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ABSTRACT
A Distributed Information Brokering System (DIBS) is a
peer-to-peer overlay network that comprises diverse data
servers and brokering components helping client queries lo-
cate the data server(s). Many existing information broker-
ing systems adopt server side access control deployment and
honest assumptions on brokers. However, little attention
has been drawn on privacy of data and metadata stored and
exchanged within DIBS. In this paper, we address privacy-
preserving information sharing via on-demand information
access. We propose a flexible and scalable system using a
broker-coordinator overlay network. Through an innovative
automaton segmentation scheme, distributed access control
enforcement, and query segment encryption, our system in-
tegrates security enforcement and query forwarding while
preserving system-wide privacy. We present the automaton
segmentation approach, analyze privacy preservation in de-
tails, and finally examine the end-to-end performance and
scalability through experiments and analysis.

Categories and Subject Descriptors
K.4.1 [COMPUTERS AND SOCIETY]: Public Pol-
icy Issues—privacy ; K.6.5 [MANAGEMENT OF COM-
PUTING AND INFORMATION SYSTEMS]: Secu-
rity and Protection

General Terms
Security

Keywords
Privacy, XML, Access Control

1. INTRODUCTION
In a federated information system with diverse partici-

pants (from different organizations) such as data producers,
data consumers, or both, the need of cross-organizational in-
formation sharing naturally arises. However, different types
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Figure 1: System architecture of a distributed infor-
mation brokering system

of applications often need different forms of information shar-
ing. In particular, while some applications (e.g., stock price
updating) would need a publish-subscribe framework [3, 6],
the on-demand information access is more suitable for other
applications. Examples include cases like querying for prod-
ucts (parts) from manufactures and contractors network or
providing emergency health care services to visitors (or tourists)
whose medical records are not in local hospitals. Consider
the following motivating example.

Example 1. Let us consider a medicare network scenario.
Each organization (e.g., hospital) participates as a data source
that holds its own patient database. Since the records are
highly sensitive and private, intensive privacy and security
enforcement is desired. Diverse users (e.g., doctors, assis-
tants, pharmacists, and administrators) are to access local
or remote patient data according to certain access control
policies. Furthermore, users who ask queries from their own
terminals do not have to have prior knowledge of data distri-
bution. For instance, when a doctor wants to retrieve all the
historical records of a patient, her query may be forwarded
to all data sources that hold related information. However,
the user does (and should) not need to known where the
data comes from. 2

When N parties need to share data, as shown in Exam-
ple 1, “pouring” all data into a centralized repository man-
aged by a third party may lead to legal/political hurdles
and trust/privacy concerns. In such scenarios, a peer-to-
peer information sharing framework can be desirable. In its
simplest form, we may establish two symmetric client-server



relationships between every pair of parties, but having 2N

relationships is not scalable. To achieve better scalability,
peer-to-peer overlay networks have been proposed to include
not only the data servers of N parties but also a set of infor-
mation brokering components helping client queries locate
the right data server(s) [11, 12, 13]. In this paper, such a dis-
tributed on-demand information access system is referred to
as Distributed Information Brokering System (DIBS). Fig-
ure 1 shows an example DIBS (to be elaborated in Sec-
tion 3.4). When data are owned, scattered, and managed
by multiple parties in DIBS, various privacy concerns arise.
Consider the following example.

Example 2. Continuing from Example 1, suppose that Anne
is in ER and all patient data are stored and managed in XML
format (as opposed to in relational records). If a doctor’s
XML query, “/provider/.../patient[name()=‘Anne’]
/symptom[cancer()=‘blood’]//*”, is disclosed, then peo-
ple may guess that Anne has a cancer. Similarly, Anne may
not wish to reveal that she is now in Los Angeles under
emergency health care but her health records are stored in
Mt. Sinai Hospital of New York, since people may guess
that she has cancer related problem if they know that her
records are from the hospital renowned for its blood cancer
treatment. That is, a medicare DIBS needs to protect not
only confidentiality of patient data, but also privacy of such
sensitive information as “who asks what queries” or “where
data comes from”. 2

Despite its importance, to our best knowledge, none of
existing DIBS work is designed with user and data privacy
in mind. To satisfy such privacy protection requirements,
therefore, we propose a novel DIBS, named as Privacy Pre-
serving Information Brokering system (PPIB). As shown in
Figure 1, PPIB contains a broker-coordinator overlay net-
work, in which the brokers are responsible for forwarding
user queries to coordinators concatenated in tree structure
while preserving privacy. The coordinators, each holding a
segment of access control automaton and routing guidelines,
are mainly responsible for access control and query routing.

PPIB takes an innovative automaton segmentation ap-
proach to privacy protection. In particular, two critical
forms of privacy, namely query content privacy and data
object distribution privacy (or data location privacy), are
enabled by a novel automaton segmentation scheme, with
a “little” help from an assisting query segment encryption
scheme. This scheme preserves privacy without sacrificing
functionality. While providing “full” capability to do in-
network access control and to route queries to the right data
sources, this scheme ensures the information that a (curious,
corrupted or broken) coordinator can gather is far from be-
ing enough to infer either “which data is being queried” or
“where the data is located”. Second, the automaton segmen-
tation scheme can also provide high-quality privacy protec-
tion to metadata (e.g., access control policy). Third, user
location privacy is protected by multilateral security, a de-
sign principle of PPIB.

To the best of our knowledge, (1) PPIB is the first system
that uses automaton segmentation to do privacy-preserving
in-network access control. (2) PPIB is the first system that
integrates automaton segmentation, in-broker access con-
trol, and query routing. (3) PPIB provides the most com-
prehensive privacy protection for information brokering sys-
tems, and its performance degradation is insignificant com-

pared with traditional DIBS systems (in a practical set-
ting, the performance degradation of PPIB is at millisec-
onds level). (4) The evaluation results show that PPIB is a
scalable privacy solution.

2. PROBLEM STATEMENT

2.1 Distributed Information Brokering Systems
Conceptually, a distributed information brokering system

(DIBS) is a peer-to-peer overlay network consisting of data
servers, brokering components, and end users. Applications
atop DIBS always involve some sort of consortium among
a set of data owners (or organizations). While expressing
a strong need of cross-organizational information sharing,
data owners in such a consortium still expect to remain as
much autonomous as possible. As a result, data owners
collect data independently, and manage it in their local data
servers. Data is not poured into some center data warehouse
or replicated in distributed databases. Instead, data servers
send metadata about their data objects distribution as well
as access control rules to the consortium, which will further
assign them to brokers to help information brokering.

Traditional information sharing approaches always assume
the use of trustable servers, such as the central data ware-
housing server or database servers. However, the honest or
semi-honest assumptions (e.g., honest-but-curious assump-
tion as adopted in [2]) may not hold for brokers. In prac-
tice, they may either be abused by insiders or compromised
by outsiders. It is obvious that the brokers become the
most vulnerable privacy breach of a DIBS, which leads to
inevitable security and privacy risks. On one hand, the
survival of information brokering depends on the trust of
brokers to enforce authentication, access control as well as
query forwarding, while on the other hand, failing to provide
proper protection of information released in this process may
create circumstances that harm the privacy of user, data and
the system.

2.2 Privacy Vulnerabilities
In existing research of DIBS, relatively little attention has

been drawn to privacy protection. To impose order into
the multitude of privacy vulnerabilities in current DIBS ap-
proaches, we propose a taxonomy of privacy in three types:
User Privacy, Data Privacy, and Metadata Privacy.

A. User Privacy
Generally speaking, we can summarize the user privacy

as “who, where, and what”. “Who” refers to the identity
of a user, “where” denotes his/her location at the moment
of sending a query, and “what” represents the interest and
purpose that can be inferred from his/her query.

User location could be easily retrieved by analyzing the
IP packet of the query. User identity is a key concern of
user privacy, which can be obtained either from authentica-
tion process or by associating user location information with
other public data. Although the “what” privacy may not be
reveled directly, one still can make reasonable inference from
the content of the query. Sometimes, the inference is sen-
sitive information of others as shown in Example 2. Some-
times, the inference is about user’s own interest or purpose.
For example, if Bob sends a query “//departure[code=JFK,
date=08/15]/arrival[code=SFO]//*” to a distributed air-
line reservation system, the intermediate broker can easily



infers that Bob needs a ticket from New York to San Fran-
cisco on Aug 15. In either circumstance, the “what” privacy
is hurt.

Although user identity, user location, and query content
are privacy-sensitive matters, one cannot apply popular privacy-
preserving techniques directly in the DIBS. This is because a
broker needs to learn these privacy-sensitive information to
fulfill query brokering. For example, since data in an DIBS
is only accessible by legitimate users, user identity cannot
be represented by anonymity as other privacy-preserving ap-
plications do. In other words, the broker is responsible for
authenticating user identity. As a result, to what extent
user’s privacy is preserved highly depends on how we min-
imize the disclosure of these privacy-sensitive information.
This requires a new mechanism where the broker cannot
infer the privacy of individuals while still fulfilling its desig-
nated functions.

B. Data Privacy
In a DIBS, data owners collect data independently and

manage it with autonomous data servers. While providing
data access to legitimate users, data servers have to release
certain privacy-sensitive information that needs to be pro-
tected. In general, we can express privacy concerns of data
with two questions, “where is the data?” and “who stores
what?”. The former concerns data location privacy, and
the latter, denoted data object distribution privacy, inquires
which type of data is contained in a particular data server.
Unlike other large public databases or data warehouse, data
owners in the proposed DIBS are highly conservative about
their data privacy. They only share data and data distribu-
tion within the consortium.

C. Metadata Privacy
Two types of metadata are involved in the information

brokering process in an DIBS, query indexing guidelines and
access control rules. The former describes where the data
objects are distributed among all the data servers, and the
latter assigns accessibility to legitimate users according to
access control policy provided by data owners. It is obvi-
ous that the metadata is highly relevant to both the pri-
vacy of data location and the privacy of data object distri-
bution. However, to facilitate information brokering, these
metadata have to be stored at the intermediate brokering
components, which may be abused by the insider or com-
promised by the outsider according to our assumptions. As
a result, the metadata becomes an obvious and easier target
of attacks. Risk rises when unsecured or dishonest broker-
ing components try to abuse or leak these privacy-sensitive
information. In existing DIBS approaches, a compromised
broker can obtain data location information from indexing
guidelines or access control policy since these information
are stored in brokers to facilitate routing and access control.
Even if we can adopt some encryption schemes to hide these
sensitive information from brokers, a compromised broker
can probe the whole system by sending snooping queries. In
this way, a compromised broker is more dangerous to the
system than ordinary malicious users.

Remark. Note that different types of privacy may be inter-
twined with each other. For instance, query indexing guide-
lines may reveal data server locations; query content, access
control rules and query indexing guidelines may reveal data
objects distribution.

3. BACKGROUND
3.1 XML Preliminaries

This paper will focus on semantically rich applications
such as health care. For those applications, keyword-based
indexing and querying techniques (e.g., [26, 18, 8]) would
not meet the expressiveness needs. To illustrate, health care
providers need to declaratively express flexible constraints
on the information to be retrieved. When tourist Anne
is in ER, the doctor may query for medical records that
match “last name Anne, 5 or 6 years old, has an ‘open femur
fracture with contamination’, female”, and simple filename-
based, keyword-based, or range queries are not sufficient for
this context.

To support rich semantics, we assume data are queried
and exchanged in XML format. Data is assembled into XML
documents, conforming to XML syntax and semantic rules.
An XML document consists of elements, attributes, and text
nodes. An element has a set of attributes, and may contain
other XML elements and text nodes. Thus, these elements
collectively form a tree-base data structure. The widely-
adopted XML standard allows people to abstract naive data
representations (e.g., patient records) into semi-structured
XML data which can be retrieved by expressive yet simple
XPath queries. XPath is a restricted variation of regular
path expressions, which can refer to all or part of the nodes
in an XML document using axes [17]. Axes represent the
structural relationships between nodes. In particular, an
axis defines a set of nodes relative to the current node. For
example, “/” denotes the child node, “//” denotes the cur-
rent node itself and all the descendant nodes, and“@”denotes
the attribute. Although several query languages using dif-
ferent query algebras have emerged recently, most of them
use XPath for locating nodes in XML documents. Thus,
although our system is applicable to any regular path ex-
pression and any query language based on it, we focus on
XPath in this paper.

3.2 Access Control Model
Access control is required in most if not all DIBS. We

adopt the popular XML access control model proposed in [5,
20, 22]. In this model, users are members of appropriate
roles; and an access control policy consists of a set of role-
based 5-tuple access control rules (ACR): R = {subject, ob-
ject, action, sign, type}, where (1) subject is a role to whom
an authorization is granted; (2) object is a set of XML nodes
specified by XPath; (3) action is one of “read,”“write,” and
“update”; (4) sign ∈ {+,−} refers to access “granted” or
“denied,” respectively; and (5) type ∈ {LC, RC} refers to
either “Local Check” (i.e., authorization is only applied to
attributes or textual data of context nodes–“self::text()
| self::attribute()”), or “Recursive Check” (i.e., autho-
rization is applied to context nodes and propagated to all
descendants–“descendant-or-self::node()”). When an XML
node does not have either explicit (via LC rules) or implicit
(via RC rules) authorization, it is considered to be “access
denied.” It is possible for an XML node to have more than
one relevant access control rule. If conflict occurs between
“+” and “−” rules, “−” rules take precedence. Five example
access control rules under the 5-tuple model are shown in
Figure 2

In our DIBS, each owner contributes a policy governing
the access to her data objects, and the system-wide access



control policy is simply the union of all the per-owner poli-
cies.

3.3 Automata-based Access Control Enforce-
ment

View-based access control enforcement suffers from exces-
sive storage requirement and expensive maintenance. Many
view-free XML access control mechanisms are proposed to
overcome the disadvantage. In our approach, we adopt and
extend a view-free automaton-based access control mecha-
nism proposed in [15]. It uses XPath expressions in access
control rules (ACR) to build a Non-deterministic Finite Au-
tomaton (NFA). We call such a NFA an access control au-
tomaton. Each incoming query is checked against the NFA.
As a result, each query could be (1) accepted: when user
is allowed (by ACR) to access all the requested nodes, the
query is kept as is. (2) rewritten: when user is allowed to
access part of the requested content, the query is rewritten
into a safe one, which asks for authorized content only. (3)
denied: when user is not allowed to access any requested
node, query is rejected.

Here, we use an example to illustrate how automaton-
based access control enforcement works. In the examples
throughout the paper, we adopt the well known XMark [23]
schema, mimicking an online auction. As shown in Figure 2,
we use 5 access control rules assigned to two roles. First, an
automaton is built based on the XPath expressions from ob-
ject part of the rules. For example, constructing NFA with
rule R1, we will have automaton states 0, 1, 2, 3, and 4 as
shown in the figure. Especially, state 4 is an accept state,
as shown in double-circle. Moreover, each state is attached
with two binary arrays, namely access list (indicating which
roles can access this state) and accept list (indicating this
is accept state for particular role(s)), respectively. For in-
stance, state 4 is accessible to users of role 1 only, and is an
accept state for this role.

At run time, user queries are checked against the automa-
ton. Using the same example, suppose a user of role 1 asks
three XPath queries. (1) Q1: /site/categories/books/name
goes through states 1, 2, 3, and reach accept state 4. As a re-
sult, this query is accepted. (2) Q2: /site/regions/asia/*
/name goes through states 0, 1, 5, 6, 7 and 8. Based on
the semantics of * in XML, the query is rewritten into
into safe query: /site/regions/asia/item/name. (3) Q3:
/site/regions/*/item/price is denied since no accept state
can be reached.

Due to space limit, we omit the details of automaton based
access control. Please refer to [15, 13].

3.4 Automata-based In-network Query Bro-
ker

In traditional DIBS, access control mechanisms are im-
plemented at data servers so as to check the accessibility
right of a query (either by the database kernel or by a query
filter [15] outside of the kernel) before answering it. How-
ever, [13] claims that, whenever access control is enforced at
the data source-side, suspicious queries are allowed to tra-
verse through the whole system until they get rejected at
the far end. Thus, by sending snooping queries, attackers
can probe the system to get data distribution and server
location information, and do further inferences after suc-
cessfully finding out the location of sensitive data. In addi-
tion, source-side access control wastes substantial network
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Figure 2: An example of automaton based access
control and routing.

resources (e.g., bandwidth). To tackle the above problems,
in-broker access control is proposed in [13]. The idea is to
“push”the access control mechanism from the edge (i.e., data
source side) to the “heart” of information brokering systems
(i.e., information brokers). In this paper, we will embrace
this idea and do access control at coordinators.

Content-based XML routing is applied in all DIBS [11, 12,
13]. In this paper, we adopt a rather simple content-based
routing scheme, as the one used in [13]. In the scheme, each
coordinator holds a set of indexing guidelines, and each in-
dexing guideline consists of (1) an XPath expression indi-
cating data objects and (2) an IP address indicating data
location. It means that if a query matches the XPath ex-
pression, it will be forwarded to the IP address.

In [13], indexing guidelines are attached to accept states
of the access control NFA, since only accepted/rewritten
queries should be forwarded to the data servers. Let us use
the indexing guidelines (L1 to L3) in Figure 2 as an exam-
ple. Comparing with the five access control rules, L1 is only
relevant to R1. As a result, IP of 192.168.0.5 is attached
to state 4, and all queries accepted at this state will be for-
warded to data server 192.168.0.5. Please refer to [13] for
details.

3.5 Assumptions
We assume that multiple data owners contribute XML

data to DIBS. Therefore, data is stored in multiple data
servers which are geographically distributed; and data may
be replicated. In our model, each data location is an IP ad-
dress identifying a unique data server; and each data object
is indexed by an XPath expression. We assume data owners
share data within some sort of consortium. Whenever a new
data owner O joins the consortium, (1) O will let the consor-
tium know which data objects she owns and where the data
objects are stored, and (2) the consortium will “align” and
merge the XML schema of O’s data into the XML schema
shared by the members of the consortium. We assume all
XPath queries are crafted based on the shared XML schema.

4. PRIVACY PRESERVING INFORMATION
BROKERING APPROACH (PPIB)

In this section, we propose an innovative Privacy Preserv-
ing Information Brokering (PPIB) framework to address the
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Figure 3: Brokering components have restricted
trust on system privacy.

user/data/metadata privacy vulnerabilities associated with
existing distributed information brokering systems, includ-
ing the DIBS presented in [13].

4.1 Broker-Coordinator Overlay
As shown in Figure 1, we consider a broker-coordinator

overlay consisting of N brokers and M coordinators, denoted
by B1, B2, ...BN and M1, M2, ...MM , respectively. Based on
their functions, coordinators are classified into three types:
a root-coordinator M1, intermediate coordinators M2, ...Mi,
and leaf-coordinators Mi+1, ...MN . All the coordinators form
a coordinator tree of height h: (1) The root-coordinator is
the root of the tree. It is an entrance for incoming queries.
(2) Each intermediate coordinator holds a specific segment
of an access control automaton (see Section 3). It also holds
the location information of its child coordinator(s), which
holds the “next segment” of the automaton. (3) Each leaf-
coordinator holds an NFA-based query indexer, which was
constructed from indexing rules. At runtime, it forwards
safe queries to data servers, which has the data to answer
it.

In this framework, the number of coordinators, M , and
the height of the coordinator tree, h, are highly dependent
on how access control policies are segmented (to be elabo-
rated in Section 4.2). In the broker-coordinator overlay, bro-
kers and coordinators work separately and cooperatively. N
brokers are distributed in the DIBS system so that each user
is directly connected with at least one local broker. Each lo-
cal broker also has direct link with at least one active root-
coordinator. Coordinators are replicated to provide efficient
and reliable service. We also introduce a centralized control
point, the super node, into the PPIB approach. It is respon-
sible for initiation setting and key management in the whole
information brokering process (see section 5).

In PPIB, the responsibility sharing principle is implemented
for two purposes. (1) To protect user privacy: a user query is
divided into access-control-related part (e.g., the role of the
user and query content) and user-privacy-related part(e.g.,
authentication information, location, etc). The first part is
visible to coordinators for access control enforcement; while
the second part is visible to local brokers for authentication.
Encryption is adopted so that access-control-related infor-
mation is not visible to brokers, although they route it to
the root-coordinator. (2) To protect data privacy and access
control policy privacy: ACRs and data object distribution
information are divided and distributed to several coordi-
nators (to be elaborated in 4.2). As a result, PPIB only
requires minimal trust (or honesty) in each coordinator, as
shown in Figure 3, where“Hide”means“no need to trust”. It
is clear that whenever the system’s level of trust in each bro-
kering component can be lowered without hurting privacy,
the system’s privacy protection capability will be enhanced.

4.2 Automaton Segmentation
In PPIB, we adopt the view-free automaton-based access

control mechanism [13, 15], and extend it in a decentral-
ized manner with our Automaton Segmentation scheme. The
idea of automaton segmentation comes from the concept of
multilateral security: split sensitive information to largely
meaningless shares held by multiple parties who cooperate
to share the privacy-preserving responsibility.

Our automaton segmentation scheme first divides the global
access control automaton into several segments. Granular-
ity of segmentation is controlled by a parameter partition
size, which denotes how many XPath states in the global
automaton are partitioned and put into one segment. By
and large, the granularity is a choice of the system adminis-
trator. Higher granularity leads to better privacy preserving,
but also more complex query processing. Each accept state
of the global automaton is specially partitioned as a separate
segment. Then we assign each segment to one independent
site. As a result, a site in essence holds a small automaton.
At run-time, it conducts NFA-based access control enforce-
ment as a stand-alone component. However, in the state
transition table of the last state of each segment, the “next
state” points to a root state at a remote site, instead of a
local state.

In PPIB, a site is actually a logical unit. So a physical
coordinator (i.e., a machine) can in fact hold multiple sites.
For convenience, we add dummy accept states to each au-
tomaton segment. The dummy accept states do not accept
queries. Instead, they are used to store the location of actual
“next states,” i.e. the address(es) of the coordinators who
hold the next segment of the global automaton. At runtime,
they are used to forward the halfway processed query to the
next coordinators. On the other hand, only the sites hold-
ing original accept states accept queries and forward them
to the data servers. As a result, access control and query
brokering are seamlessly integrated at coordinators, and the
global automaton-based query brokering mechanism is de-
centralized and distributed among many coordinators.

Algorithm 1 Automaton Segmentation: Deploy()

Input: Automaton State S
Output: Site Address: addr

for each symbol k in S.StateTransTable do
addr=Deploy(S.StateTransTable(k).NextState)
DS=CreateDummyAcceptState()
DS.NextState← addr
S.StateTransTable(k).NextState← DS

end for
Site = CreateSite()
Site.addSegment(S)
Coordinator = GetCoordinator()
Coordinator.AssignSite(Site)
return Coordinator.address

In its simplest (and inefficient) form, an access control au-
tomaton can be segmented to the finest granularity to best
preserve privacy. In this case, each automaton state is di-
vided into one segment and deployed at one site. Algorithm
1 demonstrates a recursive algorithm for finest-granularity
automaton segmentation and deployment. As an example,
the global automaton shown in Figure 2 is partitioned into
11 segments as shown in Figure 4. For instance, Site 0
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Figure 4: An example to illustrate automaton seg-
mentation scheme.

holds state 0 of the global automaton (symbol “site”); and a
dummy accept state which holds the address of Site 1.

Example 3. To illustrate how decentralized automata en-
forces access control, let us use the query Q: “/site/regions
/asia/item[name=’Abacavir’]/location”. When Q arrives
at Site 0, the first XPath step “/site” is accepted. As the
dummy accept state of Site 0 points to Site 1, Q is for-
warded to Site 1. Then, the second XPath step “/regions”
is accepted and the corresponding dummy accept state di-
rects the remaining query to Site 5. There, Site 5 accepts
“/asia” (wildcard “*” matches any input token) and for-
wards Q to Site 6. At Site 6, element name “item” is first
accepted. Since the automaton segment does not carry any
predicate states, the predicate from Q is kept as it is. Fi-
nally, “/location” is accepted at Site 7, and Site 10 forwards
the query to data server at 192.168.0.3. Note that, “Aba-
cavir” is a medicine used in AIDS treatment. Therefore,
the query Q, as well as related data and metadata, are all
highly private and sensitive information. Under the automa-
ton segmentation scheme, metadata privacy is preserved by
dividing metadata into multiple sites. In Section 4.4, we will
further analyze this example to show how we protect query
and data privacy. 2

If there are wildcard “*” or descendent “//” in the query,
access control enforcement in the partitioned automaton be-
comes more complicated. The query may match multiple
keywords at a particular site (e.g., the “/*” step in a query
matches with all tokens in the automaton segment). Thus
the query is split into several branches, each of which contin-
ues to be processed in the automaton independently. The
process is similar to the un-partitioned global automaton.
For details, refer to [13].

Distribution and Replication of Automaton Segments
In our design, a site is a logical unit which hosts one segment
of the global automaton. A physical network peer which
holds one or more logical site is called a coordinator. Espe-
cially, the coordinator holding the root node of the global
automaton is called the root-coordinator; the coordinators
with the accept states of the global automaton are called
the leaf-coordinators; and the others are called intermediate
coordinators.

Sites could be flexibly replicated. For a site Si, we first
make a replication S′

i. Then, for all sites that forward queries
to Si (i.e., whose dummy accept states point to Si), we
change the pointers, re-route some of them to S′

i. For in-

stance, we can create a replication of Site 0 of Figure 4
without changing any other site since it is the root. On the
other hand, if we create a replication of Site 1, we need to
change the dummy accept state of Site 0 to route a portion
of the queries to this replicated site. Moreover, replicates
of different logical sites could reside at one physical node.
For instance, Site 2 and Site 6 in Figure 4 could be hosted
at one coordinator and do not hurt the ACR privacy. This
is because the two segments they are holding do not belong
to the same rule, and combining them cannot provide any
extra hint on ACR.

However, for simplicity, throughout the rest of the paper,
we assume that each coordinator only host one site, and we
do not consider replications of sites. Therefore, we do not
specially distinguish logical sites and physical coordinators
anymore, and we will mainly use the term coordinator.

We also need to clarify that our PPIB approach supports
co-existence of multiple schemas. All access control rules
based on the same XML schema are captured in one au-
tomaton; and independent automatons are constructed for
rules from different XML schemas. Independent automatons
could be merged by combining the root coordinators.

4.3 Query Segment Encryption Scheme
To protect user/data privacy that may be revealed by

the queries, we propose a query segment encryption scheme,
which is a good instance that combines data avoidance prin-
ciple (i.e. encrypting sensitive data) with multilateral secu-
rity principle (i.e. multiple parties cooperate to take one
task, while each party only holds one share of sensitive in-
formation).

When an XPath query is being processed at a particu-
lar state in the NFA, the query content naturally splits into
two parts: XPath steps that has been processed by NFA
(accepted or rewritten), and XPath steps to be processed.
Although the whole query will be forwarded to the coordi-
nator who holds the next NFA state, NFA will only take the
unprocessed steps as input. The idea of query segment en-
cryption scheme is to encrypt the processed part of a query
so that subsequent coordinators have only an incomplete
view of the query content. For encryption, a trusted au-
thority is needed for key distribution and management. In
our scheme, this trustee is the super node.

The notions used for encryption are defined as follows:
both the public and private keys of an XML query are de-
noted as PubQ and PrivQ, respectively; then the corre-
sponding encryption and decryption of string M are de-
noted as Encrypt(M, PubQ) and Decrypt(M, PrivQ), re-
spectively; for the symmetric encryption scheme, we denote
the encryption and decryption applied to message M with
secret key K as EK(M) and DK(M), respectively.

When an XPath query Q = s1s2...sn first arrives at the
root-coordinator, it becomes the input to the automata seg-
ment. Suppose automata segment takes s1, generates s′

1 and
reaches the dummy accept state (when s1 is accepted, s′

1 =
s1, when s1 is rewritten, s′

1 <> s1). The root-coordinator
then requests a new PubQ from the super node and encrypts
s′
1 as (EK1(s′

1), Encrypt(K1, PubQ)), where K1 is the secret
key of the root-coordinator. Both encrypted part and the
remaining query are forwarded to the next coordinator. If
the query passes all intermediate-coordinators and reaches
the leaf-coordinator, the whole query will be encrypted as
EK1(s′

1), EK2(s′
2), ..., EKn(s′

n). Thus, the entire query con-



tent is hidden from the leaf-coordinator.

4.4 Query Brokering Process
Conceptually, the overall query brokering process can be

described as four phases.

• In Phase 1, an end user sends his/her XML query to
the local broker since the user has no idea about data
and data server distribution. The broker checks user
identity and replaces user authentication information
with “role ID”. Before sending the query to the broker,
user encrypts it with root-coordinator’s public key so
that the broker cannot see the query content. User
also generates a new public key and passes it with the
query.

• In Phase 2, the broker forwards the encrypted query,
user’s role ID and public key to the root-coordinator,
which is the entrance of the coordinator tree. The
broker also encrypts user location with symmetric en-
cryption, and attaches its own address to the query.
In this way, the broker works in a similar way as an
anonymizer in [27] – none of the coordinators is able
to infer who created the query.

• In Phase 3, the encrypted query is recovered by the
root-coordinator with its own private key, and then
processed in the coordinator-tree, as described in Sec-
tions 4.2 and 4.3. Once it arrives at the accept state
of any leaf-coordinator, the query is sent to destined
data servers. In this phase, query content privacy is
protected by the query segment encryption scheme in
Section 4.3.

• Finally, in Phase 4, data server decrypts the secret
keys (K1, ..., Kn) of the coordinators with the private
key from the super node, and then decrypts all the en-
crypted segments (s1, ..., sn) of the query with these
secret keys. The XML answer is encrypted with user’s
public key (generated in phase 1) to protect data confi-
dentiality, and returned to the user through local bro-
ker.

Example 4. Let us revisit Example 3. The user is asking
for the location of item“Abacavir”, a medicine typically used
in AIDS treatment. Obviously, the user does not want any-
one to know that she queried for this item. Moreover, it is a
potential risk if others know that the particular data server
192.168.0.3 holds “Abacavir” information. In our PPIB
framework, the broker only knows user identity, but not the
query itself. The root coordinator knows the query, but not
the user identity or query location. Other coordinators know
only partial contents of the query, but not the user identity
or query location. The leaf coordinator knows where the
data is located, but it has no hint about the query, i.e., it
knows “where”, but not “what”. We can further examine
this example according to Figure 4. As a conclusion, note
that all of user, data, and metadata privacies are protected
in our proposed PPIB framework. 2

5. PPIB MAINTENANCE
Besides routine key management, PPIB maintenance is

evoked (1) when a brokering component joins/leaves the sys-
tem, (2) when a data server joins/leaves, and (3) when an

access control rule is added/removed. In this section, we de-
scribe of system maintenance procedures in these scenarios.

In previous sections, we implicitly assume that there exists
a system administrator, who decides issues like automaton
segmentation granularity and site distribution. Now we for-
mally introduce it as administrator node, which has the high-
est trust and security level and oversees the whole overlay
network. Administrator is needed only when initiating the
overlay or when maintenance requests are received. There-
fore, the administrator node is not always active.

A. When Brokering Component Joins/Leaves. Bro-
kering components include brokers and coordinators. Be-
fore joining, it sends a request to the administrator node
(through an existing peer) to wake it up. The administrator
checks the security and trust level of the peer, observes the
load of all brokers/coordinators in the network, and assigns
a role to the new peer. If it is a coordinator, usually, exist-
ing sites are moved or replicated to the new host (refer to
Section 4.2 for site replication). If the new peer is a bro-
ker, it simply replicates an existing broker. Finally, the ad-
ministrator broadcasts the newcomer to the super node and
other related peers. For instance, if the newcomer replicates
a root-coordinator, its address is sent to related brokers.

When a peer wants to leave the network, it calls up the
administrator with the request. Based on the load of this
peer and availability of replications, the administrator could
drop the hosted sites, or move some sites to another coor-
dinator. The administrator also informs the super node as
well as related peers (e.g. coordinators whose dummy accept
states point to the leaving coordinator).

Moreover, to avoid unexpected failures of coordinators,
the administrator routinely checks their status. If a coordi-
nator fails, the administrator assigns its task to others and
re-routes the related peers. The administrator also balances
workload by managing site replications.

B. When Data Server or Object Joins/Leaves. Data
location information tells how data is distributed over data
servers. When a data server or a data object is added or
removed, an update message is created and sent to the ad-
ministrator for authentication. The message is in the form of
msg(DSAddr, XPath, +/−), where DSAddr is the address
of the data server, XPath is an XPath expression that refers
data objects, and +/− denotes add or removal, respectively.

When a data server/object is removed from the network,
administrator first processes the msg.XPath through the
automaton to locate related leaf-coordinators, and removes
the corresponding indexing rules from them. If a leaf-coordinator
does not carry any indexing rule after removal, the corre-
sponding path (from the root-coordinator to the particular
leaf) is examined and the sites who does not carry any other
rules are suspended.

Example 5. For the coordinator network shown in Figure
4, if we remove data server 192.168.0.5 with the following
message:

msg(192.168.0.5, /site/categories/category/name, -)

then, indexing rule at Site 4 is first removed. Moreover, sites
2, 3, and 4 are suspended since they are not leading to any
data. 2

When a data server/object is added to DIBS, the ad-
ministrator locates related leaf-coordinators by processing



msg.XPath through the automata, and assigns msg.DSAddr
to them. If the new data server/object affects a suspended
branch of the coordinator network, the branch is then acti-
vated.

C. When ACR is Added/Removed. Whenever a data
owner wants to change access control policy, he sends an
updating request to the administrator: msg ac(ACR, +/−).
When a new access control rule is added to the system, it is
sent to the root-coordinator. The XPath expression of the
rule go through the automaton until no exact match is found
at a certain state. The administrator creates new automaton
states for the remaining segments of the new rule. The newly
constructed automaton segments are then distributed to the
coordinator network. Moreover, related indexing rules are
identified and attached to the new leaf-coordinator. The
removal of an access control rule also starts from the leaf-
coordinator, and goes backward until it reaches a site which
also holds keywords from other rules.

6. PRIVACY AND SECURITY ANALYSIS
In this section, we consider four types of attackers in an

DIBS, and estimate possible damage that the attackers can
do to hurt user privacy, data privacy, or metadata privacy.
In general, there are various types of attackers. Considering
their roles, we can categorize them as malicious insiders and
ambitious outsiders; considering their capabilities, as eaves-
droppers and power attackers that can compromise any bro-
kering component; considering their working mode, as single
attackers or collusive attackers. In this work, we propose a
taxonomy of four distinct types of attackers, which covers
all aforementioned types of attackers.

A. Local Eavesdropper
A local eavesdropper is an attacker who can observe all

communication to and from the user side. Once an end
user initiates an inquire or receives requested data, the lo-
cal eavesdropper can seize the outgoing and incoming pack-
ets. However, it can only learn the location of local broker
from the captured packets since the content is encrypted.
Although local brokers are exposed to this kind of eaves-
droppers, as a gateway of DIBS system, it prevents further
probing of the entire DIBS. Although the disclosed broker lo-
cation information can be used to launch DoS attack against
local brokers, a backup broker and some recovery mecha-
nisms can easily defend this type of attacks. As a conclusion,
an outside attacker who is not powerful enough to compro-
mise brokering components in the system is less harmful to
system security and privacy.

B. Global Eavesdropper
A global eavesdropper is an attacker who observes the

traffic in the entire network. It watches brokers and co-
ordinators gossip, so it is capable to infer the locations of
local brokers and root-coordinators. This is because the as-
surance of the connections between user and broker, and be-
tween broker and root-coordinator. However, from the later-
on communication, the eavesdropper cannot distinguish the
coordinators and the data servers. Therefore, the major
threat from a global eavesdropper is the disclosure of broker
and root-coordinator location, which makes them targets of
further DoS attack.

C. Malicious Broker
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Figure 5: The possible privacy exposure caused by
four types of attackers.

A malicious broker deviates from the prescribed protocol
and discloses sensitive information. It is obvious that a cor-
rupted broker endangers user location privacy but not the
privacy of query content. Moreover, since the broker knows
the root-coordinator locations, the threat is the disclosure
of root-coordinator location and potential DoS attack.

D. Collusive Coordinators
Collusive coordinators deviate from the prescribed proto-

col and disclose sensitive information.
Consider a set of collusive (corrupted) coordinators in the

coordinator tree framework. Even though each coordina-
tor can observe traffic on a path routed through it, noth-
ing will be exposed to a single coordinator because (1) the
sender viewable to it is always a brokering component; (2)
the content of the query is incomplete due to query segment
encryption; (3) the ACR and indexing information are also
incomplete due to automaton segmentation; (4) the receiver
viewable to it is likely to be another coordinator. However,
privacy vulnerability exists if a coordinator makes reason-
able inference from additional knowledge. For instance, if a
leaf-coordinator knows how PPIB mechanism works, it can
assure its identity (by checking the automaton it holds) and
find out the destinations attached to this automaton are of
some data servers. Another example is that one coordinator
can compare the segment of ACR it holds with the open
schemas and make reasonable inference about its position
in the coordinator tree. However, inference made by one
coordinator may be vague and even misleading.

Finally, we summarize the possible privacy exposure in Fig-
ure 5.

7. PERFORMANCE ANALYSIS
In this section, we analyze the performance of proposed

PPIB system using end-to-end query processing time and
system scalability. In our experiments, coordinators are
coded in Java (JDK 5.0) and results are collected from coor-
dinators running on a Windows desktop (3.4G CPU). We use
the XMark [23] XML document and DTD, which is wildly
used in the research community. As a good imitation of real
world applications, the XMark simulates an online auction
scenario.

7.1 End-to-End Query Processing Time
End-to-end query processing time is defined as the time

elapsed from the point when query arrives at the broker until
to the point when safe answers are returned to the user. We
consider the following four components: (1) average query
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Figure 6: Average query processing time at a coor-
dinator (TC).

brokering time at each broker/coordinator (TC); (2) average
network transmission latency between broker/coordinators
(TN ); (3) average query evaluation time at data server(s)
(TE); and (4) average backward data transmission latency
(Tbackward).

Query evaluation time highly depends on XML databases
system, size of XML documents, and types of XML queries.
Once these parameters are set in the experiments, TE will
remain the same (at seconds level [14]). Similarly, the same
query set and ACR set will create the same safe query set,
and the same data result will be generated by data servers.
As a result, TE and Tbackward are not affected by the broker-
coordinator overlay network. We only need to calculate and
compare the total forward query processing time (Tforward)
as Tforward = TC ×NHOP +TN × (NHOP + 1). It is obvious
that Tforward is only affected by TC , TN , and the average
number of hops in query brokering, NHOP .

Average query processing time at a coordinator: Query
processing time at each broker/coordinator (TC) consists of:
(1) access control enforcement and locating next coordinator
(Query brokering); (2) generating a key and encrypting the
processed query segment (Symmetric encryption); and (3)
encrypting the symmetric key with the public key created
by super node (Asymmetric encryption).

To examine TC , we manually generate five sets of access
control rules. Access control rules of each set are partitioned
into segments (keywords), which are assigned to coordina-
tors. From set 1 to set 5, the number of keywords held by
one coordinator increases from 1 to 5. We also generate 1000
synthetic XPath queries, and use Triple DES for symmetric
encryption and RSA for asymmetric encryption. Figure 6(a)
shows that query brokering time is at milliseconds level, and
increases linearly with the number of keywords at a site. Fig-
ure 6(b) shows that symmetric and asymmetric encryption
time is at seconds level, and asymmetric encryption time
dominates the total query processing time at a coordinator.
As a result, average (TC) is about 1.9 ms. Query processing
time at brokers and leaf-coordinators are shorter but still in
the same level. For simplicity, we adopt the same value (i.e.
1.9 ms) for the average query processing time at brokers and
coordinators.

Average network transmission latency: We adopt av-
erage Internet traffic latency 100 ms as a reasonable esti-
mation of TN [1], instead of using data collected from our
gigabyte Ethernet.

Average number of hops in query processing: We con-
sider the case in which a query Q is accepted or rewritten
by n ACRs {R1, ..., Rn} into the union of n safe sub-queries
{Q′

1, ..., Q
′
n}. When an accepted/rewritten sub-query Q′

i is
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Figure 7: System scalability against ACR complex-
ity.

processed by the rule Ri, the number of hops it experiences
is determined by the number of segments of Ri. In the ex-
periment, we generate a set of 200 synthetic access control
rules and 1000 synthetic XPath queries.We choose the finest-
granularity automaton segmentation (each XPath step of an
ACR is partitioned as one segment and kept at one coordi-
nator) for maximum privacy preserving. Our experiment
result shows that NHOP is 5.7, and the maximum number
of hops of all queries is 8.

Total forward end-to-end query processing time: from
above experiment results, the total forward query processing
time is calculated as Tforward ' 1.9×5.7+100× (5.7+1) '
681(ms). It is obvious that network latency TN ∗(NHOP +1)
dominates total forward end-to-end query processing time,
because the value of TC is negligible compared with TN .
Moreover, since TN remains the same (as an estimation
from Internet traffic), NHOP becomes the deterministic fac-
tor that affects end-to-end query processing time. Note that
for other information brokering systems, although they use
different query routing scheme, network latency is not avoid-
able. As a conclusion, the proposed PPIB approach achieves
privacy-preserving query brokering and access control with
limited computation.

7.2 System Scalability
We evaluate the scalability of the PPIB system against

complicity of ACR, the number of user queries, and data
size (number of data objects and data servers).

Complicity of XML schema and ACR When the seg-
mentation scheme is determined, the demand of coordina-
tors is determined by the number of ACR segments, which
is linear with the number of access control rules. As shown
in Figure 7 (also adopting the finest granularity automaton
segmentation), we can see that the increase of demanded
number of coordinators is linear or even better. This is be-
cause similar access control rules with same prefix may share
XPath steps, and save the number of coordinators. More-
over, different ACR segments (or, logical coordinators) may
reside at the same physical site, thus reduce the actual de-
mand of physical sites.

Number of queries Considering n queries submitted into
the system in a unit time, we use the total number of query
segments being processed in the system to measure the sys-
tem load. When a query is accepted as multiple sub-queries,
all sub-queries are counted towards system load.For a query
that is rejected after i segments, the processed i segments
are counted.

We generate 5 sets of synthetic ACRs and 10 sets of syn-
thetic XML queries with different numbers and wildcard (i.e.
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(a)Simple XPath ACR; simple
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(b)ACR with wildcards; simple

XPath query.
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(c)ACR with wildcards; query

with 5% wildcard probability at

each XPath step.

(d)ACR with wildcards; query

with 10% wildcard probability at

each XPath step.

Figure 8: System scalability against queries.

“/*” and “//”) probabilities at each XPath step in each ex-
periment. Figure 8 shows system load vs. number of XPath
queries in a unit time. More specifically, Figure 8 (a) only
has simple path rules (without wildcard or predicate), and
Figure 8(b) has rules with wildcards. In both cases, system
load increases linearly and each query is processed less than
10 segments. Figure 8(c) and (d) use the same set of ACRs
as in (b), but add wildcards into queries with probability 5%
and 10% at each step, respectively. In the worst case, each
query is processed no more than 50 segments. Moreover, if
we compare curves in each sub-figure, we can see that larger
ACR leads to higher system load, but the increase appears
to be linear in all cases.

Data size When data volume increases (e.g. adding more
data items into the online auction database), the number of
indexing rules also increases. This results in increasing of
the number of leaf-coordinators. However, in PPIB, query
indexing is implemented through hash tables, which is scal-
able. Thus, the system is scalable when data size increases.

8. RELATED WORK
Research areas such as information integration, Web search,

peer-to-peer file sharing systems and publish-subscribe sys-
tems provide partial solutions to the problem of large scale
data sharing. Information integration seeks to provide an
integrated view over large numbers of heterogeneous data
sources by exploiting the semantic relationship between schemas
of different sources [7, 16, 9]. It turns out that the PPIB
approach will facilitate but is orthogonal to the information
integration technology. Web search focuses on locating data
sources with high precision and coverage [26, 18]. However,
it only supports keyword queries with limited expressiveness.

Peer-to-peer systems are designed to share files and data
sets (e.g. in collaborative science applications). Distributed
hash table technology [25, 8] is adopted to locate repli-
cas based on keyword queries. However, although these
technologies have recently been extended to support range
queries [21], the coarse granularity (e.g. files and documents)
still makes them short of our expressiveness needs. Further,

P2P file-sharing systems may not provide complete set of
answers to a request while we need to locate all relevant
data.

Addressing a conceptually dual problem, the XML publish-
subscribe systems (e.g. [3, 6]) is probably the closely related
technology to our proposed research: while we locate rele-
vant data sources for a given query and route the query
to these data sources, the pub/sub systems locate relevant
consumers for a given document and route the document to
these consumers. However, due to this duality, we have dif-
ferent concerns: they focus on efficiently delivering the same
piece of information to a large number of consumers, and
we are trying to route large volume but small-size queries
to many fewer sites. Accordingly, the multicast solution in
pub/sub systems does not scale in our environment and we
need to develop new mechanisms.

One idea is to build an XML overlay architecture that
supports expressive query processing and security checking
on top of normal IP network. In particular, specialized data
structures are maintained on nodes of the overlay networks
to route path queries. In [24], a robust mesh has been
built to effectively route XML packets by making the use of
self-describing XML tags and the overlay networks. Kouds
et al. [12] describes a decentralized architecture for ad hoc
XPath query routing across a collection of XML databases
using the open and agreement cooperation models. In [10],
content-based routing of path queries in peer-to-peer sys-
tems is studied to serve the purpose as sharing data among
a large number of autonomous nodes. The main difference
between these approaches and ours is that they focus on dis-
tributed query routing, while we seamlessly integrate query
routing and security checking (e.g. access control) so as to
preserve relevant privacy information.

As long as privacy becomes an important information
that should be protected from unauthorized entities, sev-
eral approaches have been designed to preserve anonymity
in communication. Crowds [19] is a distributed and chained
Anonymizer (http://www.anonymizer.com), where users are
grouped dynamically and issue request on behalf of a crowd
member. In [27], sender anonymity is guaranteed by build-
ing up anonymous connections among Onion Routers using
Chaum Mix. Since we integrate security checking enroute
that involves more privacy concerns other than anonymity,
our privacy addresses more challenge.

As for security check, many researches have been proposed
on distributed access control (see [28] for a good overview on
access control in collaborative systems). Earlier approaches
implement access control mechanisms at the nodes of XML
trees and filter out data nodes that users do not have au-
thorizations to access [4, 17]. These approaches rely much
on the XML engines. View-based access control approaches
create and maintain a separate view (e.g. a specific por-
tion of XML documents) for each user [20, 29]. However,
supporting large number of views causes high maintenance
and storage cost. Our PPIB approach adopts a recently pro-
posed NFA-based query re-writing access control scheme [15,
13] and extends it to a decentralized manner. It has a better
performance compared with [17], and any off-the-shelf XML
databases can be used due to its query re-writing nature.

9. CONCLUSION AND FUTURE WORK
With little attention drawn on privacy of user, data, and

metadata during the design stage, existing information bro-



kering systems suffer from a spectrum of vulnerabilities as-
sociated with user privacy, data privacy, and metadata pri-
vacy. In this paper, we propose PPIB, a new approach to
preserve privacy in XML information brokering. Through an
innovative automaton segmentation scheme, in-network ac-
cess control, and query segment encryption, PPIB integrates
security enforcement and query forwarding while providing
comprehensive privacy protection. Our analysis shows that
it is very resistant to privacy attacks. End-to-end query
processing performance and system scalability are also eval-
uated and the results show that PPIB is efficient and scal-
able.

Many directions are ahead for future research. First, at
present, site distribution and load balancing in PPIB are
conducted in an ad-hoc manner. Our next step of research
is to design an automatic scheme that does dynamic site dis-
tribution. Several factors can be considered in the scheme
such as the workload at each peer, trust level of each peer,
and privacy conflicts between automaton segments. Design-
ing a scheme that can strike a balance among these factors
is a challenge.

Second, we would like to quantify the level of privacy pro-
tection achieved by PPIB. Finally, we plan to minimize (or
even eliminate) the participation of the administrator node,
who decides such issues as automaton segmentation granu-
larity. A main goal is to make PPIB self-reconfigurable.
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