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Abstract—Personalized recommendation based on multi-arm
bandit (MAB) algorithms has shown to lead to high utility
and efficiency as it can dynamically adapt the recommendation
strategy based on feedback. However, unfairness could incur in
personalized recommendation. In this paper, we study how to
achieve user-side fairness in bandit based recommendation. We
formulate our fair personalized recommendation as a modified
contextual bandit and focus on achieving fairness on the individ-
ual whom is being recommended an item as opposed to achieving
fairness on the items that are being recommended. We introduce
a metric that captures the fairness in terms of rewards received
for both the privileged and protected groups. We develop a fair
contextual bandit algorithm, Fair-LinUCB, that improves upon
the traditional LinUCB algorithm to achieve group-level fairness
of users. Our algorithm detects and monitors unfairness during
personalized online recommendation. We provide a theoretical
regret analysis and show that our algorithm has a slightly higher
regret bound than LinUCB. We conduct numerous experimental
evaluations to compare the performances of our fair contextual
bandit to that of LinUCB and show that our approach achieves
group-level fairness while maintaining a high utility.

Index Terms—Contextual Bandit, Fairness, Online Recommen-
dation

I. INTRODUCTION

Personalized recommendation based on multi-arm bandit
(MAB) algorithms has become a popular topic of research.
However, it is also known that such personalization could
incur biases or even discrimination. Recently researchers have
started taking fairness and discrimination into consideration
in the design of MAB based personalized recommendation
algorithms [1]–[3]. However, they focused on the fairness
of the recommended items (e.g., services provided by small
or large companies) instead of the customers who received
those items. In this paper, we study how to achieve the user-
side fairness in the classic contextual bandit algorithm. The
contextual bandit framework [4], which is used to sequentially
recommend items to a customer based on her contextual in-
formation, is able to fit user preferences, address the cold-start
problem by balancing the exploration and exploitation trade-
off in recommendation systems, and simultaneously adapt the
recommendation strategy based on feedback to maximize the
customer’s learning performance. However, such a personal-
ized recommendation system could induce an unfair treatment
of certain customers which could lead to discrimination. We
develop a novel fairness aware contextual bandit algorithm
such that customers will be treated fairly in personalized

learning. Our work is different from existing work of fair
bandit-based recommendation, e.g., [1]–[3], [5], [6], which
requires some fairness constraint on arms at every round of
the learning process.

We train our fair contextual bandit algorithm to detect
discrimination, that is, whether or not a group of customers
is being privileged in terms of reward received. Our fair
contextual bandit algorithm then measures to what degree each
of the items (arms in bandits) contributes to the discrimination.
Furthermore, in order to counter the discrimination, if any,
we introduce a fairness penalty factor. The goal of this
penalty factor is to maintain a balance between fairness and
utility, by ensuring that the arm picking strategy will not
incur discrimination whilst achieving good utility. Finally, we
compare our algorithm against the traditional LinUCB both
theoretically and empirically and we show that our approach
not only achieves group-level fairness in terms of reward, but
also yields comparable effectiveness.

Overall, our contributions are three-fold. First, we develop a
fairness aware contextual bandit algorithm that achieves user-
side fairness in terms of reward and is robust against factors
that would otherwise increase or incur discrimination. Second,
we provide a theoretical regret analysis to show that our
algorithm has a regret bound higher than LinUCB up to only
an additive constant. Third, we conduct comprehensive exper-
iment evaluations and report comparisons against baselines in
terms of fairness-utility trade-off and effects of various factors
and hyper parameters on the performance of our algorithm.

II. RELATED WORK

Recently researchers have started taking fairness and dis-
crimination into consideration in the design of MAB based
personalized recommendation algorithms [1]–[3], [5]–[10].
Among them, [5] was the first paper of studying fairness
in classic and contextual bandits. It defined fairness with
respect to one-step rewards introduced a notion of meritocratic
fairness, i.e., the algorithm should never place higher selection
probability on a less qualified arm (e.g., job applicant) than on
a more qualified arm. This was inspired by equal treatment,
i.e., similar people should be treated similarly. The following
works along this direction include [6] for infinite and contex-
tual bandits, [7] for reinforcement learning, [2] for the simple
stochastic bandit setting with calibration based fairness. In
[11], the authors studied the problem of learning fair stochastic
multi-armed bandit where each arm is required to be pulled for978-1-6654-3902-2/21/$31.00 c©2021 IEEE



at least a given fraction of the total available rounds. In [12],
the authors studied fairness in the setting that multiple arms
can be simultaneously played and an arm could sometimes be
sleeping. [13] used an unknown Mahalanobis similarity metric
from some weak feedback that identifies fairness violations
through an oracle rather than adopting a quantitative fairness
metric over individuals. The fairness constraint requires that
the difference between the probabilities that any two actions
are taken is bounded by the distance between their contexts.
In [14], the authors mainly focused on fairness from the arm
perspective. Fairness is defined as a minimum rate that a task
or a resource is assigned to a user in their context, which
means the probability of each arm being pulled should be
larger than a threshold for each time. Similarly, [15] also
focused on fairness on the recommended items, i.e., arms.
Specifically, they aimed to ensure that each arm is pulled at
least a pre-specified fraction of times throughout all times.
In [16], the authors used causal inference techniques with
counterfactual estimation to propose recommendation policies
that jointly optimize the relevance of recommendation and the
supplier fairness. All the above papers require some fairness
constraint on arms at every round of the learning process,
which is different from our user-side fairness setting.

III. PRELIMINARY

Throughout this paper, we use bold letters to denote a vector.
We use ||x||2 to define the L-2 norm of a vector x ∈ Rd. For
a positive definite matrix A ∈ Rd×d, we define the weighted
2-norm of x ∈ Rd to be ||x||A =

√
xTAx.

We use the linear contextual bandit [17] as one baseline
model for our personalized recommendation. In the linear
contextual bandit, the reward for each action is an unknown
linear function of the contexts. Formally, we model the
personalized recommendation as a contextual multi-armed
bandit problem, where each user u is a “bandit player”, each
potential item a ∈ A is an arm and k is the number of item
candidates. At time t, there is a coming user u. For each item
a ∈ A, its contextual feature vector xt,a ∈ Rd represents
the concatenation of the user and the item feature vectors.
The algorithm takes all contextual feature vectors as input,
recommends an item at ∈ A and observes the reward rt,at

,
and then updates its item recommendation strategy with the
new observation (xt,at

, at, rt,at
). During the learning process,

the algorithm does not observe the reward information for
unchosen items.

The total reward by round t is defined as
∑

t rt,at
and the

optimal expected reward as E[
∑

t rt,a∗ ], where a∗ indicates
the best item that can achieve the maximum reward at time t.
We aim to train an algorithm so that the maximum total reward
can be achieved. Equivalently, the algorithm aims to minimize
the regret R(T ) = E[

∑
t rt,a∗ ] − E[

∑
t rt,at

]. The contextual
bandit algorithm balances exploration and exploitation to
minimize regret since there is always uncertainty about the
user’s reward given the specific item.

We adopt the idea of upper confidence bound (UCB) for
our personalized recommendation and use the classic Lin-

UCB algorithm as introduced by [18]. LinUCB assumes the
expected reward is linear in its d-dimensional features xt,a

with some unknown coefficient vector θ∗a. Formally, for all
t, we have the expected reward at time t with arm a as
E[rt,a|xt,a] = θ∗Ta xt,a. Here the dot product of θ∗a and xt,a

could also be succinctly expressed as 〈θ∗a,xt,a〉. At each round
t, we observe the realized reward rt,a = 〈θ∗a,xt,a〉+ εt where
εt is the noise term.

Basically, LinUCB applies ridge regression technique to
estimate the true coefficients. Let Da ∈ Rma×d denote the
context of the ma historical observations when arm a is
selected and ra ∈ Rma denote the relative rewards. The
regularised least-square estimator for θa is expressed as:

θ̂a = arg min
θ∈Rd

(
ma∑
i=1

(ri,a − 〈θ, Da(i, :)〉)2 + λ||θ||22

)
(1)

where λ is the penalty factor of the ridge regression. The
solution to Equation 1 is:

θ̂a = (DT
aDa + λId)−1DT

a ra (2)

[18] derived a confidence interval that contains the true
expected reward with probability at least 1− δ:∣∣∣θ̂Ta xt,a − E[rt,a|xt,a]

∣∣∣ ≤ α√xT
t,a(DT

aDa + λId)xt,a

for any δ > 0, where α = 1 +
√
ln(2/δ)/2 . Following the

rule of optimism in the face of uncertainty for linear bandits
(OFUL), this confidence bound leads to a reasonable arm-
selection strategy: at each round t, pick an arm by

at = argmaxa∈At

(
θ̂Ta xt,a + α

√
xT
t,aA

−1
a xt,a

)
(3)

The parameter λ could be tuned to a suitable value in order
to improve the algorithm’s performance. The arm-related ma-
trices Aa = DT

aDa +λId and ba = DT
a ra are then iteratively

updated. In the remaining content we will denote the weighted
2-norm

√
xT
t,aA

−1
a xt,a as ||xt,a||A−1

a
for the sake of simplicity.

IV. FAIR CONTEXTUAL BANDITS

A. Problem formulation

We define a sensitive attribute S ∈ xt,a with domain
values {s+, s−} where s+ (s−) is the value of the privileged
(protected) group. Let Ts denote a time index subset such
that the users being treated at time points in Ts all hold
the same sensitive attribute value s. We introduce the group-

level cumulative mean reward (cmr) as r̄s =
1

|Ts|
∑

t∈Ts
rt,a.

Specifically, r̄s
+

denotes the cumulative mean reward of the
individuals with sensitive attribute S = s+, and r̄s

−
denotes

the cumulative mean reward of all individuals having the
sensitive attribute S = s−.

We define the group fairness in contextual bandits as
E[r̄s

+

] = E[r̄s
−

], more specifically, the expected mean re-
ward of the protected group and that of the unprotected
group should be equal. A recommendation algorithm incurs



group-level unfairness in regards to a sensitive attribute S if
|E[r̄s

+

] − E[r̄s
−

]| > τ where τ ∈ R+ reflects the tolerance
degree of unfairness.

B. Fair-LinUCB algorithm

We describe our fair LinUCB algorithm and show its
pseudo code in Algorithm 1. The key difference from the
traditional LinUCB is the strategy of choosing an arm during
recommendation (shown in Line 12 of Algorithm 1). In the
remaining of this section, we explain how this new strategy
achieves user-side group-level fairness.

Algorithm 1 Fair-LinUCB

1: Input: α , γ ∈ R+

2: r̄s
+

, r̄s
− ← 0

3: for t = 1,2,3,..., T do
4: Observe features of all arms a ∈ At : xt,a ∈ Rd

5: for a ∈ At do
6: if a is new then
7: Aa ← λId (d-Dimension identity matrix)
8: ba ← 0d×1 (d-Dimension zero vector)
9: r̄s

+

a , r̄s
−

a ← 0
10: end if
11: θ̂a ← A−1a ba

12: pt,a ← θ̂Ta xt,a + α||xt,a||A−1
a

+ L(γ, Fa)

13: end for
14: Choose arm at = argmaxa∈At

pt,a with ties broken
arbitrarily, and observe a real-valued payoff rt,at

15: Aa ← Aa + xt,atx
T
t,at

16: ba ← ba + rt,atxt,at

17: if St = s+ then
18: update r̄s

+

, r̄s
+

a with rt,at

19: else
20: update r̄s

−
, r̄s

−

a with rt,at

21: end if
22: end for

Given a sensitive attribute S with domain values {s+, s−},
the goal of our fair contextual bandit is to minimize the
cumulative mean reward difference between the protected
group and the privileged group while preserving its efficiency.
Note that Fair-LinUCB can be extended to the general setting
of multiple sensitive attributes Sj ∈ S = {S1, S2, ..., Sl}
where S ⊂ xt,a and each Sj can have multiple domain values.
In order to measure the unfairness at the group-level, our
Fair-LinUCB algorithm will keep track of both cumulative
mean rewards along the time, e.g., r̄s

+

and r̄s
−

. We capture
the orientation of the bias (i.e., towards which group the
bias is leaning) through the sign of the cumulative mean
reward difference. By doing so, Fair-LinUCB is able to know
which group is being discriminated and which group is being
privileged.

When running context bandits for recommendation, each
arm may generate a reward discrepancy and therefore con-
tribute to the unfairness to some degree. Fair-LinUCB captures

the reward discrepancy at the arm level by keeping track
of the cumulative mean reward generated by each arm a
for both groups s+ and s−. Specifically, let r̄s

+

a denote the
average of the rewards generated by arm a for the group
s+, and let r̄s

−

a denote the average of the rewards generated
by arm a for the group s−. The bias of an arm is thus the
difference of both averages: ∆a = (r̄s

+

a − r̄s
−

a ). Finally, by
combining the direction of the bias and the amount of the bias
induced by each arm a, we define the fairness penalty term as
Fa = −sign(r̄s

+ − r̄s−) ·∆a, and exert onto the UCB value
in our fair contextual bandit algorithm. Note that the lesser an
arm contributes to the bias, the smaller the penalty.

As a result, if an arm has a high UCB but incurs bias, its
adjusted UCB value will decrease and it will be less likely
to be picked by the algorithm. In contrast, if an arm has a
small UCB but is fair, its adjusted UCB value will increase,
and it will be more likely to be picked by the algorithm,
thereby reducing the potential unfairness in recommendation.
Different from the traditional LinUCB that picks the arm to
solely maximize the UCB, our Fair-LinUCB accounts for the
fairness of the arm and picks the arm that maximizes the
summation of the UCB and the fairness. Formally, we show
the modified arm selection criteria in Equation 4.

pt,a ← θ̂Ta xt,a + α||xt,a||A−1
a

+ L(γ, Fa) (4)

We adopt a linear mapping function L with input parameters
γ and Fa to transform the fairness penalty term proportionally
to the size of its confidence interval. Specifically,

L(γ, Fa) =
αt||xt,am

||A−1
t

2
(Fa + 1)γ (5)

am = argmina∈At ||xt,a||A−1
a

(6)

Assuming that the reward generated is in the range [0, 1],
the fairness penalty Fa lies in [−1, 1]. When designing the
coefficient of the linear mapping function, we choose am to
be the arm with the smallest confidence interval to guarantee
a unified fairness calibration among all the arms. Under the
effect of L, the range of the fairness penalty is mapped from
[−1, 1] to [0, γαt||xt,am ||A−1

t
], which implies a similar scale

with the confidence interval. In our empirical evaluations,
we show how γ controls fairness-accuracy trade-off on the
practical performance of Fair-LinUCB.

C. Regret analysis

In this section, we prove that our Fair-LinUCB algorithm
has a high-probability regret bound RT ≤ C ′d

√
T log(TL)

(C ′ is a suitably large constant) under certain assumptions
with carefully chosen parameters. We adopt the regret anal-
ysis framework of linear contextual bandit and introduce a
mapping function on the fairness penalty term. By applying
the mapping function L we make our fairness penalty term
possess the similar scale with the half length of the confidence
interval. Thus we can merge the regret generated by UCB term
and fairness term together and derive our regret bound. Our
detailed theoretical results and proofs can be found in [19].



Comparing the regret bound of LinUCB, we can see the
regret bound of Fair-LinUCB is worse than the original Lin-
UCB only up to an additive constant. This perfectly matches
the intuition that Fair-LinUCB is able to keep aware of the
fairness and guarantee there is no reward gap between different
subgroups or individuals, however, it suffers from a relatively
higher regret.

V. EXPERIMENTAL EVALUATION

We conduct our empirical evaluation. In Section V-A, we
present datasets, reward function, evaluation metrics, and
baselines. In Section V-B, we compare our Fair-LinUCB with
LinUCB and a naive method that tries to achieve fairness by
simply removing from the context sensitive attribute and its
correlated attributes. We then conduct comprehensive evalu-
ations on how various factors and hyper parameters would
affect the fairness-utility trade-off. Due to space limits, we
only report results about noise level in the reward function
in Section V-C and include in [19] those results about γ
that controls the weight of the fairness penalty, arm and user
order distribution, and α that controls the balance between
exploration and exploitation in our Fair-LinUCB algorithm.

A. Experiment setup

1) Simulated dataset: There are presently no publicly avail-
able datasets that fits our environment. We therefore generate
one simulated dataset for our experiments by combining the
following two publicly available datasets:
• Adult dataset: The Adult dataset [20] is used to represent

the students (or bandit players). It is composed of 31,561
instances: 21,790 males and 10,771 females, each having
8 categorical variables (work class, education, marital
status, occupation, relationship, race, sex, native-country)
and 3 continuous variables (age, education number, hours
per week), yielding an overall of 107 features after one-
hot encoding.

• YouTube dataset: The Statistics and Social Network of
YouTube Videos 1 dataset is used to represent the items
to be recommended. It is composed of 1,580 instances
each having 6 categorical features (age of video, length
of video, number of views, rate, ratings, number of
comments), yielding a total of 25 features after one-hot
encoding. We add a 26th feature used to represent the
gender of the speaker in the video which is drawn from
a Bernoulli distribution with the probability of success as
0.5.

The feature contexts xt,a used throughout the experiment
is the concatenation of both the student feature vector and
the video feature vector. In our experiments we choose the
sensitive attribute to be the gender of adults, and we therefore
focus on the unfairness on the group-level for the male group
and female group. Furthermore, based on findings that same-
gender teachers positively increase the learning outcome of
students, we assume that a male student prefers a video

1https://netsg.cs.sfu.ca/youtubedata/

featuring a male speaker and a female student prefers a video
featuring a female speaker. Thus, in order to maintain the
linear assumption of the reward function, we add an extra
binary variable in the feature context vector that represents
whether or not the gender of the student matches the gender
of the speaker in the video. Overall, xt,a contains a total of
134 features.

For our experiments, we use a subset of 5,000 random
instances from the Adult dataset, which is then split into two
subsets: one for training and one for testing. The training
subset is composed of 1,500 male individuals and 1,500
female individuals whilst the testing subset is composed of
1000 males and 1000 females. Similarly, a subset of YouTube
dataset is used as our pool of videos to recommend (or arms).
The subset contains 30 videos featuring a male speaker and
70 videos featuring a female speaker.

2) Reward function: We compare Fair-LinUCB against the
original LinUCB using a simple reward function wherein we
manually set the θ∗ coefficients. The reward r is defined as

r = θ∗1 · x1 + θ∗2 · x2 + θ∗3 · x3 (7)

where θ∗1 = 0.3, θ∗2 = 0.4, θ∗3 = 0.3 and x1 = video rating,
x2 = education level, x3 = gender match. The remaining d−3
coefficients are set to 0. Hence, only these three features matter
to generate our true reward. The gender match is set to 1 if
both the student gender and the gender of the video match, and
0 otherwise. The education level is divided into 5 subgroups
each represented by a value ranging from 0.0 to 1.0 with a
higher education level yielding a higher value. In our setup, the
education level is used to represent the strength of the student.
Similarly, the video rating varies from 0 to 1.0, and is used
to represent the educational quality of the video. Evidently,
a higher reward is generated when the gender of the student
matches the gender of the video.

3) Evaluation metrics: Throughout our experiments we
measure the effectiveness of the algorithms through the av-
erage utility loss. Since we know the true reward function, we
can derive the optimal reward at each round t. We can thus
define utility loss = 1

T

∑T
t=1(rt,a∗ − rt,a) where rt,a∗ is the

optimal reward at round t by choosing arm a∗ and rt,a is the
observed reward by the algorithm after picking arm a.

We measure the fairness of the algorithms through the
absolute value of the difference between the cumulative mean
reward (r̄t, as introduced in Section IV-A) of the male group
and female group: reward difference = |r̄s+t − r̄s

−

t | Addi-
tionally, for all following figures the left hand side plots the
cumulative mean reward during the training phase whilst the
right hand side reflects the cumulative mean reward over the
testing dataset. Due to space limit, all tables report measures
on the testing data solely. Note that the contextual bandit
continues to learn throughout both phases.

4) Baselines: As existing fair bandits algorithms focus
on item-side fairness, we mainly compare our Fair-LinUCB
against LinUCB in terms of utility-fairness trade-off in our
evaluations. We also report a comparison with a simple fair
LinUCB method that suppresses the unfairness by removing



TABLE I: Comparison of Three Algorithms under Reward
Function r

Utility Loss Reward Difference
Fair-LinUCB (γ = 3) 0.052 0.000

LinUCB 0.050 0.037
Naive 0.046 0.035

the sensitive attribute and all its correlated attributes from the
context. We name this method as Naive in our evaluation. In
our Fair-LinUCB and baseline algorithms, we set α (balancing
between exploration and exploitation) with the default value
of 0.5 in all our experiments.

B. Comparison with baselines

1) Comparison with LinUCB: Our first experiment com-
pares the performances of the traditional LinUCB against our
Fair-LinUCB, using the reward function r described in the
previous section. Figure 1 plots the cumulative mean reward
of both the male and female groups over time. We can notice
that the cumulative mean rewards of both groups suffer a
discrepancy with LinUCB, and the outcome can therefore be
considered unfair towards the male group. Indeed, as shown
on Figure 1a the cumulative mean reward of the female group
(0.839) is greater than the cumulative mean reward of the
male group (0.802), yielding a reward difference of 0.037.
The utility loss incurred is 0.050. In contrast, Fair-LinUCB is
able to seal the reward discrepancy with a γ coefficient set to
3 (Figure 1b). Our algorithm thereby achieves a cumulative
mean reward of 0.819 for both the male group and the
female group, which yields a reward difference of 0.0, while
incurring a utility loss of 0.052. Our Fair-LinUCB outperforms
the traditional LinUCB in terms of reward difference while
suffering a slight loss of utility. The comparison results are
summarized in the first two rows of Table I.

2) Comparison with Naive: Naive method tries to achieve
fairness by removing from the context the sensitive attribute
and the features that are highly correlated with the sensitive
attribute. In our experiment, we first compute the correlation
matrix of all the user’s features and then remove the gender
feature as well as all features that are highly correlated with it.
Specifically, features that have a correlation coefficient greater
than 0.3 were removed, which include the following: is male,
is female, is divorced, is married, is widowed, is a husband,
has an administrative clerical job, has a salary less than 50k.
We report in the last row of Table I the utility loss and reward
difference of Naive with reward function r.

We can see the reward discrepancy between the male and
female groups from the Naive method is 0.035, thus showing
it cannot completely remove discrimination. The utility loss
from the Naive method is 0.046, which is only slightly smaller
than LinUCB and Fair-LinUCB. In short, removing the gender
information and highly correlated features from the context
does not necessarily close the gap of the reward difference.

In summary, although LinUCB learns to pick the arm that
maximizes the reward given a particular context, we have seen
that it could incur discrimination towards a group of users

TABLE II: Impact of a noisy reward function

standard deviation Utility Reward Male Female
of noise Loss Difference cmr cmr

LinUCB
0.0 0.048 0.029 0.807 0.838

0.01 0.050 0.030 0.806 0.836
0.1 0.056 0.047 0.788 0.835
0.2 0.059 0.045 0.790 0.835
0.3 0.072 0.023 0.777 0.800
0.4 0.084 0.067 0.749 0.816
0.5 0.099 0.113 0.715 0.828

Fair-LinUCB γ = 3

0.0 0.052 0.000 0.819 0.819
0.01 0.053 0.000 0.818 0.818
0.1 0.063 0.000 0.808 0.808
0.2 0.074 0.000 0.801 0.801
0.3 0.061 0.000 0.810 0.810
0.4 0.080 0.005 0.794 0.799
0.5 0.099 0.025 0.765 0.790

in some cases. Fair-LinUCB is capable of detecting when
unfairness occurs, and will adapt its arm picking strategy ac-
cordingly so as to be as fair as possible and reduce any reward
discrepancy. When a reward discrepancy is not detected, our
algorithm does not need to adjust the arm picking strategy and
therefore performs as well as the traditional LinUCB.

C. Impact of a noisy reward function

We now investigate the impact on the utility loss and
fairness for both LinUCB and our Fair-LinUCB with a noisy
reward mechanism. We redefine the reward function described
in Equation 7 to the following:

r = θ∗1 · x1 + θ∗2 · x2 + θ∗3 · x3 + η (8)

where η ∼ N (0.0, σ) is the noise term drawn randomly
from a Gaussian distribution with mean 0.0 and standard
deviation σ. While the mean of the noise term remains the
same throughout this experiment, we explore various values
of standard deviation and report our findings in Table II. The
first row of the table, i.e., with a standard deviation of 0.0,
reflects the performances without any noise.

Table II shows that, as expected, the performances with
a noisy reward function are poorer compared to a reward
function with no noise. The best results are achieved with
the smallest noise (i.e., σ=0.01) for both algorithms. We
notice that as the noise becomes larger, both LinUCB and
Fair-LinUCB suffer from a greater decrease in performances.
Indeed, for both algorithms the utility loss almost doubles
when the standard deviation of the noise reaches 0.5. However,
unlike LinUCB, the reward discrepancy for our Fair-LinUCB
appears to be robust against a noisy reward function. Indeed,
LinUCB’s reward difference worsens as the noise becomes
larger, reaching 0.113 when the standard deviation is 0.5. Con-
versely, the reward discrepancy for our Fair-LinUCB remains
zero or almost zero regardless of the magnitude of the noise. In
fact, even with a large noise (i.e. σ =0.5) the reward difference
of our Fair-LinUCB remains smaller than that of LinUCB with
a non-noisy reward function.



(a) LinUCB (b) Fair-LinUCB γ = 3

Fig. 1: LinUCB vs Fair-LinUCB with reward function r

This experiment shows that as the reward function becomes
noisier, not only LinUCB’s performance decreases but the gap
of the reward discrepancy between the protected group and the
privileged group widens. On the other hand, while the perfor-
mance of our Fair-LinUCB decreases with a noisier reward
function, it is robust in terms of fairness, by maintaining a
minor or no gap in the reward discrepancy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a fair contextual bandit
algorithm for personalized recommendation. Our developed
Fair-LinUCB improves upon the state-of-the-art LinUCB al-
gorithm by automatically detecting unfairness, and adjusting
its arm-picking strategy such that it maximizes the fairness
outcome. In this work we made a linear assumption on the
reward function. In the future work, we plan to extend the
user-level fairness to more general cases and make it easier to
be implemented in multifarious reward functions. We plan to
develop heuristics to determine the appropriate value for the
fairness-accuracy trade off parameter γ. We also plan to study
user-side fairness in the multiple choice linear bandits, e.g.,
recommending multiple videos to a student at each round,
and causal bandits [21] that leverage the causal relationship
between interventions and outcomes to learn optimal inter-
ventions. Finally, we plan to study how to achieve individual
fairness and counterfactual fairness in bandits algorithms.
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