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ABSTRACT
As reinforcement learning (RL) continues to improve and be applied

in situations alongside humans, the need to explain the learned be-

haviors of RL agents to end-users becomes more important. Strate-

gies for explaining the reasoning behind an agent’s policy, called

policy-level explanations, can lead to important insights about both

the task and the agent’s behaviors. Following this line of research,

in this work, we propose a novel approach, named as CAPS, that

summarizes an agent’s policy in the form of a directed graph with

natural language descriptions. A decision tree based clustering

method is utilized to abstract the state space of the task into fewer,

condensed states which makes the policy graphs more digestible to

end-users. This abstraction allows the users to control the size of the

policy graph to achieve their desired balance between comprehensi-

bility and accuracy. In addition, we develop a heuristic optimization

method to find the most explainable graph policy and present it

to the users. Finally, we use the user-defined predicates to enrich

the abstract states with semantic meaning. We test our approach

on 5 RL tasks, using both deterministic and stochastic policies, and

show that our method is: (1) agnostic to the algorithms used to

train the policies, and (2) comparable in accuracy and superior in

explanation capabilities to existing baselines. Especially, when pro-

vided with our explanation graph, end-users are able to accurately

interpret policies of trained RL agents 80% of the time, compared to

10% when provided with the next best baseline. We make our code

and datasets available to ensure the reproducibility of our research

findings: https://github.com/mccajl/CAPS
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1 INTRODUCTION
Neural networks have been successfully applied to reinforcement

learning (RL) problems in areas of control [2] and games [15]. Due to

impressive performance in these areas, RL has started appearing in

performance-sensitive real-world applications like chip design [14],

server management [11], and robotics [19]. However, the black-box

nature of neural network decisions increases the need for end-user

trust when deploying a new RL system [6]. Explainable reinforce-

ment learning (XRL) attempts to build this trust by explaining the

behavior of an RL agent that uses neural networks in its decision

making process.

In general, we argue that a truly useful XRL has to satisfy several

desiderata. First, XRL has to explain the entire policy (i.e., behavior)

of the agent to end-users who likely have insufficient knowledge

of RL. Policy-level explanations attempt to reveal the policy of an

agent for many different regions of the state space, and "before"

the agent has taken any actions [5, 23, 26]. However, existing XRL

methods often focus on explaining the decisions of an RL agent in

specific instances [8, 18]. Second, XRL needs to be generalizable

for both deterministic and stochastic RL policies in continuous or

discrete state spaces. However, existing XRL approaches explain

only deterministic policies [26] or discrete state spaces [23]. Third,

XRL needs to deliver explanations, which end-users can interpret,

with as minimal user intervention as possible. Moreover, the end-

users should be given control over the size and thoroughness of the

explanation based on their needs. Finally, the explanations must

accurately describe the agent’s policy, which can be evaluated using

the fidelity test [13].

In this paper, satisfying these desiderata, we propose a general-

izable policy-level explanation approach, named as Comprehen-
sible Abstract Policy Summaries (CAPS), that explains both

stochastic and deterministic policies of an RL agent and displays

the policy as a directed graph, embedded with intuitive natural lan-

guage (NL) explanations. CAPS first collects, from the user, simple

NL predicates which describe potential aspects of the agent’s state

(e.g., “car moves right" or “car stops at the stop sign"). CAPS then

collects no more than 500 timesteps from the RL agent trajectories.

In order to make the explanation process tractable, CAPS uses a

clustering algorithm, CLTree [9], that abstracts the agent’s states

into a hierarchy of different configurations of clusters (𝐶). Each

cluster groups the similar states into one abstract state. A heuristic



optimization technique is developed to select the best configura-

tion of the clusters, which is determined by the accuracy of the

state transitions and the end-user interpretability. For each cluster,

𝑐 ∈ 𝐶 , CAPS also identifies whether the agent considers the states

in the cluster to be critical, extending the methodology proposed in

[6]. Then, using the generated clusters 𝐶 , CAPS forms the agent’s

policy (𝜋 ) and transition function as a directed graph, where the

nodes are the clusters of states, forming abstract states, and the

edges represent the actions chosen by 𝜋 , as well as the probability

of transitioning from one abstract state to the next. To enrich the

generated graph with more semantic meaning, CAPS labels the ab-

stract states (i.e. graph nodes) with concise NL explanations using

the user-defined languange predicates and Boolean algebra. Lastly,

by controlling the height of the CLTree, CAPS gives the end-user

the choice of generating different policy graphs with different sizes

such that each size corresponds to different levels of abstraction.

To demonstrate the utility of CAPS, we use five popular RL en-

vironments. We trained the RL agents in the environments using

an algorithm for stochastic policies, PPO [21] and an algorithm

for deterministic policies, DQN [16]. Our experimental results indi-

cate that CAPS is generalizable with minimal user interventions.

To measure how close the explanation graphs are to the agent’s

policy, we ran fidelity testing for each environment and compared

it against two baselines which share the most in common with our

approach [23, 26]. The results show that the accuracy of the policy

graphs produced by CAPS is comparable to those produced by the

baselines. We also conducted a user study to test the “real” explain-

ability of the generated graphs with different abstraction levels

against the two baselines. Results show that users presented with

CAPS graphs identify the correct state and next action of an agent

80% of the time, compared to just 10% for the next best baseline.

Our contributions are summarized as follows:

• We introduce a policy explanation approach for creating

abstract policy graphs with different state abstraction levels,

which provides the end-users with more control over the

size of the graph.

• We provide an optimization heuristic for maximizing the

accuracy of our policy graphs, while minimizing the size of

the graph.

• We highlight which abstract states the agent considers most

important to the task which builds trust in end-users [6].

• We propose a novel algorithm for generating a single natural

language representation for each abstract state. Our method

overcomes the issue of previous natural language grounding

methods, where too many contradictory state regions can

degrade the quality of the explanation as in [5].

2 RELATEDWORK
Researchers have highlighted important pixels in a frame of an

Atari game [7], [25], [4], and generated contrastive Atari frames

which would cause the agent to take another action [18] . [8] use

reward decomposition to identify the part of the goal a specific

action was meant to achieve. Other methods identify states which

an RL agent determines is important for the outcome of the episode.

The entropy of the agent’s policy and themaximum difference of the

value function have been used to determine states in which a certain

action needs to be taken to avoid failure [1], [6]. Highlighting such

states improves a user’s trust in the agent [6].

For policy-level explanations, Liu et al. in [10] generate decision

trees that mimic the agent’s policy, and then interpret the rules

formed by the learned tree.Structured models of the environment

have been created in [12] to trace the outcomes of the agent’s pol-

icy and produce explanations. These models are not generalizable

across tasks and are difficult to create in large environments, or in

environments where the complete state transition dynamics are

unknown. Another method has been proposed in [24] to generate

an explanation of a policy by comparing it to a user-generated ’foil’

policy. It, however, requires the end-user to have a foil policy in

question and know the dynamics of the environment. In [5], policy-

level explanations have been generated in response to user queries.

They also propose a method for translating state regions to natu-

ral language. Our proposed approach improves their methods for

translating state regions, and generates policy explanations which

encompass more scenarios than just those that the user queries.

An abstracted Markov chain has been built in [23] and is dis-

played as a directed graph to explain the agent’s policy. This ap-

proach clearly visualizes the structure of the environment, and the

agent’s path while traversing it. However, the generated policy

graph is not interpretable beyond its shape, because the nodes rep-

resenting abstract states are not given natural language labels. For

stochastic policies and larger environments, the produced graphs

can quickly become too large [23].

Zahavy et.al [26] create state abstractions in Atari environments

using clustering. Their method produces abstract policy graphs,

but requires heavy manual feature engineering and knowledge of

the environment. In addition, the quality of the abstract groupings

is dependent on the engineered features, and they do not provide

a way to interpret their policy graphs beyond environments with

image representations. Our method alleviates these weaknesses

by clustering the state abstractions before any feature engineer-

ing is applied, but the two can be used in conjunction if the user

already has extensive knowledge of the environment. The compari-

son between our proposed CAPS and prior work is listed in Table

1.

3 BACKGROUND
3.1 Reinforcement Learning
An RL agent learns by acting within an environment. Their inter-

action can be characterized as a Markov Decision Process (MDP)

described by the tuple (𝑆,𝐴, 𝑃, 𝑅), where 𝑆 is the set of states, 𝐴 is

the set of actions available to the agent, 𝑃 is the transition function

such that 𝑃 (𝑠𝑡 , 𝑎𝑡 ) produces a distribution over all possible next

states at time 𝑡 , and 𝑅 is the set of all possible rewards that an agent

can receive for actions taken in states. The goal of an agent is to

learn the policy, 𝜋 (𝑠𝑡 ) = 𝑎𝑡 , which would maximize the total dis-

counted reward over the whole task. To help discover the optimal

policy, an agent learns to approximate the value function, 𝑣 (𝑠𝑖 ),
which is the expected discounted reward that can be gained by

being in the state 𝑠𝑖 and following the policy, 𝜋 . Formally, the value

function is:

𝑣 (𝑠𝑖 ) = E
(∑
𝑡=𝑖

𝛾𝑡𝑅(𝑠𝑡 , 𝜋 (𝑠𝑡 ), 𝑠𝑡+1)
)

(1)



Algorithm Policy
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Knowledge
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States
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Continuous

State Spaces

Explains

Stochastic
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Size of

Explanation

Natural

Language

Explanations

Topin and Veloso [23] ✓ ✓ ✓
Hayes and Shah [5] ✓ ✓ ✓ ✓
Zahavy et al. [26] ✓ ✓ ✓
Liu et al. [10] ✓ ✓

Madumal et al. [12] ✓ ✓ ✓ ✓
Van der Waa et al. [24] ✓ ✓ ✓

CAPS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Summary of Surveyed Related Works vs. CAPS

Note that the state-value function can be obtained from the action-

value function: 𝑉𝜋 (𝑠0) = 𝑄𝜋 (𝑠0, 𝜋 (𝑠0)). These are used in methods

based on Q-Learning, Sarsa(_), and actor-critic methods [22]. There-

fore, the value-function is generally available alongside the policy

of a trained agent. In the case of stochastic policies, 𝜋 produces a

probability distribution over 𝐴, 𝜋 (·|𝑠), which can then be sampled

to choose 𝑎𝑡 . The goal of CAPS is to display information about the

policy, 𝜋 , and the transition function, 𝑃 , to the user as an easily

understood directed graph.

3.2 CLTree
CAPS relies on clustering, an algorithm for finding the natural

groupings of data points within the entire set. Specifically, we use

the clustering algorithm, CLTree [9], which trains a decision tree

to separate the data that belongs to the set, from data which is

artificially inserted into the set uniformly. By learning the feature

boundaries which separate real data from fake data, the nodes in

the tree form natural clusters. In addition, these clusters can be

combined or separated by traversing up or down the tree. Therefore,

by pruning the tree, each cluster can be more inclusive or exclusive

according to the user’s needs.

4 THE PROPOSED APPROACH: CAPS
The main deliverable from CAPS is a directed graph to describe

the agent’s policy in NL predicates. We formulate the output graph

𝐺 as 𝐺 = (𝑉 , 𝐸) to explain the RL policy components, states, ac-

tions, and transiting probabilities between the states. 𝑉 is a set

of vertices representing the RL agent’s states 𝑆 from the MDP

representation of the environment. 𝐸 is the edges connecting the

vertices matching the actions 𝐴 = 𝜋 (𝑆) in the MDP and defined

as 𝐸 ⊆ {(𝑣1, 𝑣2) | (𝑣1, 𝑣2) ∈ 𝑉 2
. Since 𝐺 is a directed graph, we can

annotate 𝐸 with the transition probabilities 𝑃 as defined in the MDP.

Directly mapping the states 𝑆 , actions 𝐴, and transitions 𝑃 from

the original MDP to 𝑉 and 𝐸 in 𝐺 is intractable for the end-user

interpretation. For instance, generating 𝐺 for an episode of 100

timesteps collected from a policy 𝜋 could, in the worst case, include

100 vertices to represent each state in the episode. Given the defi-

nitions of the RL agent’s policy 𝜋 and the graph 𝐺 , we frame this

problem within CAPS framework as a four step process as depicted

in Figure 1 and explained in the following subsections.

Figure 1: The overall architecture of the CAPS approach.

4.1 Data Collection
In this step, we collect two small datasets, 𝑈 , from the end-user,

and 𝐷 , from the RL agent’s execution. The user is asked to cre-

ate natural language predicates that concern them about the en-

vironment and the agent’s task. For example, for a self-driving

car agent, the user could give predicates like “the car is moving

fast”, “there is a stop sign”, or “car on the right”. Those predicates

will be used later to append 𝐺 with semantic meaning that sup-

ports the end-user’s interpretation. For the agent’s dataset 𝐷 , we

collect a small number (< 500) of timesteps from its execution

traces, possibly collected over multiple episodes, consisting of tu-

ples, 𝜏 = (𝑠𝑡 , 𝑎𝑡 , 𝑣 (𝑠𝑡 ),H(𝜋 (𝑠𝑡 )), 𝑠𝑡+1) ∈ 𝐷 . 𝑠𝑡 is the state of the

agent at time 𝑡 , which will be used to form the vertices 𝑉 of 𝐺 ,

while 𝑎𝑡 is the action that the agent’s policy chooses based on the

current state, 𝑎𝑡 = 𝜋 (𝑠𝑡 ), and will be mapped to the edges 𝐸 in 𝐺 .

The state value 𝑣 (𝑠𝑡 ) is collected to estimate how good it is for the

agent to be in state 𝑠𝑡 for the future reward from Eq.1. This value

helps groups states which the agent views as similarly important

to the task’s success (Section 4.2). The policy entropy H(𝜋 (𝑠𝑡 ))
defines the entropy of the probability distribution generated by

𝜋 in state 𝑠𝑡 . We use the policy entropy to highlight clusters of

states as critical (Section 4.2.1). For deterministic policies which do

not output a probability distribution, we instead use the maximum

difference of the Q-function among actions as a proxy for policy en-

tropy, as in [6]. This is defined as𝑚𝑎𝑥𝑎𝑖 ,𝑎 𝑗 ∈𝐴 (𝑄 (𝑠𝑡 , 𝑎𝑖 ) −𝑄 (𝑠𝑡 , 𝑎 𝑗 )),
where 𝑄 (𝑠𝑡 , 𝑎𝑖 ) is the learned value of taking action 𝑎𝑖 in state 𝑠𝑡 .

4.2 Policy State Abstraction via Clustering
The motivation of CAPS is to generate more human-interpretable

graphs than the Markov chains made from the base MDP and the



Figure 2: Example of Abstract Policy Graphs produced by CAPS before translation for CLTree of height 4 and 5 (left, right)

RL agent’s policy. Therefore, the number of nodes in the resulted

graph of CAPS should be much lower than the number of distinct

states in the base MDP. To achieve this, we adopt the notion of state

abstraction from RL literature [17], [22]. State abstraction involves

grouping the grounded states of the agent’s MDP into groups of

similar states, reducing the size of the entire state space. Prior work

[23] has abstracted the states using feature importance or signifi-

cance. In CAPS, we instead use a clustering algorithm eliminating

the need to manually engineer the state features as in previous

work. We can directly apply clustering algorithms to abstract the

state space if we assume that groups of similar states 𝑆1, 𝑆2 share

similar policies 𝜋 (𝑆1) = 𝜋 (𝑆2) or value functions 𝑣 (𝑆1) = 𝑣 (𝑆2) as
in [17]. This assumption, however, does not always hold, thus we

include the value function 𝑣 (𝑠𝑡 ) and action 𝑎𝑡 from the collected

tuples 𝜏 for more accurate clustering.

Using CLTree algorithm [9], we cluster each 𝜏 ∈ 𝐷 into similar

groups. The generated leaf clusters 𝐶 in the tree represent the

abstract states. As a result, each abstract state 𝑐 ∈ 𝐶 groups all

states which are interchangeable under the agent’s policy such that

either the agent behaves similarly when starting in any 𝑠 ∈ 𝑐 , or
𝜋 (∀𝑠 ∈ 𝑐) = 𝑎 [26], [23], or the agent assigns similar values to each

𝑠 ∈ 𝑐 [23]. The advantage of using CLTree clustering over K-means

or a modified K-means [26] is that the user has direct control over

the size of the graph’s nodes 𝑉 . From a finished CLTree pruned to

a specific depth, traversing the tree can increase or decrease the

level of abstraction, giving a dynamic understanding of the policy.

As an example, Figure 2 shows two policy graphs, without natural

language labels, at two sequential levels of the tree.

4.2.1 Heuristic Optimization for Clustering. To increase the usabil-

ity of CAPS for users with minimal to no knowledge about RL and

CLTree, we develop a heuristic optimization technique to find the

optimal set of clusters 𝐶∗. Our heuristic is motivated by the fact

that as the policy graph 𝐺 grows in the number of clusters 𝐶 (i.e.

|𝑉 |), the error between the true environment transition function

𝑃 from the MDP and the one estimated by 𝐺 , as well as the error

between the agent’s true policy 𝜋 and that presented in the graph,

decreases. However, in order for𝐺 to be interpretable to a human

end-user, we must limit the number of vertices 𝑉 in the graph
1
.

Let 𝐿 be the set of tree heights, and 𝐶𝑙 be the set of clusters

at a height, 𝑙 ∈ 𝐿. We wish to choose 𝑙 such that the clusters in

𝐶∗ = 𝐶𝑙 form an accurate policy graph with respect to the value

function 𝑣 (𝑠) and the policy of the agent 𝜋 within each cluster. In

1
See Appendix B for the analysis study of the heuristic optimization

addition, we want to penalize the size of the graph, so that the

policy graph𝐺 remains interpretable for humans with less vertices

𝑉 . To achieve that, we introduce two heuristics; the value score and

the cluster policy. Informally, the value score represents the error
between the environment’s transition function 𝑃∗ as estimated by

the clusters, and the true transition function 𝑃 in the MDP. It does

this by comparing the true value functions of the states in each

cluster 𝑣 (𝑠)∀𝑠 ∈ 𝐶 and the estimated value function according to

the estimated transition function. This heuristic is inspired by the

Value Mean Square Error(VMSE) evaluation criterion in [26]. The

second heuristic is the entropy of the cluster policy. The cluster
policy, Π(𝑐) defines the probability of taking an action, 𝑎, given a

cluster, 𝑐 , as the proportion of 𝑠 ∈ 𝑐 such that 𝜋 (𝑠) = 𝑎. Weminimize

the average entropy of the cluster policy,H(Π(𝑐)), across all 𝑐 ∈ 𝐶 ,
so that it is clear to the end-user which action the agent will take

in the abstract state, 𝑐 .

Recall, 𝑣 (𝑠) is the value of the state 𝑠 , as determined by the agent’s

value function (Eq.1). We formally define the value score, Z (𝐶 (𝑙)),
as:

Z (𝐶 (𝑙)) = 1

|𝐶 (𝑙) |
∑

𝑐∈𝐶 (𝑙)
(𝑉𝑔𝑡 (𝑐) −𝑉𝑒𝑠𝑡 (𝑐))2 (2)

where𝑉𝑔𝑡 (𝑐) is the ground-truth value of an abstract state, 𝑐 , found

by:

𝑉𝑔𝑡 (𝑐) =
1

|𝑐 |
∑
𝑠∈𝑐

𝑣 (𝑠)

and 𝑉𝑒𝑠𝑡 (𝑐) is the estimated value of an abstract state, 𝑐 , found by:

𝑉𝑒𝑠𝑡 (𝑐) = 𝛾
∑

𝑐𝑖 ∈𝐶 (𝑙)
𝑃∗ (𝑐, 𝑐𝑖 )𝑉𝑔𝑡 (𝑐𝑖 )

where 𝛾 is the discount factor from Eq. 1 and 𝑃∗ (𝑐, 𝑐𝑖 ) is the proba-
bility the agent transitioning from cluster 𝑐 ∈ 𝐶𝑙 to cluster 𝑐𝑖 ∈ 𝐶ℎ ,
estimated as the proportion of (𝑠𝑡 , 𝑎𝑡 ) pairs ∈ 𝑐 which transition to

𝑠𝑡+1 ∈ 𝑐𝑖 :

𝑃∗ (𝑐, 𝑐𝑖 ) =
1

|𝑐 |
∑

(𝑠,𝑎,𝑠𝑡+1) ∈𝑐
𝐼 (𝑠𝑡+1) (3)

where 𝐼 is an indicator function deciding whether 𝑠𝑡+1 is in 𝑐𝑖 .
Then, we formally define the height of the tree, 𝑙 , pertaining to

the optimal clusters as:

argmin

𝑙 ∈𝐿

[
Z (𝐶 (𝑙)) +

(
1

|𝐶 (𝑙) |
∑

𝑐∈𝐶 (𝑙)
H(Π(𝑐))

)
+ 𝛼 |𝐶 (𝑙) |

]
(4)

where 𝛼 is a parameter controlling the penalty of larger policy

graphs andH(Π(𝑐)) is the entropy of the cluster policy.



4.3 Abstract Policy Graph
Given a set of abstract states, we create a policy-level explanation

by modeling the policy as a directed graph 𝐺 . Each vertex 𝑣 ∈ 𝑉
represents an abstract state from the clusters generated by CLTree

and the edges 𝐸 are transitions induced by a single action from

one abstract state to another, each accompanied by a transition

probability. We estimate the transition function 𝑃∗ from Eq.3. We

use Algorithm2 in [23] to append the actions and transition proba-

bilities to our graph 𝐺 . We, however, modify the graph generation

algorithm in [23] to include the stochastic transition functions by

attaching the actions taken to the edges with their probabilities,

instead of to the nodes. This change increases the readability of

CAPS’s generated graph since the nodes have the NL predicates to

describe the abstract states and the edges describe how likely the

agent will take certain actions. Figure 2 shows what an example𝐺

looks like before incorporating the NL labels to the nodes, at two

different heights of the CLTree.

4.4 Natural Language Grounding
In order to provide interpretable explanations of the agent’s abstract

policy graph 𝐺 , we ground the graph nodes (i.e. abstract states) in

NL. We use a set of Boolean classifiers that we build based on the

user’s given predicates in 𝑈 . We use these classifiers to translate

internal knowledge of the MDP states within the abstract states

into NL through two levels of translations; MDP state translation

and abstract state translation.

4.4.1 MDP State Translation . We modify the method of [5] for

grounding state regions in NL to improve the explanation qual-

ity. Recall, our collected preliminary data 𝑈 has the environment-

specific user-predicate. Those predicates are used to create binary

classifiers evaluating the features of each state. The semantic mean-

ing of the boolean predicates should correspond to some aspect of

the state space which we are interested in using to explain the

agent’s action. Unlike [26] which also uses feature engineering to

create semantic meaning, in CAPS, the set of predicates does not

affect the accuracy of the transition function, or the fidelity of the

policy graphs. This is because we apply the NL after clustering in-

stead of clustering the engineered features. Hence, only the quality

of the NL explanations given to each abstract state is affected by

the user-predicates.

Given a set of user-predicates,𝐹 , which are binary functions, we

map an MDP state 𝑠 ∈ 𝑐 into binary vector, 𝜔 (𝑠), with length |𝐹 |,
where each element represents whether 𝑠 satisfies the particular

user-predicate, 𝑓 ∈ 𝐹 . ∀𝑐 ∈ 𝐶 , and ∀𝑠 ∈ 𝑐 , we map 𝑠 to𝜔 (𝑠) through:

ˆ𝜔 (𝑠) =
[ {

1, if 𝑓 (𝑠) = True

0, otherwise

]
∀𝑓 ∈ 𝐹 (5)

4.4.2 Abstract State Translation. In Eq.5, each grounded state in

the abstract state ∀𝑠 ∈ 𝑐 is translated into a binary vector 𝜔 (𝑠) of
NL predicates. We then condense the set of all binary vectors in the

cluster {𝜔 (𝑠) |𝑠 ∈ 𝑐}, into a single vector of predicate values, 𝜔 (𝑐),
which provides a concise explanation of the cluster 𝑐 (Algorithm

1). Algorithm 1 has three steps; finding the frequent predicates

for each abstract state, calculating the correlation between those

Algorithm 1 Condense Semantic Meanings into a Single, Trans-

lated Representation

1: Input
2: 𝜔 : Binary vectors ∀𝑠 ∈ 𝑐 computed by Eq.5

3: 𝛽 , 𝛿 : Predicate frequency and correlation threshold

4: DG: The diverse groups for the user-predicates

5: Output
6: Exp: The English explanation for each state in the graph 𝐺

7: procedure Generate Explanation
8: for 𝑐 in 𝐶 do
9: for 𝑖 in user-predicate do 𝜔 (𝑐) [𝑖] ← 𝐸𝑞.6

10: for i in user-predicate do
11: if 𝜔 (𝑐) [𝑖] == 1 then 𝐹 ← 𝐹 ∪ 𝑖
12: end for
13: for (𝑖, 𝑗) in F do
14: if 𝑓𝑖 , 𝑓𝑗 ∈ 𝐷𝐺 then 𝐸𝑥𝑝 (𝑐) ← 𝐸𝑥𝑝 (𝑐) ∪𝑓𝑖 ∪𝑜𝑟 ∪ 𝑓𝑗
15: elif 𝜌𝑖, 𝑗 > 𝛿 then 𝐸𝑥𝑝 (𝑐) ← 𝐸𝑥𝑝 (𝑐) ∪ 𝑓𝑖 ∪𝑎𝑛𝑑 ∪ 𝑓𝑗
16: else 𝐸𝑥𝑝 (𝑐) ← 𝐸𝑥𝑝 (𝑐) ∪ 𝑓𝑖 ∪ 𝑜𝑟 ∪ 𝑓𝑗
17: end for
18: end for
19: return Exp

20: end procedure

predicates, and translating them into one NL sentence. We label a

predicate in a cluster as frequent or not with Eq.6.

ˆ𝜔 (𝑐) [𝑖] =
{
1, if

∑
∀𝑠∈𝑐 𝜔 (𝑠) [𝑖 ]
|𝑐 | > 𝛽

0, otherwise

(6)

The result, 𝜔 (𝑐), is a binary vector that has 1 at the ith predicate if

the proportion of each predicate’s appearance in all the MDP states,

𝑠 , in this abstract state, 𝑐 , is above a threshold 𝛽 (lines 8-12). Unlike

[5], which only presents a predicate as part of the explanation

if it appears in all MDP states, our algorithm uses a threshold

𝛽 to control how frequent a predicate value must appear in the

grounded states ∀𝑠 ∈ 𝑐 to be included in the explanation of the

abstract state 𝑐 . Hence, CAPS guarantees presenting the user with

at least some relevant descriptions. We find that in practice, the

method of [5] often finds no commonalities between the grounded

states, especially as the amount of input data grows (Table.2). We

suspect this is because even a single contrastive state can invalidate

a predicate following their method.

The second step of Algorithm 1 (lines 13-16) decides which

Boolean algebra operators (i.e. or, and) should be used to connect

the frequent predicates, so that each node in the graph has a seman-

tically meaningful description. This is done by first requiring the

user to group their predicates into diverse groups such that no two

predicates in the same group can both be true in any grounded state.

For example, in a self-driving car, the predicates "car is moving fast"

and "car is moving slow" should be in the same group since the car

cannot be moving fast and slow simultaneously. If a pair of frequent

predicates for an abstract state are part of the same diverse group,

we connect those predicates with an "or" operator. Otherwise, we

use the Pearson correlation coefficient [20] to find how strong the

correlation between the expressive predicates. We use "and" for

strong correlations and "or" otherwise. For each pair of predicates



CAPS Hayes and Shah [5]

“Pole is standing up and cart is either moving left or right and cart is

either on the left or in the middle”

No Explanation Produced

“Pole is either stabilizing to the right or standing up and cart is

moving right and cart is in the middle”

“Pole is not falling left and cart is moving right and cart is in the

middle”

“Pole is either stabilizing to the left or standing up and cart is moving

left and cart is in the middle”

“Cart is moving left”

Table 2: Example labels for abstract states produced by CAPS vs. [5] for the Cartpole environment (Appendix A.3 describes
this environment and shows its policy graph).

𝑖, 𝑗 , we compute the Pearson correlation coefficient 𝜌 as:

𝜌𝑖, 𝑗 =
𝑐𝑜𝑣 (𝑖, 𝑗)
𝑠𝑡𝑑𝑖𝑠𝑡𝑑 𝑗

(7)

where cov is the sample covariance, 𝑠𝑡𝑑𝑖 and 𝑠𝑡𝑑 𝑗 are the sample

standard deviations of the predicates 𝑖 and 𝑗 in 𝑠,∀𝑠 ∈ 𝑐 . We use

a threshold 𝛿 to control how correlated two predicates must be in

order to justify an "and" relationship between them. Algorithm 1

improves upon [5] by including the largest number of predicates

in the explanation as possible, while still presenting combinations

of predicates that actually occurred in the input data. Using the

diverse groups plays a crucial role, since we can still include two

predicates in the explanation which can never coexist in the same

state, simply by joining them with an “or” conjunction.

4.5 Highlighting Critical States
Critical states are defined as states in which it is important to take

a certain action [6]. To build trust in an end-user, it is helpful to

highlight what the agent does in these critical states, as well as

what situations the agent believes are critical. For stochastic policies,

such as PPO [21], the set of critical states under the policy 𝐾𝜋 have

been defined as [6]:

𝐾𝜋 = {𝑠 |H (𝜋 (·|𝑠)) < 𝑡} (8)

whereH(𝜋 (·|𝑠)) is the entropy of the probability distribution gen-

erated by 𝜋 in state 𝑠 . Extending this to the setting of abstract states,

we define the critical value of an abstract state, ^ (𝑐), as:

^ (𝑐) = 1

|𝑐 |
∑
𝑠∈𝑐
H(𝜋 (·|𝑠)) (9)

In this case, a lower critical score, and therefore a lower average

entropy, corresponds to a more critical state. We highlight 𝑐 as

a critical abstract state if its critical value is in the bottom 𝑛𝑡ℎ
percentile of the abstract states in its graph. 𝑛 is arbitrary and only

affects the number of critical abstract states which are presented.

We chose to use 𝑛 = 10 in our experiments.

5 EXPERIMENTS
5.1 Experimental Settings
We tested CAPS on five environments. Two environments have

discrete state spaces, namely Blackjack and Cliffworld [22]. The

other three environments - Cartpole, Lunar Lander, and Mountain

Car [3] - have continuous state spaces. In addition, Blackjack has a

stochastic transition function while the rest of the environments

Figure 3: The Mountain Car environment from Open AI
Gym

have deterministic transition functions (See the appendix for more

details about these environments). To test the generalizability of

CAPS, we tested the environments using two different RL agents:

one trained with a deterministic algorithm, DQN [16], and one with

a stochastic algorithm, PPO [21]. To preserve space, we discuss

Mountain Car in detail, and provide policy graphs for the other

environments in Appendix A.

5.2 Results
In the Mountain Car environment, a car starts at the bottom of a

valley, and must build up enough speed to reach the top of the hill

on the right Figure 3. The car has 3 actions, either accelerate left,

accelerate right, or choose to not accelerate. The state space consists

of two continuous features, car position, with 0 corresponding to

the bottom of the valley, and cart velocity. Figure 4 shows the policy

graph for Mountain Car, produced by CAPS. Nodes highlighted in

red are selected as critical by CAPS. The user-defined predicates

for this environment are broken up into two diverse groups. The

first describes the position of the car, and includes the predicates

"At the bottom", "On the left slope", "On the right slope", "High up

on the left slope", and "High up on the right slope". The second

group describes the velocity of the car: "Not moving", "Moving right

slowly", "Moving left slowly", "Moving left quickly", and "Moving

right quickly".

Given only Figure 3 of the environment and a description of

the task, an end-user might suppose the best way to solve the

task is to have the car accelerate right until reaching the goal flag.

However, such a strategy does not work, because the car fails to

build up enough momentum to surmount the hill. The optimal

strategy, as discovered by the RL agent, is to first build momentum

by alternating its actions, and then to stop accelerating once the



Figure 4: Example of an explanation for Mountain Car pro-
duced by CAPS. Abstract states outlined in red are critical.

Figure 5: Fidelity for three baselines in the five baseline en-
vironments. Data was collected using a PPO policy.

car is high enough up the left hill. Momentum is then enough to

carry the car to the goal.

Such a strategy can be seen in the CAPS graph (Figure 4). The

car starts at the bottom, and has a stochastic policy which sees it

alternate between each action. Once it builds up enoughmomentum

to reach a position high up on the left slope, it identifies its current

state as critical, and stops accelerating with high probability. These

actions bring the car to a point in which it is rapidly rising up the

right slope, and eventually reaches the goal.

Alongside the policy graphs, we perform analysis on the different

scores defined in section 4.2.1 with respect to graph size (in nodes).

We present the analysis results in Appendix B. We also compare

the accuracy of CAPS policy graphs to baselines through a fidelity

metric. The fidelity of the policy graph is defined as the proportion

of actions taken by the trained RL agent that are the same as the

Figure 6: Fidelity in the five baseline environments for two
RL agents. One was trained with PPO, and the other with
DQN.

action the policy graph says the agent should take [23]. To calculate

fidelity for each environment, we simulate about 2000 timesteps

of environment interaction. We also average the fidelity of these

trials over 10 different generated graphs by each baseline. The

results forCAPS and the two baselines which produce policy graphs,

[23, 26], are shown in Figure 5. In Figure 5, we see that the fidelity

of CAPS is either superior or comparable to [23, 26], except in the

case of Gridworld. In the Gridworld environment, the policy is

deterministic enough that Topin and Veloso [23], which attempts

to memorize (𝑠𝑡 , 𝑎𝑡 ) pairs, can do so without loss of fidelity. We

construct CAPS graphs to favor interpretability and conciseness

over perfectly fitting the observed data, but we see that the fidelity

accuracy does not suffer under this approach. We also see in Figure

6 that CAPS policy graphs are similar in fidelity when the data was

generated with PPO versus with DQN. This indicates that CAPS is

invariant to the agent’s learning algorithm, and is compatible with

deterministic and stochastic policies.

6 USER STUDY
6.1 Design
Distinguished from previous XRL approaches, CAPS includes not

only developers and researchers, but also non-technical end-users

as its target audience. Therefore, we designed a user-study to quan-

titatively measure the amount of understanding a CAPS graph

provides over two other directly-comparable graph-based policy

explanation methods [23, 26] from the perspective of the end-users.

For this study, we present the Mountain Car environment to

AmazonMechanical Turk (AMT) workers, along with a single frame

from an episode. Given an explanation graph, we then ask the

workers (i) Q1. Which state represents the current scenario of the
environment and (ii) Q2. Which action the agent will likely execute
next. We reveal the correct answer to Q1 at the beginning of Q2. The
Mountain Car environment is selected because actions of a learned

RL agent can be counter-intuitive to a layperson, hence it requires

an explanation graph for correct interpretation. In fact, without
an explanation graph, AMT workers are only able to achieve an

overall accuracy of 3% on Q2 (Table 3). We then manually select

three frames (i.e., scenarios) from an episode, and test this same

set of frames across all baseline (Appendix C). The selected frames

represent a sequence of three distinctive locations of the car of

the environment (i.e., on the left slope, at the bottom and on the

right slope). We show workers either a graph from CAPS, a graph

from [23] (Topin and Veloso), a graph from [26] (Zahavy et al.), or
no graph, as a baseline. Note that the two baseline graphs do not



Method # Top 20 Longest Responses Top 30 Longest Responses All Responses

Ans. Time↓ S↑ A↑ S+A↑ S→A↑ Time↓ S↑ A↑ S+A↑ S→A↑ Time↓ S↑ A↑ S+A↑ S→A↑
Without graph 33 41s - 0.05 - - 38s - 0.03 - - 37s - 0.03 - -

Topin and Veloso [23] 39 159s 0.05 0.40 0.05 1.0 (1/1) 141s 0.03 0.33 0.03 1.0 (1/1) 130s 0.03 0.28 0.03 1.0 (1/1)

Zahavy et al. [26] 45 136s 0.45 0.45 0.10 0.22 (2/9) 125s 0.5 0.47 0.13 0.27 (4/15) 115s 0.42 0.47 0.16 0.37 (7/19)

CAPS (Optimal) 46 139s 0.85 0.95 0.80 0.94 (16/17) 126s 0.77 0.86 0.70 0.91 (21/23) 114s 0.78 0.87 0.70 0.89 (32/36)

Table 3: Comparison of user-study results on (Time)–the total time spent on the task, accuracy of selecting the (S)–correct
abstract state, (A)–correct action, (S+A)–correct abstract state and action, (S→A)–correct action after correctly selecting abstract
state.

Figure 7: Relationship between comprehensibility and clus-
ter policy entropy with varied CAPS graph sizes.

contain NL explanations. We show each graph used in this study

in Appendix C.

We recruited a total of 120 AMT workers who are English speak-

ers located in North America. We recruited general users and make
no assumption regarding the their knowledge and experience in ML

or RL. To ensure the quality of the workers and reduce possible

biases, we employ various recruitment criteria and experiment con-

trols and maintain these across all baselines. We refer the readers to

Appendix C for more details on the user-study (recruitment criteria,

payment, etc.). Our user-study is IRB-approved.

6.2 Results
Table 3 summarizes the results. First, all explanation methods help

the end-users to better understand the learned RL agent. Moreover,

it is statistically significant (p-value≤ 0.01) that CAPS performs

better than all baselines on average (Table 4). In fact, our method

is the most comprehensible, enabling the end-users to accurately

interpret both the current states and the agent’s next actions (S+A)

up to 70% accuracy, a four times improvement from the next best

baseline (Zahavy et al.) (Table 3). Interestingly, except for the Topin
and Veloso graph, themore time theAMTworkers spent on the tasks,

the better their responses became. Particularly, the top 20 longest

responses recorded an accuracy of over 85% and 90% accuracy on

Q1 and Q2, respectively, when provided with CAPS graph (Table 3).

Furthermore, adding either NL texts (CAPS) or visual illustrations

(Zahavy et al.[26]) for each abstract state enables the end-users to

make decisions more promptly and effectively (Table 3).

Given the assumption that the end-users are involved in the

abstract state translation step of CAPS (Sec. 4.4.1), they should be

fully aware of the mapping from a given scenario of the car to its

respective abstract state on the CAPS graph. Table 3 shows that

those who fit into this assumption–i.e., users who selected the

CAPS >NoGraph >Topin and Veloso >Zahavy et al.

p-value (S) - 1.5e-17 1.6e-4

p-value (A) 2.3e-21 7.8e-10 1.1e-5

p-value (S+A) - 2.4e-13 1.1e-8

Table 4: p-values (all are ≤0.01) of hypothesis tests on
whether CAPS can provide the AMT workers with addi-
tional explanatory values to accurately select Q1 (S), Q2 (A)
or both (S+A)

correct abstract state in Q1, are the most accurate in interpreting

the agent’s next actions, with an overall accuracy of around 90%

(S→A). Even though this accuracy is 100% in case of Topin and
Veloso, there was only 1 response that correctly answered Q1 (Table
3).

We also evaluate the trade-off between explainability of a gener-

ated CAPS graph, its size, and its cluster policy entropy (Section

4.2.1). Figure 7 (Left) shows that the optimal graph size found by

CAPS is best positioned in terms of both comprehensibility (the

higher the better) and the policy entropy (the lower the better).

Once an abstract state is correctly identified, it then becomes rela-

tively easy (≥90% accuracy) for the end-users to correctly identify

the agent’s next action (Figure 7, Right).

7 CONCLUSION
We introduce a novel method, named as CAPS, for generating

comprehensible policy graphs, which can explain the policy of an RL

agent to an end-user with minimal knowledge of machine learning.

We present a state abstraction strategy that gives us control over

the abstraction and size of the policy graph, and allows us to gain

additional information by observing how the graph changes as we

make it more or less abstract. We also propose a novel method for

condensing entire abstract states into concise, natural language

descriptions.
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CAPS: Comprehensible Abstract Policy

Summaries for Explaining Reinforcement

Learning Agents

Supplementary Material

A Experimental Environments

We here describe five environments tested and show their corresponding policy
graphs generated by CAPS.

A.1 Mountain Car

In the Mountain Car environment, a car starts at the bottom of a valley, and
must build up enough speed to reach the top of the hill on the right Figure 1.
The car has 3 actions, either accelerate left, accelerate right, or choose to not ac-
celerate. The state space consists of two continuous features, car position, with
0 corresponding to the bottom of the valley, and cart velocity. Figure 2 shows
the policy graph for Mountain Car, produced by CAPS. Nodes highlighted in
red are selected as critical by CAPS.

The user-defined predicates for this environment are broken up into two
diverse groups. The first describes the position of the car, and includes the
predicates “At the bottom”, “On the left slope”, “On the right slope”, “High
up on the left slope”, and “High up on the right slope”. The second group
describes the velocity of the car: “Not moving”, “Moving right slowly”, “Moving
left slowly”, “Moving left quickly”, and “Moving right quickly”.

Given only Figure 1 of the environment and a description of the task, an end-
user might suppose the best way to solve the task is to have the car accelerate
right until reaching the goal flag. However, such a strategy does not work,
because the car fails to build up enough momentum to surmount the hill. The
optimal strategy, as discovered by the RL agent, is to first alternate between left
acceleration, right acceleration, and no acceleration to build up momentum, and
then to stop accelerating once the car is high enough up the left hill. Momentum
is then enough to carry the car to the goal.

1



Figure 1: The Mountain Car environment from Open AI Gym

Figure 2: The policy graph for Mountain Car produced by CAPS. Abstract
states outlined in red are critical.

Such a strategy can be seen in the CAPS graph (Figure 2). The car starts
at the bottom, and has a stochastic policy which sees it alternate between
accelerating left, right, and not at all. Once it builds up enough momentum
to reach a position high up on the left slope, it identifies its current state as
critical, and stops accelerating with high probability. These actions bring the
car to a point in which it is rapidly rising up the right slope, and eventually
reaches the goal.
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Figure 3: The CAPS explanation for Blackjack [1]

A.2 Blackjack

Blackjack is a popular card game with a discrete state space that has been
solved using RL. The objective of the game is to win money by obtaining a point
total higher than the dealer’s without exceeding 21. Determining an optimal
blackjack strategy proves to be a difficult challenge due to the stochastic nature
of the game.

The game works by assigning each card a point value. Cards 2 through 10
are worth their face value, while Jacks, Queens, and Kings are worth 10 points.
An ace is worth either 1 or 11 points, whichever is the most beneficial. This
game is placed with an infinite deck (or with replacement). The game starts
with dealer having one face up and one face down card, while player having
two face up cards. The player can request additional cards (hit=1) until they
decide to stop (stick=0) or exceed 21 (bust). Hence, the possible actions include
hitting,standing, splitting, or doubling down. After the player sticks, the dealer
reveals their face-down card, and draws until their sum is 17 or greater. If the
dealer goes bust the player wins. If neither player nor dealer busts, the outcome
(win, lose, draw) is decided by whose sum is closer to 21. The reward for winning
is +1, drawing is 0, and losing is -1. The observation of a 3-tuple of: the players
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Figure 4: The state space of Cliffworld environment [1]

current sum, the dealer’s one showing card (1-10 where 1 is ace), and whether
or not the player holds a usable ace (0 or 1). This environment corresponds to
the version of the blackjack problem described in Example 5.1 in [1]. The Open
AI Gym design of this game is here: https://github.com/openai/gym/
blob/master/gym/envs/toy_text/blackjack.py

The CAPS graph for Blackjack (Figure 3) can be interpreted as follows.
P represents the current sum of the values of the player’s cards. D represents
the value of the single card the dealer is showing. If the player or dealer has a
usable ace, that is displayed as ”Player has an Ace” or ”D = Ace”, respectively.
The player has two possible actions, hit or stick. From the top left node, we see
that if the player’s hand is between 0 and 16, it will choose to hit every time.
There are many edges leading out from this node because the environment has
a stochastic transition function: choosing to hit from this node does not always
transition the environment to the same next node. There are two other nodes
where the player’s hand is less than 19, but the dealer’s hand is good (7-10 or
ace). In these nodes, the player will often choose to stay, but sometimes will
hit. In all other nodes, the player has a good hand and the dealer does not.
The player will stay in these scenarios, with two of them being labeled critical.

A.3 Cliffworld

Cliffworld is from example 6.5 in [1]. It is a standard gridworld with four
action in each state (up, down, right, left) which deterministically cause the
corresponding state transitions (Figure 4). The reward is -1 for all transitions
until the terminal state is reached but if the agent falls from the Cliff then the
reward -100. The terminal state is in the bottom right corner, and the starting
state is the bottom left corner. The implementation of this environment in
Open AI Gym is in https://github.com/podondra/gym-gridworlds/
blob/master/gym_gridworlds/envs/windy_gridworld_env.py

The CAPS Explanation for Cliffworld can be interpreted as follows. The
agent starts as the bottom left cell. It starts by moving up, and then moves
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Figure 5: The CAPS Explanation for Cliffworld.

right while the cliff is directly below it. It keeps moving right until it is close to
the goal (the cell above the goal), then moves down.
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Figure 6: The Cartpole environment

Figure 7: The CAPS Explanation for Cartpole.

A.4 Cartpole

A pole is attached by an un-actuated joint to a cart, which moves along a
frictionless track (Figure 6). The system is controlled by applying a force of +1
or -1 to the cart. The pendulum starts upright, and the goal is to prevent it from
falling over. A reward of +1 is provided for every timestep that the pole remains
upright. The episode ends when the pole is more than 15 degrees from vertical,
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Figure 8: The Lunar Lander environment.

or the cart moves more than 2.4 units from the center. The actions are push cart
to the left or push cart to the right. The observation includes; the cart position,
velocity, pole angle, and angular velocity. https://github.com/openai/
gym/blob/master/gym/envs/classic_control/cartpole.py

The CAPS explanation for Cartpole can be briefly summarized as follows.
The two center cells, which contain states where the pole is standing up, are
“stable” states, in the sense that if the agent ends up in a different abstract
state, it always returns back to one of these two abstract states. With low
probability, the agent can transition from one of these stable states to one of
the other states, which contain situations in which the pole is falling to the left
or right. One of these states has been labeled as critical. In each of these states,
the agent will take the same action (either right or left), until it transitions
back to a stable state. In addition, we see that there is no cell where the pole
has fallen over, indicating that the agent did not fail the task in the collected
timesteps of experience.

A.5 Lunar Lander

This game simulates the situation where a lander needs to land at a specific
location under low-gravity conditions, and has a well-defined physics engine im-
plemented. The main goal of the game is to direct the agent to the landing
pad as softly and fuel-efficiently as possible. The state space is continuous as
in real physics, but the action space is discrete. The observation state has;
coordinate of the lander, the horizontal velocity, the vertical velocity, the orien-
tation in space, the angular velocity,the left leg touching the ground (Boolean),
the right leg touching the ground (Boolean). The action space includes; do
nothing, fire left orientation engine, fire right orientation engine, and fire main
engine. https://github.com/openai/gym/blob/master/gym/envs/
box2d/lunar_lander.py

The CAPS explanation for Lunar Lander can be interpreted as follows. The
agent starts on top of and higher than the goal, and activates its boosters so
that it moves slightly up, presumably so that it does not hit the ground moving
too fast. It identifies these states as critical. This causes it to move right slightly
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Figure 9: The CAPS Explanation for Lunar Lander

because of orientation, falling until it reaches a state where it is at the same
height as the goal. From this state, it eventually transitions to states where its
left or right leg, or both, are on the ground, and it either moves up or right to
re-position itself into the goal zone, or does nothing until it has landed in the
goal.

B Heuristic Optimization: Analysis Study

We see in figure 10 that the value score decreases as graph size increases, indicat-
ing that larger graphs can represent the transition function of the environment
more effectively. Also, we see that the entropy of the cluster policy decreases as
graph size increases. This is natural since we cluster the data in part based off
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of the taken action.

(a) Heuristic Score vs. Size of CAPS Graph

(b) Cluster Policy Entropy vs. Size of CAPS Graph

(c) Value Score (Eq.2) vs. Size of CAPS Graph

Figure 10: Plots of the different heuristics used in Eq.4 versus the number of
nodes in a CAPS graph.

In figure 10c, we plot the relationship between our score heuristic and the
graph size. We observe an inflection point where the increase in accuracy is
no longer worth the extra nodes on the graph. That point is returned as the
optimal graph size.
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Figure 11: Three selected distinctive frames of an episode of the Mountain
Car RL environment that were used for the user-study. The AMT workers are
presented with a single scenario–i.e., frame, at a time.

C User-Study

C.1 Recruitment and Experimental Controls

To ensure the quality of the workers, we only recruit those who have (i) HIT
approval rate ≥ 98%, (ii) have number of HITs approved ≥ 1000, and (iii)
are classified as “master” workers by AMT–i.e., who demonstrated excellent
performance for a wide range of tasks in the past. Moreover, we also utilized
a count-down timer to ensure a minimum attention span period of 60 and 30
seconds for Q1 and Q2, respectively. To further motivate the workers to well
examine the given tasks, we instructed and gave each worker an additional +50%
of the original payment amount for each correct response to either Q1 or Q2, or
double payment amount if they correctly answer both questions. Excluding the
potential bonus, we pay each worker $10–$12/hour (v.s. 2021 federal minimum
wage of $7.25), which corresponds to a minimum commitment of 1.5 minutes
working time, up to 3 minutes for both questions. To remove possible bias, we
also ensure that the pools of workers across the tasks of different baselines are
not overlapped. We maintained the same recruitment criteria and experiment
controls as described across all baselines. Our user-study was approved by the
Institutional Review Board.

C.2 User-Study Interface

Figure 11 shows the three selected frames for the user-study with distinctive
current locations (right, left, bottom) and behaviors (moving slowly, quickly)
of the car in the Mountain Car environment. In Figure 12, given a scenario,
AMT workers are asked to identify the abstract state from an explanation graph
generated by CAPS. In Figure 13, given a scenario, AMT workers are asked
to identify the next probable action of the agent from an explanation graph
generated by CAPS. Figures 14 and 15 show the explanation graphs generated
by Topin et al. [2] and Zahavy et al [3], respectively, for the Mountain Car
environment that was used in the user-study.
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Figure 12: First question of the user-study interface on AMT on the Mountain
Car RL environment. The worker is asked to identify the abstract state (in circle
shape) from the explanation graph that corresponds with the current scenario
of car. A count-down timer is utilized to ensure a minimum attention span from
the worker before she or he moves to the next question.
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Figure 13: Second question of the user-study interface on AMT on the Mountain
Car RL environment. The worker is asked to identify the next probable action
that the RL agent would carry out given the current scenario of the car. If the
worker incorrectly answers the first question (Figure 12), she/he will be informed
with the correct abstract state of the explanation graph before answering this
question.
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Figure 14: Explanation graph generated by Topin et al. [2] for the Mountain
Car environment that was used in the user-study.
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Figure 15: Explanation graph generated by Zahavy et al. [3] for the Mountain
Car environment that was used in the user-study.
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