stated above, not all of
these paths are compatible with each other. Therefore,
QUEST provides various result exploration options to
the user to enable her to get a high level understanding
of the available data relative to her query:

e Checking whether a given set, P, of paths is a
model; i.e., checking whether the given set of paths
are compatible with each other. The result set, R,
being a model would imply that the data does not
contain any conflict relative to this query.

e Given a path p and a set of paths P, checking
whether p ~ P or p o P.

e Given a path instance p and a set P, computing
the number of path instances in P that are com-
patible with p. This number informs the user re-
garding the degree of compatibility of the path p
with others in P.

e Given a path instance p € P, computing the num-
ber of different models in which p occurs. This
informs the user regarding how supported each
path is with the available knowledge.

e Given a path instance p € P, computing the num-
ber of models that would collapse when p is re-
moved. This informs the user regarding the en-
tropy introduced by p in the integrated system.

Note that, additionally, the models themselves can be
weighed based on their sizes or their compatibilities
with other models. This information, then can be

propagated to the weights of the paths included in
these models. With these, it is possible to rank result
paths and provide users with alternative exploration
opportunities to observe the results, based on differ-
ent definitions of likelihood (Figure 3(a)). The user
can pick and choose between available result paths in
an informed manner and observe the impact to the as-
sertion and path compatibility graphs immediately. In
particular, when a path is marked invalid by the user,
e if the path can be eliminated without affecting
any other paths (by eliminating some choice in an
assertion or by removing an assertion altogether),
then this alternative is executed (Figure 3(b));

e if there is no way to remove it without affecting
the assertions that support other paths, then the
paths that might be impacted and the correspond-
ing assertions are highlighted (Figure 3(c)).

Note that users are not always interested in ranking
the result paths, but in ranking those assertions that
generate and constrain the various solutions and so-
lution models. Therefore, to support ranking of the
assertions, we further propagate the various scores to
the assertions on the paths. This enables the user to
pick and choose between available assertions in an in-
formed manner and observe the impacts of her actions
on the solution immediately.

5.4 Computation

A model, composed of compatible result paths, corre-
sponds to a maximal clique in the compatibility graph.
Maximal cliques in a graph can be exponential in the
number of vertices [26]. There are polynomial time
delay algorithms for enumeration of cliques (i.e., if the
graph of size n contains C' cliques, the time to out-
put all cliques is bounded by O(nFC) for some con-
stant k) [18], but in general graphs, C' can be expo-
nential in n; for example as many as 3"/% in Moon-
Moser’s graphs [26]. We, on the other hand, see that
it is possible to avoid enumeration of cliques or find-
ing of the maximal cliques in the entire compatibility
graph, when supporting many of the relevant explo-
ration tasks. For instance, the task of counting the
number of maximal cliques a path occurs in can be per-
formed by counting those maximal cliques containing
only its neighbors. For sparse compatibility graphs,
this can lead to significant gains in computation time.
When the compatibility graph is dense, on the other
hand, the number and sizes of cliques need to be esti-
mated using alternative analysis techniques.

Thus, we are currently developing efficient al-
gorithms to process queries on (null-valued) semi-
structured data in the presence of a multitude of al-
ternative models, without having to materialize all al-
ternatives. In particular, we are exploring polynomial-
time path and assertion ranking techniques based on
structural analysis of the path and assertion compati-
bility graphs.
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Figure 3: (a) Result visualization and exploration screen; (b) elimination of the path #0 changes the assertion
graph accordingly; (c) elimination of path #3, on the other hand, would affect other paths in the result

5.5 Tree Queries

A tree query can be processed navigationally or split
into multiple path queries and their structural joins [4,
30]. In QUEST, tree queries are handled as an extension
of path query processing. After paths that satisfy the
path sub-queries are identified, they need to be put
together to form answers to the tree query. When
paths might be incompatible, each set of paths that is
put together to form an answer must be constrained
to be self compatible. Therefore tree query processing
involves merging of the ranked paths from multiple
subqueries subject to compatibility constraints.

6 Conclusion

In this paper, we presented an assertion-based data
model to describe hierarchical data and meta-data.
We then extended this model with basic choice as-
sertions which enables us to describe various types
of value- and structure-based nulls in a uniform man-
ner. We also highlighted the need for coordinated as-
sertions to describe certain types of nulls. We intro-
duced a graphical representation for hierarchical data
with nulls and discussed how to enable query execution
and query-driven data exploration processes using this
graphical representation. We introduced the concept
of path-compatibility and we highlighted how results
of a query can be leveraged to have develop a high-level
understanding of conflicts in the data. We also pro-
vided an overview of the QUEST system which leverages
the concepts introduced in this paper to support ex-
ploratory research on incomplete and conflicting data.
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ABSTRACT tains email addresses, social security numbers, phone numbers, ma-

Data quality is a serious concern in every data management app”_chine names and IP addresses, these semantically different types

cation, and a variety of quality measures have been proposed, in-Of values ShOU|d. be_represented in _separate colgmns. For exam-
cluding accuracy, freshness and completeness, to capture the comP!€: the column in Figure 1(a) contains only email addresses and
mon sources of data quality degradation. We identify and focus 1S qu_lte_homogeneous, even though there appears 1o be a W'.de di-
attention on a novel measureolumn heterogeneitghat seeks to  Versity in the actual set of values present. Such homogeneity of
quantify the data quality problems that can arise when merging datadatabase column values has obvious advantages, including simplic-
from different sources. We identify desiderata that a column het- ity of application-level code that accesses and modifies the database.
erogeneity measure should intuitively satisfy, and discuss a promis- In practice, operational databases evolve over time to contain a

ing direction of research to quantify database column heterogeneity_great deal of *heterogeneity” in databa_se colur_nn values. Often, this
based on using a novel combinatiorohfster entropyandsoft clus- is a consequence of large scale data integration efforts that seek to

tering. Finally, we present a few preliminary experimental results, PTeServe the “structure” of the original databases in the integrated

using diverse data sets of semantically different types, to demon- database, to avoid having to make extensive changes to the appli-

strate that this approach appears to provide a robust mechanism focation level code. _For example, one gppllcatl_on might use email
identifying and quantifying database column heterogeneity addresses as a unique customer identifier, while another might use
' phone numbers for the same purpose; when their databases are

integrated into a common database, it is feasible that the CUS-
1. MOTIVATION TOMERLID column contains both email addresses and phone num-

Data quality is a serious concern in every data management ap-bers, both represented as strings, as illustrated in Figure 1(b). A
plication, severely degrading common business practices, and in-third independently developed application that used, say, social se-

dustry consultants often quantify the adverse impact of poor data curity numbers as a customer identifier might then add such val-
quality in the billions of dollars annually. Data quality issues have Uues to the CUSTOMERD column, when its database is integrated

been studied quite extensively in the literature (e.g., [3, 5, 1]). In into the common database. As another example, two different in-

particular, a variety of quality measures have been proposed, in-ventory applications might maintain machine domain names (e.g.,
cluding accuracy, freshness and completeness, to capture the comabc.def.com) and IP addresses (e.g., 105.205.105.205) in the same
mon sources of data quality degradation [6, 9]. Data profiling MACHINE_ID column for the equivalent task of identifying ma-
tools like Bellman [4] compute concise summaries of the values chines connected to the network. While these examples may appear
in database columns, to identify various errors introduced by poor “natural” since all of these semantically different types of values
database design; these include approximate keys (the presence dpave the same function, namely, to serve as a customer identifier
null values and defaults in a column may result in the approxima- Or @ machine identifier, potential data quality problems can arise
tion) and approximate functional dependencies in a table (possibly in databases accessed and modified by legacy applications that are
due to inconsistent values). This vision paper identifies and focusesunaware of the heterogeneity of values in the column.

attention on a novel measureglumn heterogeneifyhat seeks to For example, an application that assumes that the CUSTOMER
quantify the data quality problems that can arise when merging data column contains only phone numbers might choose to “normalize
from different sources. column values by removing all special characters (e.g., *-', ‘") from

Textbook database design teaches that it is desirable for a databadee value, and writing it back into the database. While such a trans-
column to be homogeneous, i.e., all values in a column should formation is appropriate for phone numbers, it would clearly man-

be of the same “semantic type”. For example, if a database con- gle the email addresses represented in the column and can severely
degrade common business practices. For instance, in our previ-

ous example, the unanticipated transformation of email addresses
inthe CUSTOMERID column (e.g., “john.smith@noname.org” to
“johnsmith@nonameorg”) may mean that a large number of cus-
Permission to make digital or hard copies of all or part of this work for tomers are no longer reachable.
personal or classroom use is granted without fee provided that copies are Locating poor quality data in large operational databases is a
not made or_distributed for p(ofi_t or comme_rcial advantage and that f:opies non-trivial task, especially since the problems may not be due to
bear this notice and the full citation on the first page. To copy otherwise, to the data alone, but also due to the interactions between the data and

republish, to post on servers or to redistribute to lists, requires prior specific . o . .
pe’ilrjnislsion aﬁd/orafee.v IStribd ! quIres priorspeclic 1o multitude of applications that access this data (as the previous

CleanDBSeoul, Korea, 2006



CUSTOMERID CUSTOMERID CUSTOMERID CUSTOMERID
Ikjkjjk@321.zzz.info Ikjkjjk@321.zzz.info Ikjkjjk@321.zzz.info 123-45-6789
h8742@yyy.com h8742@yyy.com h8742@yui.com 135-79-2468
kkjj+@haha.org kkjj+@haha.org kkjj+@haha.org 159-24-6837
gwerty@keyboard.us gwerty@keyboard.us gwerty@keyboard.us 789-12-3456
555-1212@fax.in 555-1212@fax.in 555-1212@fax.in 987-65-4321
alpha@beta.ga (908)-555.1234 alpha@beta.ga (908)-555.1234
john.smith@noname.org 973-360-0000 john.smith@noname.org 973-360-0000
jane.doe@1973law.us 360-0007 jane.doe@1973law.us 360-0007
gwb.dc@universe.gov 8005551212 gwb.dc@universe.gov 8005551212
jamesbond.007 @action.com (877)-807-4596 (877)-807-4596 (877)-807-4596
@ (b) (© (d)

Figure 1: Example homogeneous and heterogeneous columns.

example illustrates). ldentifying heterogeneous database columnsumn that has mainly email addresses with just a few outlier phone
becomes important in such a scenario, permitting data quality ana-numbers (e.g., Figure 1(c)), or vice versa.
lysts to then focus on understanding the interactions of applications o » ) ) .
with data in such columns, rather than having to simultaneously ~ Distinguishability of Semantic Types: Semantically different
deal with the tens of thousands of columns in today’s complex op- YPeS of values may overlap (e.g., social security numbers and phone
erational databases. If an analyst determines that a problem existsNUmbers) or be easily distinguished (e.g., email addresses and phone
remedial actions can include: numbers). o o .
Intuitively, with no a priori characterization of the set of possible
t modification of the applications to explicitly check for the ~S€mantic types presentin a column, we cannot always be sure that
semantic type of data (phone numbers, email addresses, etc. column is heterogene.ous, ar.1d. our heterogeneity measure should
assumed to exist in the table, or conservatively reflect this possibility.
The more easily distinguished are the semantically different types
t ahorizontal splitting of the table to force homogeneity, along of values in a column_, the greater should be its heterogeneity. For
with a simpler modification of the applications accessing this €xample, a column with roughly equal numbers of email addresses
table to access and update the newly created tables instead. @nd phone numbers (e.g., Figure 1(b)) can be said to be more het-
erogeneous than a column with roughly equal numbers of phone
We next identify desiderata that a column heterogeneity measureumbers and social security numbers (e.g., Figure 1(d)), due to the
should intuitively satisfy, and discuss a promising direction of re- greater similarity between the values (and hence the possibility of
search to quantify database column heterogeneity. being of the same unknown semantic type) in the latter case.

2. HETEROGENEITY: DESIDERATA 3. QUANTIFYING HETEROGENEITY

Consider the example shown in Figure 1. This illustrates many V& now discuss approaches to quantify database column hetero-
of the issues that need to be considered when coming up with a9€neity that meet the desiderata outlined above. o
suitable measure for column heterogeneity. Number ef Semantic _Types: A first appreach to obta_um_ng a

heterogeneity measure is to ushaad clustering By partitioning

Number of Semantic Types:Many semantically differenttypes  values in a database column into clusters, we can get a sense of the
of values (email addresses, phone numbers, social security num-number of semantically different types of values in the data. How-
bers, circuit identifiers, IP addresses, machine domain names, cusever, merely counting the number of clusters does not suffice to
tomer names, etc.) may be represented as strings in a column, withquantify heterogeneity. Two additional issues, as outlined above,
no a priori characterization of the set of possible semantic types make the problem challenging: the relative sizes and the distin-
present. guishability of the clusters. A few phone numbers in a large collec-

Intuitively, the more semantically different types of values there tion of email addresses (e.g., Figure 1(c)) may look like a distinct
are in a database column, the greater should be its heterogeneitycluster, but should not impact the heterogeneity of the column as
thus, heterogeneity is better modeled as a numerical value rathermuch as having a significant number of phone numbers with the
than a boolean (yes/no). For example, a column with both email same collection of email addresses (e.qg., Figure 1(b)). Again, a so-
addresses and phone numbers (e.g., Figure 1(b)) can be said to beial security number (see the first few values in Figure 1(d)) may
more heterogeneous than a column with only email addresses (e.g.|ook similar to a phone number, and we would like the heterogene-
Figure 1(a)) or only phone numbers. ity measure to reflect this overlap of sets of values, as well as be
able to capture the idea that certain data might yield clusters that

Distribution of Semantic Types: The semantically different  5re close to each other, and other data might yield clusters that are
types of values in a database column may occur with different fre- ¢, apart.

quencies.

Intuitively, the relative distribution of the semantically different Distribution of Semantic Types: To take into account the rel-
types of values in a column should impact its heterogeneity. For ative sizes of the (possibly multiple) clustecdyster entropyis a
example, a column with many email addresses and phone numberdetter measure for quantifying heterogeneity of data in a database
(e.g., Figure 1(b)) can be said to be more heterogeneous than a coleolumn than merely counting the number of clusters. Cluster en-



tropy is computed by assigning a “probability” to each cluster equal

to the fraction of the data values it contains, and computing the en- e

tropy of the resulting distribution [2]. Consider a hard clustering
T = ft;; t2; ::: tkg of a set ofn valuesX, where clustet; hasni
values, and denof@ = n;=n. Then thecluster entropyof the hard
clugteringT is the entropy of the cluster size distribution, defined
as  piln(1=p;). By using cluster entropy, the mixture of email
addresses and phone numbers in column Figure 1(b) would have
higher value of heterogeneity than the data in Figure 1(c), which
consists of a few phone numbers in a collection of mainly email
addresses.

Distinguishability of Semantic Types: The cluster entropy of a

‘The Normalized Relevance-Compression Curve of the Email_ID Data
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hard clustering does not effectively take into account distinguisha- 1T0/HG0

bility of semantic types in a column. For example, given a column

with an equal number of phone numbers and social security num- Figure 2: Rate-Distortion curve for example data.
bers (e.g., Figure 1(d)), hard clustering could either determine the

column to have one cluster (in which case its cluster entropy would

be 0, which is the same as that of a column with just phone num-
bers) or have two equal sized clusters (in which case its cluster

entropy would bén(2), which is the same as that of a column with

equal numbers of phone numbers and email addresses). Intuitively, N
however, the heterogeneity of such a column should be somewhere
in between these two extremes to capture the uncertainty in assign-

ing values to clusters due to the syntactic similarity of valigxst

clusteringhas the potential to address this problem; each data value 15

in soft clustering has the flexibility of assigning a probability distri-
bution for its cluster membership, instead of belonging to a single
cluster (equivalently, assigning its entire probability distribution to

a single cluster), as in hard clustering. Heterogeneity can now be o1 ) 0

computed as the cluster entropy of the soft clustering.

Cluster Entropy

Cluster Entropy

beta

To summarize, the desiderata that a column heterogeneity mea-Figure 3: Cluster entropy as a function offl. The x-axis plots a

sure should depend on the number, the distribution and the distin
guishability of the semantic types of string values in a column have
the potential of being satisfied by using a novel combination of
cluster entropyandsoft clustering We next discuss some promis-
ing results that we have obtained by following this research direc-
tion.

4. PRELIMINARY RESULTS

As a concrete realization of our vision, we present a few ex-
perimental results using diverse data sets of semantically differen
types, mixed together in various ways, to provide different levels of
heterogeneity.

Data Sets: We consider mixtures of four different data sets.

_normalized version offl on a logscale.

that string value< is placed in clustet 2 T.

Canonical Rule: iIB uses a parametérthat trades off cluster

quality against cluster compression; increasfth@ncreases clus-

ter quality while decreasing cluster compression. Interestirfigy,

all the data setsthere is a unique value df given by ™ =

H(X)=1(X;Y ) (whereH (X) is the entropy of the data valugs
tandl (X;Y ) is the mutual information between the data valXes

and the token¥ ), which marks the “point of diminishing returns”;

after thisfl value, the loss we suffer from reducing the (normalized)

cluster compression is not paid for by a commensurate increase in

(normalized) cluster quality. This behavior can be observed in the

email is a set of 509 email addresses collected from attendeesrate distortion curve for our example data, shown in Figure 2; this

at the 2001 SIGMOD/PODS conferend®, is a set of 609 em-
ployee identifiersphone is a diverse collection of 3064 telephone
numbers, andtircuit is a set of 1778 network circuit identi-
fiers. Strings inD andphone are numericighone data contains
the period as well). Strings iemail andcircuit are alphanu-
meric, and may contain special characters like ‘@’ and *-'.

Soft Clustering: We will use thenformation Bottleneck Method
developed by Tishby et al. [8], and implemented by Slonim in his
thesis as the algorithmiB [7], to compute a soft clustering of
the data sets. IntuitivelyijB takes as input a joint distribution
(X;Y), wherex 2 X represents a string value in the data set,
y 2 Y is chosen to represent tokemsdrams) extracted from the
string values, and the joint distribution reflects an entropy weight-
ing of the tokens. The output @B is a cluster membership distri-
butionp(T jx) for eachx, representing the conditional probability

curve is always concave, and the point on the curve with a slope of
1 identifiesft”. This is also the point that is the closest to thel)
point, which is the point representing perfect quality with no space
penalty.

Cluster Entropy: Using the soft clustering output o8 for
different values ofl in the vicinity of ft~, and computing hetero-
geneity by combining estimates of the cluster entropies of the var-
ious hard clusterings derived from the soft clustering via the soft
clustering distribution, we empirically observed that the cluster en-
tropy is minimized afft”. This behavior can be observed in Fig-
ure 3. Further, the relative ordering of cluster entropy values ob-
tained atfl = i~ is consistent with the expected relative hetero-
geneities of these data sets, as shown in Figure 4. Specifically, all
the individual data sets have very small cluster entropies, and are
distinguishable from the mixtures. Further, mixtures of two data
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Figure 4: Cluster entropy as a measure of heterogeneity. The
x-axis plots a normalized version offl on a logscale.

sets in general have lower cluster entropy than mixtures of three ) H
and four data sets. We observe that as the number of elements ;
in the mixture increases, the heterogeneity gap decreases, and that

the separations are not strict for the more heterogeneous sets; this i
is natural, as individual data sets may have characteristics that are

somewhat similar (for exampl&) andphone). (©) (d)

Validating the Soft Clustering: Cluster entropy appears to cap-
ture our intuitive n_otion of heteroger_weity. Hov_vever, it is derived Figure 5: Soft Clustering of email /ID, email /circuit
from a soft clustering returned by thkB algorithm. Does that
soft clustering actually reflect natural groupings in the data? It turns
out that this is indeed the case. In Figure 5, we display bitmaps that
Visualize the Clusterings Obtained for diffel‘ent miXtUreS. In th|S rep- qua“ty issues in Cooperative information Systemfm
resentation, columns are clusters, rows are data values, and darker  2004. Pre-conference tutorial.
probabilities are larger. For clarity, we have reordered the rows so 2] T. M. Cover and J. A. Thomaglements of information
that all data elements coming from the same source are together, theory. Wiley-Interscience, New York, NY, USA, 1991.
and we reordered the columns based on their distributional simi-
larities. To interpret the figure, recall that each row of a bitmap
represents the cluster membership distribution of a data point. A
collection of data points having the same cluster membership dis-
tributions represent the same cluster. Thus, notice how the clusters
separate out quite cleanly, clearly displaying the different data mix- . .
tur?es. Also ogserve howx,/withou): ha\?ingtogsped('tythe number [5] T. Johnson and T. Dasu. Data quqllty and data cleaning: An
of clusters,ilB is able to separate out the groups. Further, if we OVEFYIGYV. '”S'GMOQ 2003. Tutorla!. ) )
look at Figure 5(d), we notice how the clusters corresponding to [6] G- Mihaila, L. Raschid, and M.-E. Vidal. Querying “quality

circuit  /phone, email /ID/circuit  /phone mixtures.

[3] T. Dasu and T. Johnso&xploratory data mining and data
cleaning John Wiley, 2003.

[4] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining database structure or how to build a data quality
browser. INSIGMOD, 2002.

ID andphone overlap and have similar cluster membership distri- of data” metadata. IRroc. of IEEE META-DATA
butions, reinforcing our observation that they form two very close Conference1999. _
(not well-separated) clusters. [7] N. Slonim.The Information Bottleneck: Theory and

Applications PhD thesis, The Hebrew University, 2003.
To summarize the experimental results, our novel combination [8] N. Tishby, F. Pereira, and W. Bialek. The information

of cluster entropyandsoft clusteringappears to provide a robust bottleneck method. IRroceedings of the 37-th Annual
mechanism for identifying and quantifying database column het- Allerton Conference on Communication, Control and
erogeneity. Computing pages 368-377, 1999.

[9] J. Widom. Trio: A system for integrated management of
5. CONCLUSION data, accuracy, and lineage.@iDR, 2005.

In this vision paper, we identified a new data quality measure,
column heterogeneity, and outlined a general approach to quan-
tify this measure in database columns. The rapid identification
of heterogeneous columns in a database with tens of thousands of
columns provides a unique opportunity to understand and charac-
terize the quality of data in today’s complex operational databases,
using the tools of information theory.
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ABSTRACT

We consider the Entity Resolution (ER) problem (also known
as deduplication, or merge-purge), in which records deter-
mined to represent the same real-world entity are succes-
sively located and merged. Our approach to the ER problem
is generic, in the sense that the functions for comparing and
merging records are viewed as black-boxes. In this context,
managing numerical confidences along with the data makes
the ER problem more challenging to define (e.g., how should
confidences of merged records be combined?), and more ex-
pensive to compute. In this paper, we propose a sound and
flexible model for the ER problem with confidences, and
propose efficient algorithms to solve it. We validate our
algorithms through experiments that show significant per-
formance improvements over naive schemes.

1. INTRODUCTION

When data from different sources is cleansed and inte-
grated, often multiple input records refer to the same real-
world entity, e.g., to the same customer, the same product
or the same organization. Entity resolution (ER) identifies
the records that refer (or are likely to refer) to the same
entity, and merges these records. A merged record becomes
a “composite” of the source records. In general, a merged
record needs to be compared and possibly merged with other
records, since the composition of information may now make
it possible to identify new relationships. For instance, say
record r1 gives the name and driver’s license of a person,
while record r2 gives an address and the same driver’s license
number. Say we merge 71 and r2 based on the matching
driver’s license. Now we have both a name and an address
for this person, and this combined information may make
it possible to connect this merged record with say r3, con-
taining a similar name and address. Note that neither 7;
nor 72 may match with r3, because they do not contain the
combined information that the merged record has. Entity
resolution is also known as deduplication and record linkage.

Often, numerical confidences (or data quality) play a role

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CleanDB, Seoul, Korea, 2006

in entity resolution. For instance, the input records may
come from unreliable sources, and have confidences or qual-
ity associated with them. The comparisons between records
may also yield confidences that represent how likely it is that
the records refer to the same real-world entity. Similarly, the
merge process may introduce additional uncertainties, as it
may not be certain how to combine the information from
different records. In each application domain, the interpre-
tation of the quality or confidence numbers may be different.
For instance, a confidence number may represent a “belief”
that a record faithfully reflects data from a real-world entity,
or it may represent how “accurate” a record is.

Even though ER is a central problem in information inte-
gration, and even though confidences are often an integral
part of resolution, relatively little is known about how to
efficiently deal with confidences. Specifically, confidences
may make the ER process computationally more expensive,
as compared to a scenario where confidences are not taken
into account. For instance, without confidences, the order
in which records are merged may be unimportant, and this
property can be used to find efficient ER strategies. How-
ever, confidences may make order critical. For instance, say
we merge r1 to r2 and then to r3, giving us a record 7123.
Because r1 and 72 are “very similar”, we may have a high
confidence in the intermediate result, which then gives us
high confidence in r123. However, say we merge r1 to r3 and
then to ra, giving us record ri32. In this case, r1 and r3
may not be “that similar”, leading t a lower confidence r132.
Records 7123 and 7132 may even have the same attributes,
but may have different confidences because they were de-
rived differently. Thus, ER must consider many more po-
tential derivations of composite records.

Our goal in this paper is to explore ways to reduce the
high computational costs of ER with confidences. We wish
to achieve this goal without making too many assumptions
about the confidence model and how confidences are com-
puted when record are merged. Thus, we will use a generic
black-box model for the functions that compare records, that
merge records, and that compute new confidences. We will
then postulate properties that these functions may have: if
the properties hold, then efficient ER with confidences will
be possible. If they do not hold, then one must run a more-
general version of ER (as we will detail here). Since we
use generic match and merge functions, the algorithms we
present can be used in many domains. All that is required
is to check what properties the match and merge functions
have, and then to select the appropriate algorithm.

The contributions of this paper are the following:



e We define a generic framework for managing confidences
during entity resolution (Sections 2 and 3).

e We present Koosh, an algorithm for resolution when con-
fidences are involved (Section 4).

e We present three improvements over Koosh that can sig-
nificantly reduce the amount of work during resolution:
domination, packages and thresholds. We identify prop-
erties that must hold in order for these improvements to
be achievable (Sections 5, 6, and 7).

e We evaluate the algorithms and quantify the potential
performance gains (Section 8).

2. MODEL

Each record r consists of a confidence r.C and a set of
attributes r.A. For illustration purposes, we can think of
each attribute as a label-value pair, although this view is
not essential for our work. For example, the following record
may represent a person:

0.7 [ name: “Fred”, age: {45,50}, zip: 94305 |

In our example, we write r.C (0.7 in this example) in front
of the attributes. (A record’s confidences could simply be
considered as one of its attributes, but here we treat confi-
dences separately to make it easier to refer to them.) Note
that the value for an attribute may be a set. In our example,
the age attribute has two values, 45 and 50. Multiple values
may be present in input records, or arise during integration:
a record may report an age of 45 while another one reports
50. Some merge functions may combine the ages into a sin-
gle number (say, the average), while others may decide to
keep both possibilities, as shown in this example.

Note that we are using a single number to represent the
confidence of a record. We believe that single numbers (in
the range 0 to 1) are the most common way to represent
confidences in the ER process, but more general confidence
models are possible. For example, a confidence could be
a vector, stating the confidences in individual attributes.
Similarly, the confidence could include lineage information
explaining how the confidence was derived. However, these
richer models make it harder for application programmers
to develop merge functions (see below), so in practice, the
applications we have seen all use a single number.

Generic ER relies on two black-box functions, the match
and the merge function, which we will assume here work on
two records at a time:

e A match function M (r, s) returns true if records r and s
represent the same entity. When M(r, s) = true we say
that r and s match, denoted r ~ s.

e A merge function creates a composite record from two
matching records. We represent the merge of record r
and s by (r, s).

Note that the match and merge functions can use global
information to make their decisions. For instance, in an
initialization phase we can compute say the distribution of
terms used in product descriptions, so that when we com-
pare records we can take into account these term frequencies.
Similarly, we can run a clustering algorithm to identify sets
of input records that are “similar.” Then the match func-
tion can consult these results to decide if records match. As
new records are generated, the global statistics need to be
updated (by the merge function): these updates can be done
incrementally or in batch mode, if accuracy is not essential.

The pairwise approach to match and merge is often used
in practice because it is easier to write the functions. (For
example, ER products from IBM, Fair Isaac, Oracle, and
others use pairwise functions.) For instance, it is extremely
rare to see functions that merge more than two records at a
time. To illustrate, say we want to merge 4 records contain-
ing different spellings of the name “Schwartz.” In principle,
one could consider all 4 names and come up with some good
“centroid” name, but in practice it is more common to use
simpler strategies. For example, we can just accumulate all
spellings as we merge records, or we can map each spelling to
the closest name in a dictionary of canonical names. Either
approach can easily be implemented in a pairwise fashion.

Of course, in some applications pairwise match functions
may not be the best approach. For example, one may want
to use a set-based match function that considers a set of
records and identifies the pair that should be matched next,
i.e., M(S) returns records r,s € S that are the best can-
didates for merging. Although we do not cover it here, we
believe that the concepts we present here (e.g., thresholds,
domination) can also be applied when set-based match func-
tions are used, and that our algorithms can be modified to
use set-based functions.

Pairwise match and merge are generally not arbitrary
functions, but have some properties, which we can leverage
to enable efficient entity resolution. We assume that the
match and merge functions satisfy the following properties:

o Commutativity: Vr,s, r =% s < s ~ r and if r = s then
(rys) = (s,7).
e Idempotence: Vr,r ~r and (r,r) =r.

We expect these properties to hold in almost all applica-
tions (unless the functions are not property implemented).
In one ER application we studied, for example, the imple-
mented match function was not idempotent: a record would
not match itself if the fields used for comparison were miss-
ing. However, it was trivial to add a comparison for record
equality to the match function to achieve idempotence. (The
advantage of using an idempotent function will become ap-
parent when we see the efficient options for ER.)

Some readers may wonder if merging two identical records
should really give the same record. For example, say the rec-
ords represent two observations of some phenomena. Then
perhaps the merge record should have a higher confidence
because there are two observations? The confidence would
only be higher if the two records represent independent ob-
servations, not if they are identical. We assume that in-
dependent observations would differ in some way, e.g., in
an attribute recording the time of observation. Thus, two
identical records should really merge into the same record.

3. GENERIC ENTITY RESOLUTION

Given the match and merge functions, we can now ask
what is the correct result of an entity resolution algorithm.
It is clear that if two records match, they should be merged
together. If the merged record matches another record, then
those two should be merged together as well. But what
should happen to the original matching records? Consider:
r1 = 0.8[name : Alice, areacode : 202]
rg = 0.7[name : Alice, phone : 555-1212].

The merge of the two records might be:
riz = 0.56[name : Alice, areacode : 202, phone : 555-1212]

In this case, the merged record has all of the information



in 71 and r2, but with a lower confidence. So dropping the
original two records would lose information. = Therefore,
to be conservative, the result of an entity resolution algo-
rithm must contain the original records as well as records
derived through merges. Based on this intuition, we define
the correct result of entity resolution as follows.

DEFINITION 3.1. Given a set of records R, the result of
Entity Resolution ER(R) is the smallest set S such that:

1. RCS,

2. For any records r1,72 € S, if r1 & r2, then (ri,r2) € S.

We say that S; is smaller than Sz if S1 C S3. The termi-
nology “smallest” implies that there exists a unique result,
which is proven in the extended version of this paper [15].

Intuitively, ER(R) is the set of all records that can be
derived from the records in R, or from records derived from
them. A natural “brute-force” algorithm (BFA) for comput-
ing ER(R) involves comparing all pairs, merging those that
match, and repeating until no new records are found. This
algorithm is presented formally in the extended version of
this paper [15].

4. KOOSH

A brute-force algorithm like BFA is inefficient, essentially
because the results of match comparisons are forgotten after
every iteration. As an example, suppose R = 11,712, 11 & 12,
and (ri,r2) doesn’t match anything. In the first round, BFA
will compare r1 with r2, and merge them together, adding
(r1,72) to the set. In the second round, r; will be compared
with r2 a second time, and then merged together again. This
comparison is redundant. In data sets with more records,
the number of redundant comparisons is even greater.

We give in Figure 1 the Koosh algorithm, which improves
upon BFA by removing these redundant comparisons. The
algorithm works by maintaining two sets. R is the set of
records that have not been compared yet, and R’ is a set of
records that have all been compared with each other. The
algorithm works by iteratively taking a record r out of R,
comparing it to every record in R’, and then adding it to
R’. For each record 7’ that matched r, the record (r,r") will
be added to R.

Using our simple example, we illustrate the fact that re-
dundant comparisons are eliminated. Initially, R = {r1,r2}
and R' = (. In the first iteration, r; is removed from R
and compared against everything in R’. There is nothing
in R’, so there are no matches, and r; is added to R’. In
the second iteration, r2 is removed and compared with ev-
erything in R’, which consists of r1. Since r1 ~ 72, the two
records are merged and (rq,r2) is added to R. Record rs is
added to R'. In the third iteration, (ri,72) is removed from
R and compared against 71 and 72 in R’. Neither matches,
so (ri,r2) is added to R'. This leaves R empty, and the
algorithm terminates. In the above example, r1 and ro were
compared against each other only once, so the redundant
comparison that occurred in BFA has been eliminated.

The Koosh algorithm correctly computes ER(R). More-
over, it is efficient. No other algorithm that computes EFR(R)
can perform fewer comparisons. These facts are proven in
the extended version of this paper.

THEOREM 4.6. Koosh is optimal, in the sense that no
algorithm that computes ER(R) makes fewer comparisons.

1: input: a set R of records

2: output: a set R’ of records, R’ = ER(R)
3: R«

4: while R # 0 do

5.  r« arecord from R

6: remove r from R

7: for allv' € R' do

8: if r~7' then

9: merged «— (r,r')

10: if merged ¢ RUR' U {r} then
11: add merged to R

12: end if

13: end if

14:  end for

15: add rto R
16: end while
17: return R’

Algorithm 1: The Koosh algorithm for ER(R)

5. DOMINATION

Even though Koosh is quite efficient, it is still very ex-
pensive, especially since the answer it must compute can
be very large. In this section and the next two, we explore
ways to tame this complexity, by exploiting additional prop-
erties of the match and merge functions (Section 6), or by
only computing a still-interesting subset of the answer (us-
ing thresholds, in Section 7, or the notion of domination,
which we introduce next).

To motivate the concept of domination, consider the fol-
lowing records 1 and r2, that match, and merge into rs:
r1 = 0.8[name : Alice, areacode : 202]
ro = 0.7[name : Alice, phone : 555-1212].
r3 = 0.7[name : Alice, areacode : 202, phone : 555-1212].

The resulting r3 contains all of the attributes of ra, and its
confidence is the same. In this case it is natural to consider a
“dominated” record like r2 to be redundant and unnecessary.
Thus, a user may only want the ER answer to contain only
non-dominated records. These notions are formalized by the
following definitions.

DEFINITION 5.1. We say that a record r dominates a rec-
ord s, denoted s < r, if the following two conditions hold:

1. sACr.A
2. s.C<rC

DEFINITION 5.2. Given a set of base records R, the non-
dominated entity-resolved set, NER(R) contains all records
i ER(R) that are non-dominated. That is, r € NER(R)
if and only if r € ER(R) and there does not exist any s €
ER(R), s # r, such that r < s.

Note that just like ER(R), NER(R) may be infinite. In
the case that ER(R) is finite, one way to compute N ER(R)
is to first compute ER(R) and then remove dominated rec-
ords. This strategy does not save much effort since we still
have to compute ER(R). A significant performance im-
provement is to discard a dominated record as soon as it
is found in the resolution process, on the premise that a
dominated record will never participate in the generation of
a non-dominated record. This premise is stated formally as
follows:




e Domination Property: If s < r and s ~ x then r ~ = and
(s,z) < (r,z).

This domination property may or may not hold in a given
application. For instance, let us return to our r1, r2, r3 ex-
ample at the beginning of this section. Consider a fourth
record r4 = 0.9[name : Alice, areacode : 717, phone :
555-1212, age : 20]. A particular match function may decide
that r4 does mot match r3 because the area codes are dif-
ferent, but r4 and r2 may match since this conflict does not
exist with 7. In this scenario, we cannot discard r2 when
we generate a record that dominates it (r3), since r2 can still
play a role in some matches.

However, in applications where having more information
in a record can never reduce its match chances, the domina-
tion property can hold and we can take advantage of it. If
the domination property holds then we can throw away dom-
inated records as we find them while computing NER(R).
We prove this fact in the extended version of this paper.

5.1 Algorithm Koosh-ND

Koosh can be modified to eliminate dominated records
early as follows. First, Koosh-ND begins by removing all
dominated records from the input set. Second, within the
body of the algorithm, whenever a new merged record m is
created (line 10), the algorithm checks whether m is domi-
nated by any record in R or R’. If so, then m is immediately
discarded, before it is used for any unnecessary comparisons.
Note that we do not check if m dominates any other records,
as this check would be expensive in the inner loop of the al-
gorithm. Finally, since we do not incrementally check if m
dominates other records, we add a step at the end to remove
all dominated records from the output set.

Koosh-ND relies on two complex operations: removing
all dominated records from a set and checking if a record is
dominated by a member of a set. These seem like expensive
operations that might outweigh the gains obtained by elim-
inating the comparisons of dominated records. However,
using an inverted list index that maps label-value pairs to
the records that contain them, we can make these operations
quite efficient.

The correctness of Koosh-ND is proven in the extended
version of this paper.

6. THE PACKAGES ALGORITHM

In Section 3, we illustrated why ER with confidences is
expensive, on the records r1 and r2 that merged into r3:

r1 = 0.8[name : Alice, areacode : 202],
ro = 0.7[name : Alice, phone : 555-1212],
r3 = 0.56[name : Alice, areacode : 202, phone : 555-1212].

Recall that 72 cannot be discarded essentially because it
has a higher confidence than the resulting record r3. How-
ever, notice that other than the confidence, rs contains more
label-value pairs, and hence, if it were not for its higher con-
fidence, r2 would not be necessary. This observation leads us
to consider a scenario where the records minus confidences
can be resolved efficiently, and then to add the confidence
computations in a second phase.

In particular, let us assume that our merge function is
“information preserving” in the following sense: When a
record r merges with other records, the information carried
by r’s attributes is not lost. We formalize this notion of

“information” by defining a relation “C”: r C s means that
the attributes of s carry more information than those of r.
We assume that this relation is transitive. Note that r C s
and s C r does mot imply that » = s; it only implies that
r.A carries as much information as s.A.

The property that merges are information preserving is
formalized as follows:

e Property P1: If r ~ s then r C (r,s) and s C (r, s).
e Property P2: If sCr, s ~ x and r ~ x, then (s,z) C
(r,z)

For example, a merge function that unions the attributes
of records would have properties P1 and P2. Such functions
are common in “intelligence gathering” applications, where
one wishes to collect all information known about entities,
even if contradictory. For instance, say two records report
different passport numbers or different ages for a person. If
the records merge (e.g., due to evidence in other attributes)
such applications typically gather all the facts, since the
person may be using fake passports reporting different ages.

Furthermore, we assume that adding information to a
record does not change the outcome of match. In addition,
we also assume that the match function does not consider
confidences, only the attributes of records. These character-
istics are formalized by:

e Property P3: If s C r and s = z, then r ~ z.

Having a match function that ignores confidences is not
very constraining: If two records are unlikely to match due
to low confidences, the merge function can still assign a low
confidence to the resulting record to indicate it is unlikely.
The second aspect of Property P3 rules out “negative evi-
dence”: adding information to a record cannot rule out a fu-
ture match. However, negative information can still be han-
dled by decreasing the confidence of the resulting record.

The algorithm of Figure 2 exploits these properties to per-
form ER more efficiently. It proceeds in two phases: a first
phase bypasses confidences and groups records into disjoint
packages. Because of the properties, this first phase can be
done efficiently, and records that fall into different packages
are known not to match. The second phase runs ER with
confidences on each package separately. We next explain
and justify each of these two phases.

6.1 Phasel

In Phase 1, we may use any generic ER algorithm, such as
those in [2] to resolve the base records, but with some addi-
tional bookkeeping. For example, when two base records 71
and r2 merge into r3, we combine all three records together
into a package ps. The package p3 contains two things: (i) a
root 7(ps) which in this case is rs, and (ii) the base records
b(ps) = {r1, 2}

Actually, base records can also be viewed as packages.
For example, record r2 can be treated as package p2 with
r(p2) = 72, b(p2) = {r2}. Thus, the algorithm starts with
a set of packages, and we generalize our match and merge
functions to operate on packages.

For instance, suppose we want to compare ps with a pack-
age pa containing only base record r4. That is, r(ps) =
rq4 and b(ps) = {rs}. To compare the packages, we only
compare their roots: That is, M(ps,ps) is equivalent to
M(r(p3),r(pa)), or in this example equivalent to M (rs,r4).
(We use the same symbol M for record and package match-
ing.) Say these records do match, so we generate a new



1: input: a set R of records
2: output: a set R’ of records, R’ = ER(R)
3: Define for Packages:
4: match: p =~ p' iff r(p) = r(p)
5: merge: (p,p’) =p":
with root: r(p”) = (r(p), r(p'))
and base: b(p’") = b(p) U b(p")
6: Phase 1:
7P~
8: for all records rec in R do
9:  create package p:

with root: r(p) = rec
and base: b(p) = {rec}
10: addpto P
11: end for
12: compute P’ = ER(P) (e.g., using Koosh) with the
following modification: Whenever packages p,p’ are
merged into p”, delete p and p’ immediately, then pro-
ceed.
Phase 2:
13: R« 0
14: for all packages p € P’ do
15:  compute @ = ER(b(p)) (e.g. using Koosh)
16:  add all records in Q to R’
17: end for
18: return R’

Algorithm 2: The Packages algorithm

package ps with r(ps) = (rs,r4) and b(ps) = b(ps) U b(p4)
= {7‘17 T2, r4}.

The package ps represents not only the records in b(ps),
but also any records that can be derived from them. That
is, ps represents all records in ER(b(ps)). For example, ps
implicitly represents the record (ri,r4), which may have
a higher confidence that the root of ps. Let us refer to
the complete set of records represented by ps as ¢(ps), i.e.,
c(ps) = ER(b(ps)). Note that the package does not contain
c(ps) explicitly, the set is just implied by the package.

The key property of a package p is that the attributes of
its root r(p) carry more information (or the same) than the
attributes of any record in ¢(p), that is for any s € c¢(p),
s E r(p). This property implies that any record u that does
not match r(p), cannot match any record in c(p).

THEOREM 6.3. For any package p, if a record u does not
match the root r(p), then u does not match any record in
c(p)-

This fact in turn saves us a lot of work! In our example,
once we wrap up base records r1, r2 and r4 into ps, we do not
have to involve them in any more comparisons. We only use
r(ps) for comparing against other packages. If ps matches
some other package ps (i.e., the roots match), we merge the
packages. Otherwise, ps and ps remain separate since they
have nothing in common. That is, nothing in ¢(ps) matches
anything in c(ps).

6.2 Phase 2

At the end of Phase 1, we have resolved all the base
records into a set of independent packages. In Phase 2
we resolve the records in each package, now taking into ac-
count confidences. That is, for each package p we compute
ER(b(p)), using an algorithm like Koosh. Since none of the
records from other packages can match a record in ¢(p), the

ER(b(p)) computation is completely independent from the
other computations. Thus, we save a very large number of
comparisons in this phase where we must consider the dif-
ferent order in which records can merge to compute their
confidences. The more packages that result from Phase 1,
the finer we have partitioned the problem, and the more
efficient Phase 2 will be.

6.3 Packages-ND

As with Koosh, there is a variant of Packages that handles
domination. To remove dominated records from the final
result, we simply use Koosh-ND in Phase 2 of the Packages
algorithm. Note that it is not necessary to explicitly remove
dominated packages in Phase 1. To see this, say at some
point in Phase 1 we have two packages, p1 and p2 such that
r(p1) < r(p2), and hence r(p1) C 7(p2). Then p; will match
p2 (by Property P3 and idempotence), and both packages
will be merged into a single one, containing the base records
of both.

7. THRESHOLDS

Another opportunity to reduce the resolution workload
lies within the confidences themselves. Some applications
may not need to know every record that could possibly be
derived from the input set. Instead, they may only care
about the derived records that are above a certain confidence
threshold.

DEFINITION 7.1. Given a threshold value T and a set of
base records R, we define the above-threshold entity-resolved
set, TER(R) that contains all records in ER(R) with con-
fidences above T. That is, r € TER(R) if and only if
r€ ER(R) and r.C > T.

As we did with domination, we would like to remove
below-threshold records, not after completing the resolution
process (as suggested by the definition), but as soon as they
appear. However, we will only be able to remove below-
threshold records if they cannot be used to derive above-
threshold records. Whether we can do that depends on the
semantics of confidences.

As we mentioned earlier, models for the interpretation of
confidences vary. Under some interpretations, two records
with overlapping information might be considered as inde-
pendent evidence of a fact, and the merged record will have
a higher confidence than either of the two base records.

Other interpretations might see two records, each with
their own uncertainty, and a match and merge process which
is also uncertain, and conclude that the result of a merge
must have lower confidence than either of the base records.
For example, one interpretation of r.C could be that it is
the probability that r correctly describes a real-world entity.
Using the “possible worlds” metaphor [13], if there are N
equally-likely possible worlds, then an entity containing at
least the attributes of r will exist in 7.C x N worlds. With
this interpretation, if r1 correctly describes an entity with
probability 0.7, and r2 describes an entity with probability
0.5, then (ri,r2) cannot be true in more worlds than 72, so
its confidence would have to be less than or equal to 0.5.

To be more formal, some interpretations, such as the ex-
ample above, will have the following property.

e Threshold Property: If r = s then (r,s).C < r.C and
(r,s).C <s.C.



Given the threshold property, we can compute TER(R)
more efficiently. In the extended version of this paper, we
prove that if the threshold property holds, then all results
can be obtained from above-threshold records.

7.1 Algorithms Koosh-T and Koosh-TND

As with removing dominated records, Koosh can be easily
modified to drop below-threshold records. First, we add an
initial scan to remove all base records that are already below
threshold. Then, we simply add the following conjunct to
the condition of Line 10 of the algorithm:

merged.C > T

Thus, merged records are dropped if they are below the
confidence threshold.

THEOREM 7.2. When TER(R) is finite, Koosh-T termi-
nates and computes TER(R).

By performing the same modification as above on Koosh-
ND, we obtain the algorithm Koosh-TND, which computes
the set NER(R) N TER(R) of records in ER(R) that are
neither dominated nor below threshold.

7.2 Packages-T and Packages-TND

If the threshold property holds, Koosh-T or Koosh-TND
can be used for Phase 2 of the Packages algorithm, to ob-
tain algorithm Packages-T or Packages-TND. In that case,
below-threshold and/or dominated records are dropped as
each package is expanded.

8. EXPERIMENTS

To summarize, we have discussed three main algorithms:
BFA, Koosh, and Packages. For each of those basic three,
there are three variants, adding in thresholds (T), non-dom-
ination (ND), or both (TND). In this section, we will com-
pare the three algorithms against each other using both
thresholds and non-domination. We will also investigate
how performance is affected by varying threshold values,
and, independently, by removing dominated records.

To test our algorithms, we ran them on synthetic data.
Synthetic data gives us the flexibility to carefully control the
distribution of confidences, the probability that two records
match, as well as other important parameters. Our goal in
generating the data was to emulate a realistic scenario where
n records describe various aspects of m real-world entities
(n > m). If two of our records refer to the same entity, we
expect them to match with much higher probability than if
they referred to different entities.

To emulate this scenario, we assume that the real-world
entities can be represented as points on a number line. Rec-
ords about a particular entity with value x contain an at-
tribute A with a value “close” to z. (The value is normally
distributed with mean z, see below.) Thus, the match func-
tion can simply compare the A attribute of records: if the
values are close, the records match. Records are also as-
signed a confidence, as discussed below.

For our experiments we use an “intelligence gathering”
merge function as discussed in Section 6, which unions at-
tributes. Thus, as a record merges with others, it accumu-
lates A values and increases its chances of matching other
records related to the particular real-world entity.

To be more specific, our synthetic data was generated
using the following parameters (and their default values):
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Figure 1: Thresholds vs. Matches

e n, the number of records to generate (default: 1000)
e m, the number of entities to simulate (default: 100)
e margin, the separation between entities (default: 75)

e o, the standard deviation of the normal curve around
each entity. (default: 10)

® /i, the mean of the confidence values (default: 0.8)

To generate one record r, we proceed as follows: First,
pick a uniformly distributed random integer ¢ in the range
[0,m—1]. This integer represents the value for the real-word
entity that r will represent. For the A value of r, generate
a random floating point value v from a normal distribution
with standard deviation o and a mean of margin-i. To gen-
erate r’s confidence, compute a uniformly distributed value
¢ in the range [ue — 0.1, e +0.1] (with pe € [0.1,0.9] so that
¢ stays in [0,1]). Now create a record r with r.C = ¢ and
r.A={A:v}. Repeat all of these steps n times to create n
synthetic records.

Our merge function takes in the two records r1 and ra,
and creates a new record 7,,, where r,,.C = r1.C X r2.C and
rm. A =7r1.AUr2.A. The match function detects a match
if for the A attribute, there exists a value v1 in 1.4 and
a value vz in ro.A where |v1 — va| < k, for a parameter k
chosen in advance (k = 25 except where otherwise noted).

Naturally, our first experiment compares the performance
of our three algorithms, BFA-TND, Koosh-TND and Pack-
ages-TND, against each other. We varied the threshold val-
ues to get a sense of how much faster the algorithms are
when a higher threshold causes more records to be discarded.
Each algorithm was run at the given threshold value three
times, and the resulting number of comparisons was aver-
aged over the three runs to get our final results.

Figure 1 shows the results of this first experiment. The
first three lines on the graph represent the performance of
our three algorithms. On the horizontal axis, we vary the
threshold value. The vertical axis (logarithmic) indicates
the number of calls to the match function, which we use as a
measure of the work performed by the algorithms. The first
thing we notice is that work performed by the algorithms
grows exponentially as the threshold is decreased. Thus,
clearly thresholds are a very powerful tool: one can get high-
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Figure 2: Thresholds vs. Merges

confidence results at a relatively modest cost, while comput-
ing the lower confidence records gets progressively more ex-
pensive! Also interestingly, the BFA-TND and Koosh-TND
lines are parallel to each other. This means that they are
consistently a constant factor apart. Roughly, BFA does 10
times the number of comparisons that Koosh does.

The Packages-TND algorithm is far more efficient than the
other two algorithms. Of course, Packages can only be used
if Properties P1, P2 and P3 hold, but when they do hold,
the savings can be dramatic. We believe that these savings
can be a strong incentive for the application expert to design
match and merge function that satisfy the properties.

We also compared our algorithms based on the number of
merges performed. In Figure 2, the vertical axis indicates
the number of merges that are performed by the algorithms.
We can see that Koosh-TND and the Packages-TND are still
a great improvement over BFA. BFA performs extra merges
because in each iteration of its main loop, it recompares all
records and merges any matches found. The extra merges
result in duplicate records which are eliminated when they
are added to the result set. Packages performs slightly more
merges than Koosh, since the second phase of the algorithm
does not use any of the merges that occurred in the first
phase. If we subtract the Phase 1 merges from Packages (not
shown in the figure), Koosh and Packages perform roughly
the same number of merges.

In our next experiment, we compare the performance of
our algorithms as we vary the probability that base records
match. We can control the match probability by changing
parameters k or o, but we use the resulting match probabil-
ity as the horizontal axis to provide more intuition. In par-
ticular, to generate Figure 3, we vary parameter k from 5 to
55 in increments of 5 (keeping the threshold value constant
at 0.6). During each run, we measure the match probabil-
ity as the fraction of base record matches that are positive.
(The results are similar when we compute the match prob-
ability over all matches.) For each run, we then plot the
match probability versus the number of calls to the match
function, for our three algorithms.

As expected, the work increases with greater match prob-
ability, since more records are produced. Furthermore, we
note that the BFA and Koosh lines are roughly parallel, but
the Packages line stays level until a quick rise in the amount
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Figure 3: Selectivity vs. Comparisons

of work performed once the match probability reaches about
0.011. The Packages optimization takes advantage of the
fact that records can be separated into packages that do not
merge with one another.

In practice, we would expect to operate in the range of
Figure 3 where the match probability is low and Packages
outperforms Koosh. In our scenario with high match prob-
abilities, records that refer to different entities are being
merged, which means the match function is not doing its
job. One could also get high match probabilities if there
were very few entities, so that packages do not partition
the problem finely. But again, in practice one would expect
records to cover a large number of entities.

9. RELATED WORK

Originally introduced by Newcombe et al. [17] under the
name of record linkage, and formalized by Fellegi and Sun-
ter [9], the ER problem was studied under a variety of names,
such as Merge/Purge [12], deduplication [18], reference rec-
onciliation [8], object identification [21], and others. Most of
the work in this area (see [23, 11] for recent surveys) focuses
on the “matching” problem, i.e., on deciding which records
do represent the same entities and which ones do not. This
is generally done in two phases: Computing measures of
how similar atomic values are (e.g., using edit-distances [20],
TF-IDF [6], or adaptive techniques such as g-grams [4]),
then feeding these measures into a model (with parame-
ters), which makes matching decisions for records. Proposed
models include unsupervised clustering techniques [12, 5],
Bayesian networks [22], decision trees, SVM’s, conditional
random fields [19]. The parameters of these models are
learned either from a labeled training set (possibly with the
help of a user, through active learning [18]), or using unsu-
pervised techniques such as the EM algorithm [24].

All the techniques above manipulate and produce numer-
ical values, when comparing atomic values (e.g. TF-IDF
scores), as parameters of their internal model (e.g., thresh-
olds, regression parameters, attribute weights), or as their
output. But these numbers are often specific to the tech-
niques at hand, and do not have a clear interpretation in
terms of “confidence” in the records or the values. On the
other hand, representations of uncertain data exist, which
soundly model confidence in terms of probabilities (e.g., [1,



10]), or beliefs [14]. However these approaches focus on
computing the results and confidences of exact queries, ex-
tended with simple “fuzzy” operators for value comparisons
(e.g., see [7]), and are not capable of any advanced form
of entity resolution. We propose a flexible solution for ER
that accommodates any model for confidences, and proposes
efficient algorithms based on their properties.

Our generic approach departs from existing techniques in
that it interleaves merges with matches. The first phase of
the Packages algorithm is similar to the set-union algorithm
described in [16], but our use of a merge function allows the
selection of a true representative record. The presence of
“custom” merges is an important part of ER, and it makes
confidences non-trivial to compute. The need for iterating
matches and merges was identified by [3] and is also used
in [8], but their record merges are simple aggregations (sim-
ilar to our “information gathering” merge), and they do not
consider the propagation of confidences through merges.

10. CONCLUSION

In this paper we look at ER with confidences as a “generic
database” problem, where we are given black-boxes that
compare and merge records, and we focus on efficient algo-
rithms that reduce the number of calls to these boxes. The
key to reducing work is to exploit generic properties (like the
threshold property) than an application may have. If such
properties hold we can use the optimizations we have studied
(e.g., Koosh-T when the threshold property holds). Of the
three optimizations, thresholds is the most flexible one, as it
gives us a “knob” (the threshold) that one can control: For a
high threshold, we only get high-confidence records, but we
get them very efficiently. As we decrease the threshold, we
start adding lower-confidence results to our answer, but the
computational cost increases. The other two optimizations,
domination and packages, can also reduce the cost of ER
very substantially but do not provide such a control knob.
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ABSTRACT to enforce integrity constraints across independent databases. For

instance, a provisioning database may have a place-holder (i.e., a

high quality information by linking fields across multiple databases, ﬁeld)_for storing customer contact informa_tion. However, often this
when the underlying databases have poor quality data, which aref'eId Is empty (n_uII value_s) or populqted W't.h dummy (default) VQI'

characterized by violations of integrity constraints like keys and ues, since this |r_1for_mat|on is of no |m_m_ed|_ate use for_the applica-
functional dependencies within and across databases. MJP assolion that deals V.V'th inventory and provisioning and Wh'c.h oversees
ciates quality scores with candidate answers by first scoring indi- ths dalta. Data |q(c:jon5|ste30|es(j(e.g., r‘r;tultlptl)e recor((:ijsbwnz thehsame
vidual data paths between a pair of field values taking into account ey value) arc(ja widesprea I gn can often be Itrac¢|a ac dt% uman
data quality with respect to specified integrity constraints, and then errors, €.g., during manua ata entry. Defau t values an _ata In-
agglomerating scores across multiple data paths that serve as corconsistencies are examples of poor data quality prevalent in large
roborating evidences for a candidate answer. We address the propdatabases.

lem of finding the top-few (highest quality) answers in the MJP 1.1 VI|P: Motivating Example

framework using novel techniques, and demonstrate the utility of
our techniques using real data and our Virtual Integration Proto-
type testbed.

We propose the Multiple Join Path (MJP) framework for obtaining

VIP is an integration platform, developed at AT&T, covering
more than 30 legacy systems. It was developed in an effort to pro-
vide a platform for doing quick investigations and resolving dis-
putes (due to data inconsistencies) between different applications.
1. INTRODUCTION A basic query that often arises in VIP is of the form “given the
value of a fieldX, find the value of a field ”. For instance, when
processing telecom data, an example query is: given the telephone
number (TN) of a customer that shows up in a sales application
(SALES), find the circuit id of the attached line. Since circuit ids
are not part of SALES application, the users need to access the in-
ventory application INVENTORY that can look up circuit ids using
a provisioning order number (PON). Users have access to a front-

across multiple, autonomously managed databases. For instance, end web interface that provides authentication and allows queryin
multitude of ordering and provisioning tools can lead to customer o P : . querying
the underlying inventory dataset by pasting a single PON value into

accounts and billing data being present in different databases de_a form. The same front-end can also retrieve circuit information

pending on, among other things, location, type of customer, etc. . . . Lo

- : . L when queried using a TN, but the internal mapping is incomplete
This fragmentation of data makes investigations across these datab%sneascontains inconsistencies. Thus. we need to devise additional
problematic. A standard technique used for the task of querying ) ’

across databases is the join path, linking two data fields, possib|ystrateg|es for locating the target circuit id by considering other ap-

in different databases, through intermediate data. Given a value forpll;atg;asrrt]?ritnwe;Tt]tae)rlnr;ac\)lfuz(;ﬁsfeic;};tions with the SALES. OR-
one of the data fields, a join path enables the identification of values y gp '

reachable in the other field using the join path. DERING, PROV and INVENTORY applications, we have been

Compounding the difficulty of querying across databases is the able to compute the schema graph, depicted in Figure 1, to help an-

: i swer the query; the meaning of the numbers along the edges will be
prevalence of data quality problems, within and across databases . . ) .
(see, e.g., [6]). A typical phenomenon is the existence of dupli- made clear when discussing our experimental results. PROV is an

cate, default and null values in columns of database tables that areapphcatlon that maintains provisioning records, while ORDERING

. ) . ... 1s an ordering tool used primarily for small-business customers. Ta-
supposed to be treated as primaryfforeign keys, due to the inability | 2 A ETES OF 581 0 depic%/ed in the schema graph of Figure 1.

The combined size of the databases behind these four applications
is in the order of 100 million records.
The schema graph provides multiple paths to link a TN value in
o - . . SALES to a CircuitID in INVENTORY. We list here a few of them:
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies aret Using a TN value in SALES, we obtain PON values, based on
not made or distributed for profit or commercial advantage and that copies  the “intra-application” edge (SALES.TN, SALES.PON) depicted
bear this notice and the full citation on the first page. To copy otherwise, to in Figure 1. We then access the INVENTORY application using
republish, to post on servers or to redistribute to lists, requires prior specific these PON values and the “inter-application” edge (SALES.PON,

permission and/or a fee. L -
CleanDBSeoul, Korea, 2006 INVENTORY.PON). There, we look up CircuitIDs using the

In any large organization, there are many database-centric appli-
cations, with overlapping features and functionality, ranging from
sales and ordering tools to inventory and provisioning applications.
These applications have authority over different pieces of data, and
the difficulty of integrating legacy applications into a unified ap-
plication for a given task typically results in the data being spread
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Figure 1: Schema graph for subset of VIP

[ Field Name][ Description ]
TN Telephone Number under investigation
BAN Billing Account Number (primary key in biller)
CustName || Customer name (in biller and provisioning)
PON Provisioning Order Number (key in
provisioning applications)
SubPON subsequent/related Provisioning Order Number
(links multiple provisioning records for a customer)
ORN Order Number (key in ordering applications)
CircuitlD Circuit the line is attached to

Table 1: Description of Fields in Figure 1

(INVENTORY.PON, INVENTORY.CircuitID) intra-application
edge in INVENTORY. This corresponds to the left-most path in
the schema graph.

Given a TN in SALES, we can look up the customer name.

This may be done directly, or via the billing account number

for the customer. Notice that due to internal inconsistencies
the two methods might give us different results. We can then
input the customer name in the PROV application to retrieve
all known PONSs for the customer (from the PON and SubPON
fields) which can be then used to probe INVENTORY, as in the
first case. This corresponds to the set of middle paths in the
schema graph of Figure 1.

Small-business customers typically have multiple working tele-
phone lines sharing the same circuits. For such customers, we
can obtain the order number (ORN) in SALES, probe ORDER-
ING and get all other lines ordered by the customer. Using this
set of telephone numbers, we can probe INVENTORY multiple
times. Even though, as explained, the internal TN-to-CircuitlD
mapping in INVENTORY is often incomplete, we can use the
expanded set of all TNs in the customer order to try and find
matching circuit ids in INVENTORY. This corresponds to the
right-most path in the schema graph of Figure 1.

Given the different schema graph paths that link the TN input
field (in SALES) to the CircuitlD output field (in INVENTORY),
which join pathshould be used to identify query answers?

1.2 Multiple Join Path Framework

swers, especially when only a single answer is expected. Efficiency
of query answering is also a concern. For instance, the return of a
default value by an application may result in a significant number
of probes to applications that follow it in a join path. Furthermore,
different join paths that share edges need to be processed in a coor-
dinated manner so that we avoid probing with the same input values
multiple times.

TheMultiple Join Path(MJP) framework proposed in this paper
resolves these problems as follow:

t It takesall join paths in the schema graph into account.

t Each data path (schema path instancef@ed taking the qual-
ity of integrity constraints (keys, functional dependencies), pos-
sibly across multiple databases/applications, and the quality of
the data with respect to the integrity constraints into account.

t Multiple data paths between the same TN, CircuitID value pairs
are treated as corroborating evidences, and data path scores are
agglomerated to yield scores for CircuitlD values.

t Alljoin paths are considered when deciding the next application
to probe. Intersecting data paths help re-use results of other join
paths and reduce the number of probes to the applications.

t The top-few (typically 1) matches are returned as the desired
answers. The schema graph and the computed data paths are
used to prune unnecessary accesses to the applications.

When we are interested only in the top-few matches, it is ex-
tremely expensive to repeatedly probe the legacy applications, one
schema graph edge at a time, to find all matching answers. This
leads to the main technical problem addressed in this paper, the
Multiple Join Path Problem

Given a schema graph identifying multiple join paths
between fieldX and fieldY , and a valueX = x, find
the top-few values of that are reachable frold = x
using the schema join paths.

The contributions of our paper are as follows:

t We introduce the MJP framework, and an agglomerative scoring
methodology, to quantify answer quality in the presence of data
quality problems arising due to integrity constraint violations
in primary and foreign key columns, across multiple databases
(Section 2).

t We develop novel techniques to limit the probing of legacy ap-
plications to efficiently compute the top-few answers to the MJP
Problem. The agglomerative scoring methodology essentially
renders previous mechanisms for computing kogaswers in-
applicable for our problem (Section 3).

t Finally, we evaluate our techniques using real data and our VIP
testbed. In particular, we demonstrate both the utility of the ag-
glomerative scoring methodology in the presence of data quality
problems, and the efficiency of our algorithmic techniques for

computing top-few answers. In our real telecom example, we
observe a reduction in the number of probes to the legacy appli-

cations by a factor of up to 18 in some cases (Section 4).

2. THE MJP PROBLEM

When querying across multiple databases, in the presence of data In this section, we introduce the Multiple Join Path framework,

quality problems, choosing any one join path results in missing an-
swers, but choosing multiple join paths may lead to conflicting an-

and our agglomerative scoring methodology, to quantify answer
quality in the presence of data quality problems in multiple databases.



2.1 Queries and Answers

A basic query of interest is of the form “given the value of a field
X, find values of a field ”, where X andY refer to specific fields
of individual applications. For instance, when processing telecom ———!—— ——
data, example queries include:

t Q1: given the telephone number of a customer (in SALES), find
the circuit id (in INVENTORY) that the line is attached to.

t Q2: givenacircuitid (in INVENTORY), find the customer names
(in SALES) whose telephone numbers attach to this circuit id.

Figure 2: Data graph for query SALES.TN=555-5555

of Figure 1. Two additional nodes are present in this data graph,

In the case of query Q1, one would expect there to be exactly one SALES.PON.pon3 and SALES.ORN.01 (corresponding to schema
resulting answer. Since multiple telephone numbers may be at- 9raph nodes SALES.PON and SALES.ORN), which do not join
tached to a circuit, query Q2 may have more than one answer. InWith values in INVENTORY.PON and ORDERING.ORN, respec-
both casesX andY are fields in different databases, so we need tively. Note that the data graph can have multiple or no nodes cor-
to establishjoin pathsthat link these two fields. There may be responding to any specific node in the schema graph.

multiple possible join paths between any two given fields, and the 213 Scoring Answers

schema graph, discussed next, identifies these possibilities. S ]
In a perfect world, the applications would have no internal data

2.2 Schema and Data Graphs quality problems, and our basic query (giv¥n= x, find Y ) could
A schema graph is a 3-tup(€; X; Y ), where: be answered correctly by following all the join paths across the
multiple applications starting fronX = x, and taking the union of
t G = (V;E) is adirected acyclic graphwhose nodey = all theY values that are reached along these individual join paths.
X;Y;:::g are labeled by field names of accessible applica- But data quality problems are prevalent in large data-centric appli-
tions, ande % V £V are directed edges. cations. For example, a primary key field (like the billing account

number (BAN) field) may only be aapproximatekey [6]. Simi-
larly, a functional dependency expected of an intra-application edge
in the schema graph may be violated. As an example, we might find
Adirected edgév1;v2) 2 E is referred to as aimtra-application that the same telephone number is associated with two customer
edge, ifvl andv2 are fields in the same application; otherwise, it Names due to manual data-entry errors in the SALES application.
is aninter-application edge A directed patf® from X to Y in So we are faced with the considerable challenge of answering
G is referred to as @in path For instance, the schema graph of our basic querieithout a priori knowledge of which values in the
Figure 1 has six possible join paths from SALES.TN to INVEN- underlying databases are clean, and which ones are Tiotmeet
TORY.CircuitlD, which can be used to answer query Q1. Thus, thischallenge, we employ a probabilistic technique that scores data
join paths in a schema graph identify different ways in which a €dges using values in the ran§e : : 1]. Thus, the score of a data
basic query can be answered. edge(T1:Al:vl; T 2:A2:v2) represents our belief that the associ-
To ensure that join paths yield meaningful associations, not spu- ation between valuesl andv2 of fieldsT 1:Al andT 2:A2 is cor-
rious correlations, we focus attention on the case where (i) all nodesrect. We will describe later how these scores are obtained. What
in the schema graph (except, possibly, for source and sink nodes)is important is that this probabilistic interpretation of the scores al-
are (possibly approximate) primary keys or foreign keys in their lows us to combine scores across a data path.
respective applications, (i) inter-application edges correspond to  Recall that a data path is just a sequential composition of data
(approximate primary key, approximate foreign key) associations, edges. Using a probabilistic interpretation of the data edge scores,
and (jii) intra-application edges are incident on an approximate pri- assuming independence of the data edges in a data pastdre
mary key. of a data pathis defined to be the product of the scores of the
Given a specific valua of the source nodX (e.g., telephone  constituent data edges. More formallysi;; sc2;:::; scn are the
number, 555-5555, in query Q1), all join paths in the schema graph scores of the constituent data edges of a dataathen the score
need to be explored to find all matchiggralues for the sink node ~ ©of P is given by:

t X 2V is the unique source (no incoming edges), #¥n& V is
the unique sink (no outgoing edges)®f

Y (i.e., particular circuit ids). Intuit_ive_ly, the d_ata graph, defined sequential_com(sci;1 =i =n) = I, (sci) @

below, captures these data associations. Given a schema graph

(G; X;Y ), adata graphis a triple(Gp; Xp; Yb ), where: As will be explained, this probabilistic interpretation assigns scores

on data paths using data quality metrics on the edges. Thus, a high

T Go = (Vb;Ep) is adirected acyclic graphwhose node¥p quality data path will get high scores independent of the length
have labels of the fornT:Aiv, such thafl:A 2 V andv is a of the path, unlike, e.g., techniques like [1]. In fact, it is easy to
value of fieldT:A, andEp % Vp £ Vp are directed edges such  see that the latter technique is just a special case of our framework
that(T1:Al:iv1; T2:A2:v2) 2 Ep D (TL:AL T2:A2) 2 E. when all data edges are scored with the same val(e; in).

t Xp 2 Vp is the unique source dbp, corresponding to value An answer may be corroborated by multiple data paths, and our
x of source node&X of G, andYp % Vp is a subset of the sink ~ Scoring methodology agglomerates the scores of these data paths,
nodes ofGp, corresponding to valuag of sink nodeY of G. usingparallel compositionto compute the score of\a value. For

example in Figure 2 there are two data paths from SALES.TN.555-
For instance, given the schema graph of Figure 1, an example5555 to answer INVENTORY.CircuitlD.c1. Different data paths
data graph is shown in Figure 2. There are two paths in this data are considered independent evidences and their scores are com-

picted by sink node INVENTORY.CircuitID.c1l. Both these data the scores of individual data patfs;1 = i = n, between two
paths correspond to the leftmost join path in the schema graphnodes in the data graph, then, to ensure that all scores &elin



the score of the parallel composition of tRgs is given by: values of fieldA in applicationsT 1 andT 2. In that case the score
of the inter-application data edge is adjusted by using some notion
of error metric (e.g., normalized edit distance or tf.idf for strings)
wheres1 = sc; ands2 = parallel_com(sci;2 = i = n). between the values.
Finally, the score of & valuey; is the score of the parallel : :
composition of all the data paths from the souke to the sink 2.5 Mul_tlple Join F_)ath P_roblem . .
Y:yi. This agglomerativescoring takes into consideratiail the Our goal is to locate high quality information across multiple
data paths that corroborate an answer. databases, in the presence of data quality problems. Since the dif-
Other combining functions may also be used without affecting ferentY values that are reached from a givénvalue may have
the generality of the proposed methodology. The process that we Very different scores, we are interested only in the top-few matches.
describe in Section 3 requires the following two monotonicity prop- When we are interested only in the top-few matches, itis extremely
erties, which allow for a broad selection of scoring functions: expensive to repeatedly probe the legacy applications, one schema
graph edge at a time, to find all matching answers, only to eventu-
t Property 1:the score of a data path is a non-increasing func- ally discard the low scoring answers.
tion of the scores of the constituent data edges. This leads to the main technical problem addressed in this paper,
referred to as th#lultiple Join Path(MJP) Problem:

parallel_com(sci;1 = i=n) = sl+s2j (sL-52) (2)

t Property 2:the score of an answer is a non-decreasing func-

tion of the scores of the constituent data paths. Given a schema graph identifying multiple join paths
between fieldX and fieldY, and a valueX = X,
2.4 Data Edge Scores find the top-few values of (with the highest scores)
Without a priori knowledge of the internals of the applications, reachable fronx using the multiple join paths.

or expertise on the quality of specific data items, our approach is  conventional togk evaluation requires exact scores to be re-
to rely on expected functional dependencies between the exportedyined along with the matching answers, resulting in a ranking
data fields. For instance, in the telecom example, we expect a tele-of the k results. In our agglomerative scoring methodology, since
phone number to uniquely identify a customer. Thus, when probing any unexplored data path could eventually corroborate a known
the SALES application, if we get two customer names for an as- ya|ye, resulting in a score increase (however slight), one would not
signed TN, this is a_wolatlon of an expected_ functl(_)nal dependency pe gple to perform any early pruning for the MJP Problem, if one
and we should assign a lower score to the instantiated data edges. jsisted on returning exact scores.

Recall that intra-application schema edg&sA; T:B) capture A more promising approach is where one can returnkagm-
associations where at least on€loA andT:B is an approximate  gyers, where each answer is associated with a score range, and the
key in the corresponding applicatign Assume, without loss of  regyIt is asetof answers, not a ranking. In Section 3, we shall dis-
generality, thafl :A is the approximate key. Then the edge cap- cyss novel solutions to the MJP Problem, and subsequently exper-

tures aforward functional dependendyFD) from T:A to T:B. imentally validate the utility and efficiency of our approach using
Assume also that while answering a posed query, due to internal .ag| gata and the VIP testbed.

data quality problems, the following data edges are instantiated:

(T:A:v1; T:B:v1l), (T:A:vl; T:B:v12) and(T:A:v2; T:B:v21). .
It is then obvious that the two different valu€sB:v11, T:B:v12 3. THEMJP PROBLEM: SOLUTION

associated witf :A:v1 are witnesses that:A:v1 is in violation of 31 Incremental Data Graph Com putatlon
the FFD and therefore data edd@eA:v2; T:B:v21) should have a . . .
Given a specific value of the source nod& in the schema

h'gLZetrfS((fro:f::/hﬁr.}.?g?fﬁf‘ |Vi 'I;Bvé 18 : ?ﬁ éTS'Q'\(/)} (;I’ a.tg.\égjzgs graph, the data graph is initially instantiated with a upique (source)

instantiated for valud:A:v1 following this schema edge, and let nodeXp = X'.X‘ For eagh newly msprted data nolig in the data

j:j denote the size of a set. To achieve the desired behavior, thegraph (excluding those in s¥p of sink nodes), we create the set

score of each data edg€:A:v1; T:B:vli) is set to: openedgesp) to be the S‘?t of all s_chema edgee E that em-

anate from the corresponding no@ien the schema graph. As an
AT T R 1 example, for the schema graph shown in Figure 1 and for TN = 555-

Se(T-AVE TBuv) = JF(T:AVL;T:Bivii)i=1;:::40j ®) 5555 being the TN in quer@1, the data graph is instantiated with a

single node SALES.TN.555-5555. The spenedges(SALES.TN.555-

5555)will then include the following schema edges: (SALES.TN,

SALES.PON), (SALES.TN, SALES.BAN),

1 4) (SALES.TN, SALES.CustName) and (SALES.TN, SALES.ORN).

JE(T:AVIL; T:Bivl);i=1;:::qj An open nodein the data graph is any nodes, not in Yp,

for which the setopenedges(p) is not empty. Our algorithms

will proceed by carefully choosing an open notis and select-

ing one of the edges in setopenedges(p) to explore. Fol-

lowing an intra-application edgd :A; T:B) for open nodél :A:u

The case when the schema edge capturbackward functional
dependenc{BFD) is handled symmetrically:

sc(T:A:vli; T:B:vl) =

Finally, when bothT:A andT:B are approximate keys, the edge
captures aymmetric functional dependen@&FD) and the score is
computed as:

so(T:AVi: T:Bvj) = 1 results in probing applicatiom and retrieving a set of values for
T JF(T:AVI; T:BJg [ F(T:A-T:B:vj)gj field T:B. For each unique value; of attributeT:B in the re-
(5) sult of this probe, we add a new nodeB:v; to the data graph
where ™ means any value and is used to capture all data edgesand generate setpenedges(:B:vi). We further instantiate the
emanating fronT:A:vi (resp. leading t@ :B:vj). data edgg(T:A:u; T:B:vj) and compute its score. In Figure 3,

For an inter-application schema edgel:A; T 2:A), the score of we depict the data graph after exploring schema edge (SALES.TN,
a data edge corresponding to this schema edge is always 1, since th8 ALES.PON) for open node SALES.TN.555-5555. The applica-
association between the fields is assured by the schema graph. Arion in this case returned three distinct values for SALES.PON:
interesting extension is to considgoproximate matchingetween ponl, pon2 and pon3.



Figure 3. Data graph, after processing of edge (SALES.TN, -
SALES.PON)
v
‘

ORDERING.ORD

Following an inter-application edgd 1:A; T2:A) does not in- é
cur additional probes to the applications. Values of fieldA that Cmronrmn = e T
do not appear in applicatiom 2 will not generate any new data \
nodes when a follow-up intra-application edge is processed. In ei- mrony e
ther case, after edgds explored itis removed frompenedges(p). . )
We adopt a simple cost model that enumerates the number of Figuré 4:  Maximum  paths for unexplored edges of node
probes to the applications while expanding the data graph to answerSALES. TN.555-5585,  after  processing of edge (SALES.TN,

the user query. This cost model is reasonable in the absence ofSALES.PON)
internal knowledge of the behavior of the applications.

. i 0
3.2 Schedullng of Open Nodes data edge for each pakh that containg’. As an example, schema

] o edge (PROV.CustName, PROV.PON) instantiates two distinct data
While building the data graph, we often have many open nodes edges in Figure 4.

to explore, each with at least one unexplored edgsinedges() Given one or more open nod€s in the data graph, we pick the
We thus need a strategy that will lead to early pruning when com- next edge to explore as the one that maximizes our benefit metric.
puting topk answers. This is ourmaximum benefjiolicy, MAXB. In our experiments we

Since the data grapiGo; Xp; Yp) has a strong correspondence  see that MAXB outperform DFS and BFS, by a factor of up to 18:1.
with the schema graph, we can pick the next open node/schema

edge to explore using standard graph searching techniques like dep8-3  Pruning Criteria

first-search (DFS) or breadth-first-search (BFS) guided by the schemaynlike conventional togk evaluation, where exact scores of an-
graph. Such techniques however are oblivious to the statistics wesyers are returned, for our MJP framework a more promising ap-
can collect both at the schema graph as well as at the (incomplete)proach is to return the top-few answers, where each answer is asso-

data graph while processing the query. As is demonstrated by ourcjated with a score range. We distinguish between two versions of
experiments in Section 4, this results in substantially more probes the problem:

to the applications. In what follows, we describe a greedy schedul-
ing technique that is based on the notion of tte@ximum beneff t The exact togk setYp = (yi;:::;Yk) is returned. For each
unexplored paths that go through open nodes. answelyi, we provide a score rand8min(Yi) :: : Smax (Yi)].

Benefit computation involves two components. The first uses the
statistics accumulated in the data graph to compute the score of all
paths leading to an open node. The second component calculates
the best way that the data graph can be augmented when following
unexplored edges from an open node on the way to an answer. The
fusion of these two components provides our benefit metric.

At each step, our algorithm maintains this benefit metric per open
node/schema-edge in the data graph and schedules the next movp
using this metric. At an abstract level, our methodology for pro-
cessing a user query can be summarized as follows:

t The top cluster of answers that is guaranteed to contain the top-
k values is returned. Each answer is associated with a score
range. We call this theop-fewevaluation. Top-few is valuable
when doing quick ad hoc investigations, since it allows for more
pruning because of the weaker stopping condition.

Lety 2 Yp be an answer present in the (incomplete) data path.

from Xp toy. Then, the minimum score of answér= vy is the
parallel composition of the scores of all known pathgto

t Start from the sole instance of source no¢ie and expand one

data node at a time. For any open ndg@g maintain the multiset smin(y) = parallelcom(sci; 1 =i = n) ©
of scores along data paths frodp to Tp. The maximum score of answgris computed by additionally con-

t By associating open nodEs with its schema nod@ , we can sideripg the maximum bene_fit of each open node and unexplored
quantify theresidual benefibf an unexplored schema edeén edge in the data graph, as discussed previously.
openedges(p) as the maximum possible contribution of the Through similar arguments we can compute the range of scores
subgraph fromX to any possible data node in &5, passing Smin (Yunseen) : : : Smax (Yunseen)] Of an answepunseen that we
throughTp using instances af in the data graph. have not encountered in our evaluatiori@s : max_contribution].

The lower bound is trivial (when no new answer exists). The upper

As an example, we consider the data graph of Figure 3. For openbound follows easily if we consider that all paths from the open
node SALES.TN.555-5555 there are three unexplored edges in thenodes in the data graph terminate to a new ang\wefeen-
setopenedges(SALES.TN.555-55583ALES. TN, SALES.BAN), In a naive evaluation of the MJP Problem we stop when all open
(SALES.TN, SALES.CustName), and (SALES.TN, SALES.ORN). nodes in the data graph have been explored. However, one may
Figure 4 shows the maximal subgraph that can be generated bystop earlier without exploring all open nodes, depending on the
exploring these edges in a way that maximizes the score of anversion of the problem. Assume sétcontains all answers that
answer. In this figure there are five paths from SALES.TN.555- we have seen so far and algenseen (a placeh@lder for some an-
5555 to schema node INVENTORY.CircuitID. For each patha swer we have not yet encountered). ThisYp  fyunseeng. We
schema edge is only instantiated once (since all edges are treated agrder the answers i using their minimum scores 83;y2;:::,
FFD/SFD). However, a schema edgemay generate one distinct ~ wheresmin(Yi) » Smin(Yj) Wheni < j. This order also implies



Smax(Yi) » Smax(Yj). If setY contains more thak answers, we
may stop further processing under the following condition:

t In topk evaluation, we stop wheSmax(Yik+1) = Smin(Yk)-
That is, the upper bound on the score of kiel'th candidatey
value is no larger than the score of the curieiti candidate.

t In the top-few evaluation, we may stop fnax(Yunseen) =
Smin(Yk). If this condition holds then any new answer can-
not possible be scored higher that our curietit candidateyy.
Thus, the top cluster is identified and we return thpse with

Smax(yi) > Smin(yk)-

4. EXPERIMENTS

In this section, we experimentally evaluate our solution using
our VIP testbed. Due to lack of space we provide detailed results
for one query in our real dataset (query Q1, Section 2.1). Results

for other queries between pairs of nodes in the schema graph of

Figure 1 were similar. Our main experimental results can be sum-
marized as follows:

t Real datasets have a multitude of data quality problems and no T

join path is immune to these problems. Using a fixed path or
the maximum path for answering a query can lead to missing
answers (low recall). That is why, in our MJP framework, all
paths are considered.

t The data graphs can be fairly large (for instance when default

‘ "Top-H Ansvs)ers"

Frequency Count

1 L

Il
50 60 70 80
Number of Parallel Paths

i

90

100
Figure 5: Number of parallel paths in top-1 answers

t hH: heavyHitters(10): These are the top-10 queries (TNs) ranked
by the number of matching circuits in our data. TNs in that group

returned between 128 and 257 circuits.

oL: onelLarge(47): This is the subset of TNs that returned one
circuit id with score at least 1% and zero or more circuits with
scores less that this threshdld.

t mL: manyLarge(4): This set of TNs have at least 5 matching

circuits with score at 1% or higher.
t mS: manySmall(8): This set of TNs returned at least 5 answers,

values are encountered). Our scheduling techniques based onthe while no answer had score greater or equal to 1%.

maximum benefit metric achieve substantial pruning by elimi-
nating a large number of candidate paths from evaluation.

The rest of this section is organized as follows. In Section 4.1 we
illustrate that real applications are faced with significant data qual-
ity problems. When joining data across diverse applications, we

typically find many answers, even when a single answer is expected

(for instance a single CircuitID for a TN in Q1). Thus, ranking is

t aA: anyAnswer(94): All TNs with any matching circuits.

t nA: noAnswer(56): These are TNs for which no answer (cir-
cuits) can be obtained from the data.

4.2 Benefit of Agglomerative Scoring
We now address the utility of our agglomerative scoring method-

required to help users identify the correct answer. In Section 4.2 we 0logy. In Figure 5 we plot the number of parallel data paths that
demonstrate that top-1 answers typically have several instantiatedcontribute to the top-1 answer for each TN with a non-empty an-
data paths leading to them and an agglomeration of their scores isSWer (seanyAnswer ). For the 94 top-1 answers, there is an av-

needed. Animportant observation is that even join paths with small €rage of 10 parallel paths per answer (for a total of 946), out of
schema weights in their edges are useful in determining top-1 an- Which roughly 2.5 parallel paths per answer (for a total of 229) are
swers. In Section 4.3 we demonstrate that using our benefit metric Significant (score of the path is greater than 10% of final score). In
results in substantially fewer probes to the applications, often by a contrast, when looking at all answers for each TN there are on the

factor of 1:18. Using the top-few execution model, this reduction
is further increased by a factor of 2.

4.1 Nature and Quality of Data

We used traces of real user queries and obtained a random sal
ple of 150 TNs that users ran investigations upon. We then used
the schema graph to obtain circuit ids for these TNs (i.e., using
k=1). We noticed that there is a large number of TNs (56) that
return no matching circuitids. This is because (i) the INVENTORY
dataset is incomplete and (i) the provisioning key is often missing
in SALES, forcing join paths either through customer names (Cust-
Name) or order numbers (ORN). The distribution is heavy-tailed,
as there are many TNs for which we obtain 50 or more circuits
through the schema graph. The maximum number of circuits re-
turned for a single TN was 257. It is clear that most queries return
a lot of answers. In fact only 2 TNs returned just one circuit! Thus,
we need to be able to prune the long lists of matching circuit ids in
order to provide meaningful answers to the user.

Using answer scores, we classify user queries into the following
classes (in parentheses we show the number of TNs in each class)

average just 1.7 parallel paths contributing to each answer.

A natural question one may ask is whether all the schema join
paths are really relevant, or if one of them dominates in its con-
tribution to the final scores. In Figure 1, we annotate the schema

maraph edges with two numbers. The first is the number of data

paths leading to an answer that instantiated this edge. The second
number is for top-1 answers only. Some interesting observations
on the nature of the data can be drawn by interpreting these num-
bers. First, paths that go through the SALES.PON node are more
likely to end up in a top-1 answer: 199 out of 309 overall. Simi-
larly, probing the ORDERING application leads to a top-1 answer
in almost half the cases. In contrast, many paths that use instances
of nodes SALES.BAN, SALES.CustName do not end up in top-1
answers. However, it is still beneficial to include these nodes in
the schema graph. We notice that 275/946 top-1 paths (paths that
result in a top-1 answer) go through instances of these nodes. If we
remove these nodes from the schema graph along with all paths that

The low value of the threshold has been chosen to capture as many
potentially relevant answers as possible, given the scoring method-

ology.
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3121 k=1 DFS | BFS | MAXB
aA || 207/1189| 206/1188| 130/1109| 59/679
hH 903/1189| 902/1188| 618/1109| 162/679
oL 305/1189| 304/1188| 141/890| 23/231
mL 415/793| 414/793| 327/625 52/83
mS || 310/1128| 310/1128| 306/1106 | 237/629
nA 471232
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nA 24.6

the answer set and, thus, we can expect a lot of pruning during
Table 2: Cost of top-1/top-few evaluation top-1 evaluation. Here, the MAXB policy reduces the cost of pro-
cessing by a factor of 18:1 compared to the case wkerk. For
the setmanylLarge , savings are smaller but still substantial (9:1).
Even in the case of sebanySmall , MAXB results in significant
use them, then for the 94 queries with non empty top-1 answers, 8pruning. These are TNs for which a large number of circuits with
return no result while for 77 the top-1 answer differs. very low scores were discovered. Looking at the instance graphs of
We next discuss the issue if there is any correlation between the these TNs we observed that most were due to a default value of field
join paths used and the class of queries. In Figure 6 we aggregateBAN in SALES, resulting in many matching customer names when
at the schema level the number of paths in top-1 answers for setsfollowing the intra-application (SALES.BAN, SALES.CustName)
oneLarge (first number next to an edge) anthnySmall (sec- edge. Because of our scoring mechanism, all these paths were as-
ond number). The number of paths in seteLarge is larger signed very low scores and MAXB was able to prune a substantial
because more TNs belong to that set (47 compared to 8 in setnumber of them. In contrast, DFS for top-1 is almost as bad as get-
manySmall ). In the case of setneLarge , paths through OR- ting all answers. This is because DFS follows deep paths through
DERING schema nodes appear in more than half of the cases.the schema graph to the end without concern of the current scores
However, again paths through the PROV dataset using customerleading to an open node or potential benefits of open paths. BFS is
names are significant in top-1 answers. InreahySmall there is slightly better since all paths are explored in unison.
only one top-1 answer with a path through ORDERING. Most of  |n Table 3, we show the average (first number) and maximum
the paths (9 out of 15) go through the (SALES.TN,SALES.BAN) (second number) size of the data graph for the same experiment.
edge and subsequently to PROV, joining on the CustName attribute.we notice that fok=1_ the data graph size is on the average 207
.. . with a maximum instance of 1189 (edges). Thus, evaluation of
4.3 EfﬂC'enCy of TOp-k Evaluation Multiple Join Path queries in our framework has very modest re-
quirements in terms of memory usage. We further notice that top-1
We use the number of probes to the applications to determine theevaluation with the MAXB policy reduces these numbers by a fac-
efficiency of topk evaluation. In Table 2, we present the average tor of up to 13:1. This reduction of the data graph size will become
number of probes per TN during the top-k evaluation Kei. We significant in a multi-user environment when the server processes
also present the average number of probes when all circuits wereseveral queries at a time.
requestedK=21). For scheduling the next open node to explore, In Figure 7, we plot the query cost, varyihkgbetween 1 and
we tested the MAXB policy (discussed in Section 3) as well as the 10. For comparison, we also show the cost wked (flat line).
standard DFS and BFS orders obtained from the schema graph. It is interesting that there is a drop in query cost k5. This
Top-1 evaluation, using MAXB, reduces the number of probes suggests that the size of the top-cluster is, on the average, around
by a factor of more than 5, on the average, for TNs with match- five (circuits per TN) with the last 3 having similar scores. Thus,
ing circuit ids. A large number of queries (56/150) returned no for k=3 or 4, additional queries are required to distinguish among
answer, and for these queries top-1 evaluation cannot prune anythem, while wherk=5, we can stop earlier and report all of them.
paths. For the remaining TNs the greatest benefits arise for subset In Table 2 we show the cost of the top-few execution, Ked.
onelLarge . These are TNs for which one circuit stands out from The top-few execution, allows us to stop a query at an earlier stage,



when a superset containing the thgluster has been identified. As Recently, Chaudhuri et al. [5] investigated the problem of rank-
in the top-1 case, the MAXB policy by far outperforms the other ing answers of database queries that are not very seleMizey-
alternatives. Comparing the numbers with the top-1 case, we seeAnswergproblem) and propose a ranking function based on Proba-
that we get a reduction in evaluation cost by a factor of two on the bilistic Information Retrieval ranking models. Our scoring func-
average. In most cases the number of answers returned to the usetions also have a probabilistic interpretation and, similar to [5],
is very small, typically one. There are only 5 instances where we ranking is proposed in order to prune a potentially large answer set.
see more than 10 and all of them are for TNs with many small, However, while in [5] the problem arises from loosely constrained
indistinguishable, answers. queries, the complexity of our problems stems from (i) the exis-
tence of multiple join (schema) paths that can potentially link two
attributes in the same or different databases, and (ii) low data qual-
5. RELATED WORK ity that further increases the number of instantiated data paths for a
Scheuermann et al. [14] consider querying multiple database pathgiven query. Approximating tog-answers, by offering guaranteed
by allowing for some uncertainty in the attribute correspondences answer quality wrt the correct tdpscores [7, 4], or probabilistic
between databases in a multidatabase system. They return multipleguarantees [15], is an issue we do not address here.
query results ranked by some degree of confidence in the answer.
However, to the best of our knowledge, our work is the firstto take 6. CONCLUSIONS

int_o account similar rgsglts from_ multiple paths as corroborating This paper addressed the Multiple Join Path problem, of finding
evidence and using this information to rank query results.  pigh quality query results that can be reached from a query node,
_There has been much Wo_rk in addressing the pr_oblem of identi- by following one or more join paths in the schema graph, across
fying keyword query results in an RDBMS and ranking them based ) ipje databases, in the presence of data quality problems. The
on some quality metric 8, 1, 2, 10, 9]. In such scenarios, the User gamework proposed in this paper scores each data path that in-

queries multiple relations for a set of keywords and gets back t- giantiates the schema join paths, taking data quality with respect to
ples that contain all keywords, ranked by a measure of the proxim- gpeified integrity constraints into account. Multiple data paths be-

ity of the keywords. DBXplorer [1] and DISCOVER [10] use index  yyeen the same nodes are treated as corroborating evidences, and
structures coupled with the DBMS schema graph to identify answer a4 path scores are agglomerated to yield scores for matching an-
tuples and rank answers based onribenber of joindbetween the  gyers. \We develop novel techniques to efficiently compute the top-
keywords. Our framework can also benefit from auxiliary struc- e\ answers within the Multiple Join Path framework, taking the
tures like indexes and materialized views to speed up processing.,ggiomerative scoring mechanism into consideration. We evaluate
BANKS [2] creates a data graph (a similar graph is used by [8]), o techniques using real data and our Virtual Integration Prototype
containing all database tuples, allowing for a finer ranking mecha- (eqthed, and demonstrate both the utility of the agglomerative scor-

nism that takes prestige (i.e., in-link structure) as well as proximity jnq methodology, and the efficiency of our algorithmic techniques
into account. Hristidis et al. [9] use an IR-style technique to assign ¢, computing top-few answers.

relevance scores to keyword matches and take advantage of these
relevance rankings to process answers in akidmmework that
allows for efficient computations through pruning. As with prox- 7[1] S. Igzrgwlél )SE Ha%51§1 and G. Das. DBXplorer: A system for

imity search techniques, we consider all possible join paths and, keyword-based search over relational databd&43E, 2002.
as in [9], we want to allow for pruning of irrelevant data paths in  [2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
order to speed up query execution time. A key difference with pre- ggé"é"ord searching and browsing in databases using BANEBE,

vious proximity search techniques is that none of these techniques . . .
deal with data q_uality issues, or agglomerate scores of multiple data 3] ';'\}grfer;g{i?h ; Zifgg;;g;na ;‘bngvgrr‘gt'e?ge;?Sgr?gr‘i::s ce
paths that contribute to the same answer. evaluation ACM TODS 27(2), 2002.

Topk query evaluation algorithms that aim at identifying the [4] K. C.-C. Chang and S.-W. Hwang. Minimal probing: Supporting
highest ranking answers to a query have been proposed for a va- expensive predicates for top-k queri&$GMOD, 2002.
riety of scenarios: multimedia [7, 11], web [12], expensive pred- [5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic
icates [4], and RDBMS [3, 11]. Adaptive tdpstrategies [4, 12] ranking of database query resuk&.DB, 2004.
dynamically choose which operation to perform next based on cur- [6] T. Dasu and T. Johnsogxploratory data mining and data cleaning
rent tuple scores and estimated statistics. In this paper, we use such __John Wiley, 2003. _ _ _
adaptive techniques to select which join paths to investigate next. [7] R-Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms

Most existing topk techniques focus on cases where answer tuples for middleware PODS 2001.
9 q P [8] R. Goldman, N. Shivakumar, S. Venkatasubramanian,

can be mapped into a single relation, with all attributes values ac- H. Garcia-Molina. Proximity search in databas¢sDB, 1998.
cessible through a unique ID, and rank the result tuples according [g] v. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style
to a predefined aggregation function (emin or weighted-sum keyword search over relational databa34sDB, 2003.

While some of the proposed techniques [13, 11] apply to scenarios[10] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search
involving joins, and therefore deal with a potential explosion in the in relational database¥LDB, 2002.

number of tuples, we are not aware of any tofechnique that does ~ [11] I. F. llyas, W. G. Aref, and A. K. Elmagarmid. Supporting tpgein
not consider each possible answer tuple as a single entity. queries in relational databas&4.DB, 2003.

Traditional topk techniques require exact tdpanswer scores [12] A.Marian, N. Bruno, and L. Gravano. Evaluating tkueries over
to be returned. In contrast, NRA [7], which only considers sorted web-accessible databasé&M .TODSZ.Q(Z)' 2004. .
accesses to multimedia sources, allows for thek@mswers to be [13] A Natsev, T Chang. ). R. SmltE' g: LI'L);EdDé' 28(.)(\)fitter. Supporting

) e ) . . incremental join queries on ranked inp 2 .
returned as soon as they are identified, along with their possible [14] P. Scheuermann, W.-S. Li, and C. Clifton. Multidatabase query

range of scores. We use this relaxed stopping condition for our top- processing with uncertainty in global keys and attribute values.
k evaluation, and present another efficient stopping conditimm: JASIS 49(3), 1998.

few, which returns a set of answers that are guaranteed to contain[15] M. Theobald, G. Weikum, R. Schenkel. Tépguery evaluation with
the besk answers. probabilistic guarantee¥LDB, 2004.
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Abstract

Outliers are very common in the environmen-
tal data monitored by a sensor network con-
sisting of many inexpensive, low fidelity, and
frequently failed sensors. The limited battery
power and costly data transmission have in-
troduced a new challenge for outlier clean-
ing in sensor networks: it must be done in-
network to avoid spending energy on trans-
mitting outliers. In this paper, we propose
an in-network outlier cleaning approach, in-
cluding wavelet based outlier correction and
neighboring DTW (Dynamic Time Warping)
distance-based outlier removal. The clean-
ing process is accomplished during multi-hop
data forwarding process, and makes use of the
neighboring relation in the hop-count based
routing algorithm. Our approach guarantees
that most of the outliers can be either cor-
rected, or removed from further transmission
within 2 hops. We have simulated a spatial-
temporal correlated environmental area, and
evaluated the outlier cleaning approach in it.
The results show that our approach can effec-
tively clean the sensing data and reduce out-
lier traffic.

1 Introduction

A sensor network is equipped with thousands of inex-
pensive, low fidelity motes, which can easily generate
sensing errors. The abnormal unreal sensor readings
generated in a temporally or permanently failed sensor
is called outliers. In many cases, outliers introduce er-
rors in sensing queries and sensing data analysis. For
example, a Sum query is less accurate if a large value
outlier is counted. In addition, transmitting outliers to
the sink is useless, adds additional traffic burden to the
network, and consumes precious sensor energy without
any benefit. Outlier cleaning tries to capture the out-
liers, correct or remove them from the data stream.
Outlier cleaning in sensor networks is challenging be-
cause data are distributed among a large amount of

sensors. It is for sure that outlier detection can be
conducted centrally after all the data are collected to
the sink. However, it is not energy efficient to transmit
outliers, especially when the network size is large. For
example, if an outlier is routed through a 15-hop path
to the sink, the energy used to transmit this 15-hop
datum is wasted. Therefore, in-network outlier clean-
ing tries to detect outliers during the data collection
process as early as possible along the routing path of
the data. It either corrects the outlier or removes it
from further forwarding. Eventually, an outlier-free
data stream is provided to the sensor network appli-
cations.

In this paper, we propose an in-network outlier
cleaning approach for data collection over sensor net-
works. We can correct short simple outliers in 0 hop
and remove long segmental outliers within 2 hops. We
adopt wavelet approximation to correct short, occa-
sionally appeared outliers. Since these short outliers
are of high frequency, they can be corrected if we
use the first few wavelet coefficients to represent the
sensing series. An extraordinary advantage of using
wavelet representation is that it can greatly reduce
the dimension of the sensing data, as a consequence,
reduces the energy cost of transmitting these data. If
an outlier is a long segmental outlier, we can detect
it by comparing its similarity with the neighboring
nodes, given the nature that environmental data are
spatially correlated [1]. Similarity is measured by Dy-
namic Time Warping (DTW) distance, which can cap-
ture the shape similarity in the elastic shifting sensing
series [2]. The sensing series are routed as before to
the sink, using a hop-count based routing algorithm
[3]. The detection is conducted within 2 forwarding
hops. A sensing series is not forwarded, if it is dis-
similar with its network neighbors. Outlier cleaning
requires in-network data processing on the individual
sensor mote. In sensor networks, it is admitted that
data processing is more economical than data trans-
mission [4]. The outlier cleaning process adds O(KN)
running time on each sensor. In the erroneous sensor
network, this energy cost is trivial compared to that
of the reduced traffic.



The remainder of this paper is organized as follows:
Section 2 provides the background of outlier cleaning
in sensor network data collection. In Section 3, we
describe our in-network outlier cleaning approach in
detail. Section 4 presents the evaluation results. Sec-
tion 5 discusses the related work, and we conclude this
paper in Section 6.

2 Background and Overview
2.1 Sensor Network

In recent years, wireless sensor networks have been
growing as a platform for environmental monitoring in
agriculture fields, battle fields, wild forests, coal mine
tunnels, and so on [5, 6, 7]. Sensors are massively de-
ployed to cover a wide geographical area. They have
the capability of sensing the area, performing some
computation, transmitting and forwarding the data to
a centralized sink node. However, these small sensors,
also called motes, have their limitations. Two of the
most important ones are the limited battery power and
the high transmission cost. These limitations make the
design of sensor network data processing challenging.
It is commonly recognized that in-network processing
(aggregation) is beneficial [8, 9, 10, 11]. Part of the
data processing is performed earlier, when the data
are still in the network. Notice that the centralized
approach processes the data only after all of them are
collected to the sink. In in-network processing, each
sensor takes up some computation according to the ap-
plications (e.g. query processing, data collection, event
detection, and so on). The sensors try to compute and
send the “aggregated” results to reduce network traf-
fic. Since data transmission is the most costly opera-
tion in sensors [4], compared with it, the energy cost
of in-network computation is trivial and negligible.

2.2 Data Collection

Sensor network applications can be classified into sev-
eral categories. One kind of popular applications is
query processing, which sends out a SQL-like query to
the distributed sensors, and expects them to answer
it by sending back the results to a sink node [§]. An-
other is event detection, in which a sensing report is
triggered not by a query, but by the occurrence of an
event [12]. Such an event can be a fire in a forest, a
gas leakage in a coal mine, or a flood in an agriculture
field. The third kind of applications is data collection,
which is considered in this paper. These applications
collect the entire sensing data over a long time, and
store them centrally in a centralized database. So-
phisticated data processing and analysis, which is not
suitable to be run in sensors, can be carried out in
the central server. Data collection is required in many
scientific applications, where a scientist usually wants
to record the historical monitoring data of the whole
geographical area for his/her research. For example, a
research for the cause of a freshet would need soil PH,
river level, and humidity data over several years. In

this paper, the design of our outlier cleaning approach
is described based on the data collection applications.
However, the idea of using wavelet-based outlier cor-
rection and neighboring DTW distance-based outlier
removal can be modified to apply to query processing
and event detection applications without losing gener-
ality.

2.3 Outlier Definition

In this paper, outliers of sensing data are referred to
as abnormal sensed values that are from out of or-
der sensors. The nature of environmental monitor-
ing shows that sensing series are always temporally
and geographically similar. Thus, outliers are those
weird sensor readings that are dissimilar with the oth-
ers. More specifically, we define two kinds of outliers
based on this observation:

Short simple outlier A short simple outlier is a
high frequency noise or error. It is usually repre-
sented as an abnormal sudden burst and depres-
sion, which is dissimilar to the other part of the
same sensing series.

Long segmental outliers A long segmental outlier
is the erroneous sensed readings that last for a
certain time period. It is unreal and cannot reflect
the environmental change of its monitoring area
during that time period.

2.4 Outlier Cleaning

Outlier cleaning in this paper means both outlier cor-
rection and removal. In outlier correction, each sensor
tries to correct a sensing series that contains outliers.
The outlier value is substituted by a close approxi-
mation of the real value. It then sends the corrected
sensing data to the sink. On the other hand, outlier
removal discards the sensing data that are detected to
have outliers, and are largely damaged or considered
to have little usage. Intuitively, the two outlier clean-
ing approaches should be connected in series. One ap-
proach should correct the sensing data first, and the
other one should then be used to detect long segmen-
tal outliers. It is not valid to simply delete the out-
liers, because many of them, containing only a little,
short, occasionally appeared outliers are still usable af-
ter correction. Every piece of sensing data is valuable
in a data analysis. It is only when the outliers in the
sensing series are too erroneous to correct, then dis-
carding this sensing series becomes the only choice to
save transmission power. Mapping into the outlier de-
finition above, the short simple outlier is much easier
to be corrected, and the long segmental outlier need
to be removed when it is not correctable.

2.5 Temporal and Spatial Similarity
The environmental data collected from widely distrib-
uted sensors are by their nature similar temporally



and spatially [13]. This temporal and spatial simi-
larity has special meaning in outlier cleaning. Given
a sensing series, a short simple outlier is easy to be
identified by human observation because it is shown
as a sudden change and extremely different from the
rest of the data. Theoretically, this sudden burst or
depression is of high frequency in the frequency do-
main. They can be removed by de-noising techniques
that transform the data into another domain where
the high frequency noise and the low frequency true
data can be separated. A long segmental outlier that
lasts for a certain time period is not easy to be de-
tected by only examining one sensing series, because
it is hard to tell whether it is an outlier or the true
data are changing in that pattern. However, making
use of the spatial similarity of the sensing data, the
outlier sensor should stand out when compared with
the other sensors that monitor the same area. Here
we make an assumption that sensors are largely and
redundantly deployed, and each sensing area is moni-
tored by several sensors. Therefore, an environmental
change in an area will have similar, not necessary the
same, effect on all the geographically close sensors.

3 Outlier Cleaning

We propose two outlier cleaning approaches:
1. using wavelet-based approach to correct outliers;

2. using neighboring DTW distance-based similarity
comparison to detect and remove outliers.

These two outlier cleaning approaches are intended
for in-network data processing within sensor networks.
However, they are also applicable to centralized outlier
cleaning.

3.1 Outlier Correction

Wavelet analysis has long been acknowledged as an
efficient de-noising approach. A time series is trans-
formed into the time-frequency domain. The wavelet
coeflicients represent a gradually refined resolution of
the original time series. Most of the energy and infor-
mation of the data are concentrated in a small number
of coefficients, usually the first few coefficients. The
sensing noises and errors are of high frequency and
reside in high-order coefficients. Therefore, the true
data and outliers, which are a kind of noise, can be
separated in the wavelet space.

In outlier cleaning, simple short outliers can be cor-
rected by wavelet de-noising. Figure 1 shows an ex-
ample of using 5, 10, 20, or 30 wavelet coefficients to
represent a sensing series with 128 points, which has
an outlier at the 48" point. We can observe that the
fewer the coefficients used, the smoother and coarser
the wavelet restored sensing series. Choosing an ap-
propriate number of coefficients, 10 or 20, we can re-
move the outlier while keeping a close approximation
of the original sensing series.
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Figure 1: Outlier correction (Using k= 5, 10, 20, or 30
wavelet coefficients to represent the sensing series. The gray
curve is the sensing series with an outlier occurring at the 48th
point. The bold curve is the restored sensing series.)

In addition, wavelet transform also acts as a di-
mension reduction method. Transmitting the selected
wavelet coefficients instead of the original sensing se-
ries can reduce data traffic by more than a magnitude.
Moreover, wavelet transform, like DWT, only takes
O(n) running time, which is a reasonable computa-
tional complexity for small limited devices like sensors.

By a small modification, the outlier correction ap-
proach can be applied to the case that the exact values
of the non-outlier points are required. This means the
raw sensing data should be sent to the sink instead of
the smaller amount of wavelet coefficients. Correction
is done by comparing the original sensing series (with
possible outlier contained) with the wavelet restored
sensing series. An outlier threshold is predefined by
the user. If at a point p, the difference between the
original and restored values is larger than the outlier
threshold, p is counted as an outlier. We then use the
restored value at p to correct the outlier value, and
send out this corrected series. However, transmitting
the raw data is not energy efficient in sensor networks,
which will only be used when a specific application re-
quires so. In the rest of this paper, we will stay with
the preferred approach of transmitting wavelet coeffi-
cients.

3.2 Outlier Removal

Long segmental outlier detection is based on the neigh-
boring similarity measurement. We notice that envi-
ronmental change is not isolated, which means any
change (increasing or decreasing) will affect a close
area instead of only a single point. Since sensors are
always densely and redundantly deployed, nearby sen-
sors will have similar patterns. Here we assume that
each environmental area is monitored by several sen-
sors. The idea of outlier detection is to compare a
sensing series with that of its neighbors. If a sens-
ing series has a similar counterpart among one of its
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Figure 2: Spatially similar sensing series: sensors in the
gray region are monitoring the same environmental area, and
therefore have similar sensing series. The circled sensor is an
outlier sensors, which can be known from its distinct sensing
series.

neighbors, it is not an outlier because the probabil-
ity of two failed sensors to generate similar erroneous
series is very small. If a sensing series does not have
any similar counterpart among its neighbors, it is higly
possible to be an outlier sensor. Figure 2 plots an ex-
ample of a spatially similar region, in which all the
sensors should have similar sensing series. The circled
sensor, which is quite different from the other sensors
around it, is detected as an outlier sensor.

We use Dynamic Time Warping distance (DTW)
to measure the similarity of two sensing series. The
reason for not using the simpler Euclidean distance
is that: (a) first, sensors in a network are loosely syn-
chronized, so the sensing series are not aligned exactly;
(b) second, there are different delays for different sen-
sors to detect an environmental change, e.g. a fire
occurs at one sensor takes a little while to spread to
its neighbors. Due to the above two reasons, Euclidean
distance is not suitable for measuring the similarity of
sensing series.

DTW is a method that can compare two time se-
ries having elastic shifting on the time axis. They are
considered to be similar, although out of phase. In
Figure 3, the two time series are of similar shape, but
not aligned in the time axis. Euclidean distance com-
pares the i*"* point of one series with the i** point of
the other, and reports a dissimilar result. However,
DTW distance compares the dynamic warped points
as shown in the figure, and therefore can capture the
similar shape of the two series. The DTW algorithm
are based on dynamic programming. The classic DTW
algorithm takes O(n?) time to warp two time series
each with n points. This quadratic algorithm is too
much for limited sensing devices. In practice, accu-
rate approximation like FastDTW is installed in the
sensors, which can run in linear time and space [14].

3.3 Centralized Cleaning Process

Centralized outlier cleaning is carried out after all the
data are collected to the sink. Outlier cleaning is done
step by step:

DWT
distance

Euclidean
distance

Figure 3: Euclidean distance and DTW distance

1. transform the sensing series to the wavelet do-
main;

2. reconstruct the sensing series using the first few
coefficients;

3. compare the original series with the restored series
to detect outlier points;

4. use the value in the restored series to correct the
outlier points;

5. compare the sensing series with that of its geo-
graphically close neighbors;

6. detect an outlier sensing series if it is dissimilar
with its neighboring series.

3.4 In-network Cleaning Process

The above outlier cleaning process can be moved down
to the network level. It depends on the underlying data
routing, so that the distributed sensors can clean the
outliers during the data collection process.

3.4.1 Data Routing

In almost all techniques for in-network aggregation,
a routing tree or graph based on hop count is estab-
lished. Data are propagated from sensors to a sink
through a minimum hop-count path [3]. This mini-
mum hop-count based routing is constructed as fol-
lows: The sink broadcasts an initial message to the
sensor network, containing a hop count parameter. All
the sensors receiving this message select the sender
(now is the sink) as their parent. They then increase
the hop count parameter by one, and rebroadcast the
message. Finally, the message is propagated to the en-
tire network, and each sensor is assigned a hop count
number. During the data collection, a current hop
count number is sent with the data message. By this
means, the message is routed through the reversed
path, which is a hop count decreasing path, to the sink
as illustrated in Figure 4(a). For the sake of aggrega-
tion, sensors are loosely synchronized and the data are
collected hop by hop up to the sink. All the sensors
with hop count number N are scheduled to transmit
at a time period. Sensors with hop count number N-1
are scheduled in the next time period after the hop
count N sensors have transmitted their data.

In this routing algorithm, each sensor can obtain
some local topology information. Assume that sen-
sor A has hopcount = N. First, A knows its direct
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Figure 4: Topology of the in-network outlier cleaning

parents, the nodes who propagated the initial message
with hopcount = N — 1 to it. Second, A knows its
siblings, who are the nodes that propagated the ini-
tial message with hopcount = N. Third, A knows
its direct children, the nodes from whom a data mes-
sage was received with hopcount = N + 1. The above
information is obtained defaultly in the routing pro-
tocol. Besides these, the sensor will actively keep a
sibling list for each of its children. The child node at-
taches its sibling list with the first data message sent
to the parents, therefore, the sibling list for each child
is known by the parent.

3.4.2 Neighboring Relation

Unlike the centralized approach, in in-network aggre-
gation, each individual sensor does not know its geo-
graphically nearest neighbors. The neighboring nodes
considered in in-network outlier cleaning are the chil-
dren, one-hop away siblings, and parents.

The parent-sibling-child relation is set up in the
data routing. As illustrated in Figure 4(b), parents,
children, and siblings can cover the four major direc-
tions of a sensor - up, down, left, and right. We can
detect a outlier sensor by comparing it with its net-
work neighbors in the four directions.

3.4.3 Cleaning Process

In the outlier cleaning process, wavelet-based outlier
correction is done by each sensor, and the neighboring
DTW similarity is compared along the routing path of
the data that goes to the sink.
At the sensor level, each sensor

1. transforms the sensing series to the wavelet do-
main, and

2. selects the first few coefficients to transmit.

At the network level, sensor A receives its children’s
sensing series, and decides which to forward and which
to delete. The outlier detection process is as follows”
1. Sensor A reconstructs the children sensing series
from their wavelet coefficients.

2. A calculates the DTW similarity of its children’s
sensing series and itself’s.

(a) If they have similar sensing series, both A
and those similar children are flagged as
Non-outlier.

(b) If all the children series are dissimilar, A is
flagged as Unknown, since other neighbors
need to be compared before making an out-
lier decision for A’s sensing series.

3. When A’s sensing series is transmitted to its par-
ent B. For a child’s sensing series flagged as Un-
known, B compares it first with the series of the
siblings of this child, then with the sensing series
of B itself. Remember that a sibling list for each
child is maintained when the routing paths are set
up.

(a) If there is a similar sensing series to that of
this Unknown child, it is not an outlier and
should be forwarded.

(b) If all the sensing series are dissimilar, this
child is finally detected as an outlier after
comparing with all its network neighbors.
The sensing series of this child is removed
from the forwarding list.

For each sensor, it’s sensing series is compared with
those of its children when it receives the children’s
sensing series. The comparison of siblings and parents
is done by the parent sensors. In the case when a sen-
sor node has multiple parents, each parent would con-
duct its comparison independently. An outlier sensing
series can be detected and removed by all the parents.

4 Evaluation

We have simulated a sensor network of about 900 sen-
sors deployed in a grid topology. The transmission
range of each sensor covers the upper, lower, left, right,
upper and lower left, and upper and lower right sen-
sors. The environmental sensing series of each sensor
is generated from a temporal-spatial model. We have
conducted simulations to evaluation our outlier clean-
ing approach under several evaluation metrics.

4.1 Evaluation Dataset

The evaluation datasets are generated from a model
that simulates an area with temporal-spatial corre-
lated environment. A number of points called event
trigger have been placed in the simulation area. The
sensed value of the event trigger follows a random
walk. The location of the event trigger is also a ran-
dom walk on the 2D simulation area. The value of
a sensor at time ¢ is the weighted combination of the
values of the event triggers, where the weight is the
inverse of the normalized distance between the tar-
get point and the event trigger point. Figure 5 plots
a snapshot of the changing environment on a square
monitoring area at a certain time. The values on the
vertical axis are the current sensing readings. Finally,
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Figure 5: A snapshot of a temporal-spatial correlated area

outliers are added to the dataset as random errors. An
outlier may affect only one data point in the sensing
series, or affect a segment lasting for a certain time pe-
riod. Different amounts of outliers can be introduced,
distributed randomly in the area and in time. These
outliers can be of different lengths. We have adjusted
the model parameters and generated several environ-
mental datasets in the simulation.

4.2 Evaluation Metrics

correction ratio It measures how much the outliers
are corrected in order to be closer to the real value.
Given the error of the outlier value, and the er-
ror of the corrected value, the correction ratio is
calculated as follows:

. outlier error — corrected error
cratio =

outlier error

precision and recall This metric is used to mea-
sure the performance of outlier detection using
DTW based outlier removal. Precision is the ra-
tio of the correctly detected outliers and the total
number of the detected outliers. Recall is the ra-
tio of the correctly detected outliers and the total
number of outliers.

transmission bytes We use the total number of
transmission bytes in the network to measure the
reduced traffic amount. This can represent the
amount of energy saved in data transmission.

4.3 Results

In this section, we will evaluate our in-network outlier
cleaning approach in different scenarios. If not explic-
itly specified, the default parameters listed in Figure
6 are used in the simulation.

4.3.1 Outlier Correction Ratio

We first evaluate the wavelet-based outlier correction
approach when choosing different number of wavelet
coeflicients to represent the sensing series. We have
added different amounts of outliers into the simulation
scenarios - 500, 1000, 1500, and 2000 outliers. Each
outlier was a single burst. The percentage of outliers

network size 30 x 30
the number outlier sensors 300
sensing series length 128
outlier length 10 ~ 100
the number of wavelet coeffi- | 10
cients

DTW threshold 20

Figure 6: Default parameters in the simulation. We test
the change of the parameters in our evaluation.
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Figure 7: Correction ratio of wavelet-based correction

in the dataset was 0.42% ~ 1.74%. Figure 7 plots the
simulation results. The more the wavelet coefficients
used, the finer the granularity. The high order wavelet
coefficients can capture the outlier burst, so the cor-
rection ratio keeps decreasing. On the other hand, if
too few wavelet coefficients are used, the restored sens-
ing series is too coarse to correct the outlier. The best
correction ratio exists at 5 coefficients. Choosing 5 to
12 coefficients can give a correction ratio of over 90%.
To have a good approximation of the original sensing
series, we have chosen 10 coefficients in the rest of the
simulations.

4.3.2 DTW Threshold

In neighboring DTW distance-based outlier removal,
we have used a DTW threshold to decide whether two
sensing series are similar or not. If their DTW distance
is smaller than the DTW threshold, they are regarded
as similar sensing series, and vice versa. We have sim-
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Figure 8: Recall and precision in changing DTW threshold
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ulated the different setting of DTW threshold and the
results are shown in Figure 8. The precision of de-
tecting outliers can be very high when using a thresh-
old larger than 10. However, recall keeps decreasing
because when the threshold is high some outliers are
mistakenly counted as valid data.

4.3.3 Outlier Amount

We have also simulate different amount of outliers. As
in Figure 6, the length of these outliers is randomly
chosen from 10 to 100. The number of outliers in-
creases from 100 to 800. We have limited each sensor
to have at most one outlier. Hence, 800 outliers means
8/9 sensors suffer from failure. Figure 9 shows that
both recall and precision are high. They are almost
not affected by the amount of outliers.

4.3.4 Outlier Segment Length

In all the other scenarios, the length of an outlier seg-
ment was randomly chosen in the region [10,100]. In
this part, we have tested how the outlier length would
affect outlier cleaning. We have explicitly set the out-
lier length to be 10 to 100 in different runs of simu-
lations, and compared their results. The simulation
results are plotted in Figure 10. Precision remains
high under different outlier lengths, which means our
algorithm rarely reports non-outlier sensors as out-
liers. However, recall is low when the outlier length
is short, which means many of the true outliers are
not detected. One possible reason is that the shorter
outliers have already been corrected by wavelet ap-
proximation. We have justified this by examining the
missing outliers (undetected outliers) to see how many
of them are corrected by wavelet-based outlier correc-
tion. Figure 11 shows the total amount of detected
and corrected outliers, where an outlier is counted as
corrected if its error after correction is smaller than
1.0.

4.3.5 Traffic Reduction

Finally, we have evaluated the amount of traffic re-
duction in the outlier cleaning process. Since only 10
wavelet coefficients have been used for each 128 point
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Figure 10: Recall and precision in changing outlier seg-
ment length
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Figure 11: The total amount of corrected and removed
outliers

long time series, the traffic reduction in wavelet correc-
tion is about 92.19%. If an outlier is detected, the traf-
fic of transmitting and forwarding this outlier is saved.
Since a sensor is normally routed through a multihop
path to the sink, one outlier detection will save several
hops of transmission. Figure 12 shows that with the
increasing number of outliers, the amount of reduced
traffic in DTW-based outlier removal is also increas-
ing.

5 Related Work

Outlier detection is a fundamental issue in data man-
agement. Hawkins defines outlier as an observation
that deviates a lot from other observations, and is
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very possible to be generated from a different mech-
anism [15]. Thus, outlier detection is also called de-
viation detection. Most of the outlier detection tech-
niques are based on data mining. Hodge and Austin
classified a variety of outlier detection methods into
three categories in their survey paper [16]: Unsuper-
vised clustering based on distance and density, which
determines the outliers with no prior knowledge of the
data [17]; supervised classification that required pre-
labelled data and a machine learning process [18]; and
semi-supervised methods that can tune the detection
model incrementally as new data arrive [19]. Most of
the proposed outlier detection approaches are central-
ized and off-line. They cannot be applied to sensor
network applications directly.

Only a few papers have tried to address in-network
outlier detection in the context of sensor networks.
Palpanas et al. have proposed an in-network approach
for distributed online deviation detection for stream-
ing data [20]. However, this approach highly depends
on the existence of high capacity sensors to manage
groups of other sensors and perform outlier detection.
Another related work proposed by Branch et al. uses
a non-parametric, unsupervised method to detect out-
liers. They also use the distance-based metrics in the
detection [21]. Hida et al. proposed a method to
perform outlier detection in query processing (such
as Max and Avg), so that query aggregation can be
more reliable [22]. These approaches do not combine
the temporal spatial similarity in outlier detection, be-
cause they detect outliers as a single value. However,
in this paper we try to detect outliers in a number
of time series. As a first step, we use wavelet based
outlier correction and DTW distance-based outlier re-
moval, which can be thought of as a distance based
approach. This requires that the data in the whole
area exhibit the same distribution, and the user should
have some knowledge of the data to set an appropriate
threshold. Our future work tries to address the outlier
problem when the data are of different distribution. In
this case, a single threshold may not be appropriate,
and a sophisticated statistical model is required [23].

6 Conclusions

In this paper, we have presented an in-network out-
lier cleaning approach for sensor network data collec-
tion applications, using wavelet based outlier correc-
tion and DTW distance-based outlier removal. We
have considered the spatial-temporal correction of en-
vironmental data; we not only detected but also tried
to correct the outliers; we were able to remove the
outliers within 2 network forwarding hops and reduce
a large amount of the traffic. We have evaluated our
approach under comprehensive simulations.
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Data quality is a serious concern in complex industrial-scale databases, which often have
thousands of tables and tens of thousands of columns. Commonly encountered problems
include missing data (null values), duplicates and default values in columns supposed to
treated as keys, data inconsistencies (violation of functional dependencies), and poor
quality join paths (lack of referential integrity). Compounding the data quality problems
are incomplete and out-of-date metadata about the database and the processes used to
populate the database. These problems make the task of analyzing data particularly
challenging. To effectively address such problems, we have built the Bellman data
quality browser at AT&T. Bellman profiles the database and computes concise statistical
summaries of the contents of the database, to identify approximate keys, frequent values
of a field (often default values), joinable fields with estimates of join sizes paths, and to
understand database dynamics (changes in a database over time). In this talk, I'll describe
the technology underlying Bellman and how it is used to help make sense of complex
databases.
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Abstract

Data cleaning may involve the acquisition, at
some effort or expense, of high-quality data.
Such data can serve not only to correct indi-
vidual errors, but also to improve the relia-
bility model for data sources. However, there
has been little research into this latter role for
acquired data. In this short paper we define
a new data cleaning model that allows a user
to estimate the value of further data acquisi-
tion in the face of specific business decisions.
As data is acquired, the reliability model of
sources is updated using Bayesian techniques,
thus aiding the user in both developing rea-
sonable probability models for uncertain data
and in improving the quality of that data. Al-
though we do not deal here with the problem
of finding optimal methods for utilizing ex-
ternal data sources, we do show how our for-
malization reduces cleaning to a well-studied
optimization problem.

1 Introduction

When decisions must be made without good informa-
tion, it is critical to know how much the information at
hand can be trusted. To this end, techniques to man-
age and improve data quality have been developed by
the database research community. Data correctness
can be captured with integrity constraints [1], while
data quality and confidence can be captured in prob-
abilistic databases (e.g. [11, 12]). Work on constraint
repair (e.g. [3, 4]) and on purging duplicates (e.g. [5, 9])
supports the automated improvement of data quality,
for example by removing unlikely tuples or identifying
dissimilar representations of the same entity. However,
the problem of connecting data cleaning to the decision
making process it supports has not been studied in any
detail. Similarly, little attention has been focused on
how to develop probabilistic models for data or when
to expend effort or money to acquire good data. We
now introduce a running example to illustrate these
issues and motivate a model of data cleaning driven
by business decisions.

Example 1. Consider a hypothetical telecommuni-
cations service provider, ACME Telecom. ACME is
interested in building a wireless network in Alberta,
which requires the construction of cellular towers. To
see if it can build a network with sufficient capacity,
ACME requires data on the sites available for cellular
towers, and the towers they can support.

ACME has obtained catalogs of possible sites from
two consulting companies, and represents this informa-
tion in the two tables of Figure 1. The tables conform
to the following schema:

site(Locid: int, Towertype: ttype)

Locid is the deed number for a site and ttype gives
the type of towers it can support: “High” for a high-
capacity tower, “Low” for a low-capacity tower, and
“CU” if the site is Currently Unavailable, but may be
able support a cell tower in the future.

The data suggests that one or both lists are of
low quality. To what extent can existing data clean-
ing techniques be applied to ACME’s problem? As
mentioned above, one class of techniques deals with
finding approzimate matches and reconciling entities
across data sources [5, 9]. However, such “record link-
age” problems are not an issue here, as we have as-
sumed that the Locid information is correct. (If this
assumption does not hold, approximate matches might
be used to bring the data to the state shown in the ex-
ample.)

A second class of techniques that might be applied
are constraint repair techniques [3, 4]. To formal-
ize this example as a constraint repair problem, one
might compute the union of Smith and Jones, and
then assert a key constraint from Locid to Towertype
on the resulting table. The data could then be re-
paired by either deleting tuples or modifying values.
Consider applying either approach to Site 121. Cer-
tainly, the key constraint can be repaired by delet-
ing either the Smith or Jones tuple for Site 121, or
by changing a “Low” value to “High”, or vice versa.
However, since there is no evidence to favor any of
these repairs, neither delete-tuple constraint repair nor
attribute-modification repair is likely to help ACME in
this case.

Good repair decisions could be made if the source
instances were enriched with reliability information
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Locid | Towertype Locid JO'T'loeviertype
121 “High” 91 Tow”
128 “Low” 128 “Low”
146 | “CU” 146 | “High”
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199 “Low” 199 Tow”
203 “Low”

Figure 1: Example site data.

giving the probability that a tuple or attribute value
is correct. Such information could be modeled, for ex-
ample, in a probabilistic data model [11, 12]. A critical
question, however, is how this reliability information
would be obtained. What probabilities should be as-
signed to each possible value for ttype for site 1217
Furthermore, how can we assign confidence to our re-
liability estimate to reflect the amount of supporting
data we have seen? Clearly, we must distinguish the
case in which much historical data supports the unre-
liability of Jones from the case where there is little
data available. To help ACME, a data cleaning sys-
tem must have both a strategy to develop a reliability
model, and a way to estimate and adjust the confi-
dence in the model.

Data reliability estimates can be improved by ob-
taining data via external sources. For example, by
obtaining the correct answer for site 121, ACME can
help improve its reliability model. If Smith turns out
to be correct, ACME might assume it is more likely
that Smith is correct on site 146, and if this too turns
out to be the case (or perhaps for several more tuples),
ACME may choose to trust Smith’s value for site 203.

An important trade-off is thus between the expected

improvement in data quality obtained by consulting
external sources and the expense of data acquisition
from these sources. Existing systems offer neither a
way to quantify the expected improvement nor a way
to estimate the value of that improvement. If a cred-
ible source offered ACME a perfect list, how much
should ACME be willing to pay? We argue that this
question can only be answered concretely with a model
of the business decisions faced. To illustrate this point,
we return to our example:
Example 1, continued. ACME has a critical de-
cision to make: Should it build a new network in Al-
berta? There is a fixed overhead of 10,000,000 Cana-
dian dollars for building the network, while once the
network is built there will be a net profit of $100,000
for each high-capacity tower and $50,000 for each low-
capacity tower. Clearly, errors in the data can have
a dramatic impact on the correct choice for this deci-
sion. There is no doubt that ACME can determine the
quality of this data and correct it: it can send a rep-
resentative out to survey each site, and contact each
site owner. But this is at an average cost of $1000 per
record.

How should ACME proceed? Should it ignore the
risk caused by the low quality data and make this deci-
sion before taking any cleaning action? Should it query
a small number of tuples and then decide? Which tu-
ples should be sampled, and from what source? Or
should it sample more than once, dependent on the
results of prior samples? The question of what data to
clean and when is a crucial one for any organization
managing decision-critical data. In general, the data
may impact many decisions, and there may be many
external sources available with which to validate data,
each with a different reliability. We see that even in
this simple example the correct cleaning policy is far
from obvious.

In this work we propose a new data cleaning frame-
work geared towards deciding which external data
to query, based on its impact on business decisions
and its value in updating the data reliability model.
Our framework includes a formal model of external
sources, in which a query on an external source en-
tails a cost. We model organizational decisions as
actions whose rewards are based on queries. This al-
lows us to quantify the benefit of data cleaning actions.
Our model of source reliability includes a parame-
terized data model in which the parameters can be
estimated based on current knowledge, including data
from external sources. A solution to the cleaning prob-
lem will then consist of a sampling policy telling which
external data to query based on the current reliability
estimates and the organization value of data.

In this short paper we concentrate on giving the
formal model, and do not discuss solution techniques.
However, we do indicate how our notion of a cleaning
policy reduces the cleaning problem to a well-studied
problem area, that of Markov Decision Processes [10].

2 Decision-driven Cleaning Framework

In this section we describe a framework for Decision-
driven Cleaning, in the form of a Cleaning Problem,
consisting of the following components:

e a relational signature for the observed data and
true data

e an error model giving a distribution on errors,
possibly with hidden parameters

e a set of data sources that can be queried to
get higher-quality information on the target data,
along with cost and quality information for these
sources

e a set of business decisions with associated reward
functions

A solution to a cleaning problem is an optimal cleaning
policy that decides, for every possible history of source
data sampling, whether to take a sampling action, or
to make a choice for one or more business decisions.



We now discuss each of these elements in detail.

Relational Data Model Our data model is a sim-
ple model for integrated relational data. It consists
of a fixed schema R and a set Src of sources. The
schema R consists of a finite set of relations, a map-
ping att associating with each relation R a set att(R)
of attributes, a mapping Dom associating with each a
in att(R) a domain Dom(a), which can be either infi-
nite (’string’, ’int’, 'real’, etc.) or finite, and a subset
key(R) C att(R) representing a distinguished key of R.

An instance of a relation R is a set of tuples, where
a tuple includes a value in Dom(a) for each a in att(R).
A global instance includes a relation instance for each
relation R in R and each source src in Src. We can
equivalently present a global instance as one set of
tuples, where each tuple ¢ has a source annotation,
src(t) € Src. A global instance is required to have each
of its relation instances satisfy the key constraints.

There is a distinguished source srcy,e representing
the true, or actual, data values. We let GLOB be the
set, of global instances for a given schema. We use Gl to
range over global instances, src to range over sources,
and R to range over relations. We write Gl.src for the
instances with source src in global instance Gl, and
Gl.src(R) for the instance of R in Gl with source src.
Given a source instance I for a relation R we let key(I)
denote the set of key values witnessed.

Data Reliability Framework We first develop a
general model of data quality in which source data
quality models can be computed based on standard
Bayesian reasoning. We then discuss a specific model
which could be used in a concrete setting.

Our error models are probability distributions over
global instances [7, 12]. An alternative would be to
attach probabilities to attribute values [11]. For exam-
ple, consider the tuple for site 121 in the Smith table
of Figure 1. One could explicitly state that there is
an 80% chance that the value of Towertype is actually
‘Low’, a 15% chance that it is ‘CU’, and a 5% chance
that it is ‘High’. However, such a distribution on at-
tribute values can be derived from a distribution on
global instances.

Clearly, a decision maker will not generally know
the probability distribution P on global instances. As
discussed earlier, we seek to support a) uncertainty
about the probability distribution P and b) the abil-
ity to characterize and update that uncertainty. To
do this we adopt a standard Bayesian approach. We
assume that the errors in the observed instance are
generated by some probabilistic process, where the pa-
rameters controlling this process are unknown. For
example, one parameter might represent the accuracy
of data entry clerks at Jones. Given n such hidden
parameters in an application, we let PAR be the prod-
uct space consisting of all n-tuples of hidden parameter
values, and consider PAR as a probability space. Thus,
the values of the hidden parameters control the prob-

ability of global instances, and the parameter values
themselves lie in a probability space.

An error model over a schema R consists of a prob-
ability distribution G(6) on GLOB indexed by an el-
ement 0 in PAR, along with a smooth probability on
PAR, called the prior. For example, in tossing a coin
with an unknown bias, the probability of a head might
be 6, and the prior on # may be a uniform distribution
(representing the case where we have no knowledge of
the bias). For some set S of global instances, and some
0 in PAR, we write P(S | 8) for G(6)(S), the probabil-
ity of seeing the set S of global instances given hidden
parameters 6. Also, we write P(Gl | ) for P({Gl} | 6).

Although we cannot observe the hidden parame-
ters directly, we can gain information about them by
looking at the results of sampling. The updated den-
sity function represents our improved knowledge of the
hidden parameters given the observation of a set S of
global instances:

POSTs(6) = P(par =6 | Gl € S)

This is the posterior distribution on the hidden param-
eter space. For example, in coin tossing, the updated
density function tells us how to adjust our prior as a
result of observing some coin tosses.

Concrete Data Reliability Model We now spe-
cialize our general model to one having independent
tuple-level error probabilities. For simplicity, we con-
sider only schemas in which the domain of every non-
key attribute is finite. Other schemas can be handled
by replacing the uniform distribution over the finite
domain used below by a probability distribution ap-
propriate for the particular domain.

Our error model has the following hidden parame-
ters. The parameter 6% , gives the probability that
the value of attribute a of relation R in source src has
been modified. The parameter 0;:36,,“5 gives the proba-
bility that a tuple has been inserted into relation R of
source src. The parameter ch’De, gives the probability
that a tuple has been deleted from relation R of source
src.

A tuple in the parameter space PAR then contains
a value for each instance of these parameters for every
source src in Src, every relation R in R, and every
attribute a in att(R). The prior distribution on PAR is
a [ distribution, which is known to be convenient for
calculation. In our examples, we generally assume a
uniform distribution over the parameter space as the
prior. However, we could easily accommodate other
priors that represent error information gathered using
historical data or other means.

Now we explain how to compute the probability of
seeing an instance I' of a relation R for source src,
assuming that we are given src, the true instance I for
R, and the hidden parameters 6. For every key value
kv appearing in I, the probability that kv is absent

from I' is F_ . For every key value kv remaining in



I', the probability that the non-key attributes of kv are
set in I’ to particular values is as follows: for a non-key
attribute a, the probability that the value for a in I’
agrees with the value in I is 1 — ¢9§c,a. The probability
that the value for a in I' will be a particular value in
Dom(a) different from the one in I is 6%, /(|Dom(a)|—
1). The probability that k new key values are inserted

into I’ is (‘ﬂ)(ﬁﬁc’lns)k(l — 08 )/l (each tuple in I
leads to a new spurious tuple in I’ with probability
6F ). If k new tuples are to be inserted, the key
values for each of these are chosen randomly from the
initial values in every interval in Dom(key(R)) — I; for
each of these tuples, the non-key value for attribute a
is chosen to be a particular value from Dom(a) with
probability 1/|Dom(a)|.

This calculation gives the probability
P(Gl.srcye(R) = I AGlsrc(R) = I' | 6) for a
source src and an element 6 of PAR. The proba-
bility of a full global instance Gly given 6 is then
obtained by: TlgeRr scesre—{srcme} P (Gl-SrCerue(R) =
Glo.srcirye (R) A Glsre(R) = Glsre(R) | 6)

The model above allows for no correlation between
errors in attributes. We can generalize to broader er-
ror models by fixing a Bayesian Network [13] with un-
known weights, specifying the conditional probability
of one attribute being correct given that another at-
tribute is or is not correct. The use of such networks
for modeling errors is the subject of future work.

Cleaning Model During the data cleaning pro-
cess, a decision maker will sample data sources, pay-
ing to do so. A global instance in our data model
represents the data to be potentially sampled, not the
data already sampled in this process. The data al-
ready sampled is modeled here as a sampling history:
a function SH that maps a source src and a relation R
to a set SH(src, R) of tuples. A tuple in the set either
has a value for each attribute of R, or has a value for
the key attributes and the distinguished value null for
all other attributes. A sampling history SH is consis-
tent with a global instance Gl if, for every relation R
and source src, 1) every tuple in SH(src, R) not con-
taining null also appears in Gl.src(R), and 2) if a tuple
in SH(src, R) does contain null, then no tuple having
the same key appears in Gl.src(R).

We assume that our decision maker begins with
some sampling history, which we refer to as the ini-
tial sample, denoted Init. This would typically contain
all the data from some readily-available sources, and
no data from expensive sources.

Each source src has an associated cost function Cec :
N — Z, where Cs.(n) gives the cost of sampling src
for a group of n tuples. The sampling cost might be
linear in n, or might perhaps reflect that sampling can
be done more cost-efficiently in bulk. Normally we
expect that a user will not be able to sample the actual
data srcyye, but will be able to sample sources where

R R R
the parameters 05 pes O nsy and b5 4, are known

and small.
A sampling action for a source src is a relation, R,
and a set {kvy,...,kv,} of key values of appropriate

type for R. The result of a sampling action is a se-
quence (t1,...,t,) where ¢; is either a tuple for R with
key value kv;, or null, indicating that no tuple with
this value exists in the instance of R.

Example 2. Consider again the ACME example. For
the data from Smith Inc. there is an (unknown) proba-

bility Oigﬂwe,type that the Towertype attribute is correct.

In addition, there is a probability 0%';’,' that a given
true lot was deleted, and a parameter Gﬁ]"s" controlling
how many spurious tuples are inserted. Similarly, for
the data from Jones, we have 633,cype> O, and 6i
parameterizing the probability of an error.

We also assume that we have a correct source, with
a linear cost per tuple of sampling.

Suppose we know from historical data that for each
consulting company between 0 and 1% of the available
lots for the coming year are missed, and between 0 and
.5% of the Locid values correspond to non-existent lots.
Hence we can take a prior distribution on 63¥ and 62,
a uniform distribution on the interval [0,.01], while
taking a prior on 67¥ and 6,5 as a uniform distribu-
tion on [0,.005]. For the rate of modification of the
Towertype attribute, we have no historical data, so we
take these to have a prior that is uniformly distributed
on [0,1].

Suppose that we have sampled our oracle on 100 key
values, and determined that all 100 Locid values for the
Smith data are valid lots, and that for 99 of these the
Smith report has the correct value for Towertype.

Then we can estimate a new posterior distribu-

tion on ASM given this sample data and the ob-

Towertype
served data, with the density of 63}, . now (1 —
SM 99 nSM 1 99
eTowertype) aTowertype/ fo (1 - .'E) z dz.

Business Decisions Associated with a cleaning
problem is a finite set {71 ...7.} of business deci-
sions, where each decision 7 has an associated finite
set Choices(7) of choices. Each decision 7 and choice p
in Choices(7) has associated with it a relational query
Qr,p over the signature R. Evaluating Q-,, on a (true)
instance I gives the outcome if the decision maker
chooses p for decision 7.

In the ACME example, our business decision 7 is
Build, with choices p; =Yes and p, =No. The reward
query associated with Build = Yes is given by @, ,,:

select (100,000 * High.tot + 50,000 % Low.tot -
10,000,000) as Profit
from

(select cnt(x) as tot
Towertype="‘High’) High,
(select 50,000 cnt(x) as tot from Site where
Towertype="Low’) Low

from Site where

The reward query associated with Build = No is
Qr,p, =0.



Cleaning Policies We can now take a cleaning
problem to be a tuple (R,Src, EMOD, C,BD), where
R is a schema, Src a set of sources, EMOD an error
model giving a distribution over global instances of R
for the sources in Src, C' a cost function, and BD a
set of business decisions. A policy for a cleaning prob-
lem is a function deciding, for each sampling history,
either a sampling action, or a choice for one or more
of the business decisions. A policy is a recipe telling
what should be sampled at any state: given an initial
sampling history Init, and a policy A, one can apply A
repeatedly to get a sequence of histories and choices
for business decisions: SH; = Init unioned with the
response of A(Init) on Gl, SHy = SH; unioned with
the response of A(SH;) on Gl, etc. In the process, we
obtain larger and larger sampling histories and some
sequence of choices for business decisions. A policy is
valid if on every global instance Gl it produces a se-
quence such that every business decision 7; : ¢ < r
is decided exactly once. For a valid policy, we can
evaluate its effectiveness on a global instance Gl via
the cumulative reward: if the policy produces sam-
pling actions Sy ...S; when applied on Gl, then the
reward is Xi<,Qr;,»(Gl.srcerue) — X< C;(]S;]), where
p is the choice selected for 7; when running policy A
on Gl and C;(|S;]) is the cost of the j* sample. That
is, the reward is the gain from the business decisions
minus the total cost of sampling.

The goal of cleaning (in our sense) is then to find
the optimal policy for a cleaning problem, given an
initial history Init. This optimal policy maximizes the
expected value of the reward, conditioned on the event
that the global instance is consistent with Init. The op-
timal policy tells the cleaner the “best” data to sample
in a precise sense.

3 Ongoing Work

In our framework, a solution to the cleaning problem is
an optimal strategy for a certain game. Optimization
strategies for more general planning problems, such as
those for Markov Decision Processes (MDPs) [8], are
applicable here. We now very briefly review MDPs
and their application to cleaning.

An MDP describes a game between a player and the
environment in which the player chooses an action and
the environment chooses a resulting state according to
a probability distribution associated with the action.
Each action has an associated reward function, and the
goal of the player is to choose a strategy that maxi-
mizes her expected cumulative reward. It is easy to
translate the cleaning problem here into an MDP: the
states of the MDP are the sampling histories, while ac-
tions are sampling actions and choices for the business
decisions. The rewards for sampling actions are the
negative of the cost of sampling (based on the associ-
ated cost function of the sources), while the rewards for
decision actions are the expected values of the corre-

sponding queries, where the expectation is conditioned
on the information known from the sampling history.
The naive translation will yield a very large MDP (ex-
ponential in the size of the data). Given the fact that
the best algorithms for solving general MDPs (based
on dynamic programming) are quadratic, one cannot
hope to use the straightforward approach in practice.
In ongoing work we are investigating the use of ab-
straction techniques, along the lines of [6, 2], which
may yield a more manageable problem.
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Abstract

RFID holds the promise of real-time identify-
ing, locating, tracking and monitoring phys-
ical objects without line of sight, and can
be used for a wide range of pervasive com-
puting applications. To achieve these goals,
RFID data has to be collected, filtered, and
transformed into semantic application data.
RFID data, however, contains false readings
and duplicates. Such data cannot be used
directly by applications unless they are fil-
tered and cleaned. While RFID data often
arrives quickly and is in high volume, its de-
tection usually demands efficient processing,
especially for those real-time monitoring ap-
plications. Meanwhile, the order preservation
of RFID tag observations are critical for many
applications. In this paper, we propose several
effective methods to filter RFID data, includ-
ing both noise removal and duplicate elimi-
nation. Our performance study demonstrates
the efficiency of our methods.

1 Introduction

RFID (radio frequency identification) technology uses
radio-frequency waves to transfer data between read-
ers and movable tagged objects. Thus it is possible to
create a physically linked world in which every object
can be numbered, identified, cataloged, and tracked.
RFID is automatic and fast, and does not require line
of sight or contact between readers and tagged ob-
jects. With such significant technology advantages,
RFID has been gradually adopted and deployed in a
wide area of applications, such as access control, li-
brary checkin and checkout, document tracking, smart
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Figure 1: Pervasive Computing with RFID

box [1], highway tolls, supply chain and logistics, se-
curity, and healthcare [2].

One major problem to be solved in pervasive com-
puting is to identify and track physical objects, and
RFID technology is a perfect fit to solve this. By tag-
ging objects with EPC ! tags that virtually represent
these objects, the identifications and behaviors of ob-
jects can be precisely observed and tracked. RFID
readers can be deployed at different locations and net-
worked together, which provides an RFID-based per-
vasive computing environment. This is illustrated in
Figure 1, where L1 — L6 denote different locations
mounted with readers. Tagged objects moving in this
environment will then be automatically sensed and ob-
served with their identifications, locations and move-
ment paths.

Readers’ observations, however, are raw data and
can contain a lot of duplicate and false readings. Thus
the first step to integrate RFID data into pervasive
computing applications is to filter RFID observations.

RFID data are generated quickly and automatically,
and can be used for real-time monitoring, or accumu-
lated for object tracking. To filter the high volume
real-time RFID data streams, efficient methods are es-
sential, especially for real-time applications.

The filtered RFID data often need to preserve the
original order, i.e., the first observed tagged object will
be output first after filtering. Such order can be criti-
cal for many RFID applications. For example, a nurse
uses a wearable reader to access RFID-tagged medical
items according to medical procedures. The order the
nurse accesses these medical items is critical: wrong
orders may cause a medical error or even lead to fatal

1EPC - Electronic Product Code — is an identification scheme
for universally identifying physical objects, defined by EPC-
Global [3].



result. Thus, the correct ordering of RFID observa-
tions together with a workflow monitoring system will
minimize such errors.

In this paper, we propose effective and efficient algo-
rithms for RFID data filtering, including noise removal
and duplicate elimination.

The paper is organized as follows. We first intro-
duce the background of RFID data filtering in Sec-
tion 2. Then in Section 3 we propose algorithms to
efficiently filter noise from RFID data, including the
problem of order preservation in the output. Next we
discuss algorithms for duplicate merging in Section 4.
Performance study of these methods is discussed in
Section 5, followed by Related Work and Conclusion.

2 Background

Due to the low-power and low-cost constraints of RFID
tags, reliability of RFID readings is of concern in many
circumstances [4, 5]. There are three typical undesired
scenarios: false negative readings, false positive read-
ings and duplicate readings, discussed as follows.

e False negative readings. In this case, RFID tags,
while present to a reader, might not be read by
the reader at all. This can be caused by i) When
multiple tags are to be simultaneously detected,
RF collisions occur and signals interfere with each
other, preventing the reader from identifying any
tags; ii) A tag is not detected due to water or
metal shielding or RF interference.

e False positive readings(or noise). In this case, be-
sides RFID tags to be read, additional unexpected
readings are generated. This can be attributed to
the following reasons. i) RFID tags outside the
normal reading scope of a reader are captured by
the reader. For example, while reading items from
one case, a reader may read items from an adja-
cent case; ii) Unknown reasons from the reader
or environment, for example, one of our readers
periodically sends wrong IDs.

e Duplicate Readings. This can be caused by the
following reasons: i) Tags in the scope of a reader
for a long time (in multiple reading frames) are
read by the reader multiple times; ii) Multiple
readers are installed to cover larger area or dis-
tance, and tags in the overlapped areas are read
by multiple readers; and iii) To enhance reading
accuracy, multiple tags with same EPCs are at-
tached to the same object, thus generate duplicate
readings.

In practice, readings are often performed in mul-
tiple cycles to achieve higher recognition rate [5]. In
this way, false negative readings can be significantly
reduced. Meanwhile, noisy readings (or false positive

readings) generally have a low occurrence rate com-
pared to normal true readings. Thus only those read-
ings that have significant repeats within certain inter-
val are considered to be true readings. This, however,
will further produce much more duplicate readings.

Based on above observations, we develop effective
and efficient RFID data filtering techniques to gener-
ate clean RFID data, which can be further interpreted
and integrated into RFID-based applications. In this
paper, we study two types of filtering: noise is removed
from RFID data (denoising or smoothing), and dupli-
cates are merged into one distinct reading (duplicate
elimination, or merging). We develop algorithms that,
compared to baseline implementations, work more ef-
ficiently while requiring less buffer space for history
storage for both denoising and duplicate elimination.
Furthermore, we discuss the issue of output time or-
dering for denoising and show our method can address
this issue efficiently.

3 Denoising in RFID Data Streams

Based on the discussion above, since multiple read-
ing cycles are performed on tagged objects and noise
readings normally have a low occurrence rate, we pro-
pose sliding window based approaches to solve the
problem. A sliding window is a window with certain
size that moves with time. Suppose the window with
size window_size has a time coordinate of [t;, t; +
window_size], after 7, the coordinate will become [t}
+ 7, t1 + window_size + T].

RFID reading tuples will enter the window and get
expired as time moves. Therefore, the noise readings
are readings with count of distinct tag EPC values be-
low a noise threshold. Denoising essentially performs
the following operations: within any time window with
size of window_size surrounding an RFID reading, if
the count of the readings with same tag EPC values ap-
pears equal to or above threshold, then the observed
EPC value is not noise and needs to be forwarded for
further processing; otherwise the reading is discarded.
Two parameters used here are window_size of a sliding
time window, and a threshold for noise detection.

An RFID observation (reading) is in the form

of: (reader_id, tag id, timestamp), which refers to
the EPC [3] of the RFID reader, the EPC of the tagged
object, and the timestamp of this observation respec-
tively. In the algorithms presented below, the key of
a reading can be usually considered to be the pair
of (reader_id, tag id) in the reading. For the case
where multiple readers are used to observe same tags,
the key will be tag_id.
Baseline Denoising: A Base Approach We
first show a baseline implementation of denoising
as shown in Algorithm 1, which we refer to as
baseline_denoising.

In this algorithm, intuitively, for each incoming



Algorithm 1 Baseline_denoise (params:

window_size, threshold)

1: WINDOWBUFFER « empty queue {FIFO queue to
hold sliding window of readings}

2: loop {loop forever for next incoming reading}

3:  INCOMING <« the next reading

4:  append INCOMING to the end of WINDOW-
BUFFER

5. EXPIRETIME <« INCOMING.timestamp - win-
dow_size

6:  while the head of WINDOWBUFFER is older than
EXPIRETIME do

7 remove the head of WINDOWBUFFER

end while

9:  COUNT « count of readings in WINDOW-
BUFFER whose key equals to INCOMING.key

10:  if COUNT > threshold then

o

11: for each of the reading R in WINDOWBUFFER
with key equals to INCOMING.key do

12: if R has not been output before then

13: output R

14: set STATE-OF-OUTPUT as true

15: end if

16: end for

17:  end if

18: end loop

reading of value R, we perform a full scan of the pre-
ceding sliding time window of size window_size. If R
appears more than threshold times within the win-
dow, we know this is not a noise reading thus we out-
put every R in the window. To ensure a particular
reading is never output more than once, we keep a
state-of-output with each reading in the window
buffer and set it to true once it is output once.

Complexity. Assume on average there are n read-
ings in the sliding window, with k distinct keys. Since
the operations are repeated for each incoming tag read-
ing, we analyze the time cost on a per-reading ba-
sis. The bulk of the time cost is from 4 operations:
inserting the incoming reading into the window, re-
moving expired readings from the window, computing
the count of the readings with the same key, setting
state-of-output and outputting readings of the same
key if threshold condition is satisfied. Since all read-
ings are maintained in the same FIFO (First-In, First-
Out) queue, both insertion of new readings (appending
to the end of queue) and removal of expired readings
(removing from the head of queue) can be considered
constant time ( O(1) ) operations. (Strictly speaking,
expiration is amortized (O(1)) per incoming reading
here, since on average there is only one expiration per
new arrival, although individual incoming reading may
trigger different number of expirations.) On the other
hand, both counting and setting state-of-output
is performed by linearly scanning the full window.
Counting is always performed for each incoming read-
ing, thus the cost is ©(n). Setting state-of-output

and outputting only occur when threshold condition
is satisfied, thus the cost can be considered to be
bounded by O(n), which leaves the total cost per in-
coming reading to be O(1)+0(1)+0(n)+0(n) = O(n).

Space Cost. The space cost for the base-
line_denoise algorithm is basically the storage for the
sliding window itself, thus ©(n).

It is natural to see that, with some additional space
cost, we can incrementally maintain an extra counter
for each distinct tag EPC value using a hashtable
(which takes ©(k) space), thus reduce the counting
cost for each incoming key value. That is, for each in-
coming reading we increment the counter for the cor-
responding key in the hashtable, and for each expired
reading we decrement the counter for the correspond-
ing key. This reduces counting to an O(1) operation,
although we still can not avoid the O(n) operation of
setting states-of-output and outputting readings.

3.1 Lazy Denoising with Output Order Pre-
serving Using Hashtable

There is one problem in the baseline_denoise algo-
rithm: the output readings may be out of order if
we output immediately upon determining a reading is
non-noise, i.e., a reading observed earlier may be out-
put later. This affects all further RFID data processing
where correct ordering of observations is critical, such
as complex RFID event detections for real-time RFID
applications and RFID data aggregation [6]. For ex-
ample, we may need to detect a certain sequence of
events, A followed by B, if the order is reversed an
alert has to be raised. In this scenario, not preserving
output ordering of tags will result in both false alerts
and false acceptances.

The following example shows how this out-of-order
problem might happen.

Example 1: out-of-order observations. Suppose two
tags are being read at two readers attached to the same
host computer. Each tag is repeated 10 times with
an interval of 100msec, thus the window size here is
1000msec. A reading is considered to be non-noise if
it appears 6 times out of any 1000msec time-window
around it. Assume the two tag keys are 1 and 2, and
the actual readings appear in sequences as shown in
Table 1, where tag 2 arrives 100msec later after tag 1
arrives. The readings of 4, 5, 8, 9 are noise?.

Although tag 1 and tag 2 both have 2 noise readings
in this example, due to different positions of the noise,
ID 2 is actually determined as a non-noise reading first
(at time 700msec), while ID 1 is determined as a non-
noise later (at time 800msec), although tag 1 arrives
earlier than tag 2. Therefore, if we output readings

2This example also illustrates how to set the window_size
parameter for the algorithm. In most cases, this parameter is
dictated by the repeat count of a tag, as well as the interval
between repeats. The other parameter, threshold, however,
will need to be tuned based on error rates.



Time(msec) Tag 1 Reading Tag 2 Reading

100 1
200 4 2
300 1 2
400 1 2
500 5 2
600 1 2
700 1 2%
800 1* 8
900 1 2
1000 1 9
1100 2

Table 1: Arrival Time of Readings for Tag 1 and Tag
2 (* indicates the earliest time point that the reading
can be determined as non-noise)

immediately after we detect them as non-noise, as is
done in the baseline_denoise algorithm, we will then
output readings with their timestamps out of order. If
we represent the output as (id, time), then at time
700msec and 800msec the output for this example is:

Time 700: (2,200) (2,300) (2,400) (2,500) (2,600) (2,700)
Time 800: (1,100) (1,300) (1,400) (1,600) (1,700) (1,800)

Clearly, the reading of tag 1 at time 100msec will be
output later than the reading of tag 2 at time 700mec.
This will present a problem for any algorithm that is
dependent on correct time-ordering of readings.

To solve the out-of-order problem, one solution is,
when a reading is determined as non-noise, mark the
reading as non-noise but not output it yet. The output
happens only if a reading marked as non-noise gets ex-
pired from the window. With the FIFO queue for the
window, it is therefore very efficient to output readings
in their correct order.

Algorithm 2 — Lazy_denoising — incorporates the
above-mentioned improvements. A hashtable of coun-
ters are maintained for each distinct key value R that is
still present in the sliding window, and the correspond-
ing counter is incrementally updated for each incoming
tuple and expiring tuple. At any point of time, if the
count of R in the window is higher than threshold,
we mark all readings of R as non-noise. To ensure the
correct output order, we delay the output of all non-
noise tuples till they expire from the sliding window.
At this point we know for sure all non-noise tuples will
be in order, since the noise readings that have already
expired will never turn to non-noise to affect the order.

Complexity. With incremental counter mainte-
nance using a hashtable, the cost of counting opera-
tion for each incoming reading is reduced from O(n)
to O(1), at the expense of an extra ©(k) space. With
output-on-expire, it guarantees that the output is in
correct time order at no extra time or space cost. The
cost of hashtable maintenance (inserting and removing
keys from the hashtable) is on-average upper-bounded

Algorithm 2 Lazy_denoising (params: window_size,
threshold)
1: WINDOWBUFFER « empty queue {FIFO queue to
hold sliding window of readings}
2: TABLE < empty hashtable {hashtable to map each
key to a counter}

3: loop {loop forever for next incoming reading}
4:  INCOMING <« the next reading
5. mark INCOMING as noise
6: append INCOMING to the end of WINDOW-
BUFFER
7: if the counter at TABLE[INCOMING key] does not
exist then
8: store a counter at TABLE[INCOMING key] with
value 1
9: else
10: increment the counter at TA-
BLE[INCOMING key]
11:  end if
122 EXPIRETIME « INCOMING.timestamp - win-
dow_size

13:  while the head of WINDOWBUFFER is older than
EXPIRETIME do

14: if the head reading is marked as non-noise then

15: output the head of WINDOWBUFFER

16: end if

17: remove the head of WINDOWBUFFER

18: decrement the counter in TABLE for the corre-
sponding key

19: remove the slot in TABLE if the counter for this

key becomes 0

20: end while

21:  COUNT — counter

BLE[INCOMING key]

22:  if COUNT > threshold then

23: for each of the reading R in WINDOWBUFFER
with key equals to INCOMING .key, by reverse
time order do

value at TA-

24: if R is marked as noise then
25: mark R as non-noise

26: else

27: break the for loop

28: end if

29: end for

30: end if

31: end loop

by O(1) for each incoming reading, and due to repeat-
ing, not every incoming reading will introduce a new
key.

Notice that, in general, if each key is repeated for a
fair amount of time (say 10 times, which is common in
practice), and the noise ratio is small (say 1%), then k
can be considered to be an order of magnitude smaller
than n. As the noise ratio gets higher, the difference
between k and n become smaller. If we assume each
tag is repeated for r times, and overall there is a p
percent chance that a reading is noise, then we have
the relationship that k = n* (2 + p).

Baseline (Ordered). In the experiments section,



a Baseline (Ordered) algorithm is used for compari-
son with Baseline_denoising and Lazy_denoising. This
algorithm is exactly the same as Baseline_denoising
when searching for non-noise readings, as it scans the
full window each time. However, it also tries to output
tuples in order by only outputting a reading when it
expires from the window. The details of this algorithm
are omitted here since it is a straightforward extension
of Baseline_denoising and has exactly the same com-
plexity bounds.

3.2 Eager Denoising: Output Data Early with
Order Preservation

Although output-on-expire is efficient and straightfor-
ward, it does have a negative consequence of intro-
ducing more delay for outputting readings. Instead of
being output on the fly at the time of determination
to be non-noise, a reading will not be output until it
is expired from the sliding window. This could be a
problem if the width of the window is quite long. This
indeed can be improved for situations where a reading
can be output earlier while correct time order can still
be preserved.

In fact, the issue of order disturbance occurs only
if a reading has been output before the change of la-
beling on some earlier reading from noise to non-noise
within the window. Therefore, for a non-noise reading
that we know no other earlier noise reading is present
in the sliding window, we can then safely output it
without the risk of order problems. This technique is
incorporated in Algorithm 3 — Fager_denoise.

Algorithm Fager_denoise (Algorithm 3) improves
over Algorithm Lazy_-denoise (Algorithm 2) by out-
putting non-noise readings more eagerly: as soon as
there is no more noise before the non-noise reading
within the sliding window, the non-noise reading is
output. To achieve this, the algorithm keeps track of
the first noise reading (FIRSTNOISE) inside the win-
dow at all times. Then an invariant is kept at the end
of processing each incoming reading, such that all the
non-noise readings before FIRSTNOISE are output,
and all the non-noise readings after FIRSTNOISE are
not. (In the case of no presence of noise, everything
is output at the end of the processing of the incom-
ing reading). To maintain this invariant, each time
FIRSTNOISE changes — either by expiring the reading
out of the window, or due to setting of non-noise when
its key appearance is more frequent than the threshold
— we output all non-noise readings by time order until
we find the next FIRSTNOISE in the window.

Therefore in this algorithm, in a nutshell, for each
incoming reading and each expiring reading we incre-
mentally update the corresponding counter for each
distinct tag EPC value in the hashtable. Once the
counter for value R is higher than threshold, we set
all readings of R in the window to be non-noise. We
immediately output the non-noise reading of value R

Algorithm 3 Eager_denoise (params: window_size,
threshold)

1: WINDOWBUFFER « empty queue

2: TABLE «+ empty hashtable

3: FIRSTNOISE « null {keep earliest noise in window}
4: loop {loop forever for next incoming reading}

5. INCOMING <« the next reading

6:  mark INCOMING as noise

7:  if FIRSTNOISE = null then

8: FIRSTNOISE « INCOMING
9:

0

1

end if

append INCOMING to end of WINDOWBUFFER

if the counter at TABLE[INCOMING key] does not

exist then

12: initiate TABLE[INCOMING .key| with counter 1

13:  else

14: increment TABLE[INCOMING key]

15:  end if

16:  EXPIRETIME <« INCOMING.timestamp - win-
dow_size

17: SEARCHFIRST « false

18:  while the head of WINDOWBUFFER is older than
EXPIRETIME do

19: if SEARCHFIRST = false A the head reading is
marked as noise then
20: SEARCHFIRST « true
21: FIRSTNOISE «— null
22: else if SEARCHFIRST = true A the head reading
is marked as mon-noise then
23: output the head of WINDOWBUFFER {this is
a non-noise reading after the previous expired
FIRSTNOISE}
24: end if
25: remove the head of WINDOWBUFFER
26: decrement the counter in TABLE for the corre-
sponding key
27: remove the slot in TABLE for 0-counts

28:  end while

29:  COUNT — counter
BLE[INCOMING key]

30: if COUNT > threshold Vv SEARCHFIRST = true
then {If either the threshold condition is met, or
we need a new FIRSTNOISE, scan the window}

value at TA-

31: for each of the reading R still in WINDOW-
BUFFER according to time order do
32: if COUNT > threshold A R.key = INCOM-
ING.key A R is marked as noise then

33: if SEARCHFIRST = false A R = FIRST-
NOISE then

34: SEARCHFIRST « true

35: FIRSTNOISE «— null

36: end if

37: mark R as non-noise

38: if SEARCHFIRST = true V R.timestamp <
FIRSTNOISE.timestamp then

39: output R {output the newly-determined

non-noise reading, if either the next
FIRSTNOISE is unknown, or it is earlier
than the known FIRSTNOISE}

40: end if

41: else if R is non-noise A SEARCHFIRST = true
then

42: output R {output the existing non-noise

reading, only if the next FIRSTNOISE is not
determined yet}

43: else if SEARCHFIRST = true A R is marked
as noise then

44: SEARCHFIRST « false

45: FIRSTNOISE «— R

46: if COUNT < threshold then

47: break the while loop

48: end if

49: end if

50: end for

51: end if

52: end loop




once we can determine that there are no more noise
readings before this reading in the sliding window.

Complexity. Compared to Lazy_denoise, Fa-
ger_denoise performs one more operation: the mainte-
nance of FIRSTNOISE. An extra linear search on the
window is performed whenever FIRSTNOISE changes,
and the search is obviously less frequent than one time
per incoming reading. Therefore the bound of O(n)
processing time per incoming reading still remains the
same.

4 Duplicate Elimination (Merging)

When noise in the readings is eliminated, dupli-
cate readings for the same tag have to be recog-
nized and only the first (or the earliest) one among
all duplicates should be retained. Our duplicate-
elimination (or merging) algorithms take one pa-
rameter — max._distance. If a reading is within
max_distance in time from the previous reading with
the same key, then this reading is considered a dupli-
cate. Otherwise, it is considered a new reading and is
output.

Algorithm 4 — baseline_merge — performs duplicate
elimination by simply keeping a sliding-window of size
max_distance. For each incoming reading, if there
exists another reading in the window with the same
key, then it is considered a duplicate, otherwise it is
output as a new reading.

Algorithm 4 Baseline_merge (param: maz_distance)

1: WINDOWBUFFER « empty queue {FIFO queue to
hold sliding window of readings}

2: loop {loop forever for next incoming reading}

3:  INCOMING « the next reading

4:  EXPIRETIME INCOMING.tlmestamp -
maz_distance

5.  while the head of WINDOWBUFFER is older than
EXPIRETIME do

6: remove the head of WINDOWBUFFER

7:  end while

8:  go through WINDOWBUFFER to look for another
reading with the same key as INCOMING

9:  if nothing is found then

10: output INCOMING

11:  end if

12:  append INCOMING to the end of WINDOW-
BUFFER

13: end loop

Complexity In baseline_merge, a linear scan is per-
formed on the full window for each incoming reading,
therefore the time cost is ©(n). The space cost is sim-
ply the window itself in a FIFO queue, at ©(n).

Baseline_merge is intuitive and can be also easily re-
alized in some systems that support the concept of slid-
ing windows. For example, a SQL-based DSMS(Data
Stream Management System) can code baseline_merge
as the following continuous query, assuming a data
stream schema of Readings (key, time):

SELECT key, time
FROM Readings R1

Algorithm 5 Hash_merge (param: max_distance)

1: TABLE < empty hashtable {hashtable to store the
last appearance time for each key}

2: loop {loop forever for next incoming reading}

3: INCOMING <« the next reading

4: if INCOMING.timestamp TA-
BLE[INCOMING key| > maz_distance then

5: output INCOMING

6: end if

7. update TABLE[INCOMING key] to be INCOM-
ING.timestamp

8: end loop

WHERE NOT EXISTS
( SELECT *
FROM Readings R2
OVER(maz_distance milliseconds PRECEDING R1)
WHERE R2.key = key
AND R2.time <> time)

Baseline_merge carries a ©(n) time cost per incom-
ing reading, and a ©(n) space cost, both of which can
be further improved. In fact, it is straightforward to
see that it is not necessary to keep a max_distance win-
dow worth of readings in order to determine whether
an incoming reading is a duplicate. All that needs
to be maintained is a timestamp to indicate the last
time a reading with the same key as the incoming
reading appears. If the distance between the incom-
ing timestamp and the last timestamp is larger than
maz_distance, then we treat it as a new reading and
output it.

Algorithm 5 uses a hashtable to keep the last ap-
pearance timestamp for each distinct key value. For
each incoming reading, its timestamp is compared to
the corresponding entry for this key in the hashtable,
and the reading is determined to be a new tag reading
if the key does not appear in the table, or the time
distance is larger than threshold.

Complexity. Since the hashtable keeps one en-
try per distinct key value, the average space cost is
now O(k), compared to ©(n) of base_merge. Further-
more, the time cost per incoming reading is now re-
duced to O(1) for hashtable lookup, instead of a full
scan of ©(n). The cost of maintaining the hashtable
is less than O(1) on-average for each incoming tuple,
since not every incoming/expiring tuple will cause in-
sertion/deletion of keys from the hashtable.

5 Performance Study

For experiments, a random RFID reading generator
was created, which generates RFID tag reading ac-
cording to a Poisson process. The Poisson process gen-
erates tag readings with random arrival time, while the
arrival time conforms to a Poisson distribution with a
chosen average tag arrival rate. Each generated tag
reading repeats for 10 times, with some chosen noise
level (a certain percentage of the reading are noise).
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Figure 2: Noise Elimination: Delay under Different
Arrival Rates

5.1 Performance of Denoising under Different
Arrival Rates

In the first experiment, we study the performance of
the various algorithms under different tag rates. The
random generator is fixed with the following parame-
ters: each tag reading repeats 10 times, with 200 mil-
liseconds gap between the repeats, and a 5 percent of
tag readings are noise. The average tag arrival rates
tested include: 1 tag/sec, 5 tags/sec, 50 tags/sec and
500 tags/sec. (With repeats set to 10/tag, the total
reading arrival rates are 10/sec, 50/sec, 500/sec and
5000/sec, respectively.) Average filtering delay over all
output readings is used to measure the performance of
the algorithms.

In Figure 2, four algorithms are used to filter the
reading to perform denoising. Baseline (Unordered)
corresponds to the Baseline_denoise algorithm pre-
sented above, which performs denoising without any
optimization, and output the readings in incorrect
timestamp order. Baseline (Ordered) is a modified ver-
sion of the Baseline_denoise algorithm, which also per-
forms denoising without any optimization, but outputs
the readings in correct orders by outputting at the time
of expiring from sliding window. Lazy_denoise and Ea-
ger_denoise are exactly as described above, and both
output readings in correct time order.

All four algorithms function correctly to filter out
the noise readings, and the three ordered-output al-
gorithms also proved to maintain the correct order-
ing. Figure 2 shows the performance of the algorithms
in terms of average delay of readings. Baseline (Un-
ordered) works well with low tag rates, because it com-
pletely ignores the output time order issue and there-
fore has the advantage of output immediately on de-
tection. Its performance degrades under high tag rate
situations due to large overhead of linear scanning of
the large sliding window under high rates. Baseline
(Ordered) has the worst performance of all, since it
has no optimization, while it still tries to maintain
the timestamp ordering. Lazy_denoise performs bet-
ter than Baseline (Ordered) under high loads because
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Lazy_denoise (ordered)
—— Eager_denose (ordered)
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Figure 3: Noise Elimination: Delay under Different
Noise Percentage

it utilizes hashtables to reduce the overhead. Fa-
ger_denoise has the best performance of all, since it
not only utilizes the hashtable optimization, but also
outputs readings as soon as they are safe to output.
Overall, Eager_denoise has the best performance un-
der all load conditions.

5.2 Performance of Denoising under Different
Noise Ratio

The Baseline (Unordered), Lazy-denoise and Fa-
ger_denoise algorithms are studied for the performance
under different noise ratio. The random generator is
fixed with the following parameters: each tag reading
repeat 10 times, with 200 milliseconds gap between
the repeats, and overall tag arrival rate is 1/second.
Then different noise ratios are tested, including 1%,
5%, 20% and 50%.

Again, from Figure 3, Baseline (Unordered) works
well in terms of performance since it ignores the or-
dering issue and outputs immediately upon detection,
but its output readings are in incorrect time order.
Lazy_denoise has to wait until the readings get ex-
pired from the sliding window, therefore it has the
largest delay. The interesting observation is that, un-
der low noise ratio, Fager_denoise works almost as well
as Baseline (Unordered), although it maintains the
correct output time order. That is because when noise
ratio is low, it is more likely for a non-noise reading
to be output early under FEager_denoise, when there
is no more noise preceding it in the sliding window.
However, as noise ratio gets higher, Fager_denoise gets
closer to Lazy_denoise since there are more and more
noise readings present to prevent early outputting.
Nonetheless, overall Eager_denoise always works bet-
ter than Lazy_denoise.

5.3 Performance of Duplicate Elimination

We study the performance of the two duplicate elim-
ination algorithms (Baseline_merge and Hash_merge)
under different tag arrival rates. The random gen-
erator is fixed with the following parameters: each
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Figure 4: Duplicate Elimination: Delay under Differ-
ent Arrival Rates

tag reading repeat 10 times, with 200 milliseconds
gap between the repeats, and a 0 percent noise (since
here we are testing duplication elimination only, noise
are presumed already removed by previous filtering).
Then the performance is tested under different average
tag arrival rates, including 10 tags/sec, 50 tags/sec,
250 tags/sec and 1000 tags/sec. (With repeats set
to 10/tag, the total reading arrival rates are 100/sec,
500/sec, 2500/sec and 10000/sec, respectively.)

Both algorithms are able to eliminate duplicate
readings and only output the corresponding read-
ing once. However, it is clear from Figure 4 that
Hash_merge is far-superior than the baseline imple-
mentation. The delay is basically negligible even under
an arrival rate of 10,000 readings/sec (1000 tags/sec)
for Hash_-merge, while Baseline_merge starts to cause
large delays after tag rate reaches 500 readings/sec(50
tags/sec).

6 Related Work

RFID data filtering needs to remove noise and dupli-
cate from continuous high volume RFID data streams
generated from RFID readers. Such filtering is essen-
tial to provide accurate data used for RFID-enabled
pervasive applications. While RFID data filtering
is supported in RFID Middleware systems such as
[7, 8, 9], large volume real-time RFID data streams
demand more efficient approaches for filtering these
data.

RFID data processing is a hybrid of event process-
ing and stream processing. Past work on event detec-
tion and processing — such as [10, 11] — is not con-
cerned with processing speed and memory manage-
ment issues, where events are normally generated from
databases and different from events from high-speed
event streams. On the other hand, past work on data
stream processing and continuous query optimization
[12, 13, 14] assumes accurate stream sources and is not
concerned with RFID application-specific issues, such
as the existence of noisy and duplicate readings.

In [15], a probability-based approach is provided to
detect duplicate in web click streams. This approach

can not be applied to RFID data, since accuracy is
among the top priority for RFID data processing.

7 Conclusion

In this paper, we identify the problem of RFID data fil-
tering and develop efficient methods to eliminate noise
and duplicate from RFID observations. Specially, for
noise filtering (denoising or smoothing), we propose
an approach for more efficiently maintaining the orig-
inal time order of observations in the output; and for
duplicate elimination, the approach that we formulate
can minimize memory requirement for history buffer-
ing. We then perform experiments to validate our ap-
proaches through simulated RFID data generator and
demonstrate that our approaches are effective and ef-
ficient. Our approach of data filtering is essential to
provide clean and correct RFID data before they can
be further processed, transformed, and integrated for
RFID-enabled pervasive applications. The techniques
also provide an important reference for building RFID
Middleware [7, 8, 9] where filtering is a critical com-
ponent.
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Abstract

The paper presents a data cleansing technique for
string databases. We propose and evaluate an
algorithm that identifies a group of strings that
consists of (multiple) occurrences of a correctly
spelled string plus nearby misspelled strings. All
strings in a group are replaced by the most fre-
qguent string of this group. Our method targets
proper noun databases, including names and ad-
dresses, which are not handled by dictionaries.

At the technical level we give an efficient solu-
tion for computing the center of a group of strings
and determine the border of the group. We use in-
verse strings together with sampling to efficiently
identify and cleanse a database. The experimental
evaluation shows that for proper nouns the cen-
ter calculation and border detection algorithms
are robust and even very small sample sizes yield
good results.

Introduction

Figure 1 illustrates the setting for strings george, syd-
ney, and jacob, together with misspelling of these strings.
We describe a solution to group misspellings of a string by
identifying the border and center of a hyper-sphere.

[ ]
george @
[ ]

Figure 1: Database of Proper Nouns with Misspellings

The border detection algorithm is based on $tiéng
proximity graph(cf. Section 4.1), which captures the prop-
erties of proper noun databases with misspellings. The
string proximity graph shows that in the immediate neigh-
borhood of a string the number of strings is growing be-
cause of the misspellings. As we further increase the neigh-
borhood the number of strings does not grow. There are no
misspellings in this area and the other strings are further

ward a number of problems that do not exist in the numeri@Vay because of the high-dimensional nature of the string

domain. However, besides the added complexity, strings
also offer unique opportunities. In this paper we describe
solution that takes advantage of the high-dimensionalkspac
to clean databases of proper nouns, i.e., strings that do nafle!-

occur in dictionaries.

Since strings are elements of a high-dimensional spac
the distance between any two strings is typically large. At

pace. The point at which the clusters stops to grow indi-

gates the border of a group of misspelled strings.

The computation of the border and center is done in par-
We start with a random string that has not yet been
processed and identify all strings that are within distance
ane from this string. Next we adjust the center of the clus-
er and increase the radius. The adjustment of the center
akes the method more robust, so that it also applies to

exception are misspelled strings, which tend to be locate
near correctly spelled strings. The combination of thesd
two properties means that small hyper-spheres can be us
to cluster a string database. The hyper-spheres are far fro
each other, and each hyper-sphere encloses the correc
spelled string and the nearby misspelled strings.

roups of strings that are not far away from each other. As

qon as an increase of the radius does not further increase
e number of strings we have found a group and proceed
ith another string that has not yet been processed. The

process stops when all the strings have been grouped.

The contributions of the paper are the following:

e We introduce a new cleansing technique for string data
with typos. The solution is based on the (i) border de-
tection and (ii) the center adjustment. The computa-
tion of the distance between strings is done with the
help of g-grams of strings (substrings of length q).
The center of the cluster is modeled as a bag of the

Permission to make digital or hard copies of all or part ofsthiork for
personal or classroom use is granted without fee provideti ¢bpies are
not made or distributed for profit or commercial advantage &mat copies
bear this notice and the full citation on the first page. Toyogtherwise,
to republish, to post on servers or to redistribute to ligequires prior
specific permission and/or a fee.
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most frequent substrings of length q of the strings inapproximate string selectivity, and use the result to detec
the group. Thus, the center reflects the substrings thatorder of the cluster. Then inverse strings can be used to
are common for the strings and neglects substringsluster and cleanse the data.
that are the result of infrequent misspelling. There is a large body of work in the area of the simi-
] ) ] larity metrics for string attributes. Such measures inelud
e We use inverse strings (IS) to determine close-byg(it distance [8] g-grams, cosine similarity [6, 3, 7] and

strings and to compute the border of the cluster. In+ts variants [5, 14]. Ananthakrishna [1] proposes a textual
verse strings associate with each g-gram the string IDgjmilarity function for strings.

that contain the g-gram. Even with inverse strings the

computational complexity of the border detection is 3 Background

combinatorial wrt the length of the center string and

radius of the cluster. We use sampling to approximate3.1 Q-grams

the bord_er detection. This yields a linear complexity pefinition 3.1 [g-grams.] The g-grams of a string are

wrt the size of the sample. obtained by sliding a window of sizgover the characters
e We provide experimental result for the border detec‘\?\fear.\a\?énfcee\}/vitr ?ﬁ;;gg‘rg'?r? ar\l\?eég;tré?ls?ﬁeoét:ihne sl;rlng

tion and data cleansing algorithms. We show that the fixing it with an ; d suff 9 by
border detection is robust and that even small samPrefixing it with ¢ — 1 occurrences of # and suffixing it
ple sizes ensure good approximations of the border o ith g —1 occurrences of 3. We assume that symbols # and
clusters and a low cleansing error. do not occur in the input strings.

2Example 3.1[g-grams.] Leta = george and q=2. The

The organization of the paper is the following. Section )
g-grams of stringy are

presents related work. Q-grams and inverse strings are r

viewed in section 3. Border detection and computation of B(george = {#g", ge', eot, orl,rgt, ge2, e$'}.

the center string are introduced in section 4. Approxima-

tion of the border with the help of IS data structure andin order to distinguish different occurrences of the same

sampling are described in section 5. Section 6 presents tiegram we associate each g-gram with a sequence num-

algorithm of the cleansing of the data. We give an experiber (displayed as a superscript). For example, 2-gyain

mental evaluation in section 7. Finally, section 8 conctude denotes the substring at the beginning of the string, and

the paper and offers future work. 2-gramge? denotes the substring at the end of the string
(positions 5-6 of the input string).

2 Related Work
3.2 String Overlap

Fuzzy retrieval is the closest related work to our approach. ) _
Fuzzy retrieval algorithms get as input a string and threshOverlaps of g-grams quantify the closeness of strings. The
old, and output strings that are within the given thresholdmore two bags overlap, the closer the strings are to each
Chaudhuri et al. [2] introduce an algorithm that retrievesother. We define the overlap of two strings as the number
tuples that exactly match the query string with a high prob-of g-grams they share.
ability. Jagadish et al [10] and Ciaccia et al. [4] propose
family of index structures that support exact, prefix, and a
proximate queries on multi-string attributes. Jin et aP][1
propose an index structure that supports mixed typesgstrin o(a, B) = |B(a) N B(B)],
and non-string) of attributes for approximate retrieval.

Automatic spell checking techniques [13, 9] compare awhere| X | denotes the cardinality of séf.
potentially misspelled word with the words in a dictionary ) )
or a model based on the dictionary. They output a correc- Our clustering strategy is based on the overlap between
tion (or a set of corrections) for a given error threshold orStrings. We cluster strings together if they have a high-over
r number of requested answersr i given the dictionary  lap, and we assign strings to different clusters if the ayerl
(or the model) is queried a number of times for differentPetween strings is low.
incremental thresholds until the sizes reached. In this Example 3.2 [Overlap of strings.] Let; — jacob,ay —
paper we show how to automatically compute the thresh:, P ~ svndni p_ dg Ih 1= a2 =
old (border of the cluster). jacop, 1 = syndni,f = syndny. Then

Efficient approximation of selectivity for a given string o(jacohjacop) = |{#j', ja', ac',co'}| =4
and edit distance (overlap threshold) is investigated 1. [1
This provides important statistical information about theSince the overlap between the strings is high, we assign
string data. In this paper we focus on precise computatio@anda; to one cluster. Similarly, sinegsydny, sydni) = 4,
of the center and the border of a cluster, though both oup; andg: are clustered together. On the other hand, since
border detection and approximate selectivity solutioms ca o(sydny, jacob) = 0, stringsa, as, 51, 82 are not put into
be combined. Our border detection algorithm can query foone cluster.

®efinition 3.2 [Overlap of stringsy and3]. Let o and
Pbe two strings. Then the overlap of the strings is



3.3 Inverse Strings 4.1 Border Detection

Inverse strings associate with each g-gramil string IDs ~ Assume a center string of a cluster. The border detec-

that contairk as a g-gram. tion algorithm aims to find the smallest radius that separate
strings of this cluster from strings of other clusters. 8inc
Definition 3.3 [Inverse string.] Letas,...,a, be a  Wecompare strings with the help of overlaps, this border is
dataset and: be a g-gram. The inverse string is the setthe smallest overlap that separates the cluster from other
of all strings (string IDs) that have as a g-gram: cluster.
The border is computed by examinif@,;(¢)| = [{« :
IS(k) = {a; : k € B(ay)} o(a, ¢) > d}|, i.e., the number of strings that have an over-

lap of at leastl with ¢. Consider the following example.
Example 3.3 [Inverse string.] Let the input database con-
sists of six stringso; = jacob, as = jacop, as = jakob, Example 4.1 [Border detection.] We continue examle 3.3.
ay = sydny, as = sydni, ag = sydney. The bags of Let({ = jacob, g=2. We compute the database strings that
2-grams for each string are: have all 2-grams in common (overlapdis= 6) with jacob:
Cs(jacob = {1}, the database strings that have all but
one 2-gramC5(jacob) = {4 }. Similarly:

B(en) = B(jaco) — ={#j",ja',ac’,co’,0b",b$"} cob

Blos) = Blacop  ={#",ja*,ac",co',op" 8"} et C poven)

B(as) = B(jakob) — ={#j",ja',ak", ko",ob",b$"} Co(jacob = {ai, a0, a3}

B(au) = B(sydny  ={#s",sy",yd", dn',ny",y$"} Cijacoh = {ay, a9, a3}

B(as) = B(sydni :{#sl syt, yd*, dn', nit i$1} Cojacoh) = {ai, 2,03, 04, 05, ac}.

B(as) = B(sydney ={#s", sy’,yd", dn", ne', ey’, y$'} Figure 2 shows the size 0f;(jacob)| as overlap de-

creases (cf. AxisX from right to left). For large overlaps

(o = 5—6) the size of the cluster increases. Then the cluster
The inverse string structure for all 2-grams is: size stops to increase for a range of the overlaps ( —4).

This is an indication that the border of the cluster has been

reached. As the overlap is further decreased the cluster

IS(#7') = {on, 02,03} IS(#s') ={au, a5, a6} starts to include points from other clusters resulting in a
1S(ja") = {a1, 02,03} IS(sy’)  —={as,as,as} very fast increase of its size £ 0 — 1).

IS(ac') = {an, 02,03}  IS(yd') ={au,as, a6} Q

IS(co") = {an,a2,a3} IS(dn') ={ou,as,a6} 3

IS(ob") = {a1,a2,a3} IS(ny') ={as} (q-i

15(b8") = {ou, a3} IS(y$')  ={as,ae} =

15(ak") = {os} IS(ni')  ={as} ©

1S(p$") = {az} 15G8")  ={as} N

1S(ko") = {as} IS(ne')  ={as} N

15(0p*) = {02} IS(ey')  =fas) ol1 23458 +

Overlap

The inverse strings data structure pre-clusters strings.
Intuitively, the example database consists of two clusters
with data distributed around centers = jacob andvy; = We compute the largest range of a constant size of the
sydney. The inverse strings structure reflects the clusterg, ster (cfo = 1 — 4in Figure 2), and take the right end of
part of inverse strings consists of string IDs from the firstiq interval as the border.
cluster (cf. the first column), while the other parts comssist  The porder detection algorithm takes a center stting
of the IDs of the second cluster (cf. the second column). 414 finds the bordér of the cluster. We extend the notion

of border detection for a bag of g-grams. lget 2. Then
4 Cluster Computation the following expressions are equivalent:

Figure 2: The String Proximity Graph

This section presents our clustering technique. First, we (i) b is the border for center string= jacob
formalize the computation of the bordiefor each cluster

(cf. Section 4.1). Second, we formalize the computation of (i) b is the border for the 2-grani3(jacob =
center¢ of the cluster (cf. Section 4.2). {#5',7a', act, co', ob*, b$1}.



The extension of the border detection allows us toExample 4.2 [Computation of the center for a given set of
query for borders of centers that do not necessarily corbags.] We continue Example 4.1. Let, as, andas be
respond to a database string (for example for a ba@ set of strings. Then the set of bags for the strings is the
{#51, ja',aX", co', 0b",b$'}). The motivation for this following:
generalization comes from the computation of the center
for a cluster and is discussed in detail in Section 4.2. B(ay) = B(jacob) =  {#j!, ja',act, co’,ob', b$'}

B(az) = B(jakob) = {#j!,ja',ak?, ko', ob', b$'}

The following summarizes and defines the detection of B(az) = B(jacap = {#j',jat,acl, cal,ap’, p$t},

the border.
Our aim is to find a bag that represents bdgfgy, ),
Definition 4.1 [Detection of the Border.] LeB be a (cen- B(az2), andB(«3). We compute such a bag in the follow-
ter) bag andCy(B) = {a : o(B(a),B) > o}, o = ingway. We compute the overall histogram for the set of
|B|,|B| = 1,|B] = 2,...,0. Letij,i; 4+ 1,...,4; + ky, bags, and neglect the infrequent 2-grams. The histogram of
the longest sequence of unvarying sizes of the cluster:  all 2-grams is presented in Figure 4 with the 2-grams in the
second row, and the number of occurrences of the 2-gram
|Ci,(B)| = |Ci;41(B)| = --- = |Cij+kij (B)]. in the first row.

3 3 3 3 2 1
#50 | ja' | act | ob' | 08T | co'

Then the border of the cluster with centelis b = i;.

4.2 Computation of the Center

1 1 1 1 1
The border detection algorithm provides a simple and ef- ak™ | ko' | ca® | ap’ | p$T

fective strategy to compute clusters in string data. One
starts with a string in the database and selects the border
that separates the cluster from the other clusters. If the Figure 4: Histogram of 2-grams

initial string was chosen close to the center of the cluster, ) ) )

the border detection will yield good and robust results (cf. ~The size of the center bag of 2-grams is determined by
¢ = jacob, Figure 3(a)). If one chooses the initial string the average siz& of the input bags3(a1), B(az), and
close to the border, two separate clusters might be assigndd(cs). Therefore, the center bag is the following:

to one cluster (cf( = jocop, Figure 3(a)).

B® = {#j17ja’11aclaOblab$lacOI}.

Note that the center bag might consist g-grams that cor-
respond to typos in the input dataset. These occurrences do
_ not decrease the quality of clustering. In fact, the opposit
zyd‘1e| sydnei holds, since we are looking for a center bag that represents
o e all the strings in the cluster as precisely as possible.

sydney The following formalizes the computation of the center

bag for a set of input bags.
Definition 4.2 [Center bag.] LetB;, B, ..., B; be a set

(a) Cluster with Center String = jacob of input bags. Let

jazab
jacab L b A= |B1|+|B2|+"'+|Bk|
[y iacob L
jakop ~ Jacob e zycmei sydnei _
4 ° _®  jocop L be the average size of ba§s, Bo, ..., B. Let
jacgp jacub sydney

. o h(k) =[{B;: k € Bi}|
(b) Cluster with Center String = jocop
be the histogram value of g-gram Let k1, ko, . . ., Ky, bE
Figure 3: Border Detection for Different Center Strings  an ordered sequence of g-gramsXfu B, U- - - U By, such

. . thath(k;) > h(kiy+1). Then the center bag is the set of
The computation of the exact center for a given bag qu-grams:

strings B is expensive. One needs to compute distances
between all strings i? and choose the one that minimizes
the sum of distances from the center to other strings fro : :

B. We transform all strings into the space of bags of qr?j Sampling of Inverse Strings

grams, and find the center bag there. The following examin this section we show how to use inverse strings to iden-
ple illustrates the computation. tify strings that have an overlap with the center string &ov

B = {Fal,ﬁg,...,/iA}.



a given threshold. First, we develop a mathematical for- The computation of approximated strings is done in
mula that shows how to identify strings of high overlap. three steps. First, we gener&te= 3 random 5-tuples from
The result has combinatorial complexity. Second, we apB:

proximate the computation of high overlap strings with a

help of sampling. k' = (k1,..., k) = (ja',ac', co', ob*, b$')

The IS data structure allows to quickly identify database K2 = (k2,...,K2) = (#5', act, co', ob', b$")
strings that have selected g-grams in common. For exam- 3 3 3 1111
ple, if one wants to find all string IDs that share all 2-grams K% = (KY,...,k5) = (#J,ja ,ac’,co", 0b")

with the string jacob, one needs to compute the following

expression:
IS(#5Y) N1S(jal) N1S(act) N IS(cot) NIS(ob') N IS(b$Y)

Similarly, if one wants to identify strings that contain all

but one 2-gram of jacob, one needs to compute the follow
ing:
1S(jat) N IS(act) N 1S(co’) M IS(ob?) M Isst) |
18(#5Y) N IS(act) N IS(co’) M IS(obd) M Isest) |
15(#55) N 1S(Gat) N IS(cot) nIS(ob) n1sest) |
15(#5%) N 1S(ja') N 1S(ach) n1s(ebt) n1sest) |
15(#55) N I1S(Gal) N IS(act) N IS(cot) n1sesh) |

IS(#51) N I1S(al) N IS(act) N IS(cot) N I15(ob)

Definition 5.1 [Computation of strings of high overlap
with the help of the IS data structure.] L& be a cen-
ter bag, such thaty, ko, ..., k, € B, ando be the overlap
threshold. Let

O(K1,--- ko) = IS(k1) NIS(k2) N+ NIS(Kko). (1)
The IDs of strings that have at least-grams fromB can
be computed with the following equation:

U

K1,K2,...,ko €EB

)

O(Hl,.“ (2)

7‘%0)

wherekq, ko, . . ., Kk, are different g-grams aB.

The computation of the strings of high overlap with the
help of the IS data structure is expensive. LBt be the
size of the bag of g-grams, anrdbe the desired overlap

threshold. Then the computational complexity of the com-

putation iso - (‘B|) number of set operations (cf. equa-
tion (2)). We approximate the computation of equation (2)

with the help of sampling. We select a small sample of

different o-tupleg ki, k%,..., k1), i = 1,2,...,S, where

S is the size of the sample, and compute the union of the

intersections:

S
U IS(kY) N IS(kS) N

=1

SNIS(kE) (3)
Example 5.1 [Computation of strings of high overlap with
the help of the IS data structure and sampling.]
continue example 4.2. Let the center bag Be =
{44, jat, act, cot, ob, b$1} (the bag of string jacob). Let
the overlap threshold he= 5 (all 2-grams except one) and
let the sample size b = 3.

We

Second, we compute the intersections forikeples:

Ui(k") = 1S(ja") N 1S(ac’) N I1S(co') N 1S(ob") N IS(bS")
= {1, 22,03} N{a1, 2,03} N {a1, a2, a3}

N {04170627063} N {04170627063} N {Oél}

- ={a1}.
Similarly, Uy (k?) = {a1} andU; (%) = {a1}. Finally,
we compute the union;

UrEHUUKR)UU(K) = {ar}.

Therefore, the approximate database strings with over-
alpo = 5 and higher to the center string jacob &re }.

6 Algorithm

This section presents the algorithm of our data cleansing
method. The algorithm cleanses data in 4 steps. First the
algorithm initializes the variables (cf. block 1, Figure 5)
then it clusters the string data (cf. block 2), merges oyerla
ping clusters (cf. block 3), and finally it replaces the gjgn

of a cluster with the most frequent string of the cluster (cf.
block 4).

TTpUT:
D= {ay,ag,...,
g:size of g-grans
S:sanple size

ap }:database of strings

Qut put :
..... an: cleansed strings
Body:
1. Initialize the clustered strings
ClusteredStrings=@, Custers = 0
2. Scan database strings. For each o« € D do
2.1 1f o € AusteredStrings then start a newiteration with the
next DB string (go to step 2). Otherwi se conmpute initial
center bag: B = B(«), max border: by, = |B]|. Initialize
the current cluster O =0
2.2 For each overlap threshold o = by, — 1,...,1 do
2.2.1 Conpute approximate strings with center bag B
and overlap threshold o. For i =1,2,..., S
2.2.1.1 Generate kp,..., ko O-tuple of g-grams
2.2.1.2 Conpute the overlap strings
O=0UO(Ky,. -, ko) (cf. Eq (1))
Update the center of the cluster.
2.2.2.1 For each o« € O, for each k € B(«a) do
update histogram h[x] « h[x] + 1
2 Sort h[k] in descdending order
3 Conpute the average length of the strings
A=3,ecp len(a)/|B|
2.2.2.4 Assign lhe top A g-grams of the histogram
to the center bag B
2.2.3 Record the cluster for overlap o:
2.2.3.1 Cluster[o] = B
2.3 Find the | ongest sequence 7b i
such that |Custer[i}]] =
2.4 Update the clustered slrlngs
CQustered.Strings = Custered-Strings U O uster[i]
2.5 Insert a new cluster to the set of clusters
Custers = Clusters U {Custer[i;]}
2.6 Enpty hlx], O, B
3. Merge overlapping clusters. For each C;, Cj € Clusters do
if C;NCj#0 then C; — C; UC,
4. dean the clusters. For each cluster C; € Custers do
4.1 Find the nost frequent string ¢ in C
Replace all strings o € C; with ¢.

N

2.2.2.
2.2.2.

b ..... p+ A
|a uster [wb + Al

Figure 5: Data Cleansing Algorithm



Block 2 (cf. Figure 5) clusters the string data. It starts (iv) Similar strategy to (ii), though intersections are arg

with a non clustered string: (block 2.1) and computes nized into a bushy tree:
string IDs that have overlap with the center string (cf. Fig-
ure 2) for different overlap thresholds. For each over- ((15(51) 015(52)) N ([S(,%) 015(54)))

lap o the algorithm computes the strings of high overlap
(block 2.2.1), and adjusts the center bag of the cluster (cf.

The following recurrent equations formalizes the
block 2.2.2, Section 4.2). Then the method detects the bor- g q

. computation:

der of the cluster (block 2.3), inserts the newly found clus-
ter (block 2.4), and removes the IDs of clustered strings IN? — I(k;)
from the database (block 2.5). Four data containers are . o .

i i i IN] | — INJ |\ nIN§
used to implement the clustering step: histogram of g- it+1 2i—1 2i
grams for the current clustéfx] (cf. definition 4.2), center IN-EO/QjJ - INfo/zu A INfO—/IjSlJ iff 27 Jo
bag B, set of strings that have overla@and higher wrt the

center bagB (the container increases aslecreases), and
set of strings for each overlap threshol@he container is

not affected by the increase of. All containers are main

memory data structures and are implemented as sorted as- IS(k1) M-+ NIS(k,) = INI82°.
sociated containers for fast point-queries.

Block 3 merges overlapping clusters and block 4
cleanses cluste_rs vv_|th the most frequent string of the clus- gy (i) outperformed the other strategies by at least 30%.
ter (the reasoning is that most of the strings are entere L :

) herefore, we used strategy (ii) in our experiments. How-
correctly, and the data consists only of a smaller number . . - .
. . ; ; . ever, other alternatives might be more beneficial for dis-
of strings with typos). Alternatively, one can identify the _ . . . . : .

; d tributed environment and in connection with caching tech-
string ¢ that shares the largest number of g-grams with theni ues (cf. strategy (iv))
center bag, and use striggas the correct string for cleans- q ’ 9y ’
ing. = . t

The intersection of inverse strings'(x1)N- - -NIS(kq) Xperiments
(Block 2.2.1.2) is the most expensive part of the algorithm.we organize the experiments in two sub-sections. First, we
We implemented and tested four different approaches of thevaluate border detection criteria (cf. Section 7.1) aedth
computations of the intersection. Let, s2,...,%, be @ we evaluate our cleansing method (cf. Section 7.2). We use
sequence of the g-grams of a center string (in some randogynthetic datasets with different parameters in our exper-
order). Then the implemented strategies are the followingiments. Three classes of databases were generated in the

experiments: (i) a class of databases with different number

(i) Scan all inverse strings simultaneously, i.e.,det  of clusters fc), (ii) a class of databases with different clus-

(i(k1),i(k2), ..., 1(Ko)) be an index vector that scans ter sizes {s), and (iii) a class of databases with different

(IS(k1),15(k2),...,15(k,)). If all the components radius of clustersradius). All datasets were generated in

of indexi point to the same string ID, then the cluster the following way. First we generated: number of cen-

size is incremented, and all components afe incre-  ter strings far away from each other. Then for each center

mented. Otherwise, only indeXx;) is incremented, string we generatecs number of strings ir edit distancé

if I5(k;) contains the smallest string ID. Note that from the center string, whefe< e < radius.

we require that inverse strings are ordered according

to the string ID. 7.1 Border Detection

wherei = 1,2,...,|0/27]|,j = 1,...,logy 0. Then
the intersection can be rewritten as follows:

The results on different datasets has showed that strat-

(i) Organize the computation of the intersection as a sefi9uré 6 shows the experiments for our border detection

quence of intersections of two inverse strings, for e.g. 2lg0rithm for different number of clusters (cf. Figure §(a)
cluster sizes (cf. Figure 6(b)), radius of the cluster (id-F

1S(k YA IS IS ATIS ure 6(c)), and sample size (cf. Figure 6(d)). All figures
((F5(k1) (k2)) (ka)) (a) varies overlap from around = |B| = 35to o = 1 (cf.
) ) ) Axis X from right to left in Figure 6).Y axis reports the
The strategy can be formalized in the following way. fraction of the size of the cluster that is covered by the

Let IN;y1 = IN; N IS(Kit1), i = 2,...,0,IN1 = overlap threshold. There are three intervals of overlaps
IS(k1), then in the graphs: an interval. of overlapso that does not
cover the entire cluster (cf. intervab—17, Figure 6(b)),

IS(k1) NIS(k2) M-+ N IS(Ko) = INo(ko) interval I_ of overlaps that cover exactly the cluster (cf.

rage 164, Figure 6(b)), and interval. of overlaps that

(III) The same strate.gy as (") thoth the Seql.'lenc.e IS ledit distance between stringand string3 is the smallest number of
sorted started with the smallest inverse string, i.€.character- insertions, deletions, and substitutionsiredun order to get

[IS(ki)| < |IS(Kig1)]- string o from string3.




cover more strings than there are in the cluster (cf. rang&.2 Cleansing
3-0, Figure 6(b)). The border detection works if there is a
(relatively long) interval of overlaps that covers the téuis
exactly.

We evaluate our cleansing algorithm for different cluster
sizes (cf. sub-section 7.2.1) and different number of clus-
ters (cf. sub-section 7.2.2). Two measurement are recorded
for the experiments: relative error (recorded in relative
number of misclustered strings compared to the total num-
ber of strings in the clusters) and clustering time (secpnds

nc=10 —

nc=100 ======= 7
nc=1000 -
nc=50000 -

7.2.1 Different Cluster Sizes

Cluster Size, %
Cluster Size, %

0.5 4 05 |
0 0 1 1 1 1 1 1 . . . .
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 As the cluster size increases, the relative clusteringrerro
Overlap Threshold o Overlap Threshold o decreases (cf. Figure 7(a)). This is because the border de-
(a) Number of Clusters (b) Cluster Size tection algorithm is very effective, and the number of cor-
3 rectly clustered strings increases vs. the total number of
s 251 1 s strings in the cluster.
§ 2 1 ¢
2 15 b 1 . 03 T T T — 4000
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Border detection algorithm successfully identifies bor- Figure 7: Different Cluster Sizes

ders of clusters provided a sufficient sample size.

The robustness of the algorithm is not affected by the The clustering time increases linearly as the number of
cluster size (cf. Figure 6(b)). Indeed, the length of inter-Strings per cluster increases (cf. Figure 7(b)). However a
val I_ depends on the distance between the borders of th@wer sample size does not necessarily mean a faster clus-

clusters and does not depend on the cluster size. tering time. This is because inadequately small sample size

N . .increases the number of total clusters, and in turn inceease
The robustness of the border detection is almost invari- . ) .
the number of iterations of the algorithm.

ant to the number of clusters (cf. Figure 6(a)). As the num- The default : i thi . f . ¢
ber of clusters increases from to 50, 000 the start of in- € detault parameters in tis series ot experiments
were: length of strings~ 30, number of clustenc = 100,

terval I_ shifts from16 to 13. However, the impact of the . .

shift is negligible compared to the length bf, and there- cluster radius adius = 3.
fore the border detection ensures robust results.

Radius of clusters (cf. Figure 6(c)) and sample size/-2-2 Different Number of Clusters

(cf. Figure 6(d)) impacts more significantly the robustnessryg relative error increases very slightly as the number of
of border detection. The length ¢t proportionally de-  gyings increases, (cf. Figure 8(a)). This is because the
creases as the radius decreases (by two for each decre%rp borders between the inverse strings of different clus
in radius). Decrease of the sample size lowers the shapgs gets blurred as the number of clusters increases. Note

of the curve, decreases the lengthlof, and in turn de- 4t our sampling technique is very effective: even a very
creases the robustness of the border detection. Howev&l, |l increase of the sample size (¢f.= 10 andss = 20)

we want to have the sample size as small as possible, Sin%‘r’gnificantly reduces the relative error.
the smaller sample size means a lower computational time
of data cleansing. 05
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Figure 6(d) confirms that very small samples can be
used to approximate the border detection robustlyqef-
10 with the total numbe(’?) ~ 4.5 x 10° of intersection
computations (cf. equation (1)) for the overlap threshold
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The default parameters in the series of experiments Number of Clusters mber of Clusters
were: length of strings~ 30, number of clusterc = 100, (2) Relative Error (b) Clustering Time

cluster sizecs = 50, sample sizess = 100, cluster radius ) ) _
radius = 3. Figure 8: Different Cluster Sizes



The clustering time (cf. Figure 8(b)) increases linearlythresholdb from the center of the cluster are assigned to
as the number of clusters increases. In contrast to the clusne cluster. Experiments show that the border detection is
ter size experiment (cf. Section 7.2.1) the clustering timerobust provided a sufficient sample size.
for smaller samples does not exceed the clustering time for There are a number of research directions for future
larger samples, since the number of clusters is very largaiork. One can further progress the IS data structure. Our

compared to the size of the clusters. investigation indicates that very few g-grams of the center
strings are sufficient to identify strings of the cluster. An
7.3 Real World Data algorithm that robustly finds the identifying q-grams of the

. . . . cluster is an interesting challenge.
This section evaluates the border detection algorithm for The data cleansing method is robust if the distance be-

real world company names (database with around 15 cha. ween the clusters is large compared to the diameters of the
acter long strings) and company addresses (database wi lusters. In order to improve the precision for databases
around 30 character long strings). Both databases con-

sists of clusters that are far away from each other and with small dista_nces between the clusters one can introduce
: L . 4 number of string representatives for each cluster.

small number of strings within the clusters (cf. Figure 9).

There is a large range of overlap levels for which the clus-

ter size is constant (cfo=[20-7] for the company names References

and 0=[22-7] for the company addresses), and therefore[1] R.Ananthakrishna, S. Chaudhuri, and V. Ganti. Elimimgt

our border detection algorithm detects the border coyectl fuzzy duplicates in data warehouses.MDB, pages 586—

even for very small sample sizes. Our clustering algorithm 597, 2002.

detected small clusters (1-3 strings per cluster) for the-co  [2] S. Chaudhuri, K. Ganjam, V. Ganti, and R .Motwani. Ro-

pany names and larger clusters (3—30 strings per cluster) fo bust and efficient fuzzy match for online data cleaning. In

company addresses. SIGMOD pages 313-324, 2003.

[3] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity st
tion for string predicates: Overcoming the underestinmatio
problem. InICDE:, pages 227-239, 2004.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An effitien
access method for similarity search in metric spaces. In

VLDB, pages 426-435, 1997.
02 46 8101214161820 %5 5 10 15 20 25 a0 35 [5] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison
Overlap Threshold o Overlap Threshold o of string metrics for matching names and recordsDéta
(a) Company Names (b) Company Addresses Cleaning Workshop in Conjunction with KDR003.
[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
Figure 9: String Proximity Graph for Real World Data S. Muthukrishnan, and D. Srivastava. Approximate string

- . ) joins in a database (almost) for free. WL.DB, pages 491—
Intuitively, our data cleansing algorithm produces good 500, 2001.

cleansing results for string data with large distances be-7] . Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava
tween centers of clusters and small distances within the ~ Text joins in an rdbms for web data integration. WAWWW
clusters. Examples of such datasets are databases of com- pages 90-101, 2003.

pany names and company addresses. Our data cleansi D. Gusfield. Algorithms on strings, trees and sequences:

algorithm is less applicablg for natural language database Computer science and computational biolog@ambridge
In such databases two strings that are close to each other University Press, Cambridge, UK, 1997.

might have a very different meaning and therefore should g} v/ 3. Hodge and J. Austin. A comparison of standard spell
be assigned to different clusters (for example “air” and = checking algorithms and a novel binary neural approach.
“aim”, or “spouse” and “mouse”). In natural language TKDE, 15(5):1073-1081, 2003.

databases spelling based and dictionary based techniqu $] H. V. Jagadish, N. Koudas, and D. Srivastava. On effecti

are more appropriate. For proper noun databases typically * muiti-dimensional indexing for strings. BIGMOD, pages
no dictionaries exists and the proposed solution is the pre-  403-414, 2000.

B e o ) s s e s

SS=5 m——
ss=10
$s=20
ss=50

Cluster Size
Cluster Size

ferred choice. [11] L. Jinand C Li. Selectivity estimation for fuzzy stripged-

] icates in large data sets. \LDB, pages 397-408, 2005.
8 Conclusions and Future Work [12] L.Jin, C.Li, N. Koudas, and A. K. H. Tung. Indexing mixed
In this paper we present our results of a new data cleans- tzygoeg for approximate retrieval. MLDB, pages 793-804,

ing algorithm. Data cleansing is done in two steps. First, _ . _ _ _

the string data is clustered by identifying center and bordel13] K. Kukich. Technique for automatically correcting wisrin

of hyper-spherical clusters, and second, the clustergstrin text. ACM Comput. Sury24(4):377-439, 1992.

are cleansed with the most frequent string of the clusted14] S. Sahinalp, M. Tasan, J. Macker, and Z. Ozsoyoglu. Dis-
Clustering starts with a non-clustered string and computes  t&nce based indexing for string proximity search|GDE,

the border of the cluster. All strings within the overlap 2003.



