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Abstract—We study the problem of predicting home locations
of Twitter users using contents of their tweet messages. Using
three probability models for locations, we compare both the
Gaussian Mixture Model (GMM) and the Maximum Likelihood
Estimation (MLE). In addition, we propose two novel unsu-
pervised methods based on the notions of Non-Localness and
Geometric-Localness to prune noisy data from tweet messages.
In the experiments, our unsupervised approach improves the
baselines significantly and shows comparable results with the
supervised state-of-the-art method. For 5,113 Twitter users in the
test set, on average, our approach with only 250 selected local
words or less is able to predict their home locations (within 100
miles) with the accuracy of 0.499, or has 509.3 miles of average
error distance at best.

I. INTRODUCTION

Knowing users’ home locations in social network systems
bears an importance in applications such as location-based
marketing and personalization. In many social network sites,
users can specify their home locations along with other demo-
graphics information. However, often, users either do not pro-
vide such geographic information (for laziness or privacy con-
cern) or provide them only in inconsistent granularities (e.g.,
country, state, or city) and reliabilities. Therefore, recently,
being able to automatically uncover users’ home locations
using their social media data becomes an important problem.
In general, finding the geographic location of a user from the
user-generated contents (that are often a mass of seemingly
pointless conversations or utterances) is challenging. In this
paper, we focus on the case of Twitter users and try to
predict their city locations based on only the contents of their
tweet messages, without using other information such as user
profile metadata or network features. When such additional
information is available, we believe one can estimate user
locations with a better accuracy and will leave it as a future
work. Our problem is formalized as follows:

Problem 1 For a user u, given a set of his/her tweet messages
Tu = {t1, ..., t|Tu|}, where ti is a tweet message up to 140
characters, and a list of candidate cities, C, predict a city c (∈
C) that is most likely to be the home location of u.

Intuition behind the problem is that geography plays an
important role in our daily lives so that word usage patterns
in Twitter may exhibit some geographical clues. For example,
users often tweet about a local shopping mall where they plan

to hang out, cheer a player in local sports team, or discuss
local candidates in elections. Therefore, it is natural to take
this observation into consideration for location estimation.

A. Related Work

The location estimation problem which is also known as
geolocating or georeferencing has gained much interests re-
cently. While our focus in this paper is on using “textual” data
in Twitter, a similar task using multimedia data such as photos
or videos (along with associated tags, description, images
features, or audio features) has been explored (e.g., [11], [12],
[6], [8]). Hecht et al [5] analyzed the user location filed in user
profile and used Multinomial Naive Bayes to estimate user’s
location in state and country level.

Current state-of-the-art approach, directly related to ours, is
by [3] that use a probabilistic framework to estimate city-level
location based on the contents of tweets without considering
other geospatial clues. Their approach achieved the accuracy
on estimating user locations within 100 miles of error margin,
(at best) varying from 0.101 (baseline) to 0.498 (with local
word filtering). While their result is promising, their approach
requires a manual selection of local words for training a
classification model, which is neither practical nor reliable.
A similar study proposed by [2] took a step further by taking
the “reply-tweet” relation into consideration in addition to the
text contents. [7] approached the problem with a language
model with varying levels of granularities, from zip codes to
country levels. [4] studied the problem of matching a tweet
to an object from a list of objects of a given domain (e.g.,
restaurants) whose geolocation is known. Their study assumes
that the probability of a user tweeting about an object depends
on the distance between the user’s and the object’s locations.
The matching of tweets in turn can help decide the user’s
location. [9] studied the problem of associating a single tweet
to a tag of point of interests, e.g., club, or park, instead of
user’s home location.

Our contributions in this paper are as follows: (1) We provide
an alternative estimation via Gaussian Mixture Model (GMM)
to address the problems in Maximum Likelihood Estimation
(MLE); (2) We propose unsupervised measures to evaluate the
usefulness of tweet words for location prediction task; (3) We
compared 3 different models experimentally with proposed
GMM based estimation and local word selection methods;



and (4) We show that our approach can, using only less than
250 local words (selected by unsupervised methods), achieve a
comparable performance to the state-of-the-art that uses 3,183
local words (selected by the supervised classification based on
11,004 hand-labeled ground truth).

II. MODELING LOCATIONS OF TWITTER MESSAGES

Recently, the generative methods (e.g., [11], [7], [12]) have
been proposed to solve the proposed Problem 1. Assuming
that each tweet and each word in a tweet is generated indepen-
dently, the prediction of home city of user u given his or her
tweet messages is made by the conditional probability under
Bayes’s rule and further approximated by ignoring P (Tu) that
does not affect the final ranking as follows:

P (C|Tu) =
P (Tu|C)P (C)

P (Tu)

∝ P (C)
∏
tj∈Tu

∏
wi∈tj

P (wi|C)

where wi is a word is a tweet tj . If P (C) is estimated with the
maximum likelihood, the cities having a high usage of tweets
are likely to be favored. Another way is to assume a uniform
prior distribution among cities, also known as the language
model approach in IR, where each city has its own language
model estimated from tweet messages. For a user whose
location in unknown, then, one calculates the probabilities of
the tweeted words generated by each city’s language model.
The city whose model generates the highest probability of the
tweets from the user is finally predicted as the home location.
This approach characterizes the language usage variations over
cities, assuming that users have similar language usage within
a given city. Assuming a uniform P (C), we propose another
approach by applying Bayes rule to the P (wi|C) of above
formula and replace the products of probabilities by the sums
of log probabilities, as is common in probabilistic applications:

P (C|Tu) ∝ P (C)
∏
tj∈Tu

∏
wi∈tj

P (C|wi)P (wi)

P (C)

∝
∑
tj∈Tu

∑
wi∈tj

log(P (C|wi)P (wi)

Therefore, given C and Tu, the home location of the user u
is the city c (∈ C) that maximizes the above function as:

argmaxc∈C
∑
tj∈Tu

∑
wi∈tj

log(P (c|wi)P (wi)

Instead of estimating a language model for a city, this model
suggests to estimate the city distribution on the use of each
word, P (C|wi), which we refer to it as spatial word us-
age in this paper, and aggregate all evidences to make the
final prediction. Therefore, its capability critically depends on
whether or not there is a distinct pattern of word usage among
cities. Note that the proposed model is similar to the one used
in [3], P (C|Tu) ∝

∑
tj∈Tu

∑
wi∈tj P (C|wi)P (wi), where

the design was based on the observation rather than derived
theoretically.

The Maximum Likelihood Estimation (MLE) is a common
way to estimate P (w|C) and P (C|w). However, it suffers
from the data sparseness problem that underestimates the
probabilities of words of low or zero frequency. Various
smoothing techniques such as Dirichlet and Absolute Discount
[13] are proposed. In general, they distribute the probabilities
of words of nonzero frequency to the words of zero frequency.
For estimating P (C|w), the probability of tweeting a word in
locations where there are zero or few twitter users are likely
to be underestimated as well. In addition to these smoothing
techniques, some probability of a location can be distributed
to its neighboring locations, assuming that two neighboring
locations tend to have similar word usages. While reported
effective in other IR applications, however, the improvements
from such smoothing methods to estimate user locations have
been shown to be limited in the previous studies [11], [3].
One of our goals in this paper is therefore to propose a
better estimation for P (C|w) to improve the prediction while
addressing the spareness problem.

III. ESTIMATION WITH GAUSSIAN MIXTURE MODEL

The Backstrom model [1] demonstrated that users in a
particular location tend to query some search keywords more
often than users in other locations, especially, for some topic
words such as sport teams, city names, or newspaper. For
example, as demonstrated in [1], redsox is searched more
often in New England area than other places. In their study, the
likelihood of a keyword queried in a given place is estimated
by Sd−α, where S indicates the strength of frequency on
the local center of the query, and α indicates the speed
of decreasing when the place is d away from the center.
Therefore, the larger S and α in the model of a keyword shows
a higher local interest, indicating strong local phenomena.
While promising results are shown in their analysis with query
logs, however, this model is designed to identify the center
rather than to estimate the probability of spatial word usage
and is difficult to handle the cases where a word exhibits
multiple centers (e.g., giants for the NFL NY Giants and
the MLB SF Giants).

Therefore, to address such issues, we propose to use the
bivariate Gaussian Mixture Model (GMM) as an alternative
to model the spatial word usage and to estimate P (C|w).
GMM is a mature and widely used technique for clustering,
classification, and density estimation. It is a probability density
function of a weighted sum of a number of Gaussian compo-
nents. Under this GMM model, we assume that each word
has a number of centers of interests where users tweet it more
extensively than users in other locations, thus having a higher
P (c|w), and that the probability of a user in a given location
tweeting a word is influenced by the word’s multiple centers,
the magnitudes of the centers, and user’s geographic distances
to those centers. Formally, using GMM, the probability of a
city c on tweeting a word w is:

P (c|w) =

K∑
i=1

πiN(c|µi,Σi)
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Fig. 1. Results of GMM estimation on selected words in Twitter data set.

where each N(c|µi,Σi) is a bivariate Gaussian distribution
with the density as:

1

2π|Σi|1/2
exp

{
−1

2
(c− µi)TΣ−1

i (c− µi)
}

where K is the number of components and
∑K
i=1 πi = 1.

To estimate P (C|w) with GMM, each occurrence of the
word w is seen as a data point (lon, lat), the coordinate
of the location where the word is tweeted. In other words,
if a user has tweeted phillies 3 times, there are 3 data
points (i.e., (lon, lat)) of the user location in the data set to
be estimated by GMM. Upon convergence, we compute the
density for each city c in C, and assign it as the P (c|w).
In the GMM-estimated P (C|w), the mean of a component
is the hot spot (i.e., center) of tweeting the word w, while
the covariance determines the magnitude of a center. Similar
to the Backstrom model, the chance of tweeting a word
w decreases exponentially away from the centers. Unlike
the Backstrom model, however, GMM easily generalizes to
multiple centers and considers the influences under different
centers (i.e., components) altogether. Furthermore, GMM is
computationally efficient since the underlying EM algorithm
generally converges very quickly. Compared to MLE, GMM
may yield a high probability on a location where there are few
Twitter user, as long as the the location is close to a hot spot.
It may also assign a low probability to locations with high
frequency of tweeting a word if that location is far way from
all the hot spots. On the other hand, GMM-based estimation
can be also viewed as a radical geographic smoothing such
that neighboring cities around the centers are favored.

Example 1. In Fig. 1(a), we show the contour lines of log-
likelihood of a GMM estimation with 3 components (i.e.,
K = 3) on the word phillies which has been tweeted
1,370 times from 229 cities in Twitter data set (see Section V).
A black circle in the map indicates a city, where radius is
proportional to the frequency of phillies being tweeted
by users in the city. The corresponding centers are plotted
as blue triangles. Note that there is a highly concentrated
cluster of density around the center in northeast, close to
Philadelphia, which is the home city of phillies. The other
two centers and their surrounding areas have more low and
diluted densities. Note that GMM works well in clustering
probabilities around the location of interests with the evidences

of tweeting location, even if the number of components (K) is
not set to the exact number of centers. Sometimes, there might
be more than one distinct cluster in a city distribution for a
word. For example, giants is a name of a NFL team (i.e.,
New York Giants) as well a MLB team (i.e., San Francisco
Giants). Therefore, it is likely to be often mentioned by Twitter
users from both cities. As shown in Fig. 1(b), the two highest
peaks are close to both cities. The peak near New York city
has a higher likelihood than that near San Francisco, indicating
giants is a more popular topic for users around New York
city area. In Fig. 1(c), finally, we show that GMM can be quite
effective in identifying the location of interests by selecting the
highest peaks for various sport teams in US. 2

As shown in Example 1, in fitting the spatial word usage
with GMM, if a word has strong patterns, one or more major
clusters are likely be formed and centered around the locations
of interests with highly concentrated densities. If two close
locations are both far away from the major clusters, their
probabilities are likely to be smoothed out to a similar and low
level, even if they are distinct in actual tweeted frequencies.

IV. UNSUPERVISED SELECTION OF LOCAL WORDS

[3] made an insightful finding that in estimating locations
of Twitter users, using only a selected set of words that
show strong locality (termed as local words) instead of using
entire corpus can improve the accuracy significantly (e.g., from
0.101 to 0.498). Similarly, we assumed that words have some
locations of interests where users tend to tweet extensively.
However, not all words have a strong pattern. For example,
if a user tweets phillies and libertybell frequently,
the probability for Philadelphia to be her home location is
likely to be high. On the other hand, even if a user tweets
words like restaurant or downtown often, it is hard to
associate her with a specific location. That is because such
words are commonly used and their usage will not be restricted
locally. Therefore, excluding such globally occurring words
would likely to improve overall performance of the task.

In particular, in selecting local words from the corpus,
[3] used a supervised classification method. They manually
labeled around 19,178 words in a dictionary as either local
or non-local and used parameters (e.g., S, α) from the Back-
storm’s model and the frequency of a word as features to build
a supervised classifier. The classifier then determines whether



Fig. 2. The occurrences of the stop word for in Twitter data set.

other words in the data set are local. Despite the promising
results, we believe that such a supervised selection approach
is problematic–i.e., not only their labeling process to manually
create a ground truth is labor intensive and subject to human
bias, it is hard to transfer labeled words to new domain or data
set. Moreover, the dictionary used in labeling process might
not differentiate the evidences on different forms of a word.
For example, the word bears (i.e., name of an NFL team) is
likely to be a local word, while the word bear might not be.
As a result, we believe that a better approach is to automate
the process (i.e., unsupervision) such that the decision on the
localness of a word is made only by their actual spatial word
usage, rather than their semantic meaning being interpreted by
human labelers. Toward this challenge, in the following, we
propose two unsupervised methods to select a set of “local
words” from a corpus using the evidences from tweets and
their tweeter locations directly.

A. Finding Local Words by Non-Localness: NL

Stop words such as the, you, or for are in general
commonly used words that bear little significance and con-
sidered as noises in many IR applications such as search
engine or text mining. For instance, compare Fig. 2 showing
the frequency distribution for the stop word for to Fig. 1
showing that for word with strong local usage pattern like
giants. In Fig. 2, one is hard to pinpoint a few hotspot
locations for for since it is globally used.In the location
prediction task, as such, the spatial word usage of these stop
words shows a somewhat uniform distributions adjusted to
the sampled data set. As an automatic way to filter noisy
non-local words out from the given corpus, therefore, we
propose to use the stop words as counter examples. That
is, local words tend to have the farthest distance in spatial
word usage pattern to stop words. We first estimate a spatial
word usage p(C|w) for each word as well as stop words.
The similarity of two words, wi and wj , can be measured by
the distance between two probability distributions, p(C|wi)
and p(C|wj). We consider two divergences for measuring the
distance: Symmetric Kullback-Leibler divergence (simSKL)
and Total Variation (simTV ):

simSKL(wi, wj) =
∑
c∈C

P (c|wi) ln
P (c|wi)

P (c|wj)
+ P (c|wj) ln

P (c|wj)

P (c|wi)

simTV (wi, wj) =
∑
c∈C

|P (c|wi)− P (c|wj)|

For a given stop word list S = {s1, ..., s|S|}, we then
define the Non-Localness, NL(w), of a word w as the average
similarity of w to each stop word s in S, weighted by the
number of occurrences of s (i.e., frequency of s, freq(s)) :

NL(w) =
∑
s∈S

sim(w, s)
freq(s)∑

s′∈S

freq(s′)

From the initial tweet message corpus, finally, we can rank
each word wi by its NL(wi) score in ascending order and
use top-k words as the final “local” words to be used in the
prediction.

B. Finding Local Words by Geometric-Localness: GL

Intuitively, if a word w has: (1) a smaller number of
cities with high probability scores (i.e., only a few peaks),
and (2) smaller average inter-city geometric distances among
those cities with high probability scores (i.e., geometrically
clustered), then one can view w as a local word. That is, a
local word should have a high probability density clustered
within a small area. Therefore, based on these observations,
we propose the Geometric-Localness, GL, of a word w:

GL(w) =

∑
c′i∈C′

P (c′i|w)

|C ′|2
∑

geo-dist(cu,cv)
|{(cu,cv)}|

where geo-dist(cu, cv) measures the geometric distance in
miles between two cities cu and cv . Suppose one sort cities
c (∈ C) according to P (c|w). Using a user-set threshold
parameter, r (0 < r < 1), then, one can find a sub-list
of cities C ′ = (c′1, ..., c

′
|C′|) s.t. P (c′i|w) ≥ P (c′i+1|w) and∑

c′i∈C′ P (c′i|w) ≥ r. In the formula of GL(w), the numerator
then favors words with a few “peaky” cities whose aggregated
probability scores satisfy the threshold r. The denominator in
turn indicates that GL(w) score is inversely proportional to the
number of “peaky” cities (i.e., |C ′|2) and their average inter-
distance (i.e.,

∑
geo-dist(cu,cv)
|{(cu,cv)}| ). From the initial tweet message

corpus, finally, we rank each word wi by its GL(wi) score
in descending order and use top-k words as the final “local”
words to be used in the prediction.

V. EXPERIMENTAL VALIDATION

A. Set-Up

For validating the proposed ideas, we used the same Twitter
data set collected and used by [3]. This data set was originally
collected between Sep. 2009 and Jan. 2010 by crawling
through Twitter’s public timeline API as well as crawling
by breadth-first search through social edges to crawl each
user’s followees/followers. The data set is further split into
training and test sets. The training set consists of users whose
location is set in city levels and within the US continental,
resulting in 130,689 users with 4,124,960 tweets. The test set
consists of 5,119 active users with around 1,000 tweets from
each, whose location is recorded as a coordinate (i.e., latitude
and longitude) by GPS device, a much more trustworthy data
than user-edited location information. In our experiments, we



TABLE I
BASELINE RESULTS USING DIFFERENT MODELS.

Probability Model ACC AED
(1)

∑∑
log(P (c|wi)P (wi)) 0.1045 1,760.4

(2)
∑∑

P (c|wi)P (wi) 0.1022 1,768.73
(3)

∑∑
logP (wi|c) 0.1914 1,321.42

TABLE II
RESULTS OF MODEL (1) ON GMM WITH VARYING # OF COMPONENTS K .

K 1 2 3 4 5
ACC 0.0018 0.025 0.3188 0.2752 0.2758
AED 958.94 1785.79 700.28 828.71 826.1
K 6 7 8 9 10

ACC 0.2741 0.2747 0.2739 0.2876 0.3149
AED 830.62 829.14 830.33 786.34 746.75

considered only 5,913 US cities with more than 5,000 of
population in Census 2000 U.S. Gazetteer. Therefore, the
problem that we experimented is to correctly predict one
city out of 5,913 candidates as the home location of each
Twitter user. We preprocess the training set by removing non-
alphabetic characters (e.g., “@”) and stop words, and selects
the words of at least 50 occurrences, resulting in 26,998
unique terms at the end in our dictionary. No stemming
is performed since singular and plural forms may provide
different evidences as discussed in Section IV. Data sets and
codes that we used in the experiments are publicly available
at: http://pike.psu.edu/download/asonam12/.

To measure the effectiveness of estimating user’s home
location, we used the following two metrics also used in the
literature [3], [2], [11]. First, the accuracy (ACC) measures
the average fraction of successful estimations for the given
user set U : ACC = |{u|u∈U and dist(Loctrue(u),Locest(u))≤d}|

|U | .
The successful estimation is defined as when the distance of
estimated and ground-truth locations is less than a threshold
distance d. Like [3], [2], we use d = 100 (miles) as the
threshold. Second, for understanding the overall margins of
errors, we use the average error distance (AED) as: AED =∑

u∈U dist(Loctrue(u),Locest(u))

|U | .
B. Baselines

In Section 2, we compared three different models as
discussed in Sec II to understand the impact of selecting
the underlying probability frameworks. Table I presents the
results of different models for location estimation. All the
probabilities are estimated with MLE using all words in our
dictionary. The baseline Models (1) and (2) (proposed by [3])
utilize the spatial word usage idea, and have around 0.1 of
ACC and around 1,700 miles in AED. The Model (3), a
language model approach, shows a much improved result–
about two times higher ACC and AED with 400 miles less.
These results are considered as baselines in our experiments.

C. Prediction with GMM Based Estimation

Next, we study the impact of the proposed GMM estima-
tion1 for estimating locations. In general, the results using

1Using EM implementation from scikit-learn, http://scikit-learn.org
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Fig. 3. Results with local words selected by Non-Localness (NL) on MLE
estimation (X-axis indicates # of top-k local words used).

GMM shows much improvements over baseline results of
Table I. Table II shows the results using Model (1) whose
probabilities are estimated by GMM with different # of
components K, using all the words in the corpus. Except the
cases with K = 1 and K = 2, all GMM based estimations
show substantial improvements over MLE based ones, where
the best ACC (0.3188) and AED (700.28 miles) are achieved
at K = 3. Although the actual # of locations of interests
varies for each word, in general, we believe that the words
that have too many location of interests are unlikely to make
contribution to the prediction. That is, as K becomes large,
the probabilities are more likely to be distributed, thus making
the prediction harder. Therefore, in subsequent experiments,
we focus on GMM with a small # of components.

D. Prediction with Unsupervised Selection of Local Words

We attempt to see if the “local words” idea first proposed
in [3] can be validated even when local words are selected
in the unsupervised fashion (as opposed to [3]’s supervised
approach). In particular, we validate with two unsupervised
methods that we proposed on MLE estimation.

1) Non-Localness (NL): In measuring NL(w) score of a
word w, we use the English stop word list from SMART
system [10]. A total of 493 stop words (out of 574 in the
original list), roughly 1.8% of all terms in our dictionary,
occurred about 23M times (52%) in the training data. Due to
their common uses in the corpus, such stop words are viewed
as the least indicative of user locations. Therefore, NL(w)
measures the degree of similarity of w to average probability
distributions of 493 stop words. Accordingly, if w shows the
most dissimilar spatial usage pattern, i.e. P (C|w), from those
of stop words, then w is considered to be a candidate local
word. The ACC and AED (in miles) results are shown in
Fig. 3, as a function of the # of local words used (i.e., chosen
as top-k when sorted by NL(w) scores). In summary, Model
(2) shows the best result of ACC (0.43) and AED (628 miles)
with 3K local words used, a further improvement over the
best result by GMM in Section V-C of ACC (0.3188) and
AED (700.28 miles). Model (1) has a better ACC but a worse
AED than Model (3) has. In particular, local words chosen
using simTV as the similarity measure outperforms simSKL

for all three Models.
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2) Geometric-Localness (GL): Our second approach selects
a word w as a local word if w yields only a small number
of cities with high probability scores (i.e., only a few peaks)
and a smaller average inter-city geometric distances. Fig. 4(a)
and (b) show the ACC and AED of three probability models
using either r = 0.1 and r = 0.5. The user-set parameter r
(=
∑
c′i∈C′ P (c′i|w)) of GL(w) formula indicates the sum of

probabilities of top candidate cities C ′. Overall, all variations
show similar behavior, but in general, Model (2) based vari-
ations outperform Model (1) or (3) based ones. Model (2) in
particular achieves the best performance of ACC (0.44) and
AED (600 miles) with r = 0.5 and 2K local words. Note that
this is a further improvement over the previous case using
NL as the automatic method to pick local words–ACC (0.43)
and AED (628 miles) with 3K local words. Fig. 4(c) and (d)
show the impact of r in GL(w) formula, in X-axis, with the
number of local words used fixed at 2K and 3K. In general,
GL shows the best results when r is set to the range of 0.4
– 0.6. In particular, Model (2) is more sensitive to the choice
of r than Models (1) and (3). In general, we found that GL
slightly outperforms NL in both ACC and AED metrics.

E. Prediction with GMM and Local Words

In previous two sub-sections, we show that both GMM
based estimation with all words and MLE based estimation
with unsupervised local word selection are effective, compared
to baselines. Here, further, we attempt to improve the result
by combining both approaches to have unsupervised local
word selection on the GMM based estimation. We first use
the GMM to estimate P (C|w) with K = 3, and calculate
both NL(w) and GL(w) using P (C|w). Finally, we use the
top-k local words and their P (C|w) to predict user’s location.
Since Model (3) makes a prediction with P (W |C) rather than
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Fig. 5. Results with local words selected by Non-Localness (NL) on GMM
estimation (X-axis indicates # of top-k local words used).

TABLE III
EXAMPLES OF CORRECTLY ESTIMATED CITIES AND CORRESPONDING

TWEET MESSAGES (LOCAL WORDS ARE IN BOLD FACE).

Est. City Tweet Message

Los Angeles
i should be working on my monologue for my au-
dition thursday but the thought of memorizing some-
thing right now is crazy

Los Angeles

i knew deep down inside ur powell s biggest fan p
lakers will win again without kobe tonight haha if
morisson leaves lakers that means elvan will not be
rooting for lakers anymore

New York

the march vogue has caroline trentini in some awe-
some givenchy bangles i found a similar look for less
an intern from teen vogue fashion dept just e mailed
me asking if i needed an assistant aaadorable

P (C|W ), GMM based estimation cannot be used for Model
(3), and thus is not compared. Due to the limitation of space,
we report the best case using NL(w) in Fig 5. Model (1)
generally outperforms Model (2) and achieves the best result
so far for both ACC (0.486) and AED (583.2 miles) with
simTV using 2K local words. While details are omitted, it is
worthwhile to note that when used together with GMM, NL
in general outperforms GL, unlike when used with MLE.

Table III illustrates examples where cities are predicted
successfully by using NL-selected local words and with
GMM-based estimation. Note that words such as audition
(i.e., the Hollywood area is known for movie industries) and
kobe (i.e., name of the basketball player based in the area)
are a good indicator of the city of the Twitter user.

In summary, overall, Model (1) shows a better performance
with GMM while Model (2) with MLE as the estimation
model. In addition, Model (1) usually uses less words to
reach the best performance than Model (2) does. In terms of
selecting local words, NL works better than GL in general,
with simTV in particular. In contrast, the best value of r
depends on the model and the estimation method used. The
best result for each model is summarized in Table IV while
further details on different combinations of those best results
for Models (1) and (2) are shown Fig. 6.

TABLE IV
SUMMARY OF BEST RESULTS OF PROBABILITY AND ESTIMATION MODELS.

Model Estimation Measure Factor #word ACC AED
(1) GMM NL simTV 2K 0.486 583.2
(2) MLE GL r = 0.5 2K 0.449 611.6
(3) MLE GL r = 0.1 2.75K 0.323 827.8
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F. Smoothing vs. Feature Selection

The technique to simultaneously increase the probability
of unseen terms (that cause the sparseness problem) and
decrease that of seen terms is referred to as smoothing. While
successfully applied in many IR problems, in the context of
location prediction problem from Twitter data, it has been
reported that smoothing has very little effect in improving
the accuracy [11], [3]. On the other hand, as reported in [3],
feature selection seems to be very effective in solving the
location prediction problem. That is, instead of using the
entire corpus, [3] proposed to use a selective set of “local
words” only. Through the experiments, we validated that the
feature selection idea via local words is indeed effective. For
instance, Fig. 6 shows that our best results usually occur
when around 2,000 local words (identified by either NL or
GL methods), instead of 26,998 original terms, are used in
predicting locations. Having a reduced feature set is beneficial,
especially in terms of speed. For instance, with Model (1)
estimated by MLE, using 50, 250, 2,000, and 26,999 local
words, it took 27, 32, 50, and 11,531 seconds respectively to
finish the prediction task. In general, if one can get comparable
results in ACC and AED, solutions with a smaller feature set
(i.e., less number of local words) are always preferred. As
such, in this section, we report our exploration to reduce the
number of local words used in the estimation even further.

Figs. 4–6 all indicate that both ACC and AED (in all
settings) improve in proportion to the size of local words up to
2K–3K range, but deviate afterwards. In particular, note that
those high-ranked words within top-300 (according to NL or
GL measures) may be good local words but somehow have
limited impact toward overall ACC and AED. For instance,
using GMM as the estimation model, GL yields the follow-
ing within the top-10 local words: {windstaerke, prazim,
cnen}. Upon inspection, however, these words turn out to
be Twitter user IDs. These words got high local word scores
(i.e., GL) probably because their IDs were used in re-tweets
or mentioned by users with a strong spatial pattern. Despite
their high local word scores, however, their usage in the entire
corpus is relatively low, limiting their overall impact. Similarly,
using MLE as the estimation mode, NL found the followings
at high ranks: {je, und, kt}. These words are Dutch (thus not
filtered in preprocessing) and heavily used in only a few US
towns2 of Dutch descendants, thus exhibiting a strong locality.

2Nederland (Texas), Rotterdam (New York), and Holland (Michigan)

TABLE V
PREDICTION WITH REDUCED # OF LOCAL WORDS BY FREQUENCY.

(a) Model (1), GMM, NL

Number of local words used
50 100 150 200 250

ACC Top 2K 0.433 0.447 0.466 0.476 0.499
Top 3K 0.446 0.449 0.444 0.445 0.446

AED Top 2K 603.2 599.6 582.9 565.7 531.1
Top 3K 509.3 567.7 558.9 539.9 536.5

(b) Model (1), MLE, GL

Number of local words used
50 100 150 200 250

ACC Top 2K 0.354 0.382 0.396 0.419 0.420
Top 3K 0.397 0.400 0.399 0.403 0.416

AED Top 2K 771.7 761.0 760.3 730.6 719.8
Top 3K 806.2 835.1 857.5 845.9 822.3

(c) Model (3), MLE, GL

Number of local words used
50 100 150 200 250

ACC Top 2K 0.2227 0.276 0.315 0.336 0.343
Top 3K 0.301 0.366 0.385 0.401 0.408

AED Top 2K 743.9 663.3 618.5 577.7 570.3
Top 3K 620.7 565.6 535.1 510.8 503.3

However, again, their overall impact is very limited due to the
rarity outside those towns. From these observations, therefore,
we believe that both localness as well as frequency information
of words must be considered in ranking local words.

Informally, score(w) = λ localness(w)
∆l

+ (1−λ) frequency(w)
∆f

,
where ∆l and ∆f are normalization constants for
localness(w) and frequency(w) functions, and λ controls
the relative importance between localness and frequency of
w. The localness of w can be calculated by either NL or
GL, while frequency of w can be done using IR methods
such as relative frequency or TF-IDF. For simplicity, in
this experiments, we implemented the score() function in
two-steps: (1) we first select base 2,000 or 3,000 local words
by NL or GL method; and (2) next, we re-sort those local
words based on their frequencies. Table V shows the results
of ACC and AED using only a small number (i.e., 50–250) of
top-ranked local words after re-sorted based on both localness
and frequency information of words. Note that using only
50–250 local words, we are able to achieve comparable ACC
and AED to the best cases of Table IV that use 2,000–3,000
local words. The improvement is the most noticeable for
Model (1). The results show the quality of the location
prediction task may rely on a small set of frequently-used
local words.

Table VI shows top-30 local words with GMM, when re-
sorted by frequency, from 3,000 NL-selected words. Note that
most of these words are toponyms, i.e., names of geographic
locations, such as nyc, dallas, and fl. Others include the
names of people, organizations or events that show a strong
local pattern with frequent usage, such as obama, fashion,
or bears. Therefore, it appears that toponyms are important
in predicting the locations of Tweeter users. Interestingly, a
previous study in [11] showed that toponyms from image
tags were helpful, though not significantly, in predicting the



TABLE VI
TOP-30 FREQUENCY-RESORTED LOCAL WORDS (GMM, NL).

la nyc hiring dallas francisco
obama fashion atlanta houston denver

san diego sf austin est
chicago los seattle hollywood yankees

york boston washington angeles bears
ny miami dc fl orlando

TABLE VII
PREDICTION WITH ONLY TOPONYMS.

Number of toponyms used
50 200 400

ACC
Model (1) 0.246 0.203 0.115
Model (2) 0.306 0.291 0.099
Model (3) 0.255 0.347 0.330

AED
Model (1) 1202.7 1402.7 1719.7
Model (2) 741.9 953.5 1777.4
Model (3) 668.2 512.4 510.1

location of the images. Table VII shows the results using city
names with the highest population in U.S. gazetteer as the
“only” features for predicting locations (without using other
local words). Note that performances are all improved with all
three models, but are not good as those in Table V. Therefore,
we conclude that using toponyms in general improve the
prediction of locations, but not all toponyms are equally
important. Therefore, it is important to find critical local words
or toponyms using our proposed NL or GL selection methods.
It further justifies that such a selection needs to be made from
the evidences in tweet contents and user location, rather based
on semantic meanings or types of words (as [3] did).

G. Discussion on Parameter Settings

First, same as the setting in literature, we used d = 100
(miles) in computing ACC–i.e., if the distance between the
estimated city and ground truth city is less than 100 miles,
we consider the estimation to be correct. Fig. 7(a) shows that
ACC as a function of d using the best configuration (Model
(1), GMM, NL) with 50 and 250 local words, respectively.
Second, the test set that we used in experiments consists of
a set of active users with around 1K tweets, same setting
as [3] for comparison. Since not all Twitter users have that
many tweets, we also experiment using different portion of
tweet messages per user. That is, per each user in the test set,
we randomly select from 1% to 90% of tweet messages to
predict locations. The average results from 10 runs are shown
in Fig. 7(b). While we achieve ACC (shown in left Y-axis)
of 0.104 using 1% (10 tweets) per user, it rapidly improves
to 0.2 using 3% (30 tweets), and 0.3 using 7% (70 tweets).
Asymmetrically, AED (shown in right Y-axis) decreases as
tweets increases.

VI. CONCLUSION

In this paper, we aim to improve the quality of predicting
Twitter user’s home location under probability frameworks.
We proposed a novel approach to estimate the spatial word
usage probability with Gaussian Mixture Models. We also
proposed unsupervised measurements to rank the local words
which effectively remove the noises that are harmful to the
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prediction. We show that our approach can, using less than
250 local words selected by proposed methods, achieve a com-
parable or better performance to the state-of-the-art that uses
3,183 local words (selected by the supervised classification
based on 11,004 hand-labeled ground truth).
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