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Abstract

As the eXtensible Markup Language (XML) has emerged as the de facto standard
for storing and exchanging information in the Internet Age, the needs for efficient
yet secure access of XML data naturally arise. It becomes increasingly important
to be able to tailor information in XML data for various users and applications,
while preserving confidentiality. In this dissertation, we ask how fine-grained XML
access control can be supported when underlying (XML or relational) DBMS does
not provide any security features for XML data.

We first present deep set operators for XML as an extension of conventional set
operators, and use them to algebraically describe XML access control. We intro-
duce a general framework to capture design principles and operations of existing
XML access control mechanisms across centralized and distributed environments.

In the native XML environment (XDB), we advocate an efficient, view-free,
Non-deterministic Finite Automata (NFA) based access control enforcement mech-
anism, called QFilter. It supports fine-grained XML access control and works in-
dependently from the underlying XML engine, thus provides great flexibility. In
RDBMS-supported XML database systems (XRDB), we first introduce object and
operation equivalency as a bridge between relational and XML data models. Then
we present theoretical results on how one can (or cannot) support fine-grained
XML access control using relational access control features. We also show im-
plementation choices and the required security features from underlying RDBMS.
Finally, we implement our approach and exhibit its superior performance against
native XML DBMS.
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Chapter 1
Introduction

The eXtensible Markup Language (XML) [12] has emerged as the de facto standard

for storing and exchanging information in the Internet Age. As the distribution

and sharing of information over the Web becomes increasingly important, the needs

for efficient yet secure access of XML data naturally arise. It is necessary to tailor

XML documents for various user and application requirements, while ensuring

confidentiality and efficiency at the same time.

Current access control research can be categorized into two groups: access con-

trol modeling and access control enforcement mechanisms. Table 1.1 illustrates

the current development of access control model research. First row refers to

(research-oriented) access control models developed for XML and relational data

models, respectively, while second row refers to state-of-art open-source or com-

mercial products for each model. In general, not all the features proposed by

modeling research community (first row) are implemented in existing access con-

trol enforcement approaches. For instance, to our best knowledge, most industrial

or open source XML database products do not have any support for fine-grained

XML access control yet.

XML Relational
XML Access Control Models
(e.g., [16], [4])

Relational Access Control
Models (e.g., [33])

Models

XML Databases (e.g.,
Galax [67], Tamino [65])

Relational Databases (e.g.,
Oracle, DB2, SQL Server)

Products

Table 1.1. The overview of XML and Relational access control model supports.
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For native XML database systems, most available commercial or open-source

products support either no access control, or document level access control. Con-

trolling access at the document level (e.g., using file systems) is not suitable for

today’s XML applications, where data access is typically performed at element

and attribute levels. To remedy these shortcomings, recently, various proposals in

support of fine-grained XML access control have appeared. Most of them can be

categorized as either the view-based (e.g., [4, 16, 19]) or DBMS-based (e.g., [15, 52]1)

approach. The view-based approach provides fast access to the authorized data

(especially when views are materialized), but needs to deal with issues of view

maintenance. On the other hand, the DBMS-based approach is efficient to main-

tain, but requires security support from underlying (XML or relational) databases.

However, to our best knowledge, there are no XML databases that provide security-

related features yet2. Therefore, our first research problem is looking for a better

way to support XML access control. More specifically:

How can we implement a fine-grained XML access control en-

forcement mechanism (i.e. to support the upper-left quadrant

of Table 1.1), which is non-view, and independent from the

engine?

In the first part of this dissertation, we analyze and examine three different

classes of solutions for access control, namely, primitive, pre-processing and post-

processing . In particular, we advocate a practical and scalable pre-processing so-

lution, called QFilter, as an external component to the database engine. QFilter

checks incoming XML queries against access control rules, and rewrites them such

that parts violating access control policies are pre-pruned. Since QFilter does not

use views, it entirely avoids the issues of high storage and maintenance costs.

Furthermore, since QFilter does not rely on security-related features of underlying

databases (e.g., GRANT/REVOKE in RDBMS), it can work with any off-the-shelf

databases (as long as they can process XML queries). This property makes QFilter

a very “practical” solution.

1[52] is a preprocessing approach, however, it requires assistance from underlying DBMS under
the presence of predicates in the query.

2None of the recent development in [4, 16, 19, 15, 52] are adopted to commercial XML database
products yet.
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In the scenario of RDBMS-backed XML database systems (hereafter XRDB),

XML data is shredded into relations and stored in RDBMS; query-answering is

conducted through a conversion layer so that users interact with the system as

if it is native XML. In the scenario of XML publishing, relational data is com-

piled into XML format for distribution and exchange; users receive documents

as if they were originated from XML model. For both scenarios, we enjoy the

benefit of XML model while taking advantage of the maturity of the off-the-shelf

RDBMS. In both scenarios, it is desirable to natively specify access controls on

the XML side (upper-left quadrant of Table 1.1), but they need to be enforced

on the RDBMS side (lower-right quadrant). We believe that current XML access

control enforcement mechanism research is in a sense re-inventing wheels with-

out utilizing existing relational access control models (i.e., upper-right quadrant)

or leveraging on security features that are readily available in relational products

(i.e., lower-right quadrant). Therefore, our second research question is:

When is it (not) possible to support the upper-left quadrant

of Table 1.1 (i.e., fine-grained XML access control) using the

lower-right quadrant (i.e., RDBMS)? Why? How?

The major challenges of supporting XML access controls in XRDB systems

stem from the inherent discrepancy of XML and relational data models. Relational

data model features a structure of two-dimensional table, while XML features a

hierarchical data model. When XML data are shredded into relational data model

by some transformation algorithms, not all transformation algorithms can fully

preserve structural properties of XML model [2]. Therefore, the inherent incom-

patibility of two data models leads to the fundamental discrepancy between two

access control models. Second, relational access control policies define authorized

actions of “cells,” where each cell is an impartible element and whose accessibility

is explicitly expressed. However, XML nodes are hierarchically nested, and XML

data model inherently takes “answer by subtree model” (e.g., querying for //foo

yields the whole subtree rooting at node <foo/>). Therefore, for any XML node,

an action could be: authorized (or unauthorized) to the whole subtree, or par-

tially authorized. The later case does not occur in relational access control model.

Finally, in XML model, we can control the access right of each individual node.
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In traditional relational model, the smallest granularity that one may control is a

column via GRANT/REVOKE. Therefore, one needs to employ more recent de-

velopments of RDBMS access controls (e.g., Oracle VPD) to enable row/cell level

access control.

In the second part of this dissertation, we propose a generic analysis to XML ac-

cess control. We first analyze access control models to propose a formal description

of XML access control using deep set operators. Then we articulate the problem of

XML access control in XRDB as essentially the problem of XML/Relational object

and operation equivalency and conversion. We show that, equivalent counterparts

of deep set operators in relational model are needed to fully implement XML ac-

cess control in XRDB. We analyze the definition and semantics of each operator,

and show how they can be converted to XRDB through two lemmas. Although

detailed conversion implementation is connected with the specific X2R conversion

algorithm used in XRDB, we propose an algebraic description of these operators.

Moreover, we study possible implementations of XML access control in XRDB.

We categorize them into three approaches, and formally describe the semantics of

each approach using deep set operators. We also discuss the features and consid-

erations of each approach. Finally, we show the validity of our approaches using

experiment results.

We have carefully explored the problem space, proposed theocratical solutions,

and discussed implementation approaches. However, there are still open questions

in XRDB access control, especially the questions connected with particular im-

plementation methods. E.g. how to enforce XML access control with minimal

overhead and alternation upon underlying RDBMS? We leave these as our our

future research topics.

Key contributions.

1. To our best knowledge, this work is the first one to algebraically formalize

XML access control in both native XML (XDB) and RDBMS-supported

XML (XRDB) environment.

2. We introduce a general framework to capture the design principles and op-

erations of existing (and future) XML access control mechanisms. Inherent



5

pros and cons of each approach is intensively analyzed [44].

3. We developed deep set operators as extensions of regular set operators defined

in XPath and XQuery. With deep set operators, we are able to formally

describe XML access control at algebraic level.

4. We propose QFilter as an efficient, view-free, NFA-based XML access con-

trol enforcement mechanism, whose performance is superior to existing ap-

proaches [45]. Moreover, QFilter is independent from underlying XML en-

gine, which brings great flexibility and application potential [41] [45] [1].

5. This work takes the first steps to define the equivalent objects and equivalent

operations between native XML and XRDB systems. With this concept, we

can migrate all the exciting features of native XML systems into XRDB by

converting the atomic operations into equivalent relational counterparts. In

this dissertation, we take the feature of fine-grained XML access control for

a pilot study, and the results are encouraging [43].

6. This work shows for the first time that the “security” of XRDB can be

achieved by finding the “equivalent” relational operators for three specific

deep-set operators. This finding provides a viable way to build secure XRDB

systems.

The rest of this dissertation is organized as follows: in Chapter 2, we introduce

the background . In Chapter 3, we present deep set operators, which we imple-

mented as an extension of regular set operators in XQuery and XPath. In Chap-

ters 4 and 5, we answer our first research question. We first identify the need and

potential of non-view based XML access controls, and examine three different ap-

proaches to implement XML access control enforcement mechanisms (Chapter 4).

Then we present the design and implementation of QFilter using Non-deterministic

Finite Automata (NFA); we conduct extensive performance evaluation on QFilter

and other approaches (much more extensive than what we did in [45]). Results

show that QFilter is very efficient and scalable. In Chapter 6, we formally introduce

RDBMS-supported XML database systems. We describe the internal process in

such systems at algebra level, and formulate the access control problem in XRDB.
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In Chapters 7 and 8, we give solutions to this problem at two levels: theoreti-

cally, we show the whether and why fine-grained XML access control could (or

could not) be enforced using RDBMS security features; practically, we show how

to implement the enforcement methods. Finally, we wrap-up this dissertation, and

address possible future works.



Chapter 2
Background and Related Work

2.1 XML Model and Native XML Database Sys-

tems

Extensible Markup Language (XML) 1.0 [10] and 1.1 [11] are currently W3C rec-

ommendations. XML is a general-purpose specification for creating markup lan-

guages. Quoting W3C XML Specification [11], its design goals are:

XML shall be straightforwardly usable over the Internet.

XML shall support a wide variety of applications.

XML shall be compatible with SGML.

It shall be easy to write programs which process XML documents.

The number of optional features in XML is to be kept to the absolute

minimum, ideally zero.

XML documents should be human-legible and reasonably clear.

The XML design should be prepared quickly.

The design of XML shall be formal and concise.

XML documents shall be easy to create.

Terseness in XML markup is of minimal importance.
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(a) (b)Figure 2.1. XMark DTD.

Although XML is usually regarded as a markup language, it is indeed a spec-

ification for creating other markup languages. XML documents are plain texts,

including tags and data values. Internally, they represent tree-structured hierar-

chical data. XPath [3], XSLT [51] and XQuery [8] are developed to access nodes in

XML documents. More specifically, XPath is a language used to query elements in

XML trees. XQuery is a more complicated query language that provides flexible

data manipulation functions. It is said that XQuery is to XML what SQL is to

database tables. However, since XML model is considerably more powerful than

relational model, XQuery is much more complicated than SQL. Due to the fact

that XQuery uses XPath to access XML data, in XML access control research,

people focus on XPath.

The volume of XML data explodes as XML model becomes the de facto stan-

dard in Internet information sharing and exchanging. Storing XML documents in

text files is certainly not efficient or effective. Hence, XML database systems nat-

urally appear. Native XML database system store XML in its own data structure.

In [32], TAX algebra is proposed for tree-structured data, in accordance with the

relational algebra for relational data. TIMBER [56] is developed based on this

algebra. Among other native XML database systems such as Sedna 1, eXist 2,

Tamino[65], Galax [67] is one of the complete implementation of XQuery.

1http://modis.ispras.ru/sedna/
2http://exist.sourceforge.net/
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<site>
<people>
<person id="person0">
<name>Ayonca Vijaykrishnan</name>
<emailaddress>mailto:Vij……</emailaddress>
<phone>(477) 63141558</phone>

</person>
<person id="person1">
<name>Vidar Reinsch</name>
<emailaddress>mailto:Vid……</emailaddress>
<address>

<street>70 Zlatev St</street>
<city>Greenville</city>
<country>United States</country>
<zipcode>22021</zipcode>

</address>
<creditcard> 8814 4441 4702 6117</creditcard>

</person>
…… 

</people>
…...

</site>

Figure 2.2. Part of the original XMark document.

Throughout the rest of this dissertation, we use the online auction DTD of

XMark [64] as the exemplar schema, shown in Figure 2.1. It simulates an e-

commerce scenario: online auction. It is used to store category, people, item, and

auction information. Part of the XML document is shown in Figure 2.2. As we

can see, XML documents are pure text files with tags. XML elements are nested,

to represent a tree structure, as shown in Figure 2.3.

2.2 RDBMS-supported XML Database Systems

As we introduced, great amount of XML data still resides in well-developed re-

lational database management systems (RDBMS). We call RDBMS-backed XML

database systems XRDB. As illustrated in Figure 2.4, in an XRDB system: XML

documents (DX) are first converted into relations (DR) using some conversion al-

gorithm (C). DR is stored and managed in RDBMS. In this scenario, any RDBMS

could be used; user issues XML query QX (XPath or XQuery) using published
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Figure 2.3. XMark document.

XML schema; QX is then converted into QR (in SQL) and evaluated against DR.

Relational answer AR is finally converted back to XML answer AX and returned

to user.

These systems take advantage of the availability and maturity of existing

RDBMS. We only need to develop query and data conversion mechanism. Data

storage, query evaluation, transaction management and many other issues are han-

dled by underlying RDBMS. Most relational database vendors implement this ap-

proach to provide XML support.

 

XML 
Document 

DX 

XML Query
QX 

Relational 
Query QR 

 

XML Answer
AX 

X
M

L
-R

elational 
C

onversion (C
)

XML 
Document 

DX 

XML 
Document 

DX 

Query Interface

R
everse C

onversion 
(C

-1) 

RDBMS 

Figure 2.4. Overview of XRDB system architecture.
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2.2.1 XML and Relational Conversion Algorithms

Toward conversion between XML and relational models, an array of research has

addressed the particular issues lately. On the industry side, database vendors

are busily extending their databases to adopt XML types. Shredding and non-

shredding are two major pathes that followed by commercial products. Oracle

provides both un-shredded (CLOB) and shredded storage options [54]. Microsoft

supports XML shredding and publishing through mid-tier approach in SQL Server

2000, and adds CLOB storage in SQL Server 2005 [61]. IBM proposes the first

native XML storage in DB2 9, but shredded XML storage (through schema de-

composition) is still kept as an important feature [55, 6].

On the research side, various proposals have been made recently, mainly either

schema-based (e.g., [20, 66, 39]) or schema-oblivious (e.g., [26, 72]) approaches.

In terms of access control, some commercial products apply existing column level

access control of RDBMS on XML data stored in CLOB columns. None of these

approaches supports or discusses fine-grained access control. Finally, to our best

knowledge, the only work that is directly relevant to our proposal is [69]. [69]

proposes an idea of using RDBMS to handle XML access controls, in a rather

limited setting. In our vision paper [40], we addressed some issues and challenges

of enforcing XML access control atop RDBMS. We provide the algebraic analysis

and explore practical solutions in this dissertation.

2.3 XML Access Control

XML access control is to ensure that only authorized users could access data they

are allowed to access. It is critical to have access control in XML database systems.

Figure 2.5 gives an example of XML access control on the XMark document, which

we have shown in Figures 2.2 and 2.3. In this example, managers are able to see

everything; sales are able to see <people> nodes but not <creditcard> nodes;

and normal users can only see <name> and <email> tags.

There are two major research areas in XML access control – models and en-

forcement mechanisms. The focus of our work is on the latter. However, we first

survey existing access control models.
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Figure 2.5. Example of XML access control.

2.3.1 Access Control Models

Most XML access control models inherit the framework of either role based access

control [63], in which users are assigned with roles and thus can exercise certain

access rights characterized by their roles, or credential (attribute)-based access

control, where each user features a set of attributes and access rights are denoted

based on the value of attributes. As a whole, the difference between role-based

access control and credential-based access control is mainly the way they identify

subjects, i.e., users. However, this is not closely related to our topic, since we focus

on access control enforcement, which mainly considers objects, i.e. XML data.

Recently, several authorization-based XML access control models are proposed.

In [19], a specific authorization sheet is associated with each XML document/DTD

expressing authorizations. In [16], the model proposed in [19] is extended by enrich-

ing authorization types supported by the model, providing a complete description

of the specification and enforcement mechanism. Among comparable proposals,

in [4], an access control environment for XML documents and some techniques to

deal with authorization priorities and conflict resolution issues are proposed. In

terms of XML data objects, [27] propose a framework to normalize data object

specification in XML access control using XPath. They also capture access control

policy specification in existing literature with the proposed framework. More-

over, languages for access control policy are developed in such efforts as XACL by

IBM [37] and XACML by OASIS [29]. While these are languages to specify access

controls, what we propose here is a method to enforce access controls. Finally, the
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use of authorization priorities with propagation and overriding are related to sim-

ilar techniques studied in OODB [24, 60]. The above XML access control models

can specify the authorizations of a subject against an XML data object without

ambiguity. While an XML access control model can be enforced in various ways,

the model cannot tell which enforcement mechanisms are better ones.

We will be using RDBMS access control features in the second part of this

thesis, thus we quickly summarize relational access control. Relational access

control models can be classified into three categories: multilevel security models

[35, 70, 62], discretionary security models (DAC) and role-based security models

(RBAC). Most real world database systems implement a table/column level DAC

similar to the one implemented in System R [30]. View-based approaches is the tra-

ditional method to enable row-level access control, while Oracle’s VPD is the most

recent development. Finally, some advanced access control models (e.g., [33, 34])

are proposed in a more theoretical manner.

2.3.2 XML Access Control Enforcement.

XML access control enforcement mechanisms in native XML environment have

been intensively studied in recent years. Generally speaking, they are categorized

into four classes:

1. engine level mechanisms implement node-level security check inside XML

database engine; they tag each XML node with a label [17, 15, 71] or an

authorization list [73, 36], and enforce security check at query processing.

Figure 2.6 gives an intuitive example of node tagging. During query process-

ing, XML engine traverses the subtrees of all candidate answers, eliminates

all inaccessible nodes from the final answer. This traversal seriously slows

down query processing.

2. view based approaches build security views that only contain access-granted

data [68, 23, 38]. Note that, when a view-based approach implements virtual

views without materializing them, it is inherently a pre-processing approach.

Figure 2.7 gives an example of views built for manager, sales and user roles

as introduced in Figure 2.5. Since views are pre-built, during run time, users’
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Figure 2.6. Example of engine level access control.
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Figure 2.7. Example of view-based access control.

queries are evaluated directly against views, providing fast access. However,

it is challenging to maintain a large number of (frequently updating) views for

a large number of security roles. Especially, storage and view synchronization

are two major concerns.

3. pre-processing approaches check user queries and enforce access control rules

before queries are evaluated, such as the static analysis approach [52, 53],

QFilter approach [45], function-based approach [59], access condition table

approach [57] policy matching tree[58], secure query rewrite (SQR) approach
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[49], etc.

4. [9] considers access control of streaming XML data and apply security check

at client side, using a filtering mechanism. [25, 48].

Moreover, [5, 14] focus on XML access control policies and enforcement as well

as encryption issues in information pushing or brokerage systems. More recently,

protecting the privacy and security associated with XML tree structure (instead

of content) becomes an emergent topic [25, 50].

To our best knowledge, Static Analysis [52] is the first attempt of non view-

based XML access control. It first converts an input query q to an NFA Mq and

access control rules r to another NFA Mr. Then, it (1) accepts q if Mq ⊆Mr (i.e.,

q asks for data that are “entirely” authorized), or (2) rejects q if Mq ∩Mr = ∅
(i.e., what q asks for is “entirely” prohibited). Therefore, when the pair of q

and r belongs to one of two cases, access controls can be determined immediately.

However, the static analysis method cannot handle the remaining cases where q and

r partially overlap, and depends on the security features of underlying databases to

determine its access controls. As shown in Section 5.4, since the majority of q and

r belong to the partial-overlapping cases, the performance of [52] often severely

suffers. Therefore, our QFilter approach, first appeared in [45], extends [52] so that

the partial-overlapping case can also be handled without relying on underlying

databases. By de-coupling the link between XML access controls and underlying

databases entirely, therefore, QFilter becomes more practical and more efficient

than [52].

2.4 Deep Set Operators

We proposed deep set operators in [46]. There are several related work that bear

the same term but different semantics. In [13], “deep union” and “deep update”

operators are proposed to process semi-structured data. This operator takes two

edge-labeled tree-structural documents as input and merges/updates them based

on their structural similarities. In [47], a deep-equal function is introduced to

check the equality of two sequences. It checks if the arguments contain items that
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are equal in values and positions. Despite the same name, their deep operators

(functions) are different from ours in semantics or underlying operation objects.

2.5 Preliminaries

As we introduced, an XML document can be represented as a hierarchy of nested

nodes (i.e., elements and attributes), so that fine-grained access controls at node

level are established. A node-level authorization specified via 5-tuple access control

rules (ACR) was proposed in [16], while many XML access control literature take

similar ACR formats [52, 9]. In our model, users are assigned with roles and thus

can exercise certain access rights characterized by their roles.

Node-level authorization in our study is specified via 4-tuple access control

rules (ACR) = {subject, object, action, sign}, where (1) subject is to whom an

authorization is granted (i.e., role); (2) object is part of an XML document specified

by an XPath expression; (3) action consists of read, write, and update; (4) sign

∈ {+,−} refers to either access “granted” or “denied”, respectively. When a node

does not have either explicit or implicit authorization, it is considered to be “access

denied.” It is possible for a node to have more than one relevant access control

rule. If conflict occurs between “+” and “−” rules, “−” rules take precedence.

Compared with the 5-tuple ACR used in many related works, we do not

have the “type” field. The 5-tuple ACR is usually represented as: ACR =

{subject,object, action, sign, type}. Particularly, type ∈ {LC,RC} refers to

either local check (LC) where authorization is applied to only attributes or textual

data of nodes in context – “self::text() | self::attribute()” or recursive

check (RC) where authorization is applied to current nodes and propagated to all

their descendants – “descendant-or-self::node()”, respectively.

A traditional approach is to convert ACR with RC type to a combination

of three rules with LC type, as proposed in [52]. For instance, /x with RC

type is semantically equivalent to three expressions: /x, /x//*, /x//@* with LC

type. Therefore, by re-writing all rules with RC type into equivalent ones with

LC type, we can focus on the construction and execution of rules with only LC

type. However, in our model, “RC” type is enforced by default, i.e. access control

specified on a node affects the whole subtree rooting at that node. This setting
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Table 2.1. Example rules.
R1: (role1, /site/categories//*, read, +)
R2: (role1, /site/regions/*/item/location, read, +)
R3: (role1, /site/regions/*/item/quantity, read, +)
R4: (role1, /site/regions/*/item/name, read, +)
R5: (role1, /site/regions/*/item/description, read, +)
R5’: (role1, /site/regions/*/item[quantity>0]/location, read, +)

R6: (role1, /site/people/person/name, read, +)
R7: (role1, /site/people/person/address/*, read, +)
R8: (role1, /site/people/person/emailaddress, read, +)

R9: (role1, /site/regions/asia/item/location, read, -)
R10: (role1, /site/regions/africa/item/location, read, -)

complies with the XML semantics, where a querying for a node yields the whole

subtree. In other words, according to XML semantics, nodes are by default “RC”.

If a rule only applies to the text child of the context node, “/text()” is appended

to the end of the XPath expression (object). In this way, we exactly follow XPath

specification to identify XML nodes.

Although XQuery [8] is more powerful, like the other XML access control ap-

proaches, we choose XPath [3] for the specification of queries as well as the iden-

tification of nodes. XML data (nodes) covered by positive rules and not covered

by any negative rule are considered safe data. XML query that only requests safe

data is called safe query ; and the answer is safe answer.

Example 2.1. We use the XMark schema of Figure 2.1 and XML access control

rules of Table 2.1 for running examples. The schema demonstrates an online auc-

tion scenario. Rules R1 to R8 say that users of role1 are permitted to access all

“categories” information, some of “item” information, and some of “person” in-

formation. Initially, we only consider positive, who have no predicate in the XPath

expressions of their object field. Then, rule R5’ is referred when we demonstrate

how predicates are processed. Rules R9 and R10 are used when we discuss negative

rules.



Chapter 3
Deep Set Operators

3.1 Motivation

Before going to the details of XML access control mechanisms, we first introduce

deep set operators, which we developed to formally describe XML access control.

XQuery [7] was developed by two W3C working groups to serve as the standard

XML query language. In [7] and [22], three set operators are defined, namely

union, intersect and except. In [7], they are defined as:

• “The union and | operators are equivalent. They take two node sequences as

operands and return a sequence containing all the nodes that occur in either

of the operands.”

• “The intersect operator takes two node sequences as operands and returns a

sequence containing all the nodes that occur in both operands.”

• “The except operator takes two node sequences as operands and returns a

sequence containing all the nodes that occur in the first operand but not in

the second operand.”

According to [22], the set operators of XQuery are defined using the notion of

node-IDs – unique (conceptual) ID per XML node. Therefore, for instance, the

“union” of two node sequences are the union of node-IDs from both sequences. On

the other hand, XQuery uses XPath [3] to locate nodes. As defined in XPath, once

the query is processed and the final node-IDs, say {5, 7}, are found, the answer to
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Figure 3.1. Tree structure of an XML document.

be returned to the user is the entire subtree rooted at the node with IDs 5 and 7.

For instance, Figure 3.1, an XPath expression “//person” represents all the subtree

rooted at <person> node (subtree 1), and “//person/name” represents the whole

subtree rooted at “<name>” node (subtree 2), which is hierarchically nested as a

subtree in subtree 1. In this way, all these operators are at node level, which treat

nodes (node-IDs) as impartible unites and ignore the children or descendants of

the elements.

In addition, the set operators defined in XQuery only require two operands

to be “node sequences” without any further requirements on their comparability.

Therefore, two operands may be sequences of nodes at different level, or even nodes

from mixed levels. For instance, in the expression “//person union //name”, two

operands contain different nodes, <person> and <name>, and are thus incompa-

rable regarding their semantics. In the relational model, this kind of union is not

valid because of incompatible domains. However, XQuery accepts this query and

would return a sequence of mixed nodes, <person> and <name>. Consequently,

the “regular” set operators defined in XQuery are more flexible than their counter-

parts in the relational model, but they sometimes generate confusing semantics. In

particular, we have observed that some XML applications would have been bene-

fited greatly if there are “novel” set operators with different semantics in XQuery.

We take XML access control as an example.
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    <person id="person6">
            <name>Moheb Mersereau</name>
            <emailaddress>mailto:Mersereau@umass.edu</emailaddress>
            <creditcard>4462 9674 4373 8450</creditcard>
    </person>

person

    <person id="person6">
            <name>Moheb Mersereau</name>
            <emailaddress>mailto:Mersereau@umass.edu</emailaddress>

    </person>

person

(a): a complete “person” node (//person)

(b): a partial “person” node (//person deep-except //person/credicard)

creditcard

creditcard

Figure 3.2. An example of deep-except semantics

Example 3.1 (XML Access Control). In [45], we proposed an XML access control

enforcement method that re-writes users’ incoming query Q to a safe query Q′ such

that all fragments in Q that are asking for illegal data access are pruned out. In

this context, conceptually, the safe query is either (1) “intersect” of Q and what

users are granted to access (i.e., positive access control rules), or (2) Q “except”

what users are prohibited to access (i.e., negative access control rules). That is,

if Q is //person, but a positive access control rule grants only the data matching

//person/name[age>18], then users must have an access to the data that are the

intersect of //person and //person/name[age>18]. However, the expression using

the regular intersect operator, “//person intersect //person/name[age>18]”

would return NULL since no node-IDs from //person and //person/name[age>18]

match. What is desirable here is, thus, a novel “intersect” operator that compares

operands to check their structural overlap in a deep manner, and returns the

overlapped region. That is, “//person deep-intersect //person/name[age>18]”

should return the nodes matching //person/name[age>18] since it is completely

nested in //person.

Symmetrically, for negative access control rules, we need novel deep-except

operator. For instance, if a user issues a query //person but a negative access

control rule prevents her from accessing the data matching //person/creditcard,

then what she can really access is the data matching the expression “//person

deep-except //person/creditcard”. Again, the regular except operator, if used,
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would have resulted wrong semantics. Figure 3.2 illustrates the above semantics

of deep-except: (a) shows two <person> nodes in their original form, while (b)

shows the expected output of the “deep” query “//person deep-except //per-

son/creditcard”.

Example 3.2 (Database as a Service). In recent proposal to use database as a

service model [31], query and data are delivered over to the database site which

processes the query and returns answers back to users. Furthermore, XML data

may be gathered and stored in a non-replicating fashion. A small company A

that has branches in LA and NY may store different but partly overlapping XML

data in both branches. When analysis needs to be done, the company ships query

and two snapshots of XML data to 3rd party company B that provides database-

as-a-service. For instance, the company A wants to gather aggregated statistics

over items that were sold in 2004, and may request names of all items in the LA

branch to be sent to B, while requesting complete item information of Northern

America to be sent to B. That is, what B will receive is the “merged snapshot”

of //item/name and //namerica/item. Like Example 3.1, this cannot be handled

by the regular union operator, and can only be coped by introducing the novel

deep-union operator as follows: “//item/name deep-union //namerica/item”.

3.2 Formal Definitions

We first give precise formal definitions of three novel deep set operators, followed

by illustrative examples.

3.2.1 Definitions

First, we denote node sequences as P = {p1, ...pn} and Q = {q1, ...qn}, where pi

and qi are XML nodes, identified by node-IDs according to XQuery semantics [22].

And the enumeration of the nodes and all their descendant nodes as:

Pd = P/descendant− or− self :: ∗

Qd = Q/descendant− or− self :: ∗
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Definition 3.1 (deep-union). deep-union operator (
D
∪) takes two node sequences

P and Q as operands, and returns a sequence of nodes (1) who exist as a node or

as a descendant of the nodes in “either” operand sequences, and (2) whose parent

does not satisfy (1). Formally,

P
D
∪Q = {r|(r ∈ Pd ∨ r ∈ Qd) ∧

(r :: parent() 6∈ Pd ∧ r :: parent() 6∈ Qd)}

In the above definition, condition (1) represents the foundamental semantics

of deep union operator: compare not only nodes in operand node sequences but

also their descendants; (2) serves as a supplement: when a node satisfies condition

(1), all its descendants also satisfy condition (1), thus we wanted to eliminate the

descendants and keep the “greatest common node” only 1. Condition (2) is directly

expressed as:

! (r :: parent() ∈ Pd ∨ r :: parent() ∈ Qd)

According to De Morgan’s Law, it is equal to:

(r :: parent() 6∈ Pd ∧ r :: parent() 6∈ Qd)

Similarly, we have

Definition 3.2 (deep-intersect). deep-intersect operator (
D
∩) takes two node

sequences P and Q as operands, returns a sequence of nodes (1) who exist as a

node or as a descendant of the nodes in “both” operand sequences, and (2) whose

parent does not satisfy (1). Formally,

P
D
∩Q = {r|(r ∈ Pd ∧ r ∈ Qd) ∧

(r :: parent() 6∈ Pd ∨ r :: parent() 6∈ Qd)}

To formally define deep-except, we first need to define the deep-except-node

operator. W3C XPath [3] standard limits the connection of any two nodes be

1According to XML standards, when this node is projected to the document, the whole subtree
rooted at this node is returned.
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in one (or more) of the twelve axis. For any two given nodes, we can further

categorize their relationship into three classes: (1) they are identical, (2) they are

ancestor-descendant, or (3) there is no overlap between them (including sibling,

etc.). In other words, two nodes cannot be “partly overlapped”. Then we define

the deep-except-node operator as:

Remark 1. deep-except-node operator takes two nodes as operands, processes

them according to the following conditions: (1)when the first node is equal to

the second node, or is a descendant of the second node, return null; (2) when

the second node is a descendant of the first node, remove it from the subtree of

the first node and return the remaining; (3) otherwise, when there is no overlap

between the first and second nodes, return the first node.

In addition to Remark 1, we extend the second operand to a “node sequence”

to define deep-except-nodeseq:

Remark 2. deep-except-nodeseq operator takes one node as the first operand

and one node sequence as the second operand, process them according to the

following conditions: (1)when the first operand is equal to any node in the second

operand, or is a descendant of any node in the second operand, return null; (2)

when any node(s) of the second operand is descendant(s) of the first operand,

remove it(them) from the first operand and return the remaining; (3) otherwise,

when there is no overlap between the first and second operands, return the first

operand.

Finally, deep-except operator is defined as follows.

Definition 3.3 (deep-except). deep-except operator (
D
−) takes two node se-

quences as inputs, and conducts deep-except-nodeseq operation between each

node in the first operands vs. the second operand, and combine the outputs.

Formally,

P
D
−Q = {r|r ∈ (pi deep− except− nodeseq Q)}

Here we can see that the definition of deep-except operator appears to be dif-

ferent from the other two deep set operators. The differences are further discussed

and explained in Section 3.3.
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3.2.2 Examples

Consider the following XML fragment:

<a> <b> <c/> </b> <d/> </a>

Query “/a union //b” yields both <a> and <b> nodes. When projected on the

document, the answer would be:

<a> <b> <c/> </b> <d/> </a>, <b> <c/> </b>

On the other hand, query “/a deep-union //b” yields <a> nodes only. When

projected on the document, the answer would be:

<a> <b> <c/> </b> <d/> </a>

Query “/a deep-intersect //b” yields <b> nodes:

<b> <c/> </b>

Finally, query “/a deep-except //b” yields newly constructed <a> nodes, which

is different from original <a> nodes:

<a> <d/> </a>

As another example of deep set operators, we compare deep set operators and

regular set operators at micro level: given two nodes (i.e. only one item in each

node sequence as operand), what could be the productions of deep set operations,

as well as regular set operations?

As we pointed out, the relationship between two nodes A and B can only be one

of the following: (1)they are the same (A=B); (2) A is an ancestor of B (//A//B)2;

or (3) they are not related (no overlap between them). Table 3.1 summarizes the

results of conducting regular set and deep set operators on two nodes of each

category.

As an example, if we take a node (e.g. //person[@id=’1’]) and one of its

grandchild (e.g //person[@id=’1’]/address/zip) as operands to conduct three set

operations defined in XQuery, they will generate the results as shown in Figure 3.3.

As we can see, regular set operators compares the IDs of two nodes and found them

different. Thus union operation returns both nodes, intersect operation returns

NULL, and except operator returns the first operand (grandparent node).

2For case “A is a descendant of B” (//B//A), we can simply swap token A and B, thus it is
still categorized as case 2
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∪
D
∪ ∩

D
∩ -

D
−

A=B A A A A ∅ ∅
//A//B {A, B} A ∅ B A partial content

no overlap {A, B} {A, B} ∅ ∅ A A

Table 3.1. Comparison between set operators and deep set operators

12

site

people regions

person

name

D

D

D

Figure 3.3. set operators defined in XQuery

On the other hand, if we take the above nodes and conduct deep-set operations,

different results are generated, as shown in Figure 3.4:

• deep-union operator detects that the node of the second operand is a de-

scendant of the first operand, so it returns only the ancestor node.

• deep-intersect operator also finds that the second operand is descendant

of the first one, then their deep-intersect is the second operand.

• deep-except operator detects the second operand is a descendant of the

first operand. In this way, the output of deep-except operator is not equal

to any existing nodes. Rather, it is partial content of the ancestor node, with

one of the descendant node been removed.

The above example is case 2 in Table 3.1. Comparing Figure 3.3 with Figure 3.4,

we can observe the essential difference between regular set operators and deep set

operators: the regular set operators only compare and process node(s) in operands,

while deep set operators compare and process node(s) as well as their descendants.
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person

name

D

D
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Figure 3.4. Deep set operators

3.3 Properties

3.3.1 Arithmetic Properties

The following properties of deep set operators are most fundamental and can be

easily proved by their definitions (here we omit the proof due to space limit). They

are similar to the properties of regular set operators.

Commutativity

P
D
∪Q = Q

D
∪ P

P
D
∩Q = Q

D
∩ P

P
D
−Q 6= Q

D
− P, unless P = Q

Associativity

(P
D
∪Q)

D
∪R = P

D
∪ (Q

D
∪R)

(P
D
∩Q)

D
∩R = P

D
∩ (Q

D
∩R)

Distributivity:

(P
D
∪Q)

D
∩R = (P

D
∩R)

D
∪ (Q

D
∩R)
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In addition, we would like to point out one essential difference between deep-

except operator and the other two. As we can see, both deep-union and deep-

intersect operators return a sequence of nodes that are originated from the given

XML tree, i.e. they do not create any new nodes. In this way, the production

of these two operators are available for any other operations defined in XQuery

that accepts nodes as operands, e.g. union, intersect, etc. On the other hand,

whenever deep-except-nodeseq (case 2 of Remark 2) operation is conducted for

deep-except operator, new nodes are constructed. Therefore, the production of

deep-except operator may not be existing node in the XML tree. In this way,

we should identify that although three operators are named “deep set operators”

together, they are actually operators of different properties. deep-except operator

is constructing new nodes while the other two operators return nodes of the original

XML tree, which is similar to the regular union and intersect operators.

As an example, “//person deep-except //person/name” returns “person”

nodes. However, the returned “person” nodes are not the same as “person”

nodes that reside in original XML document: the “person” nodes produced by

deep-except operation do not have “name” child. As a result, the newly con-

structed “person” nodes have new nodeIDs, which are different from original “per-

son” nodes. Therefore, with the production of deep-except operator, we have to

be careful when conducting further operations with existing “person” nodes in the

XML document, such as union, intersect etc. Moreover, we cannot use

//person
D
− //person/name

D
− //person/age

although it looks fine in semantics. Instead, we have to use:

//person
D
− (//person/name ∪ //person/age)

3.3.2 Comparison with Set Operators

As we described above, deep-union and deep-intersect operators return nodes

of the original document (probably node-IDs in actual applications). Here we pro-

vide two theorems to further describe the output of these two operators, especially

their relationships with regular set operators.
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Lemma 3.1. deep-union of two node sequences is subset of their union produc-

tion:

(P
D
∪Q) ⊆ (P ∪Q)

Proof. Lemma 1 is equivalent to:

if r ∈ P
D
∪Q, then r ∈ P ∪Q. (3.1)

Suppose we have an r that r ∈ P
D
∪Q, according to Definition 1:

r ∈ Pd or r ∈ Qd.

Consider the equivalency of P and Q, we can assume

r ∈ P/descendant− or − self :: ∗ (3.2)

According to Definition 1, we also have

r :: parent() 6∈ P/descendant− or − self :: ∗

which means

r 6∈ P/descendant :: ∗ (3.3)

Comparing (2) and (3), we have

r ∈ P, thus r ∈ P ∪Q,

which proves Equation 1.

Lemma 3.2. deep-intersect of two node sequences is subset of their union

production:

(P
D
∩Q) ⊆ (P ∪Q)

On the other hand, it is not possibly subset of their intersect production:

∃P,Q that (P
D
∩Q) 6⊆ (P ∩Q)
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This theorem is also described as : if r ∈ P
D
∩Q, then r ∈ P ∪Q, but not always

r ∈ P ∩Q.

Lemma 3.3. Deep-intersect of two node sequences is superset of their intersect

production, unless both operands contain ancestor-descendant nodes:

(P ∩Q) ⊆ (P
D
∩Q)

The proofs of the above two theorems are similar to that of Lemma 1, and thus

omitted.

3.4 Preliminary Implementations

We have implemented the deep set operators through user-defined functions of

XQuery. With this implementation, these operators are executable in any XML

engine that supports XQuery. On the other hand, as a drawback, this engine-

independent implementation may not be as efficient as implementations at lower

level (say, engine level).

As XQuery’s user-defined functions, our implementations take node sequences

as inputs, including XPath expressions and other forms of node sequences (e.g.

products of set operators). In addition, as described above, the results of both

deep-union and deep-intersect operations are XML node sequences and are

available to further XQuery operations. Our implementation also supports this

property.

3.4.1 Deep-union Operator

According to theorem 1, product of deep-union operator is a subset of regular

union operation, i.e. each output node must originally resides in at least one

operand. Following this theorem, deep-union operator, as shown in Algorithm 1,

enumerates the nodes in each operands, referring to requirements of deep-union

and return the satisfied ones.
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Algorithm 1: deep-union

Input: input node sequences P and Q
foreach node Pi of P do

if empty(Pi ∩Q//*) & empty(Pi ∩ P//*) then
Pi

foreach node Qi of Q do
if empty(Qi ∩ (P ∪ P//∗)) & empty(Qi ∩Q//∗) then

Qi

3.4.2 Deep-Intersect operator

deep-intersect is implemented in a similar way as deep-union. According to

theorem 2, each output node of deep-intersect operator must originally resides

in at least one operand. To enhance the readability of the algorithm, we divide it

into three steps: first extract the regular “intersect” of two operands, remove the

possible ancestor-descendant relationship that may exists, and output the remain-

ing. Then, for each of the operand, enumerate the node items, output it if it is a

descendant of the other operand (some exceptions are eliminated). Algorithm 2

shows how deep-intersect works.

Algorithm 2: deep-intersect

Input: input node sequences P and Q
foreach node r in (P ∩Q) do

if empty(r ∩ (P ∩Q)//∗) then
r

foreach node Pi of P do
if empty(Pi ∩ P//*) & !empty(Pi ∩Q//∗) & empty(Pi ∩ (P ∩Q)) then

Pi

foreach node Qi of Q do
if empty(Qi ∩Q//*) & !empty(Qi ∩ P//∗) & empty(Qi ∩ (P ∩Q)) then

Qi

3.4.3 Deep-except Operator

For deep-except operator, as we have described in Section 3.1, it is different from

the other two deep set operators. We implement it in a recursive manner: for each
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node in the first operand, (1) if it has no overlap with any node in the second

operand, output it; (2) if it is ancestor of any node(s) in the second operand,

construct a new node with the same name, attributes and text, and enumerate

all the children to conduct deep-except with the second operand; (3) otherwise,

the node is “covered” by nodes in the second operand, eliminate it. The general

algorithm is shown in Algorithm 3.

Algorithm 3: deep-except

Input: input node sequences P and Q
foreach node Pi in P do

if empty(Pi//* ∩ Q) and empty(Pi ∩ (Q ∪ Q//*)) then
Pi

if ! empty(Pi//* ∩Q) then
construct element{
element name=name(Pi);
element attributes=Pi/@*;
element text()=Pi/text();
deep-except(Pi/*,Q);
}

else

3.4.4 Complexity

Although the above preliminary implementations may not be fully optimized, we

can still estimate the computation of deep set operators. The computation of

deep-union and deep-intersect operators are both O(nc ∗ns), where nc denotes

the total number of nodes in the sequences of operands, and ns denotes the total

size of the subtrees rooted at these nodes. On the other hand, the computation of

deep-except operator (P deep-except Q) is denoted as O(ncq ∗nsp ∗ i), where ncq

denotes number of nodes in P , nsp denotes the size of subtrees rooted at nodes in P ,

i denotes the maximum depth of these subtrees. This appears to be more expensive

than the other two, since recursive function call is employed in the implementation.

It could be greatly optimized if implemented at XML engine level.



Chapter 4
XML Access Control Enforcement

Mechanisms

In this section, we introduce a general framework, which capture the design prin-

ciples and operations of existing XML access control mechanisms. Under this

framework, we observe that most existing XML access control mechanisms share

the same design principle with slightly different orderings of underlying building

blocks (i.e., data, query, and access control rule). Furthermore, according to the

framework, we identify four plausible approaches to implement XML access con-

trols, namely built-in, view-based, pre-processing and post-processing. For each

approach, we algebraically describe it with deep set operators.

4.1 System Architecture - a General Framework

We view the XML access control mechanism as the interplay of three building

blocks – data, query , and access control rule as follows:

• Data (D) indicates the XML data (or document) that contains the answers

users are looking for. Often the data are stored in native XML engines or

RDBMS, but the choice of storage system is irrelevant to the discussion of

our discussion.
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(b) 

 

 

(c) 

 

 

(d) 

 

 

(e) 

 

Query ACR Data 

Query ACR Data 

Query ACR Data 

Query Data ACR 

Data Query ACR 

Figure 4.1. Different combinations of building blocks in the framework.

• Query (Q) describes the information that users want, and can be viewed

as a conceptual pointer to the desired data in D. In XML domain, query is

often written in either XPath or XQuery language. When a Q is issued by a

user, Q has the same security role as what the user has.

• Access Control Rules (ACR) is a list of 5-tuple access control rule, de-

scribing the security policy of some roles. When a portion of data in D that

does not violate policies of ACR are returned, it is a “safe” answer.

Note that D, Q and ACR are independent components, and thus can be located

independently and processed separately. Figure 4.1 illustrates various combina-

tions of the three building blocks, where gray box implies that building blocks

in it are (1) co-located (in a spatial sense); and/or co-processed (in a temporal

sense). For instance, (a) can be interpreted as: all three building blocks must be

(1) co-located in a single system; and/or (2) processed at the same time. Below,

we will consider both aspects of the framework.

• (a) indicates a scenario where all three building blocks are co-located in a

single system. For instance, conventional RDBMS supports relational access
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control via the embedded support of GRANT/REVOKE. In such a setting,

Q is issued against both D and ACR which are stored together;

• (b) is a slight modification of (a) in that Q can be issued remotely while ACR

must be stored together with D in a system. Typical example of this scenario

includes the client-server model such as web-based database interface. On

the other hand, from the temporal aspect, (b) illustrates the view-based XML

access control mechanism where ACR and D are processed first (yielding a

safe view), and then Q is evaluated against the view. Whichever case it is,

the data provider must be able to support XML access control mechanism;

• In the spatial sense, (c) indicates a scenario where one party holds Q and

ACR, while D is stored elsewhere. For instance, D is provided by a data

provider while ACR is provided by a data mediator who connects end users

with raw data sources with marginal fees. Once acquiring an adequate se-

curity role from the mediator by paying the fee, end users can issue a query

to D. On the other hand, in the temporal sense, (c) implies that Q and

ACR can be pre-processed prior to D. Therefore, for optimization, one can

“merge” Q and ACR such that new output Q′ can be processed against D

more efficiently;

• (d) shows a scenario where only ACR is stored elsewhere. Since Q and D

are stored together, conventional databases without access control support

can be used to first evaluate Q against D. When ACR itself carries security-

conscious information and has to be stored securely, this approach can be

adopted; and

• Lastly, (e) is a conceptual merge of (b) and (d). Since the final “safe” answers

are those data that can pass through constraints of Q as well as ACR, one

can do intersection of two data sets – one from evaluating Q against D, and

the other from enforcing ACR against D.

Now, we analyze popular approaches, e.g. (b), (c) and (d) in details.
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4.2 View-based Approach

When access control is first enforced on XML documents to create views, it is the

traditional view-based approach. This approach is adopted from RDBMS access

control, and is intensively studied in the literature. View-based approach takes

advantage of the fact that ACR and D are either co-located or co-processed. By

processing evalRule(ACR,D) first, this approach produces a set of data, SD1, ...,

SDn for each role, thus creating a number of “views”. Since each view contains

only “safe” data for that particular role, query can be processed on this view

without any further special care, making the query processing very efficient. The

examples of view-based approaches recently proposed include [73, 16, 4], and is one

of the most popular XML access control mechanisms. Depending on the details of

the algorithms, the views can be maintained either physically or virtually.

In this approach, XML view V (or safe document SD) is constructed to capture:

V = [(〈R+
1 〉

D
∪X ...

D
∪X 〈R+

n 〉)
D
−X (〈R−1 〉

D
∪X ...

D
∪X 〈R−m〉)]

And query is evaluated against the view

SA = Q〈V〉 = Q[(〈R+
1 〉

D
∪X ...

D
∪X 〈R+

n 〉)
D
−X (〈R−1 〉

D
∪X ...

D
∪X 〈R−m〉)]

Since the I/O and space costs for constructing views are amount to evaluating

evalRule(ACR,D), it is dependent on the number of roles in ACR and the size of

D. The view-based approach generally includes three steps: (1) view construction

(2) query processing (3) view maintaining. However, often, the view construction

is performed off-line, and thus the cost issue becomes less important. When the

space cost becomes a major issue due to large number of views (e.g., million roles in

Internet environment), then one may mitigate the problem using the compression-

based techniques suggested in [73].

However, this approach still has to take extra burden to maintain the views.

When update occurs to either ACR or D, synchronization must be performed

to views. Overall, the view-based approach is fast in answering user queries but

may have to pay high I/O and storage cost, and the extra complexity of view

maintenance.
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4.3 Pre-processing Approach

The idea of the pre-processing approach is to view both user’s query and se-

curity policies written in ACR as two constraints to satisfy . Therefore, secu-

rity enforcement is ensured by “merging” two constraints to form tighter con-

straints. For instance, for Example 2.1 and Table 2.1, consider a user of role1,

“John”, who wants to survey the items’ location information. He submits a query,

Q://item/location. The meta-semantics of Q and a positive rule R+ is that

users are allowed to access the regions scoped by “Q DEEP-INTERSECT R+”. Con-

versely, that of Q and a negative rule R− is “Q DEEP-EXCEPT R-”. Collectively,

what “John” is allowed to read is then denoted as:

(Q DEEP-INTERSECT (R1 DEEP-UNION R2...DEEP-UNION R8))

DEEP-EXCEPT (R9 DEEP-UNION R10)

Algorithm 4: Primitive
Input: Q, ACR, D
Output: SD
S ←− all rules in ACR having the same “role” as Q ;
P ←− rules in S with + sign, P1, ..., Pi;
M ←− rules in S with - sign, M1, ..., Mj ;
Q′ ←− Q DEEP-INTERSECT (P1 .. DEEP-UNION .. Pi) DEEP-EXCEPT (M1 .. DEEP-UNION

.. Mj);
SD ←− Q′(D);

Note that only R2, R9 and R10 are related to the interest of “John”. However,

the primitive approach does not analyze the object field of rules to further distin-

guish corresponding rules. The formal algorithm, Primitive, is given in Algorithm

4. Primitive approach is built using deep set operators. This way, the final safe

query Q′ does not require any special security-related support from the underlying

XML engine (i.e., deep-set operators are implemented as user-defined functions).

The semantics and algorithm of the primitive approach is simple and clear, and

thus can be easily implemented. On the other hand, the primitive approach may

generate complex safe queries, especially when there are a large number of access

control rules. Since such complex queries tend to be expensive to evaluate, the

primitive approach is further improved in the pre-processing approach below.

One may improve the primitive algorithm by optimizing the modified query
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Q′ further. That is, instead of simply generating a complicated Q′ with multiple

deep-set operators interweaved, one may do some “pre-processing” by exploiting

the specifics of XML model and XML access controls. For instance, if what users

ask for are entirely prevented by ACR, then we can return null to users outright.

Similarly, if users ask for data that are entirely granted, then no further security

check is needed. Lastly, among the data that users ask for, if only part is granted

by ACR, then it is beneficial to rewrite Q to Q′ such that fragments asking for

illegal data are pruned away.

In preprocessing approaches, safe query SQ is constructed as:

SQ = Q
D
∩X [( R+

1

D
∪X ...

D
∪X R+

n )
D
−X (R−1

D
∪X ...

D
∪X R−m)]

Safe answer is yielded by evaluating safe query against the original document:

SA = SQ〈D〉.
The Pre-Processing algorithm is shown in Algorithm 5 (the details of the

function “Pre-Processing(Q,ACR)” are elaborated in Section 5).

Algorithm 5: Pre-Processing
Input: Q, ACR, D
Output: SD
S ←− all rules in ACR having the same “role” as Q;
Q′ ←− Pre-Processing(Q,ACR);
SD ←− Q′(D);

4.4 Post-Processing Approach

The post-processing approach extends regular query processing by going through

a “post-filtering” stage, named as AFilter, to filter out un-safe answers. Despite

their potential inefficiency for unnecessarily carrying unsafe data till the last step,

this approach is simple to implement. Moreover, when ACR and data are stored

separately in a distributed environment (e.g., database-as-a-service model), this

approach can be useful. The formal algorithm, Post-Processing, is given in

Algorithm 6. However, despite the simple look on the surface, its implemen-

tation needs to overcome the following technical issue. Let us again look at

“John”’s query Q: //item/location: consider Q and R9, R10, which say that
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“John” is not allowed to access location information of items in Asia or Africa.

When Q is first evaluated against an XML document D, Q projects out only

the tag <location> without its ancestor tags. Therefore, in the post-filtering

stage, when R9 and R10 are to be enforced against these intermediate answers

having only <location> tags, they cannot check whether the <location> satis-

fies /site/regions/africa/item/location or not. However, if underlying XML

database can produce <location> as well as all its “ancestor” tags (e.g., using a

recursive function of XQuery), then the post-processing approach by AFilter can

be applied without any further security support from databases.

Access control through post-processing is described as:

SA = ACR〈A〉 = ACR〈Q〈D〉〉 = [(R+
1

D
∪X ...

D
∪X R+

n )
D
−X (R−1

D
∪X ...

D
∪XR

−
m)]〈Q〈D〉〉

Algorithm 6: Post-Processing
Input: Q, ACR, D
Output: SD
S ←− all rules in ACR having the same “role” as Q ;
P ←− rules in S with + sign;
M ←− rules in S with - sign;
AFilter.constructAFilter(P ,M);
UD ←− Q(D);
SD ←− AFilter.filter(UD);

4.5 A Qualitative Comparison

In this section, let us do a close examination on the above three (important) cate-

gories: view-based, pre-processing, and post-processing. We observe that typically

an XML access control mechanism involves three separate operations: (1) off-line

service preparation, (2) on-line query processing, and (3) service maintenance.

• Off-line Service Preparation. This step is typically devoted on tasks

to help speed-up the subsequent query processing step, and done off-line.

Obviously, view-based approach would need to generate views per roles in this

step. Similarly, the pre-processing approach like QFilter or static analysis

method spends this time on constructing needed data structures (e.g., NFA).

For the post-processing approach, one can build up some kind of index on
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ACR (e.g., given a “role”, quickly retrieve all relevant rules from ACR) so

that later post-filtering process can run faster. Note that in this stage, Q from

users are not known, and both ACR and D are the sole resources. Therefore,

often the cost for service preparation depends on the size of ACR and D.

Moreover, when the preparation requires non-trivial probing of ACR such

as QFilter case, the complexity of ACR also does affect the cost. However,

overall, since these tasks are done off-line, they do not contribute much to

the performance of whole XML access control mechanisms, and thus omitted

in our experimental comparisons of Section 5.

• On-line Query Processing. Once Q is issued, the task of evaluating Q

while ensuring security policies in ACR is done in this step, and must be

done on-line (unless the submitted query is part of batch-process). The end

output of this task must be the “safe answers”. Thus, the end-to-end on-line

query processing time is the time-line between Q and SA in Figure ??.

For the view-based approach, the query processing can be efficient since

there is no need for additional security check (i.e., each view contains only

safe data for the role, after all). For the pre-processing approach, the per-

formance largely depends on the quality of the re-written query from the

pre-processing. For instance, if the primitive method generates a re-written

query Q′ as “s1 ∩ ... ∩ sn − t1... − tm” (n, m � 1), then the evaluation

of the Q′ can be quite slow. Other pre-processing approaches like QFilter

or static analysis method improve it drastically via early-pruning of access-

full-granted or access-fully-denied cases and via improved query re-writing

in merge(Q,ACR). For the post-processing approach, the security check

is pipelined after the query evaluation, and thus can be disadvantageous in

terms of performance. Post-filtering time is highly dependent on the size of

unsafe answer set.

• Service Maintenance. In general, any service preparations done off-

line need to be maintained when update occurs. For instance, when D is

changed (e.g., new sub-tree is inserted to D), view-based approach needs

to (incrementally) re-construct relevant views. However, the changes to D
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Approach Preparation Processing Maintenance
View-based Medium Good Medium

Pre-processing Good Medium/Good Good
Post-processing Good Bad/Medium Good

Table 4.1. Qualitative comparison of XML access control approaches.

do not affect the pre-processing or post-processing approach. On the other

hand, when ACR is changed, it affects the pre-processing (e.g., an NFA needs

to be updated) and post-processing approach (e.g., index on ACR needs to

be updated).

The summary of the qualitative comparison of three scenarios of Figure 1 is sum-

marized in Table 4.1. Note that the query processing cost of the post-processing

approach heavily depends on the size of intermediate un-safe data and/or the com-

plexity of rules in ACR.



Chapter 5
QFilter: An Implementation of

Pre-Processing Approach

In this Chapter, we present our NFA-based implementation of the pre-processing

approach, named QFilter. QFilter reads a query Q and access control rules ACR

as input, and returns a modified query Q′ as output:

Q′ = QFilter(Q,ACR)

This can be re-written by separating positive and negative rules:

Q′ = Q
D
∩ (ACR+

D
− ACR−)

= (Q
D
∩ ACR+)

D
− (Q

D
∩ ACR−)

= QFilter(Q,ACR+)
D
− QFilter(Q,ACR−)

That is, the Pre-Processing approach can be implemented by two invocations

of QFilter function and a DEEP-EXCEPT operator.

Once QFilter is constructed from ACR, it “filters” out illegal fragments from

incoming queries to produce only “safe” queries. In the filtering stage, in particular,

QFilter has three types of operations: (1) Accept: If answers of Q are contained

by that of ACR+ (i.e., Q asks for answers granted by ACR+) and disjoint from

that of ACR− (i.e., Q does not ask for answers blocked by ACR−), then QFilter

accepts the query as it is: Q′ = Q; (2) Deny: If answers of Q are disjoint from
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User

QQ

Figure 5.1. QFilter in a black box.

that of ACR+ (i.e., no answers to Q are granted by ACR+) or contained by that of

ACR− (i.e., all answers to Q are blocked by ACR−), then QFilter rejects the query

outright: Q′ = ∅; and (3) Rewrite: if only partial answer is granted by ACR+

or partial answer is blocked by ACR− , QFilter rewrites Q into the ACR-obeying

output query Q′.

Example 5.1. In Example 2.1, a user submits three queries:

Q1:/site/categories//*

Q2:/site/regions/asia/location

Q3:/site/regions/people/person/*

In comparing these with ACR of Table 2.1: (1) Q1 is accepted by R1; (2) Q2 is

accepted by R2 but rejected by R9, and is rejected since negative rules override

positive rules; and (3) Q3 is rewritten by R6 and R8 into:

/site/regions/people/person/name
D
∪ /site/regions/people/person/emailaddress.

5.1 QFilter Construction

In a nutshell, as shown in Figure 5.1, QFilter builds an Non-deterministic Finite

Automata (NFA) from Object fields (in the form of XPath expressions) of ACR,

and rewrites an input query Q according to one of the three operations. That
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Figure 5.2. NFA element for each XPath building block

is, we view XPath expressions of ACR as compositions of “four” basic building

blocks: /x, /*, //x, and //*. Complex XPath expressions with predicates (e.g.,

/x[y=’c’]) can also be handled and are further described in Section 5.2. The

NFA element construction for each building block is illustrated in Figure 5.2. For

a complete XPath expression, NFA fragments are constructed upon path elements

and then linked in sequence. For a set of rules that form the ACR, NFA for each

rule is constructed and all the NFAs are combined such that identical states are

merged. The construction process is somewhat similar to that of regular NFA. As

examples, Figure 5.3 is the state transition map (Left) and corresponding NFA

(Right) of Example 2.1.

We first give a brief example of QFilter construction at the level of XPath steps,

then we walk into details of QFilter data structure and construction algorithm. We

construct the QFilter starting from R1. For path step /site, we create state 0 and

a transition on token “site” to state 1. Then a transition on token “categories”

is created on path step /categories. For element //*, transition from state 2 to

3 and then 4 is created as shown in Figure 5.3 (left). Transition from state 3 to

4 requires at least 1 token after the ε-transition. We use the “next-token-driven

ε-transition” in the NFA execution, thus state 3 and 4 could be merged in the

NFA and set as acceptable state. The remaining access control rules are processed

accordingly.

QFilter Data Structure

A regular NFA holds a state transition table at each state, mapping acceptable

tokens to transition states. Since a QFilter captures object fields of access control

rules in XPath, element names at each XPath step are identified as “tokens”.

Moreover, to capture each XPath step in one QFilter state, the predicates should

also be captured. The data structure for QFilter (illustrated in Figure 5.4) consists
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Figure 5.3. State transition map and NFA of the QFilter

of:

1. A state transition table called stateTransitionTable (implemented as a hash

table), maps the element names of XPath to a predicateTable, that maps

predicates to corresponding child QFilterState.

2. A ε-transition child state. Transition to this child state is automatically

triggered without any token matching.

3. A binary flag to indicate an accept state (e.g., states 8 and 9 of Figure 5.3)

4. A binary flag to indicate a double slash state, which recursively accepts

tokens (e.g., states 3/4 and 17/18 of Figure 5.3).

Taking ACR as input, we construct QFilter from the root state, and hold this

state for all future access (e.g., add a rule or filter a query). We first create an

empty root state, then add each rule to the root state one by one. The general

idea for adding each rule is to follow the existing NFA states as much as possible,

until no identical path exists, then new states are constructed. Algorithm 7 shows

QFilter construction (at state level) in details.

Example 5.2. Let us demonstrate the construction of QFilter using Example 2.1.

First, let us add a positive rule /site/categories//* into QFilter. State 0 is

first created for the XPath step /site. Then, state 1 is created for the step

/categories. States 2 and 3/4 are created for decedent-or-self() step //*.

Finally, state 3/4 is marked as “DSState” and “Accept”, indicating that it takes
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Figure 5.4. (a) Data structure of a QFilter state; (b) QFilter constructed for rule
/site/categories//*; (c) QFilter constructed for more rules.

any input token (//*) and is an accept state. Next, we add another rule R2:

/site/regions/*/item/location. For the first step “/site”, since identical key

is detected at state 0, it is reused. Then at state 1, element name “regions” is not

in the state transition table. State 5 is created, and new entry is inserted into the

state transition table at state 1. States 6, 7 and 8 are created in the same way. If

we add all eight rules of Example 2.1 to this QFilter, state 1 is finally constructed

as shown in Figure 5.4(c) (not all other states are shown in the Figure).

5.2 QFilter Execution

Given a query Q as input, QFilter filters unsafe fragments of Q to generate a safe

query Q′. The filtering principle consists of: (1) If ACR allows all data that Q

requests, keep Q as it is; (2) If what Q asks for is entirely prohibited by ACR,

then reject Q outright; and (3) Otherwise, modify Q such that Q′ returns a precise

“deep-intersection” of Q and ACR. The filtering process becomes complicated

when either Q or ACR has non-deterministic operators such as “//” and “*”,

which can match multiple branches in the NFA.

QFilter Execution Algorithm

At micro level, we first pass Q to the root state of QFilter to start NFA execution.

Since queries with wildcards may go through several rules (being rewritten by

each rule), the result of QFilter execution can be an array of safe XPath queries.
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Algorithm 7: QFilterState.addRule

Input: XPath expression of Access Control Rule: R
if R.EOS() then { mark as accept state: acceptState = True; return } ;1

if (R.currentStep is “//”) & (NOT R.doubleSlashProcessed) then2

if ε− transitionChild does not exist then3

Create ε− transitionChildState;4

mark ε− transitionChildState as DSState;5

R.doubleSlashProcessed←− true;6

ε− transitionChildState.addRule(R);7

return8

Token←− R.elementName;9

Predicate←− R.predicate;10

R.nextStep();11

if DSState & Token = “∗′′ then { addRule(rule);12

return;} ;13

if NOT stateTransitionTable.hasKey(Token) then14

stateTransitionTable.put(Token, emptyPredicateTable);15

predicateTable←− stateTransitionTable.get(Token);16

if NOT predicateTable.hasKey(Predicate) then17

create new filterState newState;18

predicateTable.put(Predicate, newState) ;19

stateTransitionTable.put(Token, predicateTable) ;20

newState.addRule(R);21

else (PredicateTable.get(predicate)).addRule(R);22

Each element in the array reflects the rewritten branch of Q. Then, QFilter weaves

the array of XPath queries through using
D
∪. Due to the design of access control

rules, it is possible that one the the filtered branch is equal to the original input

query, while some other branches reflect pruned input query. In this case, only

the original query is kept. At the state level, the execution of QFilter is similar to

that of regular NFA, except for its query re-writing process. The details, shown in

Algorithm 8, are as follows:

• Starting from the root state, an element name of XPath and keys in the state

transition table are compared to find a “match”. When the “match” is found,

keep the intersection of the element name and the key as the output of this

state. For instance, when the“*” step in Q matches the key “regions” in

the state transition table, their intersection becomes “regions”. Predicates
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from both ACR and Q are kept as the output of this state (details will be

elaborated in Section 5.2).

• When a “match” is processed, QFilter locates the next state corresponding

to the matched key and predicate from the state transition table. The input

query also moves its pointer to the next step, and continues the execution.

• Q is accepted at the accept state. We then link the output of each state

sequentially to obtain a final “filtered” output query. If a query is accepted

at a state that is not “//*”, “text()” is appended to the output, indicating

that Q is accepted by an LC rule.

• At each step, multiple matches may exist (e.g., a “*” inQmatches all the keys

in the state transition table). Then, QFilter execution is split into branches,

and the final output of each branch (if not null) is put into the result array.

On the other hand, when multiple predicates exist, QFilter execution is also

split into branches. For multiple outputs (as array), they are connected by
D
∪.

Example 5.3. Let us use the QFilter in Example 5.1 to process a query:

Q:/site/people/person/name

The first step is accepted by state 0. Since the element name “site” matches

the key “site”, “/site” is put into the output, and execution continues at state 1.

All steps of XPath continue through states 1, 12, and 13, with output:

/site/people/person/name

Finally, it is accepted at state 14. Since 14 is not a “//*” accept state, “text()”

is attached. The final safe query generated from QFilter is:

/site/people/person/name/text().
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Algorithm 8: QFilterState.filter

Input: XPath query Q (with pointer to current step);
its filtered part: prefix
Output: String array of filtered query branches: arrayQ′

if Q.EOS() then1

if is accept state then2

return prefix;3

else4

return NULL;5

if Q is double slash then6

arrayQ′ ←− QFilterState.DSFilter();7

return arrayQ′;8

if ε− transitionChildState!=NULL then9

Q′ ←− ε− transitionChildState.filter(Q);10

if Q’ != NULL then11

arrayQ′.insert(Q′);12

Token←− Q.elementName;13

Predicate←− Q.predicate;14

Q.nextStep() ;15

if current state is a DSState then16

prefix′ ←− prefix+“/”+Token+Predicate;17

Q′ ←− filter(Q, prefix′);18

if Q’ != NULL then19

arrayQ′.insert(Q′);20

foreach match between Token and (key[i] in stateTransitionTable) do21

if key[i]=“*” then22

Token′ ←− Token23

else24

Token′ ←− key[i];25

predicateTable←− stateTransitionTable.get(key[i]);26

foreach predicate[i] in predicateTable do27

prefix′ ←− prefix+ “/′′ + Token′ + Predicate+ predicate[i];28

nextState←− predicateTable.get(predicate[i]);29

Q′ ←− nextState.filter(Q, prefix′);30

if Q’ != NULL then31

arrayQ′.insert(Q′);32
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Handling Predicates

Predicates such as “[b=10]” in “//a/[b=10]/c” frequently occur in Q or ACR.

When Q has predicates in it, they are kept intact initially. Whenever the element

name of an XPath step is accepted or re-written, then, the predicate (if any) is then

attached to it. Otherwise, if a path token is rejected, the predicate is also rejected.

For predicates from access control rules, from Figure 5.4(a), we can see that each

element name (token) is mapped to a table, holding all the predicates affixed with

it. During the execution of QFilter, when the XPath step of the incoming query

matches an element name in the state transition table, we further process their

corresponding predicates: (1) Rule predicate in the predicate table is attached to

the output of the current step; (2) Multiple entries in the predicate table are not

exclusive. That is, QFilter’s execution is split into different branches, and each

takes a different entry in the predicate table; and (3) For each branch, QFilter’s

execution continues at the next state, and maps to the predicate in the predicate

table.

Example 5.4. Let us replace R5 of Example 2.1 by

/site/regions/*/item[quantity>0]/location

Then, the QFilter of Figure 5.3 (Middle) is re-constructed to Figure 5.5. Each

none-leaf none-ε state carries an empty predicate processing state “ϕ”, but omitted

for simplicity.

Example 5.5. Suppose we process a query:

/site/regions/namerica/item/location

using the QFilter of Example 5.4. The query goes through states 0, 1, 5, and 6,

with an output:

/site/regions/namerica/item1

at state 6. Then, QFilter execution splits into two branches at state 6p. Branch 1

goes to state 7.1 with output:

1Note, at state 5, “*” in the transition table matches with the current element name “namer-
ica”, and their intersection, “namerica”, is kept in the output.



50

 

description

“categories” 

“regions” 

“people” 

ε

* “item”

“name” 

“person”

“location” 

“quantity” 

“description” 

“name” 

“address” 

“emailaddress”

2 

1 
5 6

7.1
8 

9 

10 

11 

12 

13
14

ε
15

16

17 / 18

3 / 4

“site” 
0 

φ

7.2

6-p

Figure 5.5. QFilter with predicate processing states.

/site/regions/namerica/item

(ϕ predicate is omitted); branch 2 goes to state 7.2 with the output:

/site/regions/namerica/item[quantity>0]

(predicate from rule R5’ is attached). Branch 1 is rejected at state 7.1 while branch

2 continues through state 7.2 and is finally accepted at state 11. At the end, this

query is returned as the output:

/site/regions/namerica/item[description]/name/text()

Handling “//” in queries

The fragment“//x” asks for element “x” with any path(s) precede it. The //x or

//* step in Q matches the key x (or any key) in the current NFA state, or any

of its descendant state. Therefore, either “//x” or “//*” in Q triggers the state

transition from the current state to all of its subsequent states, then tries to match

“x” or “*” with keys in their state transition table. In this case, the query Q is

split into branches that continue at each of the subsequent states of the current

state (where the “//” input is detected). Such a query needs to be rewritten. In

general, we rewrite “//” with the path from the current state to the destination

state, where the branch continues to be executed. Then, each branch of the QFilter
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Start Destination Re-written Query Start Destination Re-written Query
12 15 /person/address

12 13 /person 12 16 /person/emailaddress
14 /person/name 17/18 /person/address

Table 5.1. “//” transition look-up table.

execution restarts by matching the input element name (“x” or “*”) with keys in

the state transition table.

Example 5.6. Let us use the aforementioned QFilter to process the query:

/site/people//name

The first two steps “/site/people” trigger the state transition from 0→ 1→
12. Then, when it encounters the “//”, Q breaks into the following six branches,

each has the input element name “name”:

1. /site/people restarts at state 12;

2. /site/people/person restarts at state 13;

3. /site/people/person/name restarts at state 14;

4. /site/people/person/address restarts at state 15;

5. /site/people/person/emailaddress restarts at state 16;

6. /site/people/

person/address/ restarts at state 17/18.

Obviously, only the state 13 (branch 2) and 17/18 (branch 6) can accept the

input token name. Thus the final output is:

/site/people/person/name | /site/people/person/address//name

To speed up the traversal, we can build a look-up table for each state. It is an

index to all the sub-states, together with the replacing string. As an example, the

look-up table of state 12 is shown in Table 5.1.
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5.3 Analysis

5.3.1 Computational Complexity

Computational cost of QFilter includes time for bothQFilter construction and exe-

cution. For QFilter construction, the complexity is O(N), where N is the number

of steps of XPath expression in ACR. For QFilter execution, (1) When there is no

wildcard in Q, filtering Q costs O(M), where M is the number of steps of Q. The

worst case occurs when Q is accepted or rewritten; (2) When the wildcard “*” ex-

ists in Q, filtering costs O(|NFA|). The worst case occurs when Q is “/*/*.../*”,

since it requires the traversing of the entire NFA; (3) For Q with “//” step, the cost

becomes O(M ∗n1 ∗n2 ∗ ...∗nk), where k is the number of wildcards “//” in Q and

ni is the size of the child QFilter at the state which first meets the ith “//” path.

Note that this is an acceptable cost since the worst case query of “//*//*...//*”, is

rather rare in real-world XML queries. Overall, QFilter is computationally practi-

cal since the worst case of filtering rarely occurs. Furthermore, we experimentally

validate this claim in the experimentation.

5.3.2 Security

Next, we prove that using QFilter is safe so that no non-accessible data are to be

returned to unauthorized authors.

Theorem 5.1. The QFilter execution algorithm of Algorithm 8 always generates

secure answers when Q and object parts of ACR are limited to XPath expressions,

and ACR contains only positive rules or negative rules.

Proof. Suppose an NFA M is created by the QFilter, and M(Q) refers to the

evaluation of a query Q against M . Then, Theorem 5.1 can be represented as:

Q′ = M(Q) = Q
D
∩ ACR, which can be decomposed into two sub-theorems, Q′ ⊆

Q ∩ ACR and Q′ ⊇ Q ∩ ACR. For security concerns, people are more interested

in the first sub-theorem, Q′ ⊆ Q ∩ ACR, which ensures the output query Q′ is

secure. We provide its sketch proof here. The second sub-theorem can be proved

similarly. To prove Q′ ⊆ Q ∩ ACR, we need to show that (1) Q′ ⊆ Q and (2)

Q′ ⊆ ACR.
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1. Q′ ⊆ Q: For the accepted queries, the output of QFilter is the original query

itself: M(Q) = Q. For the rejected queries, the output of M is an empty

string or error message, where we also have M(Q) = ϕ ⊆ Q. For the

rewritten queries, since the rewriting algorithm only changes wildcards into

more specified path strings, it is obvious that M(Q) ⊆ Q.

2. Q′ ⊆ ACR: From the NFA theory, we can see that each accept state accepts

XPath expressions according to the particular rule. In this way, each accepted

branch of input query Q is accordance with the specified rule (Qi ⊆ Rj).

Therefore, Q′, as the union of these branches, is also accordance with the

union of all the rules: Q′ ⊆ ACR.

5.4 Experimental Validation

To use QFilter for XML access control, we first need to construct QFilter based

on access control rules. Then, input queries are processed by QFilter to generate

safe queries; and safe queries are finally sent to underlying XML engine to retrieve

XML data. According to this process, we test QFilter in the following aspects: (1)

QFilter initialization, (2) QFilter execution, and (3) the evaluation of filtered query.

The major concerns of performance are computational speed and storage cost.

For storage issue, since QFilter is basically an extended NFA, its total size in

memory is (size of state)×(number of states), which costs O(N) with N denoting

the number of states. The size of a state highly depends on the implementation,

but is relatively small due to the simplicity of a state (the main data structure

is the state transition hash table). The number of states is also limited since the

number of rules is limited and path sharing exists. Therefore, it is trivial to store

QFilter created from thousands of rules in main memory. In this section, therefore,

we focus on the evaluation of the speed of QFilter from the aforementioned three

aspects. In (1), we test the impact of complexity and the number of rules to QFilter

construction speed. In (2) and (3), the complexity and number of rules along with

the impact of complexity of Q are studied.

Comparison is another important issue. Due to the scarcity of comparable
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approaches to our QFilter, to our best knowledge, the static analysis method of [52]

is the only pre-processing based method similar to ours. It conducts pre-processing

“security check” only, thus we only compare its initialization and execution with

QFilter. We still want to emphasize that QFilter generates safe queries thus does not

need access control functions from underlying XML engines, while static analysis

approach still require security support from XML engine. For (3), we compare the

end-to-end query processing time between primitive, QFilter, and post-processing

approaches. We also provide the processing time for original (unsafe) queries for

reference.

5.4.1 Set-Up

We used the well-known XMark schema [64] and its XML document generator

to generate test XML documents. Since the size of test data was not a major

factor to determine the performance of various methods, here we present only

the case of test set with 5 MB. As an underlying XML database, we used Galax

0.3.1 [67] that can evaluate XQuery (and thus XPath) efficiently. Pre-processing

approach, QFilter, was implemented in Java (JDK 1.4.2) and communicated with

Galax through its Java-API. For post-processing approach, we used the YFilter

[21] from UC Berkeley as an implementation of AFilter.

The types of queries and number of access control rules are important in our

experimentation, and thus carefully selected and measured. For XPath expressions

in Q and ACR, both user-defined (denoted as UD) as well as synthetic (denoted

as SN) tests were used. That is, we have four test cases by combining two factors

in two dimensions; UD-Q/UD-ACR, UD-Q/SN-ACR, SN-Q/UD-ACR, and SN-

Q/SN-ACR. Note the combination of user-defined queries over synthetic rules does

not really make sense. So we only test other combinations. All synthetic XPath

expressions were generated by YFilter package. The Costumer Advertisement

Manager (CAM) role is created as a user-defined role extended from the example

in Section 5, and shown in Table 5.2. CAM is in charge of delivering advertisements

to costumers, thus is permitted to access users information except for their credit

card, profile, and item’s basic information. This policy can be captured by the rules

shown in Table 5.2 (all rules with RC type are already converted to equivalent ones



55

No. Rule
1 (CAM, “/site/regions/*/item[@quantity>0]/location”, +, LC)
2 (CAM, “/site/regions/*/item[@quantity>0]/quantity”, +, LC)
3 (CAM, “/site/regions/*/item[@quantity>0]/name”, +, LC)
4 (CAM, “/site/regions/*/item[@quantity>0]/description”, +, LC)
5 (CAM, “/site/categories”, +, LC)
6 (CAM, “/site/categories//*”, +, LC)
7 (CAM, “/site/people/person/*”, +, LC)
8 (CAM, “/site/people/person/creditcard”, −, LC)
9 (CAM, “/site/people/person/profile”, −, LC)

Table 5.2. User-defined ACR: CAM case.

QS * // P QS * // P
QS1 0 0 0 QS2 0 0 2
QS3 0 10% 0 QS4 10% 0 0
QS5 10% 10% 0 QS6 10% 10% 2
QS7 0 20% 0 QS8 20% 0 0
QS9 20% 20% 0 QS10 20% 20% 4

Table 5.3. Synthetically-generated 10 user query sets (QS1 – QS10) with different
probabilities of “*” and “//” at each XPath step and number of predicates.

with LC type [52]).

In order to show the impact of predicates in ACR, we test both rules with

and without predicates. Hereafter, we use “user-defined rules with predicate” to

indicate above nine rules. On the other hand, we use “rules without predicates”

indicates the remaining rules after “[@quantity>0]” fragment is removed from

them. User-defined queries are mainly used to validate the correctness of QFilter.

In addition, we also created queries with the synthetically generated XPath ex-

pressions as shown in Table 5.3 to evaluate the scalability. 500 queries are created

for each query set of Table 5.3.

We could not test value-based predicates. Because the query (XPath) gener-

ator we use does not know the real values of attributes in our XML documents,

it produces XPath expressions based on schema only. The randomly generated

attribute values do not match with the values in document, e.g. XPath generator

produces predicates “person[@id=0]”, while we have “<person id=‘person0’>”

in the XML document. They will cause errors in the evaluation process. On the

other hand, value-based predicates are processed in the same way as path-based

predicates in QFilter. Thus testing with path-based predicates gives a accurate

reference of QFilter performance.
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Figure 5.6. QFilter construction using one single use-defined rule.

5.4.2 Evaluating QFilter Construction

In real world applications, QFilter is likely to be constructed offline. Once the

service starts, we do not need to modify or reconstruct QFilter unless ACR is

changed. Thus, the speed of QFilter construction is of less importance to users.

Nevertheless, experiments show that QFilter construction is fast enough, even to

be done online.

We first construct QFilter with user-defined rules (nine rules for the role CAM,

as defined above) and record the construction time. We construct QFilter using

each of the rules with and without predicates and compare the speed. According

to Figure 6, QFilter construction time for different rules mainly depends on the

complexity of the XPath expression, i.e., number of QFilter states to be built.

QFilter construction is faster for shorter and simpler rules, since less parsing time

is spent and less states are created. We also see that predicates bring more overhead

to QFilter construction, since an additional predicate processing state is created.

Note, in real world applications, QFilters are not created for each individual

rule. Rather, one QFilter is created for all the + rules and another QFilter for all

the - rules. For CAM role, one QFilter for all the “+” rules is constructed in 1155

µs, and one QFilter for all the “-” rules is constructed in 496 µs.

Next, we construct QFilter with synthetic rules and record the construction

time. In each experiment, we generate 10, 50, 100, 200, 300, 400, 500, 600, 700,
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RS * // P RS * // P
(a) RS1.1 0 0 0 RS1.2 10% 0 0
(a) RS1.3 20% 0 0 RS1.4 30% 0 0
(b) RS2.1 0 0 0 RS2.2 0 10% 0
(b) RS2.3 0 20% 0 RS2.4 0 30% 0
(c) RS3.1 0 0 0 RS3.2 0 0 1
(c) RS3.3 0 0 2 RS3.4 0 0 3

Table 5.4. Synthetically-generated ACR with different probabilities of “*” and “//”
at each XPath step and number of predicates.: (a) impact of * path; (b) impact of //
path; and (c) impact of predicates.

800, 900 and 1000 rules (distinct rules) respectively, each with the maximum length

of 10 path elements. We use uniform distribution in selecting child elements.

Different groups of synthetic rules are defined in Table 5.4.

Figure 5.7 shows that QFilter construction is fast and scalable. * or // paths

do not slow down the construction. On the contrary, when we set higher * or //

probability in rules, QFilter construction becomes faster. There are two reasons for

this: (1) since XPath string parsing takes much of the QFilter construction time,

the existence of * and // in the path makes the string shorter: as one path step, *

is shorter than a string value path name; moreover the XPath generator we used

tends to generate shorter XPath expressions (with less steps) upon existence of //;

and (2) in QFilter implementation, * and // paths are processed separately (not in

the state transition hash table), thus we do not search or insert the state transition

hash table, which makes it faster.

For predicate, it seems that QFilter construction is faster with rules than with

predicates. This is because predicate states are constructed faster than regular

NFA states. For XPath strings of similar length, those with predicates are pro-

cessed faster. But, many predicates (e.g., 6 predicates in rule set 4) may increase

the total length of XPath strings, and thus slow down QFilter construction.

5.4.3 Evaluating QFilter Execution

After QFilter is created with ACR, we use it to filter the input query Q to yield

safe query Q′. Using the CAM role, we first test how the properties of user query

Q affect the filtering speed. That is, we prepare ten different query categories (as
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Figure 5.7. QFilter construction using synthetic rules. From left to right: impact of (1)
* path; (2) // path; (3) predicates

shown in Section 5.4.1) and for each category, we generated 500 synthetic queries

based on the XMark DTD. Using these random XPath expressions as input to

QFilter, we measure the number of accepted, denied, or rewritten queries in each

group. We also separate a category “minus” to indicate the queries that are

rewritten by negative rules. Then we measure the average QFilter execution time

for each group and for each output type (accept, deny and rewrite). The results
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Figure 5.8. QFilter output: number of accepted, denied, rewritten, and minus rewritten
queries. (1) rules without predicate; (2) rules with predicate(s)

are shown in Figures 5.8 and 5.9.

From Figure 5.8, we can summarize: (1) for rules without any predicate(left),

queries in set 1 (no “*”, no “//”) are either rejected or accepted, since there are

no wildcards to be rewritten; for rules with predicates, they may be rewritten:

predicates can be inserted. (2) queries with higher probability of wildcards “*”

and “//” are more likely to be rewritten; (3) fewer queries in set 6 and 10 are

rewritten than sets 5 and 9: existence of predicates in queries causes less regular
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Figure 5.9. QFilter execution time (ms) for three types of outputs and their average.
(1): rules without predicate; (2): rules with predicate(s)

path steps in each query, thus these queries generally have a lower probability of

“*” and “//”; (4) Comparing two figures, we can see that emergence of predicates

in rules do not affect denied queries, but some originally accepted queries are

rewritten (predicates are inserted).

Here, let us explain more about (2). Queries in sets 3 to 10 are generated

with 10% or 20% probability of having “*” or “//” at each step. However, the

probability does not automatically indicate that generated queries should have one
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Figure 5.10. QFilter execution time (ms) for synthetic rules and synthetic queries. (1)
rule set 1, (2) rule set 2

or more “*” or “//” steps. When we manually look into the generated queries and

the QFilter results, we found that some of these queries do not have any “*” or “//”

steps, and most of them are either accepted or denied. From Figure 5.9, we can

summarize the following: (1) QFilter is generally faster in accepting and denying

queries, but slower to rewrite queries with wildcards, especially with “//” paths.

This is because QFilter needs to traverse more states to process “*” and “//”; and

(2) Predicates in rules does not bring much overhead to QFilter execution. Average

processing time is quite similar, and query rewriting time is even reduced, since

some of the originally accepted queries are just rewritten at predicate state, which

is faster than “*” amd “//” rewritten.

Next, we test how QFilter execution performance degrades as the number of
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rules in ACR increases. We constructed a QFilter using 20 to 500 synthetic rules

based on XMark DTD (SN-ACR) and tested with random queries (SN-Q). We

create two sets of rules as follows: Rule Set 1contains rules with no * path, no //

path, and no predicates, and Rule Set 2 contains rules with 10% * probability,

10% // probability, and 2 path-based predicate. On the other hand, we pick

query sets 1, 2, 9 and 10, then process them using QFilter with the above rules.

Figure 5.10 shows the average QFilter execution time for each rule set By and large,

as the number of rules in ACR increases, the QFilter execution time to filter out

conflicting parts from Q increases too. This is understandable since there are more

branches to test in QFilter. However, note that the longest time it took to rewrite

Q, when QFilter has 500 synthetic rules, was still within only 10 millisecond.

5.4.4 Comparing QFilter vs. Static Analysis

The static analysis method of [52] is the only pre-processing based method like

ours. It can handle only two cases of queries vs. ACR; i.e., access fully granted

(Q ⊆ R) or access fully denied (Q ∩ R = ϕ), where Q is an input query and R

is ACR+. However, our QFilter method is able to process all three cases; i.e.,

Q ⊆ R, Q ∩ R = ϕ, and partial overlap (Q * R ∧Q ∩ R * ϕ). Therefore, QFilter

method can run on any XML databases whether or not they have security support,

which is not possible for [52]. Since the end-to-end processing time (i.e., from the

moment a query is submitted to the time “safe answers” are returned) of [52] was

not available to us, we only compared time to construct and to check security

policies between QFilter and static analysis methods.

To directly compare QFilter against [52], we generate synthetic rules according

to the XML specification DTD (xmlspec-v21.dtd). In this experiment, “+” and

“-” rules are 50% each. Figure 5.11(left) shows the results. Comparing with [52],

QFilter construction appears to be “flat”, taking only 7 milliseconds for 550 rules.

However, the initialization of Static Analysis [52] is more sensitive to the number

of rules, so that the graph increases more sharply. Note the initialization time of

static analysis mechanism was estimated from Figure 7 of [52] where it supports

predicates using upper-bound and low-bound constrainers.

Next, QFilter’s execution time is compared to that of [52], which essentially
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Figure 5.11. Performance comparison of QFilter and Static Analysis [52]) approach.
(1) initialization speed; (2) security check speed

spend substantial time to check the containment of two automata. The result is

shown in Figure 5.11 (right). When 500 synthetic rules are used, QFilter is faster

than the static analysis method of [52] up to 200 times. In additions, we are able

to handle the partial overlap case: Q * R ∧ Q ∩ R * ϕ, which [52] requires the

underlying database engine to process.

5.4.5 End-to-end Query Processing

Finally, we compare the end-to-end processing time among four approaches of

Figure 5.13: (1) No security check is made (thus final data is un-safe); (2) Primitive
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Figure 5.12. End-to-end query processing time for QFilter approach: (1) query pro-
cessing with QFilter; (2) query processing without QFilter.

Galax

GalaxQ

Q UD

UD AFilter SD

(a)
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(d)
GalaxQFilterQ Q’ SD

GalaxQ∩ACR SD

Figure 5.13. Four XML access control approaches for comparison.
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Figure 5.14. End-to-end query processing time comparison of all approaches, in loga-
rithmic scale.

approach; (3) AFilter (post- processing); and (4) QFilter (pre-processing). In this

experiment, due to the high computation of primitive approach, we used a smaller

size (1.5MB) XML document, with the same format as described in section 5.2.

End-to-end query processing time denotes the total time needed to process Q: from

receipt of query until answer is returned. In Figure 5.13, (a) indicates the query

processing without any security check, where the output document UD is un-safe,

the end-to-end time is mainly evaluation time of Q; (b) indicates the primitive

approach, which generates the safe result D, the end-to-end time is mainly the

intersect query (Q∩ACR) evaluation time; (c) shows the QFilter approach, where

the end-to-end time includes the QFilter execution time and filtered query (Q′)

evaluation time; and (d) indicates the post-processing approach, where the end-

to-end time includes the original query evaluation time and un-safe answer, UD,

filtering time. Note that we do not count the I/O time of the query input and

the answer output. Note that for (d), since XML engines return only queried

node without their ancestor tags, we manually wrote an external script to recover

ancestor tags when UD is generated. But to be fair, that extra time for running

script was not counted in. However, it is worthwhile to point out that if one

uses the recursive function of XQuery to implement this in XML databases, the

cost would have been even higher. Thus, what we report here for post-processing

approach is a significant “under-estimate”.

Figure 5.14 summarizes the comparison of the four approaches. QFilter-based

pre-processing approach is a clear winner regardless of the query categories, and

thus a promising solution for XML access controls; it significantly outperforms

the primitive approach and an (un-safe) query processing which does not enforce
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XML access control. Interesting phenomenon is that QFilter even outperforms no

security check case even for the queries re-written. This implies that when Q is

filtered to Q′ by QFilter, as a side-effect, Q′ was optimized so that Q′ is processed

more efficiently than Q. That is, when Q′ is processed by Galax, since its query

constraints have been tightened by additional conditions added by QFilter, it is

typically much faster than the original query, while ensuring returning only safe

answers.

Since the post-processing approach requires a data filtering stage after Q is eval-

uated, thus it is surely slower than the original query processing and much slower

than QFilter approach. In many cases, QFilter can quickly determine whether the

query is fully “Accepted” or “Denied” where the query filtering time is negligible

compared to potential save from unnecessary query evaluation time.



Chapter 6
RDBMS-supported XML Database

Systems

6.1 RDBMS-supported XML Database Systems

Before we go to access control issues, let us recall RDBMS-backed XML database

systems (XRDB) introduced in Chapter 2.

As illustrated in Figure 6.1, in an XRDB system: XML documents (DX) are

converted into relations (DR) using some conversion algorithm (C()). DR is then

managed in RDBMS. Any RDBMS that handles SQL could be used here. User

issues XML query QX (XPath or XQuery) using published XML schema; QX is
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Figure 6.1. Overview of XRDB system architecture.
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then converted into QR (in SQL) and evaluated against DR. Relational answer AR

is finally converted back to XML answer AX and returned to user.

XML to relational conversion algorithms are surveyed in Chapter 2. Here we

give an example to show how Shared-inlining [66] and XRel [72] convert XML

document into relations.

We use the XMark DTD, in which a “person” node consists of attribute “Per-

sonID”, element children “name”, “address”, “creditcard”, “emailaddress”,

etc. Especially, “address” node has element children “city”, “country” etc., as

shown in Figure 6.2.

Shared-Inlining [66] is a schema-based XML to relational conversion ap-

proach, which shreds XML tree into two dimensional tables. In this example,

<people> node is translated into a people table. Each row in the table represents

a person, and each descendant node is converted into one column. Part of the re-

lational schema is as follows (for the full relational schema converted from XMark

XML schema, see [42]):

V
idar R

einsch

site

person person

people

email phonename email addrename cc

city countrystreet zipcodeA
yonca V

ija...

m
ailto:V

ijay@
n....

person0 (477) 63141558

person1

70 Zlatev St

8814 4441 4702 6117

G
reenville

U
nited S

tates

22021

Figure 6.2. Part of the XMark tree.
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Person(PersonId, ParentId, Person, Person_address,

Person_address_city, Person_address_country,

Person_address_province, Person_address_street,

Person_address_zipcode, Person_creditcard, ......)

Figure 6.3 shows part of the table. We can see that three <person> nodes in the

original XMark XML document is converted into three rows. Each text element is

converted into one cell.

XRel [72] is a non-schema XML to relational conversion approach. It decom-

poses XML documents into document, element, attribute, text, and path tables.

The structure of the element and path table are: element(docID, elementID,

parentID, depth, pathID, st, ed, idx, reidx) and pth(pathID,pathexp),

respectively. In this approach, each node is stored as one record in the element

table, and each distinct path is stored as one record in the pth table. It uses

pth.pathexp to keep the path expressions (similar to XPath), and element.st

and element.ed to mark the start and end offset of each node in the document.

As a simple example, we decompose an XMark document using XRel and show

part of element and path tables in Figure 6.4. As we can see, element 252 is a

node of path 164 (“/site/people”, as in the path table); which starts from offset

33996 (byte) and ends at 36229 in the original XML document.

6.2 XML to Relational Conversion: the Model

We model the X2R conversion algorithm (surveyed in Chapter 2) as follows:

Remark 3. A relational to XML conversion method contains: (1) CD() to convert

XML to relational data, (2) CQ() to convert XML query (XQuery or XPath) to

Person Person 
_address 
_street 

Person 
_address 

_city 

Person 
_address
_country

Person
_address
_zipcode

Person_name Person_eamil Person 
_credicard 

… 

Person0     Ayonca Vijay mailto:Vijay@n
yu.edu 

 … 

Person1 70 Zlatev St Greenville United States 22021 Vidar Reinsch mailto:Reinsch
@usa.net 

8814 4441 4702 
6117 

… 

Person2 49 Nandavar St Tallahassee United States 10034 Rens Rifaut mailto:Rifaut@
duke.edu 

4464 2718 4111 
2553 

… 

 
Figure 6.3. Part of the people table of shared-inling approach.
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SQL, and (3) C−1 to convert relational answer back to XML.

That is, QR = CQ(QX), DR = CD(DX), and AX = C−1(AR). From this, the

process of “evaluating XML query on XRDB” can be modeled as the following

Equation:

AX = C−1(AR) = C−1(QR〈DR〉) = C−1(CQ(QX)〈CD(DX)〉) (6.1)

Remark 4. An X2R conversion algorithm is lossless iff: (1) (lossless node con-

version) ∀ XML node xi, C
−1
D (CD(xi)) = xi; (2) (lossless node set decomposition)

∀ XML node set {x1, ..., xn}, C−1
D (CD({x1, ...xn})) = C−1

D ({CD(x1), ...CD(xn)}) =

{C−1
D (CD(x1)), ...C

−1
D (CD(xn))}; and (3) (exclusive conversion) CD(x1) = CD(x2)

only when x1 = x2, and C−1
D (r1) = C−1

D (r2) only when r1 = r2.

Remark 5. An X2R conversion algorithm is correct iff: ∀ query Q and ∀ document

X, Q〈X〉 = C−1(QR〈DR〉) = C−1(CQ(QX)〈CD(X)〉).

Definition 6.1 (Soundness). An X2R conversion algorithm A is sound iff it is

lossless and correct.

In the remainder of the dissertation, we assume that the conversion algorithm

being used is sound. Finally, we ignore the order of XML nodes when we com-

Person Person 
_address 
_street 

Person 
_address 

_city 

Person 
_address
_country

Person
_address
_zipcode

Person_name Person_eamil Person 
_credicard 

… 

Person0     Ayonca Vijay mailto:Vijay@n
yu.edu 

 … 

Person1 70 Zlatev St Greenville United States 22021 Vidar Reinsch mailto:Reinsch
@usa.net 

8814 4441 
4702 6117 

… 

Person2 49 Nandavar St Tallahassee United States 10034 Rens Rifaut mailto:Rifaut@
duke.edu 

4464 2718 
4111 2553 

… 

 
pathID pathexp 

0 #/site 
1 #/site#/categories 

…… 
164 #/site#/people 
165 #/site#/people#/person 

…… 
188 #/site#/people#/person#/creditcard 
 
 
docID elementID parentID depth pathID st ed … 
0 0  1 0 0 563258 … 

…… 
0 252 0 2 164 33996 36229 … 
0 293 252 3 165 35592 35826 … 
0 299 252 3 165 35832 36217 … 
0 303 299 4 188 35989 36032 … 

……  
 

Person Person 
_address 
_street 

Person 
_address 

_city 

Person 
_address
_country

Person
_address
_zipcode

Person_name Person_eamil Person 
_credicard 

… 

Person0     Ayonca Vijay mailto:Vijay@n
yu.edu 

 … 

Person1 70 Zlatev St Greenville United States 22021 Vidar Reinsch mailto:Reinsch
@usa.net 

8814 4441 
4702 6117 

… 

Person2 49 Nandavar St Tallahassee United States 10034 Rens Rifaut mailto:Rifaut@
duke.edu 

4464 2718 
4111 2553 

… 

 
pathID pathexp 

0 #/site 
1 #/site#/categories 

…… 
164 #/site#/people 
165 #/site#/people#/person 

…… 
188 #/site#/people#/person#/creditcard 
 
 
docID elementID parentID depth pathID st ed … 
0 0  1 0 0 563258 … 

…… 
0 252 0 2 164 33996 36229 … 
0 293 252 3 165 35592 35826 … 
0 299 252 3 165 35832 36217 … 
0 303 299 4 188 35989 36032 … 

……  
 

Figure 6.4. Part of the path table and element table of the XRel approach.
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pare the correctness, since this feature is not supported in most X2R conversion

algorithms.

In the research community, most X2R conversion algorithms only support a

subset of XQuery/XPath. For instance, many of them support parent-child (/),

ancestor-descendant (//), wildcard (*) and predicates. Later, we will show that

our approach does not alter the query or data conversion algorithm. Therefore,

the query conversion totally depend on the X2R conversion algorithm; i.e. for a

particular X2R conversion method X, our algorithm supports everything that X

supports. For ease of understanding, we do not use predicates in the examples,

however, we test queries with predicates in our experiments.

6.3 XML Access Control in XRDB: the Problem

The goal of XML access control is in a sense to ensure that only safe answer (SA)

is returned to users. As shown in [44] and [46], safe answer of a query Q includes

all the XML nodes n such that: (1) n is part of 〈Q〉, (2) the access of n is granted

by positive rules, and (3) the access of n is not denied by negative rules. That is,

the precise semantics of “safe XML answer,” SAX , can be modeled as:

SAX = 〈QX〉
D
∩X (〈ACR+〉

D
−X 〈ACR−〉) (6.2)

= 〈QX〉
D
∩X [(〈R+

X1
〉

D
∪X ...

D
∪X 〈R+

Xn
〉)

D
−X (〈R−X1

〉
D
∪X ...

D
∪X 〈R−Xm

〉)](6.3)

Equation 6.1 models how XML query is evaluated in XRDB to return XML

answer, AX . Similarly, Equation 6.2 models how only safe XML answers, SAX ,

are returned. Therefore, we have:

Definition 6.2 (Secure XRDB). An XRDB is called secure iff ∀ access control

rule set ACRX and ∀ query QX , it always returns the safe answer AX :

AX ≡ SAX (6.4)

⇐⇒ C−1({CQ(QX)〈CD(DX)〉}′) (6.5)

≡ 〈QX〉
D
∩X [(〈R+

X1〉
D
∪X ...

D
∪X 〈R+

Xn〉)
D
−X (〈R−X1〉

D
∪X ...

D
∪X 〈R−Xm〉)](6.6)

Note that {CQ(QX)〈CD(DX)〉}′ indicates that access control mechanism inter-
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venes in relational query processing.

Our goal in the second part of this dissertation is to enforce XML access controls

on RDBMS so that Equation 6.4 holds in XRDB setting. In this way, we need to

develop relational access control rules and relational deep set operators that are

“equivalent” to their corresponding XML access control rules and XML deep set

operators. In next chapter, we first give formal definition of “equivalent”, and then

present our solutions based on the defined equivalency.



Chapter 7
XML Access Control in XRDB: A

Theory

All entities of the 4-tuple XML access control model, except the object entity,

can be directly adopted to relational access control model. Since the object en-

tity is specified in XPath, we may apply an X2R algorithm C(RX .object) to get

RR.object. As a result, we can convert XML access control rules to “equivalent”

relational access control rules:

RR = {RX.subject,C(RX.object),RX.action,RX.sign}

However, the converted relational access control rules cannot be directly enforced

in XRDB – naive enforcement of RR may not generate correct answer, or even

leads to security leakage, as demonstrated in the following example:

Example 7.1. Consider two rules of Figure 7.1(a) with XRDB(XRel) – that is,

XML data are stored in RDBMS using XRel [72] conversion algorithm. The “ele-

ment” table is partly shown in Figure 7.1(b). Rule 1 indicates that a user is allowed

to access <person> nodes, i.e., nodes 293 and 299 (second and third record in Fig-

ure 2 (b)), and rule 2 indicates that a user cannot access <credicard> nodes, i.e.,

node 303. Naive enforcement of the rules will grant access to the record of element

293 and 299, and revoke the access to the element 303.

Now, a query “//people” is desired to yield an answer containing two <person>

nodes, since they are the descendants (that are accessible) of the requested node.
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1. {user, /site/people/person, read, +}
2. {user, /site/people/person/credicard, read, -}

DOCID ELEMENTID PATHID ST ED 
0  252  164  33996  36229 <people>
0  293  165  35592  35826 <person>
0  299  165  35832  36217 <person>
0  303  188  35989  36032  <creditcard>

SELECT  e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED 
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people'
AND e0.pathid = p0.pathid AND d.docid = e0.docid(a)

(b)

SELECT  e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED 
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people#/person'
AND e0.pathid = p0.pathid AND d.docid = e0.docid

(c)

(d)

Figure 7.1. Examples of naive enforcement of “equivalent” relational rules leading to
incorrect answer or security leakage.

However, the converted SQL query (Figure 7.1(c)) yields no answer since access

to the record of element 252 is prohibited by default. Moreover, for a query

“//person”, the converted SQL (Figure 7.1(d)) returns both <person> nodes to

the user (with the unauthorized <creditcard> node). This is so because both

records of element 293 and 299 are accessible, while revoking access to element 303

does not affect its ancestor.

Practically, since XML access control rules often use XPath expressions to

specify object nodes, values of RRelational.object are usually XPath expressions. In

this way, the Convert() function is the query translation function of corresponding

X2R conversion and it returns SQL queries. Rrelational.object includes the cells

selected by these SQL queries.

7.1 Object and Operation Equivalency

To solve the problem illustrated in Example 7.1, we propose our framework of

supporting access control in XRDB systems. First, we define object and operation

equivalency between XML and relational.

Definition 7.1 (Object Equivalency). When both R = C(X) and X = C−1(R)

hold for XML node set X and relation R, we consider X and R equivalent w.r.t.

C/C−1, and denote as X ≡ R.

Note that, when we talk about equivalency of X and R, we have to predefine

the context, i.e., select the X2R conversion algorithm C/C−1. For a XML node

set X, C(X) may be different under different X2R conversion algorithms.
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Definition 7.2 (Operation Equivalency). Suppose X1 ≡ R1 and X2 ≡ R2 w.r.t.

C/C−1. Then, an XML operation OPX is equivalent to a relational operation OPR

(denoted as OPX ≡ OPR) w.r.t. C and C−1 if:

C(X1 OPX X2) = C(X1) OPR C(X2) = R1 OPR R2

It is worth to note that XML operator takes two node sets as operands while its

equivalent relational counterpart may not take two generic relations as operands.

Rather, each operand is the equivalent objects of the corresponding XML node

set, which may be tables, columns, records, or cells. Many relational operations

require operands to be domain compatible (e.g., intersect, union etc.). We loosen

this requirement for OPR.

With the concept of operation equivalency, we can migrate all the exciting

features of XML into XRDB by converting the atomic operations into equivalent

relational counterparts. Our problem of secure XRDB is then articulated as follows:

Lemma 7.1. In XRDB(C), if we can find relational operators,
D
∪R,

D
∩R, and

D
−R,

which are equivalent to XML deep set operators,
D
∪X ,

D
∩X , and

D
−X , w.r.t. the X2R

conversion algorithm C, we are able to enforce XML access control in XRDB(C)

such that Equation (6.4) always holds.

Proof. First, according to the definition of object and equivalency, we are looking

for AX = SAX ≡ SAR, which means: SAR = C(SAX). Since
D
∪R ≡

D
∪X ,

D
∩R ≡

D
∩X

and
D
−R ≡

D
−X w.r.t. C() and C−1(), according to the definition of equivalent

operation, we have:

SAR = C(〈QX〉
D
∩X [(〈R+

X1〉
D
∪X ...

D
∪X 〈R+

Xn〉)
D
−X (〈R−X1〉

D
∪X ...

D
∪X 〈R−Xm〉)])

= C(〈QX〉)
D
∩R C([(〈R+

X1〉
D
∪X ...

D
∪X 〈R+

Xn〉)
D
−X (〈R−X1〉

D
∪X ...

D
∪X 〈R−Xm〉)])

= C(〈QX〉)
D
∩R [C(〈R+

X1〉
D
∪X ...

D
∪X 〈R+

Xn〉)
D
−R C(〈R−X1〉

D
∪X ...

D
∪X 〈R−Xm〉)]

= C(〈QX〉)
D
∩R [C(〈R+

X1〉)
D
∪R ..C(〈R+

Xn〉)
D
−R C(〈R−X1〉)

D
∪R ..C(〈R−Xm〉)]

Since we have QX ≡ QR, RXi ≡ RRi, therefore:
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C(〈QX〉)
D
∩R [C(〈R+

X1〉)
D
∪R ...

D
∪R C(〈R+

Xn〉)
D
−R C(〈R−X1〉)

D
∪R ...

D
∪R C(〈R−Xm〉)]

= 〈QR〉
D
∩R [〈R+

R1〉
D
∪R ...

D
∪R 〈R+

Rn〉
D
−R 〈R−R1〉

D
∪R ...

D
∪R 〈R−Rm〉]

As a conclusion, we are able to compose a SAR within XRDB(C) such that SAR =

C(SAX). Since all steps above are reversible, we also have SAX = C−1(SAR).

According to Lemma 7.1, in order to support access control in XRDB, we

need to find equivalent operations such that
D
∪R ≡

D
∪X ,

D
∩R ≡

D
∩X and

D
−R ≡

D
−X .

Object and operation equivalency is based on specific X2R conversion method,

therefore, the existence and representation of relational deep set operators also

heavily depends on the particular conversion method C. Hereafter, we analyze the

role of each deep set operator in Equation 6.2 and the existence of its equivalent

relational counterpart under different X2R conversion algorithms.

7.2 On Equivalent Conversion of Deep Set Op-

erators

Deep-union operator is used to integrate all the nodes that are defined accessible

by individual positive rules (also, all the nodes that are defined inaccessible by

individual negative rules), as shown in Equation 6.2. With the property P
D
∪Q ⊆

P ∪Q [46], Remark 1 is rewritten into:

〈P 〉
D
∪X 〈Q〉 = {n|(n ∈ 〈P 〉 ∨ n ∈ 〈Q〉) ∧ (n 6∈ 〈P//∗〉 ∧ n 6∈ 〈Q//∗〉)} (7.1)

Since n is an XML object and 〈P 〉, 〈Q〉, 〈P//∗〉, 〈Q//∗〉 are all sets of XML

objects, when C/C−1 is sound according to Definition 3, we have:

C(〈P 〉
D
∪X 〈Q〉) = {C(n)|[C(n) ∈ C(〈P 〉) ∨ C(n) ∈ C(〈Q〉)]

∧ [C(n) 6∈ C(〈P//∗〉) ∧ C(n) 6∈ C(〈Q//∗〉)]}

= {r|[r ∈ C(〈P 〉) ∨ r ∈ C(〈Q〉)] ∧ [r 6∈ C(〈P//∗〉)

∧ r 6∈ C(〈Q//∗〉)]}
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Here, since we are to find
D
∪R such that C(〈P 〉)

D
∪R C(〈Q〉) = C(〈P 〉

D
∪X 〈Q〉):

C(〈P 〉)
D
∪R C(〈Q〉)

= {r|[r ∈ C(〈P 〉) ∨ r ∈ C(〈Q〉)] ∧ [r 6∈ C(〈P//∗〉) ∧ r 6∈ C(〈Q//∗〉)]}

The condition of [r ∈ C(〈P 〉) ∨ r ∈ C(〈Q〉)] is essentially the regular union. It is

composed by set containment and Boolean operations. In XRDB, set containment

check is supported when the soundness requirement in Definition 6.1 is fulfilled,

and Boolean operation is generally supported in RDBMS. [r 6∈ C(〈P//∗〉) ∧ r 6∈
C(〈Q//∗〉)] tends to support deep semantics. It requires XRDB to be able to

identify r ∈ C(〈P//∗〉) for any given relational object r and set C(〈P 〉). This

could be achieved in two ways: (1) directly calculate the containment relationship

between r and all elements of C(〈P 〉); or (2) enumerate all descendants of each

element of C(〈P 〉), and check if n is identical to any of them.

Lemma 7.2. To implement deep-union operator in XRDB(C), the X2R conversion

algorithm C should: (1) fulfil the soundness requirement stated in Definition 6.1;

and (2) for given node n and node set 〈P 〉, it should be able to check the con-

tainment condition of: C(n) ∈ C(〈P//∗〉), e.g., it should recognize if C(n) is a

descendant of any node C(pi);

At present, all X2R conversion algorithms (we are aware of) fulfill the above

conditions. Here we show an example using XRDB/XRel.

Example 7.2. We manage XMark documents in XRDB(XRel). Evaluating query

“//person” yields a set of “<person>” nodes that are represented as the tuples

shown in Figure 7.2(a) in XRDB. Likely, “//name” yields a set of “<name>” nodes

(including both person and item names) as shown in Figure 7.2(b). In XRel, each

XML node is marked with a “start” and an “end” offset. Node containment is

checked through a comparison of these offsets: for two node p1 and p2, if (p1.start <

p2.start) and (p1.end > p2.end), then p2 is an descendant of p1. In our example, we

can tell that node 294 and 300 are descendants of node 293 and 299 respectively.

Therefore, nodes 294 and 300 are not include in: “//person
D
∪X //name”, which

is shown in Figure 7.2(c).
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1. {user, /site/people/person, read, +}
2. {user, /site/people/person,/credicard, read, -}

DOCID ELEMENTID PATHID ST ED 
0  252  164  33996  36229 <people>
0  293  165  35592  35826 <person>
0  299  165  35832  36217 <person>
0  303  188  35989  36032  <creditcard>

SELECT  e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED 
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people'
AND e0.pathid = p0.pathid AND d.docid = e0.docid(a)

(b)

SELECT  e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED 
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people#/person'
AND e0.pathid = p0.pathid AND d.docid = e0.docid

(c)

(d)

DOCID ELEMENTID PATHID ST ED 
0  6  7  178  212  
0  61  49  4577  4602  
0  32  29  2261  2279  
0  294  167  35620  35640  
0  300  167  35860  35885  

DOCID ELEMENTID PATHID ST ED 
0  293  165  35592  35826
0  299  165  35832  36217

DOCID ELEMENTID PATHID ST ED 
0  6  7  178  212  
0  61  49  4577  4602  
0  32  29  2261  2279  
0  293  165  35592  35826
0  299  165  35832  36217

(a)

(b)

(c)
(a) /site/people/person
(b) //name  including /site/people/person/name

/site/regions/europe/item/name 
/site/regions/namerica/item/name 

(c) /site/people/person deep-union //name

Figure 7.2. Deep-union in XRDB(XRel).

If a naive implementation of XRDB access control fails to support deep-union,

instead, it implements regular union operator to arbitrarily collect “accessible

nodes” and “forbidden nodes” into two sets; and this will not cause any secu-

rity leak. This is because the positive set does not contain extra node, and the

negative set does not miss any necessary node. However, this will cause duplicate

nodes in the sets of accessible nodes, and then possibly in the answers to queries.

Deep-intersect operator is used to calculate the exact overlapping of user re-

quested data and accessible data (i.e. 〈Q〉 and 〈ACR〉). Like deep-union, deep-

intersect operator is defined as:

C(〈P 〉
D
∩X〈Q〉) = {r|[r ∈ C(〈P 〉)∧ r ∈ C(〈Q〉)] ∧[r 6∈ C(〈P//∗〉)∨ r 6∈ C(〈Q//∗〉)]}

(7.2)

Therefore, any X2R conversion algorithm that supports deep-union is able to

support deep-intersect. That is, Lemma 7.2 could be directly extended to deep-

intersect. On the other hand, if an XRDB fails to implement deep-intersect op-

erator, instead, it uses regular intersection, as a result: (1) if a query asks for

a descendant of an access-granted node, the whole node should be returned, but

may be missed (i.e., mistakenly “jailed” by XRDB); (2) if a query asks for a node,

where only part of its subtree is granted access, the access-granted descendants

should be returned, but might be missed (such as shown in Example 7.1).

Example 7.3. In Example 7.1, A query “//people” yields <people> nodes, i.e.

element 252, as shown in Figure 7.1 (b) record 1. Meanwhile, object field of

access control rule 1, “/site/people/person”, yields <person> nodes, i.e. ele-

ment 293 and 299, as shown in Figure 7.1 (b) record 2 and 3. In XRel, each

XML node is marked with a “start” and an “end” offset. Node containment
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is checked through a comparison of these offsets: for two node p1 and p2, if

(p1.start < p2.start) and (p1.end > p2.end), then p2 is an descendant of p1. In our

example, we can tell that node 293 and 299 are descendants of node 292. There-

fore, “//people
D
∩X //person” will yield node 293 and node 299. Comparing with

Example 7.1, “//people ∩ //person” yields Null.

The operands of XML deep-union/intersect operators may contain different

nodes. In RDBMS, where domain compatibility is strictly enforced, their relational

equivalent counterpart might be domain incompatible (e.g. a row “intersect” a

cell). This happens when schema-based X2R conversion methods (e.g. [20, 66]) are

employed, where different XML nodes could be converted to tables, rows, or cells.

To tackle this problem, we can employ new RDBMS techniques such as Oracle

VPD (Virtual Private Database) to enable us to fine-control relational tables to

create relational views with any group of cells from a table.

Deep-except is used to remove inaccessible nodes from the answer. Recall that,

in our XML access control model, all nodes are inaccessible by default. When a

user is prohibited to access a node, there is no need to write a negative rule (R−)

to revoke its accessibility unless the node is covered by positive rules (ACR+). In

this way, negative rules are only used to specify exceptions to global permissions,

i.e. “revoke” access proposed by ACR+. Deep except operator is used to enforce

negative rules. Regarding whether deep except could be implemented in XRDB

with X2R conversion algorithm C, it depends upon the characteristics of the neg-

ative rules contained in the access control policy. In particular, we distinguish two

types of negative rules, as shown below.

Definition 7.3 (Node elimination vs. Descendant elimination negative rules). A

negative rule in ACR restricts user from access a set of nodes {r−1 , ...r−n }. If none

of the nodes is a descendant of the context node of a positive rule, i.e.:

r−i 6∈ 〈R+//∗〉, ∀r−i ∈ {r−1 , ...r−n };∀〈R+〉 ∈ 〈ACR+〉

then it is called a node elimination (NE) negative rule. Else, if one of the nodes

is a descendant of the context node of a positive rule, i.e.:

r−i ∈ 〈R+//∗〉, ∃r−i ∈ {r−1 , ...r−n };∃〈R+〉 ∈ 〈ACR+〉
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it is called a descendant elimination (DE) negative rule.

Intuitively, a “Node elimination” (NE) negative rule removes context node

from 〈ACR+〉, while a “descendant elimination” (DE) negative rule removes de-

scendants from context node of 〈ACR+〉.
For XML nodes covered by node elimination negative rules 〈ACR−1 〉, deep-

except operator directly removes them from 〈ACR+〉, without breaking any XML

nodes in the original document or creating any new nodes:

〈ACR+〉
D
−X 〈ACR−1 〉 = {n|n ∈ 〈ACR+〉 ∧ n 6∈ 〈ACR−1 〉}

Essentially, this is the regular except semantics. In this way, in XRDB, we have,

C(〈ACR+〉)
D
−R C(〈ACR−1 〉)

= C(〈ACR+〉
D
−X 〈ACR−1 〉)

= {r|r ∈ C(〈ACR+〉) ∧ r 6∈ C(〈ACR−1 〉)}

To support deep except operator for node elimination negative rules only, the

conditions described in Lemma 7.2 still apply. However, it takes more burden

to process descendant elimination negative rules, where real “deep” semantics is

required. That is,

〈ACR+〉
D
−X 〈ACR−2 〉 = {deepRemove(n, n

D
∩X 〈ACR−2 〉)|n ∈ 〈ACR+〉}

where deepRemove(p, 〈Q〉) takes a node and a set of its descendants as operands,

removes the descendants from the subtree of the node and return the remaining.

This function may not be directly converted to relational.

Lemma 7.3. When a deep-except operator takes nodes specified by descendant

elimination negative rules as the second operand, it is implemented through deep-

Remove() operation. To implement deep-except operator that supports descendant

elimination negative rules in XRDB(C), the X2R conversion algorithm X should:

(1) fully satisfy Lemma 7.2; and (2) for any node n1 and its descendant n2, C(n2)

should be part of C(n1); and in the reverse conversion of n1 = C−1(C(n1)), node

n2 in the subtree is entirely converted from C(n2).
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Example 7.4. For instance, in Example 7.1, Rule 2 is a descendant elimination

negative rule since it revoke access towards descendants of Rule 1’s context node

(<person>).

In XRDB(XRel) [72], descendants are converted to independent records that

are stand alone from ancestors. As shown in Figure 7.1(b), <creditcard> node

is converted to an individual record (i.e. elementID = 303), which is indepen-

dent from it ancestor <person>. To reconstruct a <person> node, C−1
XRel() only

takes the record with elementID = 293 (ancestor node) and returns a full person

node. Although the descendant node <creditcard> is included in the answer, the

record elementID = 303 is not touched by C−1
XRel(). In this way, XRel violates

condition (2) of Lemma 7.3, so that we cannot directly implement deep-except

operator to support descendant elimination negative rules. When user requests for

“//person”, we are not able to revoke access towards <creditcard> child, unless

we modify the relational data to the following record for C−1
XRel():

DOCID ELEMENTID pathID st ed

0 NULL NULL 35832 35988

0 NULL NULL 36033 36217

However, this is not directly supported in relational algebra or any existing RDBMS

product.

In Shared-Inlining [66] approach, <person> nodes are translated into a table,

with each row representing a person, and <creditcard> nodes are stored in one

of the columns, “person credicard”. The relational schema is [42]:

Person(PersonId, ParentId, Person, Person_address,

Person_address_city, Person_address_country,

Person_address_province, Person_address_street,

Person_address_zipcode, Person_creditcard, ......)

Here, the ancestor-descendant relationship is kept such that each row represents a

“person” node, and each cell represents a child node. When C−1
Inlining() is called to

reconstruct <person> nodes, the textual contents of <credicard> descendants are

retrieved from “person credicard” column. Therefore, to obtain //person
D
−X

//creditcard, we just mask “person creditcard” column in the table; and the
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reconstructed XML tree of “person” node will not have corresponding child, i.e.,

“creditcard” node is removed from the XML answer.

As a conclusion, there is a “semantic gap” between XML and relational data

models. XML features a tree structure, where nodes are hierarchically nested,

while, relational model only defines a two-dimensional structure. This fundamental

difference makes us unable to directly maintain all structural information in X2R

conversion. Some conversion approaches store each XML node independently, such

as XRel showed above, where descendants are not utilized when converting an an-

cestor node back to XML. This is different from XML data model, in which ancestor

node inherently includes descendants. For those approaches like XRel, descen-

dant elimination negative rules could not be directly enforced through deep-except

operator since we have difficulties sweeping off descendants from given node(s).

Fortunately, for many other X2R conversion approaches (like shared-inlining), we

are able to implement deep-except operator, and then directly enforce descendant

elimination negative rules. Moreover, in those approaches where descendant elim-

ination negative rules are not directly supported, we can still use post-processing

filtering methods to remove access denied contents from the reconstructed XML

answer (more details are provided in the next section).



Chapter 8
XML Access Control Enforcement in

XRDB

In the previous sections we show how XML access control semantics could be

converted into relational model to be used in XRDB. However, in real world ap-

plications, existing XML access control approaches do not exactly implement the

basic semantics shown in Equation 3. A general framework is proposed in [44] to

capture different XML access control approaches (as show in row 1 of Figure 8.1).

Now, we extend this framework into XRDB.

As shown in Figures 2.4 and 8.1, similar to the framework in native XML
RDBMS-supported XML database system
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Figure 8.1. Access control enforcement approaches in XML DB and XRDB.
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databases, there could be three categories of XML access control enforcement

mechanisms in XRDB: (1) view-based approach ( 1© 4© in Figures 2.4 and 8.1); (2)

pre-processing approach ( 2© 5© in Figures 2.4 and 8.1); and (3) post-processing

approach ( 3© 6© in Figures 2.4 and 8.1). These approaches enforce access control

policy on the document, query and answer, respectively. In this section, we artic-

ulate the algebra of these approaches using deep set operators. Then, we briefly

describe how they could be converted to their relational counter parts in XRDB.

8.1 View-based Approach

When access control is first enforced on XML documents to create views, it is the

traditional view-based approach. In this model, XML view VX (or safe document

SD) is constructed to capture:

VX = [(〈R+
X1〉

D
∪X ...

D
∪X 〈R+

n 〉)
D
−X (〈R−1 〉

D
∪X ...

D
∪X 〈R−m〉)]

And query is evaluated against the view

SA = Q〈VX〉 = Q[(〈R+
X1〉

D
∪X ...

D
∪X 〈R+

n 〉)
D
−X (〈R−1 〉

D
∪X ...

D
∪X 〈R−m〉)] (8.1)

To convert this approach into XRDB, a straightforward approach is to convert

each XML view VX into relational view VR = C(VX), as shown in 1© of Figure 8.1:

SA = C−1(QR〈VR〉) = C−1(QR〈C(VX)〉)

However, this approach suffers from several drawbacks: (1) since views for each

role should be materialized, the storage requirement is substantial; and (2) each

relational view VR is independently stored, without any connection to DR, thus

synchronization is difficult to achieve, if not impossible.

Another solution is to employ view support from RDBMS to enforce access

control on the relational side of XRDB, as show in 4© of Figure 8.1:

SA = C−1(Q〈VR〉)
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= C−1(Q〈(C(〈R+
X1〉)

D
∪R ...

D
∪R C(〈R+

n 〉))
D
−X (C(〈R−1 〉)

D
∪R ...

D
∪R C(〈R−m〉))〉)

In implementation of view based approaches, there are three factors to be

considered:

Construction of VR: This issue includes two aspects: (1) the constructed VR

should capture the exact content of access control allowed data, i.e. VR ≡ VX , as we

described in Section 4; and (2) this VR should be legit to the underlying RDBMS.

According to Lemma 7.3, some X2R conversion algorithms cannot directly support

descendant elimination negative rules. Therefore, in the corresponding XRDB

systems, we cannot directly employ relational view based approaches to enforce

descendant elimination negative rules.

Evaluation of QR: Comparing Equation 8.1 with Equation 6.4, note that, in

Equation 8.1 deep-intersect operator is replaced by the query evaluation process.

Then we need to consider whether query evaluation process conducts the deep

intersect semantics. In some XRDB such as XRDB(XRel), the original query

translation and evaluation process only conducts intersect semantics, as shown

in Example 7.1. Therefore, we cannot directly employ view based approach, or

special treatment is required to implement the deep-intersect semantics.

Reconstruction of SAX : We still need to mention that, no matter how we tailor

DR into VR, we need to ensure that the relational answers from VR is legit to C−1().

8.2 Pre-processing Approach

In preprocessing model, safe query SQ is constructed as:

SQX = QX

D
∩X [( R+

X1

D
∪X ...

D
∪X R+

Xn)
D
−X (R−X1

D
∪X ...

D
∪X R−Xm)]

Safe answer is yielded by evaluating safe query against the original document:

SAX = SQX〈DX〉. To extend this approach to XRDB, we have two methods:

(1)XML Query Rewriting: as shown in 2© in Figure 8.1, this approach is

to convert the safe XML query into SQL, and follow the regular XRDB query



86

evaluation process:

SAX = C−1(SQR〈DR〉) = C−1(C(SQX)〈DR〉)

In this approach, we can directly adopt the preprocessing of XML access con-

trol mechanisms, such as [45], to generate SAX . We have to mention that, the

generated SAX should be legit to the X2R conversion algorithm, e.g. most X2R

conversion algorithms can only process XPath queries, thus SAX should only in-

clude XPath. However, this requirement may exceed the capability of XML access

control mechanisms since XML deep set operators are implemented as user defined

functions of XQuery, which is not supported in some X2R conversion algorithms.

Therefore, when the safe XML query cannot be expressed as XPath, one cannot

directly adopt XML query rewritten approach to enforce access control.

(2)Relational Query Rewriting: As shown in 5© in Figure 8.1, this approach

follows regular XRDB query evaluation process to convert user XML query QX

into SQL QR. Then, we conduct query rewriting on QR to generate safe query

SQR:

SQR = QR

D
∩R [( R+

R1

D
∪R ...

D
∪R R+

Rn)
D
−X (R−R1

D
∪X ...

D
∪X R−Rm)]

We present two approaches to implement this. First, develop an external query

rewriting process, which sits as a middle-ware between X2R query conversion and

relational query evaluation. Since we have clearly defined relational deep set oper-

ators, the implementation is straightforward, although the queries might be com-

plicated. For instance,

Example 8.1. Let use revisit the previous examples: we manage XMark document

in XRDB(XRel). Suppose we have access control rule (user, //people, read,

+), and user submits query //name. Figure 8.2(a) shows the relational query for

C(//people)
D
∩R C(//name), which is implemented according to the definition in

Equation 7.2 (we marked up all the sub-queries). Moreover, this query could be

further optimized, as shown in Figure 8.2(b).

Second method is to use Oracle VPD. Oracle version 8.1.5 introduces a new

security feature supporting non-view-based fine-grained access control, namely Row
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r C(//people//*) 

r C(//name::self-or-descendant()) 

SELECT docID, pathid, elementID, st, ed FROM element 
WHERE  (elementID IN 

( SELECT e0.elementID FROM document d, element e0, pth p0
 WHERE p0.pathexp LIKE '#%/people%'  AND e0.pathid = p0.pathid AND d.docid = e0.docid )

AND elementID IN
(SELECT e0.elementID FROM document d, element e0, pth p0
 WHERE p0.pathexp LIKE '#%/name%' AND e0.pathid = p0.pathid AND d.docid = e0.docid ))

AND ( NOT elementID IN
(SELECT e0.elementID FROM document d, element e0, pth p0
 WHERE p0.pathexp LIKE '#%/people#/%' AND e0.pathid = p0.pathid AND d.docid = e0.docid)

OR NOT elementID IN
(SELECT e0.elementID FROM document d, element e0, pth p0
 WHERE p0.pathexp LIKE '#%/name#/%' AND e0.pathid = p0.pathid AND d.docid = e0.docid))

r C(//people::self-or-descendant()) 

r C(//name//*) 

D

SELECT e0.docID, e0.elementID, e0.st, e0.ed FROM demo.document d, demo.element e0, demo.pth p0
WHERE   (( p0.pathexp LIKE '#%/people%'  AND e0.pathid = p0.pathid AND d.docid = e0.docid)
AND (p0.pathexp LIKE '#%/name%' AND e0.pathid = p0.pathid AND d.docid = e0.docid ))
AND ((NOT p0.pathexp LIKE '#%/people#/%' AND e0.pathid = p0.pathid AND d.docid = e0.docid)
OR (NOT p0.pathexp LIKE '#%/name#/%' AND e0.pathid = p0.pathid AND d.docid = e0.docid))

(a) SQL query for: //people ∩ //name

(b) optimized SQL query

Figure 8.2. Enforcing XML access control via external pre-processing

Level Security or Virtual Private Database. In SQL, user could only use GRANT

and REVOKE statements to enforce access control at column or higher level.

Fine-grained access control is only enforced via views, which suffer from expensive

maintenance and excessive storage needs. It allows users to control accessibility

towards row/cell level. In VPD, to restrict users’ access to rows, a policy function

is defined to generate additional predicates and attach them to the WHERE clause

of the user query. Moreover, VPD allows user to “mask” individual cells to support

cell level access control. Other access control mechanism through SQL rewriting

or relational views can only work on relations. However, with VPD, we are able

to tailor relational data into any shape we want.

To utilize VPD for access control in XRDB, we first construct relational predi-

cates from the converted relational access control rules ACRR, then define a VPD

policy to enforce the predicates on converted SQL queries. Moreover, cell level

access control capability of VPD is of special importance to XRDB systems that

use schema-based X2R conversion algorithm, such as Inlining. In those XRDB

systems, XML nodes are converted to different types of relational objects: tables,

rows and cells. In this way, 〈ACR〉 may not be conventional relations, e.g. it could

be arbitrary combinations of columns, rows and/or individual cells.
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8.3 Post-processing Based Approach

In native XML DB, access control through post-processing described as:

SAX = ACR〈AX〉 = [( R+
X1

D
∪X ...

D
∪X R+

Xn)
D
−X (R−X1

D
∪X ...

D
∪X R−Xm)]〈QX〈DX〉〉

In XRDB, this approach could be conducted through: (1) XML answer filtering ( 3©
in Figure 8.1); or (2) relational answer filtering ( 6© in Figure 8.1). (1) is similar to

the postprocessing approach described in [44], while (2) evaluates relational query

QR to obtain unsafe relational answer, and process ACRR against the answers:

SAX = C−1(SAR) = C−1(ACRR〈AR〉) = C−1(ACRR〈QR〈DR〉〉)

However, the post-processing filters often require the intermediate answers (〈AR〉 or

〈AX〉) to retain additional information of the original paths for ACR to operate on.

As an example of this approach, [9] check streaming XML data against both query

and ACR at the same time. Since it works in the streaming data environment, full

paths are retained. As an counter example, let us look at an XRDB in information

pull model. Suppose a user asks for “//name”, but she is only authorized to access

person names, not item names. To enforce access control on 〈AR〉 or 〈AX〉, we

need to be able to distinguish these two types of <name> nodes, i.e. recognize the

original full path. Unfortunately, as designed in most X2R conversion algorithms,

the intermediate answer AR or AX does not contain such information. Therefore,

postprocessing approaches are not suitable for all applications.

8.4 Descendant Elimination Negative Rules

As we described in Section 3, enforcing descendant elimination negative rules needs

the conversion of deep-except operator. Due to the semantic gap between XML

and Relational data models, this may not be feasible in all XRDB systems. E.g.,

in XRel, to enforce descendant elimination negative rules, we need to block access

to a descendant node in the element table. However, users are still able to retrieve

the whole ancestor node (including the “blocked” descendant) since it is stored as

an independent record. To avoid security leak, we need to manage these conversion
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algorithms with extra treatment: an external post processing to enforce DE access

control rules.

Let us revisit Example 7.4 again. Upon user query “//person”, elements 293

and 299 shown in Figure 7.1 are included in the relational answer. After the

reverse conversion, segments with offsets (35592, 35826) and (35832, 36217) from

the XML documents are returned to the user. However, rule 2 restricts access to

//person/creditcard nodes, thus this answer is not safe. To remove the restricted

node from the answer, we first request 〈QR〉
D
∩R 〈ACR−R〉 from RDBMS, to yield

element 303. Then we remove this segment, i.e. (35989, 36032) from the XML

answer.

8.5 Experimental Validation

To show that the proposed theory and implementations are practical yet efficient,

we show our experimental results.

8.5.1 Setting

An XML document with 8517 nodes are generated by XMark [64], mimicking

online auction scenario. Part of its schema structure is shown in Figure 2.4. We

use XRDB(XRel) [72]1, with Oracle 10g as underlying RDBMS; i.e. we convert

XML document into relations using XRel, and manage them in Oracle 10g.

We design five (5) roles, abbreviated as A (administrator), M (manager), RU

(registered user), S (sales) and U (unregistered user), respectively. Roles have

different levels of accessibility, e.g. U is able to access 5% of total nodes, RU is

able to access 40%, and A could access all.

According to Lemma 7.3, XRDB(XRel) cannot directly handle descendant

elimination negative rules, thus we only have positive and node elimination nega-

tive rules. As a reference, we also test situations where no access control is enforced

– user could access everything.

As we described before, the types of queries that we support totally depend on

the X2R conversion algorithm. XRel supports a subset of XPath, with parent-child

1We choose XRel because of its available implementations of both Query and Data convertor.
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(/), ancestor-descendant (//) axes, wildcards (*) and predicates. We generate four

groups of synthetic XPath queries, each has a different setting of wildcards and

predicates.

8.5.2 Experimental Results

In the XRDB(XRel) environment described above, we convert all access control

rules into relational, and enforce them through views and VPD. For a comparison,

we also enforce same rule sets on the same XML document in native XML environ-

ment. We enforce XML access control rules using QFilter [45], and answer XML

queries using Galax. In all the experiments, we use the query processing time as

an evaluation metric.

Figure 8.3 shows the result of our experimentation. Comparing both view-

based and VPD-based approaches with the reference (no security enforcement),

our approaches do not add much overhead for fine-grained access control. Mean-

while, the size of accessible data tends to get smaller after security enforcement.

Therefore, querying on smaller set of records is even faster than that on no-security

case. XRDB query processing speed is significantly slower for Query Sets 3 and

4. This is because the XML queries have predicates, and they are converted to

nested SQL queries under XRel.

With access control enforced, performance of XML querying in XRDB sys-

tems or native XML database systems (with QFilter security enforcement) is sim-

ilar. Note that comparison with Galax is not perfectly fair since Galax is just an

XQuery implementation, and does not have storage management or cache. There-

fore, Galax take more time to load XML documents from disk to memory. It is

just used as a reference.
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Figure 8.3. Query processing time for four sets of queries.



Chapter 9
Conclusion and Future Work

9.1 Conclusion

In this thesis, we have addressed XML access control in native and RDBMS-

supported XML database systems.

In native XML environment, we first introduce deep set operators and formally

describe XML access control semantics with them. We propose a unified framework

to capture all the XML access control enforcement approaches: building blocks,

operations and their combinations. The approaches are qualitatively compared

and each one is further described with deep set operators. Three approaches of

novel solutions are presented to support XML access control without using views

or security-support of underlying databases. In particular, a pre-processing based

method, called QFilter, has been elaborated and shown to be particularly effi-

cient and effective. QFilter, based on Non-deterministic Finite Automata (NFA),

rewrites user’s insecure queries to secure ones, not returning any data violating

access control rules. We validate QFilter by showing it does not return any violat-

ing data via theoretical analysis, and by demonstrating its effectiveness through

extensive experiments. As a result, QFilter demonstrates efficient and effective

XML access control capabilities: (1) it does not require support from underlying

database engine, which makes it feasible for any XML DBMS, native or RDBMS-

based; (2) it consumes very small amount of memory (considering it is an NFA),

especially comparing with traditional view-based approaches (an intensive study

of QFilter memory consumption and optimization can be found at [41]); and (3)
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its execution time is very short so that it is practical for real world applications.

In RDBMS-supported XML database systems (XRDB), we articulate the prob-

lem of XML access control as the problem of object and operation equivalency and

conversion between XML and relational data models. We show that, equivalent

counterparts of deep set operators in relational model are needed to fully imple-

ment XML access control in XRDB. We analyze the definition and semantics of

each operator, and show how they can be converted to XRDB through two lem-

mas. Although detailed conversion implementation is connected with a specific

X2R conversion algorithm used in XRDB, we propose an algebraic description of

these operators. Moreover, we study possible implementations of XML access con-

trol in XRDB. We categorize them into three approaches, and formally describe

the semantics of each approach using deep set operators. We also discuss the fea-

tures and considerations of each approach. Finally, we show the validity of our

approaches using experiment results.

9.2 Future Work

In this thesis, we have carefully explored the problem space of XML access control

in XDB and XRDB. We have proposed theocratical and practical solutions, and

discussed implementation approaches. However, there are still open questions in

XDB and XRDB access control, especially the questions connected with particular

implementation methods. E.g. how to enforce XML access control with minimal

overhead and alternation upon underlying RDBMS? We leave these as our our

future research topics. More specifically, the following topics could be further

explored:

1. Current version of QFilter supports a subset of XPath: /x, /*, //x, //*

and predicates. Although these are the most frequently used features of

XPath, it is still desirable to cover the entire specification. This could be

done by: (1) extending QFilter to support the entire set of XPath; or (2)

rewriting unsupported queries into supported subset of XPath, using the

current QFilter.

2. Currently, we support the 4 or 5-tuple XML access control model, which is
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widely used in XML access control enforcement research. However, as more

complicated hence powerful access control models are to be proposed (and

standardized), it becomes more desirable to support these advanced XML

access control models. Especially, further optimization of QFilter based on

access control model features is highly anticipated.

3. We have summarized existing XML access control approaches into categories

of built-in, view based, preprocessing, and post-processing. We have the in-

herent pros and cons of each approach. However, there could be a systematic

study to evaluate performance of different approaches for different XML en-

gines. This engine-dependent performance study could be used to suggest

the best access control enforcement approach when the application scenario

and underlying XML engine is given.

4. Moreover, there have not been any research on taking advantage of combin-

ing multiple XML access control approaches to build a hybrid mechanism.

In many cases, a unified global security enforcement may be ineffective or

inefficient. In a hybrid approach, security enforcement is tailored for individ-

ual rule or designated set of rules, based on the property of rules and data

sources. This design will provide better flexibility and efficiency.

5. How to efficiently enforce Descendant Elimination negative rules in XRDB

remains an open problem.

All the above are feasible extensions of this dissertation. Working on these

problems may lead to more interesting issues. The journey of academic research

is endless – thanks to the magic world of data management, security and privacy!
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