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ABSTRACT
The Multi-Task Learning (MTL) leverages the inter-relationship

across tasks and is useful for applications with limited data. Exist-

ing works articulate different task relationship assumptions, whose

validity is vital to successful multi-task training. We observe that,

in many scenarios, the inter-relationship across tasks varies across

different groups of data (i.e., topic), which we call within-topic task
relationship hypothesis. In this case, current MTLmodels with homo-

geneous task relationship assumption cannot fully exploit different

task relationships among different groups of data. Based on this

observation, in this paper, we propose a generalized topic-wise

multi-task architecture, to capture the within-topic task relation-

ship, which can be combined with any existing MTL designs. Fur-

ther, we propose a new specialized MTL design, topic-task-sparsity,

along with two different types of sparsity constraints. The archi-

tecture, combined with the topic-task-sparsity design, constructs

our proposed TOMATO model. The experiments on both synthetic

and 4 real-world datasets show that our proposed models consis-

tently outperform 6 state-of-the-art models and 2 baselines with

improvement from 5% to 46% in terms of task-wise comparison,

demonstrating the validity of the proposed within-topic task rela-

tionship hypothesis. We release the source codes and datasets of

TOMATO at: https://github.com/JasonLC506/MTSEM.
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1 INTRODUCTION
The development of advanced machine learning techniques (e.g.,

deep learning) often requires a large amount of labeled samples to

train a good model. However, this requirement is hard to meet for

many applications due to the prohibitive cost of data collection and
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Figure 1: Illustration of EXAMPLE 1, different news topics
result in different relationships between readers’ reactions
to them in different news channels. Icons are adopted from
the Fox News channel www.facebook.com/FoxNews/ and
theNewYorkTimes channelwww.facebook.com/nytimes in
Facebook.

labeling. To mitigate this problem, the Multi-Task Learning (MTL)
approach takes an advantage of multiple related tasks to facilitate

the training of some or all of the tasks that have limited training

samples [21]. It has been successfully applied to many learning

problems in domains such as computer vision [22, 23, 25, 27, 34, 36]

and natural language processing [5, 9, 19, 29, 30].

The principle of MTL is to leverage the relationship assump-

tions among tasks through a model design–e.g., commonalities

across tasks. Some well-known MTL design categories are feature

selection [10, 12, 26], where tasks shared a feature-wise sparsity

structure, task structure [8, 11, 16, 17, 37, 38], where model pa-

rameters of different tasks share common structures, and the low

rank structure of model parameters of tasks [3, 13, 14] in linear

models [35], and parameter sharing [7, 18, 32] and information shar-

ing [20, 22, 23] in neural network models [24]. Each of the above

designs corresponds to an assumption of the task relationship. The

validity of the task-relationship assumption in these models is vital

to achieve successful learning.

However, we observe that, such a task relationship used in previ-

ous methods does not always hold. More specifically, a task relation-

ship can often hold only within topics–i.e., commonalities across

tasks hold only for certain topics (or groups) of data. Consider the

following two motivating examples.

Example 1 (Predicting User Emotions, Fig. 1). Consider the
problem to accurately predict news readers’ reactions (e.g., LIKE,
ThumbsDown) toward news posts from different news channels (e.g.,
NYT, Wapo, Fox). To overcome insufficient data per new channel, one
models the problem as MTL (i.e., news channels as tasks), assuming
that readers’ reactions across tasks be similar. However, in practice,
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such an assumption on the task relationship may not hold. For in-
stance, readers’ reactions can be highly consistent across different
news channels for news on the topics of natural events and festivals;
however, different standing points of different channels often result in
exactly opposite readers’ reactions for the news on the topics of sports
and political news.

Example 2 (Searching Relevant Products). In e-commerce
applications, consider a problem of searching products for different
user groups. For instance, both male and female users (i.e., different
user groups as tasks) may have similar taste for products related to
food (i.e., topic), but different taste for books or music (i.e., topic). In
this case, considering the same task relationship across all products
will either miss the similarity (i.e., treating two tasks as independent)
or cause negative knowledge transfer (i.e., treating two tasks the same).

Based on these observations, therefore, we propose a “within-

topic" task relationship hypothesis to reveal the data-dependent

task relationship. This hypothesis assumes that task relationship

may appear different within data if from different topics. The topics

are determined by input features of data (clusters of data), different

from task groups in within-group clustering design [13]. Compared

with the recent works [20, 23] on data-dependent task relation-

ship, with the clear notion of topics, the data dependency and task

relationship can be “decoupled" here, which enables the applica-

tion of any existing task relationship designs to reveal within-topic

task relationship. In this work, therefore, we propose a topic-wise

multi-task architecture using a topic module to distribute data from

different topics to different modules, so that different task relation-

ship can be learned. Within each topic, we propose two topic-task-

sparsity constraints to enforce a multi-task sparsity structure for

task relationship, where only a few tasks are allowed to deviate

from a global structure shared by all other tasks. This multi-task

sparsity structure is consistent with the aforementioned example,

where only a few news channels are different from the others per

topic.

Our contributions can be summarized as follows:

(1) We propose the within-topic task relationship hypothesis

for the MTL problem;

(2) we propose a topic-wise multi-task architecture based on

the hypothesis;

(3) we propose two types of topic-task sparsity constraints,

topic-task-element and topic-task-exclusive and the opti-

mization algorithms with proof;

(4) the proposed topic-wise multi-task sparsity model consis-

tently outperforms state-of-the-art MTL models in experi-

ments on both synthetic and real world datasets.

The remaining of the paper is organized as following: we first

introduce related works. The problem and the hypothesis are de-

scribed next. After that, We present the detail of the model design

and its optimization. Finally, the experiment results are presented,

followed by the conclusion.

2 RELATEDWORK
In this section, we review related works on linear MTLmodels, MTL

neural networks and sparsity constraints used in neural networks.

We summarize the existingMTLworks both based on linear mod-

els and neural network and the proposed TOMATO for comparison

in Table. 1.

There are a lot of works on linear MTL models. Interested read-

ers are referred to [35] for a comprehensive survey. Those models

are designed based on different assumptions of task relationships.

More specifically, [10, 12, 26] assume different tasks share simi-

lar sparse feature selection pattern. [8, 11, 16, 17, 37, 38] assume

that the weight vectors. With similar spirit of above task struc-

ture assumption,[3, 13, 14] directly assume that the weight matrix

should be low-rank, which enforce different tasks to share the same

low-dimension feature transformation. Though the simplicity of

the linear structure provides such flourishing of MTL designs, it is

less flexible compared with neural network models.

The neural network MTL models are based on two designs, pa-

rameter sharing and information sharing. Themost common shared-

bottommodel is similar to the feature selection design in linearMTL

models. Built upon the shared-bottom design, [7, 18, 32] propose

further constraints on parameter sharing. Unique for neural net-

work MTL models is information sharing [22], where cross-stitch

structures are used to enable information flows from one task to

another. Though neural network provides more flexibility of model

design, as the information sharing, task relationship still relies only

on design assumptions but not further information.

There are two recent works [20, 23], whose task-specific gates

can be considered as data-dependent task relationship design. The

distribution of weights given to different experts by different tasks

are determined by the inputs. When such distributions of two tasks

given a group of input samples are similar, those two tasks are

related and vice versa. However, both data-dependency and task

relationship are modeled by the weights of different tasks, which

excludes the application of more flexible task relationship designs.

Moreover, it can be seen later that MMoE [20] can be seen as a

special instantiation of our proposed architecture.

Many task relationships in linear MTL models are achieved

by constraints over weight matrix, especially sparsity constraints

(e.g., 𝑙1,𝑞 penalty). Within neural network models, the sparsity con-

straints are recently applied to model compression [1, 4, 28, 33]. For

example, [1, 28] use group sparsity (𝑙1,𝑞 ) loss to zero-out the entire

neurons to learn a sparse model for both memory and computation

efficiency. [33] combines both group sparsity (𝑙2,1) and exclusive

penalty (𝑙1,2). In this work, we adopt group sparsity as topic-task-

element penalty (𝑙1,1,2) and propose group exclusive penalty as

topic-task-exclusive penalty (𝑙2,1,2), together with its optimization

algorithm.

3 PROBLEM DEFINITION
We formally define the multi-task learning (MTL) problem.

Definition 1 (Multi-Task Learning Problem). Given 𝑇 tasks,
for each task 𝑡 ∈ [𝑇 ], there are 𝑁𝑡 samples (𝑋𝑡 , 𝑌𝑡 ), with each 𝑥𝑡 ∈
R𝑑𝑡 as input feature and 𝑦𝑡 ∈ R𝑝𝑡 as labels. Here in this work, we
take homogeneous MTL setting, where the dimensions and types of
the features and labels for different tasks are the same, respectively,
that is, for ∀𝑡 ∈ [𝑇 ], 𝑑𝑡 = 𝑑 and 𝑝𝑡 = 𝑝 . Then, the MTL problem is to



Model Task Relationship Assumption (MTL design) Data Dependency

Linear Models [35]

feature selection N.A.

task structure N.A.

low rank N.A.

Shared-bottom shared feature extraction N.A.

Inter-task-𝑙2 [7] weights similarity by 𝑙2 constraint N.A.

DMTRL [32], MRN [18] low rank N.A.

Cross-stitch [22] cross-task communication N.A.

MMoE [20], Routing [23] weights of shared experts weights of shared experts

TOMATO topic-task-sparsity topic-wise multi-task architecture

Table 1: Summary of existing MTL works and the proposed TOMATO.

find a mapping 𝑓 : R𝑑 × [𝑇 ] ↦→ R𝑝 , such that the overall cost

L =
∑
𝑡 ∈[𝑇 ]

1

𝑁𝑡

∑
𝑛𝑡 ∈[𝑁𝑡 ]

𝐿(𝑓 (𝑥𝑡 , 𝑡), 𝑦𝑡 )

is minimized.

The proposed within-topic task relationship hypothesis can be

formally defined as follows:

Definition 2 (Within-Topic Task Relationship Hypothesis).

Given each sample input 𝑥 , there is a topic ℎ(𝑥) given by ℎ : R𝑑 ↦→
[𝐾], where 𝐾 is the number of topics. The prediction function 𝑓 :

R𝑑 × [𝑇 ] ↦→ R𝑝 can be decomposed as 𝑓 (𝑥, 𝑡) = 𝑔(ℎ(𝑥), 𝑥, 𝑡). Within
each topic 𝑘 ∈ [𝐾], 𝑔(𝑘, ., .) shows the task relationship between each
𝑔(𝑘, ., 𝑡1) and 𝑔(𝑘, ., 𝑡2) with 𝑡1 ≠ 𝑡2.

4 TOPIC-WISE MULTI-TASK SPARSITY
MODEL

In this section, we describe the proposed topic-wise multi-task

sparsity model. First, the topic-wise multi-task architecture is de-

scribed as the overview of the model, which can be combined with

any existing MTL design as within-topic task relationship. Second,

the two sparsity constraints are introduced for within-topic task

relationship. Third, the optimization algorithm is described.

4.1 Topic-Wise Multi-Task Architecture
The topic-wise multi-task architecture is designed based on the

within-topic task relationship hypothesis. Specifically, given input𝑥 ,

it is cast by a set of topic-task-specific functions {𝑔(𝑘, 𝑥, 𝑡)∥𝑘 ∈ [𝐾]}
into the topic-task-specific hidden layers, and the task-specific

layer afterward is obtained by aggregating topic-task-specific layers

over different topics weighted by topic distribution ℎ(𝑥) such that∑
𝑘 ℎ(𝑥)𝑘 = 1, which can be formulated as

𝑓 (𝑥, 𝑡) =
∑
𝑘

ℎ(𝑥)𝑘𝑔(𝑘, 𝑥, 𝑡). (1)

When a task relationship is enforced in topic-task-specific func-

tions {𝑔(𝑘, 𝑥, 𝑡)} within each topic 𝑘 , the topic-wise multi-task ar-

chitecture reveals Definition. 2. Compared with the existing shared-

bottom architecture (Fig. 2), the topic module ℎ(𝑥) distributes data
samples to different within-topic task relationship, rather than all

data with the same task relationship. This clearer task relationship

within each topic leads to more compact structure of 𝑔(𝑘, 𝑥, 𝑡) (i.e.,

low-rank structure, parameter sharing), compensating the redun-

dancy by the extra topic dimension and boosts the performance.

We compare the proposed architecture to the recent MMoE

work [20], that models data-dependent task relationship. From

its viewpoint, our work decouples the data-dependent task rela-

tionship into data-dependence (ℎ(𝑥)) and within-topic task rela-

tionship (𝑔(𝑘, 𝑥, 𝑡)), which enables the application of all existing

task relationship designs for the latter. To see this, if we choose

the factorization structure (DMTRL) [32] for within-topic task re-

lationship, 𝑔(𝑘, 𝑥, 𝑡) = ∑
𝑒 𝑝 (𝑘, 𝑡)𝑒𝑞(𝑥, 𝑒), Eq. 1 becomes 𝑓 (𝑥, 𝑡) =∑

𝑘

∑
𝑒 ℎ(𝑥)𝑘𝑝 (𝑘, 𝑡)𝑒𝑞(𝑥, 𝑒). Compared with Eq. 7 in [20], MMoE

can be seen as a special instantiation of the proposed architecture

by setting 𝑔𝑎𝑡𝑒 (𝑥, 𝑡)𝑒 =
∑
𝑘 ℎ(𝑥)𝑘𝑝 (𝑘, 𝑡)𝑒 .

4.2 Topic-Task Sparsity
In this subsection, we describe a new MTL design, called topic-task
sparsity, to capture task relationship with the help of the proposed

topic-wise multi-task architecture.

We assume that, within each topic, only a few tasks (news chan-

nels) may deviate from the majority. For example, within political

topic, the readers’ reactions to similar posts under extreme con-

servative or liberal news channels are usually different from those

under the majority milder channels. We proposed the topic-task-

sparsity design that

𝜃𝑘,𝑡 = 𝜃
0 + 𝜃𝑠

𝑘,𝑡
, (2)

where 𝜃𝑘,𝑡 is the vector of the parameters of topic-task-specific

function 𝑔(𝑘, 𝑥, 𝑡) = 𝑔(𝑥 |𝜃𝑘,𝑡 ), 𝜃0
is the global parameters that

shared by different topics 𝑘 and tasks 𝑡 , and 𝜃𝑠
𝑘,𝑡

is the topic-task-

sparse part of the parameters. We note Θ𝑠 as the tensor combining

𝜃𝑠
𝑘,𝑡

for all topics and tasks.

To enforce sparsity structure in Θ𝑠 , we proposed two types of

topic-task-sparsity constraints Ω(Θ𝑠 ). First, an element-wise spar-

sity structure is assumed for Θ𝑠 , which is enforced by topic-task-

element constraint defined as

Ω𝑒𝑙 (Θ𝑠 ) =
∑
𝑘

∑
𝑡

| |𝜃𝑠
𝑘,𝑡
| |2, (3)

where | |.| |𝑞 is the 𝑙𝑞 norm. The entire topic-task-element constraint

Ω𝑒𝑙 () is a 𝑙2,1,1 norm, which is also known as group sparsity con-

straints. It is used in [1, 28] to zero out entire neurons for compres-

sion. Here, similar property is used to enforce certain topic-task-

specific parameters 𝜃𝑘,𝑡 to be the same as the global ones 𝜃0
. The
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Figure 2: Neural Network MTL architectures. Compared with existing neural network MTL architectures (a), our proposed
topic-wise multi-task architecture (b) expand the task-specific modules 𝑓𝑡 to topic-task-specific modules 𝑔𝑘𝑡 , and a topic mod-
ule ℎ decides which topic a given sample belongs to and the corresponding topic-task-specific models 𝑔𝑘𝑡 to apply. This new
architecture allows data from different topics to enjoy different task relationships.

effect of the additional topic dimension in the above topic-task-

element constraint lies in its element-wise sparsity. Without topics,

it is reduced to task-wise sparsity, often a too-strong assumption

for task relationship.

Next, we consider another topic-task-sparsity constraint that

more explicitly takes advantage of the topic dimension. It is called

topic-task-exclusive constraint, defined as

Ω𝑒𝑥 (Θ𝑠 ) = 1

2

∑
𝑘

(
∑
𝑡

| |𝜃𝑠
𝑘,𝑡
| |2)2 . (4)

The entire topic-task-exclusive constraint Ω𝑒𝑥 is the square of a

𝑙2,1,2 norm. The 𝑙1 norm for the task dimension still enforces the

entire 𝜃𝑠
𝑘,𝑡

parameters to zero for certain topics 𝑘 and task 𝑡 . The

𝑙2 norm for the topic dimension however, tends to balance the

deviation of topic-task-specific parameters 𝜃𝑘,𝑡 from the global

𝜃0
to be similar. In other words, the competition is now across

tasks within each topic rather than among topic-task pairs under

topic-task-element constraint. This norm is first applied to sparsity

constraint, to our best knowledge. The usage of similar exclusive

sparsity constraint, the square of 𝑙1,2 norm in [33] shows its effect

to find sparse feature selection structure for each neuron. The topic-

task-sparsity designs given two proposed constraints are visualized

as the norms of the learned topic-task-sparse parameters in Fig. 3.

4.3 Topic-Wise Multi-Task Sparsity Model
The TOpic-wise Multi-tAsk sparsiTy mOdel (TOMATO) is the com-

bination of the topic-wise multi-task architecture and either of

the topic-task-element or topic-task-exclusive constraint. A typical

model implementation, as used in the experiments of this work, is

described as following from bottom to top, as shown in Fig. 2. First,

the shared bottom module 𝜙 (𝑥) can be any feature extraction mod-

ules (e.g., multi-layer perceptron, convolutional neural network or

recurrent neural network), from which the multi-layer perceptron

Tasks

Figure 3: Topic-task-sparsity parameters under sparsity con-
straints. Gray dash blocks represent topic-task-sparsity pa-
rameters 𝜃𝑠

𝑡,𝑘
that are zero.

is used. More specifically,

𝜙 (𝑥) = 𝑎(𝑤𝜙
1
𝑎(𝑤𝜙

0
𝑥 + 𝑏𝜙

0
) + 𝑏𝜙

1
), (5)

where𝑤
𝜙

0
(𝑤
𝜙

1
) is the weight for first (second) hidden layers of the

shared bottom module 𝜙 (𝑥), similar for bias 𝑏
𝜙

0
(𝑏
𝜙

1
), and 𝑎() is the

activation function. The topic module upon that ℎ(𝜙 (𝑥)) is simple

linear transformation with a softmax activation

ℎ(𝜙 (𝑥)) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑤ℎ𝜙 (𝑥) + 𝑏ℎ). (6)

At the same time, the topic-task-specific function 𝑔(𝑘, 𝜙 (𝑥), 𝑡) for
each topic𝑘 and each task 𝑡 is typically set as multi-layer perceptron

of𝑚 layers as

𝑔(𝑘, 𝜙 (𝑥), 𝑡) = 𝑎(𝑤𝑔
𝑘,𝑡,𝑚−1

...𝑎(𝑤𝑔
𝑘,𝑡,0

𝜙 (𝑥) +𝑏𝑔
𝑘,𝑡,0
)...+𝑏𝑔

𝑘,𝑡,𝑚−1
), (7)

where the sets of all weights and biases {𝑤𝑔
𝑘,𝑡, 𝑗−1

, 𝑏
𝑔

𝑘,𝑡, 𝑗−1
| 𝑗 ∈ [𝑚]}

is flattened and concatenated into the topic-task-specific parameter

𝜃𝑘,𝑡 . Finally, the topic-weighted combined task-specific linear layer

𝑓 (𝜙 (𝑥), 𝑡) = ∑(ℎ(𝜙 (𝑥))𝑘𝑔(𝑘, 𝜙 (𝑥), 𝑡)) optionally goes through a



final task-specific linear layer 𝑦 = 𝜓 (𝑓 (𝜙 (𝑥), 𝑡), 𝑡). When this fi-

nal task-specific layer is used, some task-wise difference can be

conserved no matter the topic-task-sparsity.

The overall loss function L is defined as

L =
∑
𝑡 ∈[𝑇 ]

1

𝑁𝑡

∑
𝑛𝑡 ∈[𝑁𝑡 ]

𝐿(𝑦,𝑦𝑡 ) + 𝜆Ω(Θ𝑠 ), (8)

where Ω can either be Ω𝑒𝑙 or Ω𝑒𝑥 , and 𝜆 controls the strength of the
sparsity penalty. When 𝜆 → +∞, the topic-task-specific functions
𝑔(𝑥, 𝜃𝑘,𝑡 ) reduce to a global function 𝑔(𝑥, 𝜃0), leading to the closest
task relationship, and vice versa.

4.4 Optimization
Both topic-task-element and topic-task-exclusive constraints are

non-smooth functions, which exclude the usage of the conventional

stochastic gradient descent (SGD) method to minimize Eq. 8. Alter-

natively, therefore, we use the stochastic proximal gradient method.

At each iteration 𝑗 , it calculates an intermediate parameters Θ̄𝑠

using the conventional SGD step and optimizes the solution or

proximal operator as

Θ𝑠,𝑗+1 = arg min

Θ𝑠

1

2𝜆𝑟
| |Θ𝑠 − Θ̄𝑠 | |2

2
+ Ω(Θ𝑠 ), (9)

where 𝑟 is the learning rate of the current iteration.

As for the topic-task-element constraint Ω𝑒𝑙 (Θ𝑠 ) in Eq. 3, the

proximal operator, the proximal operator from Eq. 9 for each topic

𝑘 and each task 𝑡 can be calculated independently. Therefore, the

proximal operator can be easily derived as

𝑝𝑟𝑜𝑥𝑒𝑙 (𝜃𝑠𝑘,𝑡 ) = (1 −
𝜆𝑟

| | ¯𝜃𝑠
𝑘,𝑡
| |2
)+ ¯𝜃𝑠

𝑘,𝑡
, (10)

where ()+ is the clip function𝑚𝑎𝑥 (, 0).
The proximal operator for the topic-task-exclusive constraint

Ω𝑒𝑥 (Θ𝑠 ) is more complicated because the parameters for different

tasks are coupled by the 𝑙2 norm at the topic-dimension.

Lemma 1. The solution for Eq. 9 with Ω = Ω𝑒𝑥 , is

𝑝𝑟𝑜𝑥𝑒𝑥 (𝜃𝑠𝑘,𝑡 ) = (1 −
𝐴𝑘

| | ¯𝜃𝑠
𝑘,𝑡
| |2
)+ ¯𝜃𝑠

𝑘,𝑡
, (11)

where 𝐴𝑘 is maximum of the “diluted" average 𝐴T′ of {| |𝜃𝑠𝑘,𝑡 | |2 |𝑡 ∈
T ′}, ∀T ′ ⊂ [𝑇 ],

𝐴𝑘 = max

T′⊂[𝑇 ]
𝐴𝑘,T′

𝑠 .𝑡 ., 𝐴𝑘,T′ =
1

1

𝜆𝑟
+ |T ′ |

∑
𝑡 ′∈T′

| | ¯𝜃𝑠
𝑘,𝑡 ′ | |2 .

(12)

And we denote T𝑘 = arg maxT′ 𝐴𝑘,T′ .

The key of the proof is to notice that the maximum “diluted"

average𝐴𝑘 is a threshold that divide the tasks into two sets, T𝑘 and

[𝑇 ]\T𝑘 , where T𝑘 = arg maxT′ 𝐴𝑘,T′ .

Lemma 2. If 𝑡 ∈ T𝑘 , then | | ¯𝜃𝑠𝑘,𝑡 | |2 ≥ 𝐴𝑘 and if 𝑡 ∈ [𝑇 ]\T𝑘 ,
| | ¯𝜃𝑠
𝑘,𝑡
| |2 ≤ 𝐴𝑘 .

Proof. First, assume otherwise | | ¯𝜃𝑠
𝑘,𝑡
| |2 < 𝐴𝑘 for some 𝑡 ∈ T𝑘 .

It is equivalent as

| | ¯𝜃𝑠
𝑘,𝑡
| |2 < 𝐴𝑘

⇔ ( 1

𝜆𝑟
+ |T𝑘 |) | | ¯𝜃𝑠𝑘,𝑡 | |2 <

∑
𝑡 ′∈T𝑘

| | ¯𝜃𝑠
𝑘,𝑡 ′ | |2

⇔ ( 1

𝜆𝑟
+ |T𝑘\{𝑡}|) | | ¯𝜃𝑠𝑘,𝑡 | |2 <

∑
𝑡 ′∈T𝑘\{𝑡 }

| | ¯𝜃𝑠
𝑘,𝑡 ′ | |2

⇔ || ¯𝜃𝑠
𝑘,𝑡
| |2 < 𝐴T𝑘\{𝑡 } .

(13)

On the other hand,

𝐴𝑘 −𝐴T𝑘\{𝑡 }

=𝛿 [( 1

𝜆𝑟
+ |T𝑘\{𝑡}|)

∑
𝑡 ′∈T𝑘

| | ¯𝜃𝑠
𝑘,𝑡 ′ | |2 − (

1

𝜆𝑟
+ |T𝑘 |)

∑
𝑡 ′∈T𝑘\{𝑡 }

| | ¯𝜃𝑠
𝑘,𝑡 ′ | |2]

=𝛿 ( 1

𝜆𝑟
+ |T𝑘\{𝑡}|) [ | | ¯𝜃𝑠𝑘,𝑡 | |2 −𝐴T𝑘\{𝑡 }]

<0,

(14)

where 𝛿 = 1

( 1

𝜆𝑟
+|T𝑘 |) ( 1

𝜆𝑟
+|T𝑘\{𝑡 } |)

> 0. It contradicts with the condi-

tion that 𝐴𝑘 is the maximum “diluted" average. Second, for the sec-

ond statement, because Eq. 13 and Eq. 14 only involve equivalence

relationship, it is straightforward to prove with T\{𝑡} replaced by

T ⋃{𝑡}. □

With Lemma. 2, the proximal operator in Eq. 11 can be rewritten

as

𝑝𝑟𝑜𝑥𝑒𝑥 (𝜃𝑠𝑘,𝑡 ) =

(1 − 𝐴𝑘

| | ¯𝜃𝑠
𝑘,𝑡
| |2
) ¯𝜃𝑠
𝑘,𝑡

𝑡 ∈ T𝑘
0 𝑡 ∈ [𝑇 ]\T𝑘

,

which can be easily proved being the sub-differential calculus solu-

tion of Eq. 9 , with Ω = Ω𝑒𝑥 . It therefore proves Lemma. 1.

Algorithm 1 Greedy Calculation 𝐴𝑘

Input: | | ¯𝜃𝑠
𝑘,𝑡
| |2 for 𝑡 ∈ [𝑇 ], 𝜆, 𝑟

output: 𝐴𝑘
1: Sort | | ¯𝜃𝑠

𝑘,𝑡
| |2, and denote 𝑎𝑖 = | | ¯𝜃𝑠𝑘,𝑡𝑖 | |2 for 𝑖 ∈ [𝑇 ]

s.t., 𝑎1 ≥ 𝑎2 ≥ ... ≥ 𝑎𝑇 ≥ 0;

2: 𝑆0 ← 0, 𝑆𝑖 ← 𝑆𝑖−1 + 𝑎𝑖 for 𝑖 = 1, 2, ...,𝑇 ;

3: 𝑆𝑖 ← 1

1

𝜆𝑟
+𝑖 𝑆𝑖 for 𝑖 ∈ [𝑇 ];

4: Return 𝐴𝑘 = max𝑖 𝑆𝑖 .

The remaining challenge is to efficiently calculate 𝐴𝑘 in Eq. 11.

We prove that it can be obtained by a simple greedy algorithm, as

Algorithm. 1.

The time complexity in terms of number of tasks 𝑇 is 𝑇𝑙𝑜𝑔(𝑇 ).
The correctness of Algorithm. 1 is proved below.

Proof. Using Lemma. 2, we can prove that T𝑘 must be the subset

of the largest |T𝑘 | norms.

From Lemma. 2, ∀𝑡 ∈ T𝑘 , 𝑡 ′ ∈ [𝑇 ]\T𝑘 ,
| | ¯𝜃𝑠
𝑘,𝑡
| |2 ≥ 𝐴𝑘 ,

| | ¯𝜃𝑠
𝑘,𝑡 ′ | |2 ≤ 𝐴𝑘

⇒ || ¯𝜃𝑠
𝑘,𝑡
| |2 ≥ || ¯𝜃𝑠𝑘,𝑡 ′ | |2 .

(15)



Dataset Synthetic MNIST-MTL AwA2 School MCSEM

input dim 𝑑 64 64 500 28 756

output dim 𝑝 5 2 2 3 5

# tasks 𝑇 12 10 50 139 12

# samples/task 𝑁𝑡 2,000 1,800 100 111 3,523

Table 2: Data statistics summary

Therefore the greedy Algorithm. 1 will not miss 𝐴𝑘 . □

The name “diluted" average is from the observation that for the

given subset T ′ ⊂ [𝑇 ], the 𝐴𝑘,T′ from Eq. 12, can be treated as the

average of the union of
1

𝜆𝑟
zeros and {| | ¯𝜃𝑠

𝑘,𝑡 ′
| |2 |𝑡 ′ ∈ T ′}. When

𝜆 →∞, 𝐴𝑘 reduces to the maximum of all subset averages, which

is the largest norm 𝑎1 = max𝑡 ∈[𝑇 ] | | ¯𝜃𝑠𝑘,𝑡 | |2. Going back to Eq. 11, in
this case, the resulting proximal operators are zero for all the tasks,

as expected. On the other hand, when 𝜆 < ∞, 𝑎1 > 𝐴𝑘 . Back to

Eq. 11, this means that with finite strength of the sparsity penalty

𝜆, the topic-task-exclusive constraint Ω𝑒𝑥 will not zero out the

parameters for all tasks within each topic.

5 EXPERIMENTS
In this section, we apply the proposed models against one synthetic

and four real-world datasets to validate the proposal. All codes and

datasets used in the experiments are available
1
.

5.1 Datasets
We evaluate our proposal against one synthetic dataset and four

real datasets.

(1) Synthetic Dataset: We generate a synthetic MTL dataset

following the within-topic task relationship hypothesis.

• Input feature: 𝐾 topic cores 𝑒𝑘 ∈ R𝑑 are sampled from

normal distributions N(0, 𝜎2

𝑒 ) for each 𝑘 ∈ [𝐾]. Input
features are generated as 𝑥𝑡 ∈ R𝑑 from normal distribu-

tions N(0, 𝜎2

𝑥 ). The topic distribution ℎ(𝑥) of an input 𝑥

is determined as ℎ(𝑥)𝑘 ∝ exp ( | |𝑥 − 𝑒𝑘 | |22/𝜎
2

𝑡𝑜𝑝𝑖𝑐
).

• Parameters: a global linear weight𝑤0 ∈ R𝑑×𝑝 is element-

wise sampled from N(0, 𝜎2

𝑤0

). Topic-task-sparsity weight

𝑤𝑠
𝑘,𝑡

are generated in the way that within each topic, 𝑧 ≪
𝑇 tasks T𝑘 ⊂ [𝑇 ] are randomly sampled and their topic-

task-sparsity weight are assigned random values from

N(0, 𝜎2

𝑤𝑠 ), while the rest are assigned 0. The topic-task-

specific weight is𝑤𝑘,𝑡 = 𝑤0 +𝑤𝑠𝑘,𝑡 .
• Label: The linear output 𝑦𝑡 for input 𝑥𝑡 is generated by

𝑦𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (∑𝑑𝑖=1
𝑥𝑡,𝑖

∑𝐾
𝑘=1

ℎ(𝑥𝑡 )𝑘𝑤𝑘,𝑡,𝑖 ). We add non-

linearity to the final label𝑦𝑡 = 𝛽 (𝑦𝑡 ), with 𝛽 the non-linear
function used in [20].

(2) MNIST-MTL Dataset: We use the multi-task version of

the MNIST data (MNIST-MTL) [15]. Each task is a binary

classification problem that distinguish one digit from the

others. For each of the 𝑇 = 10 tasks, we sample 900 positive

samples and 900 negative samples with 100 samples for each

of the other digits. We adopt the feature extraction method

used in linear methods [12] to get input of dimension 𝑑 = 64.

1
https://github.com/JasonLC506/MTSEM

(3) AwA2 Dataset: AwA2 is a benchmark dataset containing

37,322 images of 50 animals [31]. Each task is a binary classi-

fication problem similar to MNIST-MTL data. For each of the

𝑇 = 50 tasks, we sample 50 positive samples and 1 negative

samples for each of the other animals. We use the pre-trained

features [31] and reduce the dimension to 500 with PCA.

(4) School Dataset: School data is a benchmark dataset con-

taining performance of 15362 students from 139 schools [2].

The score performance is partitioned to 3 segments, [0, 10),
[10, 20) and [20, 71). Each task is to classify the performance

of students from a school. It is a challenging dataset due to

relatively smaller relevance between features and labels as

indicated by the regression performance reported in [2].

(5) MCSEMDataset: The multi-channel social emotion mining

(MCSEM) data is crawled from public posts from 12 news

channels on Facebook, together with their public users’ emo-

tional reactions (i.e., clicks on the emoticon buttons, love,

angry, wow, happy, and sad). We used the pre-trained BERT

model [6] to obtain the document embeddings as the input

with 𝑑 = 756. The emotional reactions for each post are nor-

malized to label distributions over the five emoticon labels.

Each task is to predict the label distribution given the posts

of each channel.

The data statistics is summarized in Table. 2. We use sample

weighting to ensure that the sums of all sample weights for different

tasks are the same, following L in Definition 1. The task-wise data

imbalance problem is beyond the scope of this work. For each

dataset, 20% samples are used for testing the remaining 80% as

training. The results reported are averages from 10 iterations of

random splits. The split uses stage-wise sampling with tasks as

stages to avoid random imbalance across tasks.

5.2 Competing Models
We compare the proposed models with a list of baselines and state-

of-the-art MTL neural network models.

(1) Separate: It learns each task with separate neural network

modules that do not correlate. It is a baseline model to test

the necessity of the use of MTL framework.

(2) Shared-bottom: It is a broadly used MTL model where all

tasks share bottom feature extraction module and own their

own top modules.

(3) Single: It learns all tasks with a single neural network mod-

ule. It is a baseline model to test the necessity of the use of

MTL framework.

(4) Inter-task-𝑙2 [7]: Based on Shared-bottom model, the 𝑙2

penalty is assigned to the difference of task-specific mod-

ule parameters of each pair of tasks. This model therefore

assumes that the parameters of different tasks should be

similar.

(5) DMTRL [32]: Based on Shared-bottom model, the tensor

consisting of task-specific parameters of all tasks are as-

sumed of a low-rank structure, modeled by tensor factoriza-

tion. In our comparison, we adopt the Tucker decomposition

as it shows the most reliable results in [32].

(6) MRN [18]: Based on Shared-bottommodel, the tensor con-

sisting of task-specific parameters of all tasks are assumed



with a fully-decomposed tensor normal distribution, whose

parameters are jointly learnt with the model parameters. The

task relationship is assumed as the shared prior distributions

for corresponding parameters of modules for different tasks.

(7) Cross-stitch [22]: Based on Shared-bottom model, the

task-specific modules are assumed able to communicate with

each other by stitches connection between each pair of them.

The task relationship is assumed as information sharing.

(8) MMoE [20]: This model consists of multiple expert modules

and task-specific expert distribution modules to combine the

output of experts for each task. For fair comparison, we also

add shared-bottom feature extraction modules as the most

bottom layers.

(9) TOMATO-el: It is the proposed topic-wise multi-task spar-

sity model with topic-task-element constraint Ω𝑒𝑙 from Eq. 3.

(10) TOMATO-ex: It is the proposed topic-wise multi-task spar-

sity model with topic-task-exclusive constraint Ω𝑒𝑥 from

Eq. 4.

Here in this work, we only focus on their capability to capture

task relationship in MTL problems. Therefore, we implement a

unified architecture for all models. They share the same shared-

bottom module structure as MLP (multi-layer perceptron) of one

layer except Separate and other modules of different models are

MLP. All models are trained using stochastic gradient descent (SGD)

with learning rate at iteration 𝑖 , 𝑟𝑖 = 𝑟0𝛾
𝑖/𝜂

, where 𝑟0 is the initial

learning rate, 𝛾 is the decay rate and 𝜂 is the decay steps. Random

dropout for certain layers and 𝑙2 regularization are used to avoid

overfitting.

5.3 Hyperparameter Tuning
The list of tunable hyperparameters for different models and their

choice ranges are provided as following.

• common hyperparameters

– initial learning rate 𝑟0: {0.001, 0.01, 0.1, 1.0} ,
– decay rate 𝛾 : {0.8, 0.9},
– decay steps 𝜂: {100, 1000},
– input dropout rate 𝑑𝑟0: {0.0, 0.1, 0.2}
– bottom hidden dropout rate 𝑑𝑟1: {0.0, 0.1, 0.2},
– bottom hidden layer dimension ℎ𝑑𝑏𝑜𝑡𝑡𝑜𝑚 : {32, 64},
– top-most hidden layer dimension ℎ𝑑𝑡𝑜𝑝 : {4, 8, 16, 32, 64},2
– 𝑙2 regularization for all parameters 𝜆0: {0.0, 0.01, 0.1, 1.0};
• model-specific hypeparameters

– Inter-task-𝑙2
∗ inter-task parameter difference 𝑙2 regularization:

{0.0, 0.0001, 0.001, 0.01, 0.1, 1.0},
– MRN
∗ multi-linear prior norm regularization:

{0.0, 0.0001, 0.001, 0.01, 0.1, 1.0},
∗ prior update frequency: {30, 100}3,

– MMoE
∗ number of experts: {1, 2, 4, 8},

2
For Shared-bottom, Inter-task-𝑙2, DMTRL and MRN, it is the dimension of the

hidden layer of the task-specific top module; for TOMATO-el and TOMATO-ex, it
is the dimension of the hidden layer of the topic-task-specific top module; for MMoE,
it is the dimension of the output layer of each expert module.

3
100 is the default value used in [18], we add 30 for an alternative as different datasets

are used

– TOMATO-el and TOMATO-ex
∗ number of topics: {1, 2, 4, 8, 16},
∗ sparsity penalty 𝜆: {0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1}.

We use 20% training data as validation set to find the best hy-

perparameters for each model on each dataset using grid search

over the union of common and model-specific hyperparameters. In

order to decrease the time cost of hyperparameter tuning and also

minimize impact of feature extraction on model performance, for

each dataset, we first find the best shared-bottom hyperparameters

𝑑𝑟0, 𝑑𝑟1 and ℎ𝑑𝑏𝑜𝑡𝑡𝑜𝑚 , and fix them for all other models on that

data.

For TOMATO-el and TOMATO-ex, the number of layers 𝑚

of the topic-task-specific modules are chosen from {1, 2}. In order

to make fair comparison with other models, the top task-specific

linear layer is added when𝑚 = 1 while omitted when𝑚 = 2. When

𝑚 = 2, the output dimensions of the topic-task-specific modules

should be the dimension 𝑝 of the label.

5.4 Evaluation Measure
As the evaluation measures, we use the popularly-used misclassifi-
cation rate for the experiments on Synthetic, MNIST-MTL, AwA2

and School datasets, and the cross-entropy for the experiments on

MCSEM dataset where label distribution rather than a single true

label is given for each data sample.

5.5 Results
5.5.1 Q1:Are the proposedmodels able to capture thewithin-
topic task relationship? We show the 𝑙2 norm of topic-task-sparsity

parameters learned from the synthetic data in Fig. 4. Compared

to Fig. 4.(a), the ground truth parameters, both the TOMATO-el
(c) and TOMATO-ex (d) models can exactly capture the sparsity

structure. We also test the case without topic by TOMATO-el (Simi-

lar results can be obtained by TOMATO-ex) (b), which cannot find

the similarity between the majority tasks and task 2 and 7 (task 0

and 9) in data from topic 0 (1), but only treat all of them different

from other tasks. This shows the effect of the topic-wise multi-task

architecture.

5.5.2 Q2:Howdo the proposedmodels perform? The overall

performance results are presented in Table. 3. First, the proposed

models TOMATO-el and TOMATO-ex consistently outperforms

all the competing models. This validates the superiority of the

proposed topic-wise multi-task architecture and also the proposed

two topic-task-sparsity MTL designs. Second, the task relationship

varies a lot across different datasets. On the one hand, comparing

Single and Separate, which are the two extreme cases in MTL,

their performance difference in different datasets varies. Therefore,

some of the datasets (e.g., MNIST-MTL) have task relationship that is

hard to catch, while others (e.g., synthetic) make it more beneficial

to risk negative transfer for more data. On the other hand, the

performance of different models, which are different assumptions

of task-relationship, vary across different datasets. For example,

Cross-stitch performs good on MCSEM data, but even worse than

Separate baseline on synthetic data. This shows that the topic-wise
multi-task architecture is more flexible in leveraging different task

relationship.



Dataset synthetic (4800) MNIST-MTL (3600) AwA2 (1000) School (3086) MCSEM (8455)

Separate 16.55 (794) 2.59 (93) 7.49 (75) 50.95 (1,572) 1.371

Shared-bottom 14.51 (696) 2.68 (96) 4.92 (49) 50.01 (1,543) 1.326

Single 14.24 (684) 49.98 (1,799) 16.75 (168) 51.80 (1,599) 1.342

Inter-task-𝑙2 14.21 (682) 2.49 (90) 4.92 (49) 50.41 (1,556) 1.322

DMTRL 15.08 (724) 2.60 (94) 4.75 (48) 49.34 (1,523) 1.333

MRN 14.47 (695) 2.68 (96) 9.81 (98) 51.06 (1,576) 1.329

Cross-stitch 14.69 (705) 2.68 (96) 4.63 (46) 50.22 (1,550) 1.327

MMoE 14.40 (691) 2.59 (93) 13.60 (136) 48.18 (1,487) 1.337

TOMATO-el 14.09 (676) 2.44 (88) 4.16 (42) 45.00 (1,389) 1.322

TOMATO-ex 14.10 (677) 2.32 (84) 5.50 (55) 46.72 (1,442) 1.321
Table 3: Overall performance in misclassification rate in percentage or cross-entropy for MCSEM data. The numbers in paren-
thesis besides misclassification rate indicate the numbers of the misclassified samples and those besides dataset names are the
size of the corresponding test set. Bold (underlined) are the best (second) for each data set.

(a) Ground Truth (b) Without topic: 𝐾 = 1

(c) TOMATO-el TOMATO-ex

Figure 4: The topic-wise multi-task structures as the 𝑙2 norm of topic-task-sparsity parameters from the synthetic data: (a)
ground truth as the weight𝑤𝑠

𝑘,𝑡
used to generate the data; (b) without topic as learned by TOMATO-el with 𝐾 = 1; (c) TOMATO-

el, as learned by TOMATO-el with 𝐾 = 2; (d) TOMATO-ex, as learned by TOMATO-ex with 𝐾 = 2.

5.5.3 Q3: How is the trade-off between positive and nega-
tive transfer? The topic-wise multi-task architecture is proposed

to capture more subtle task relationship so that achieve better trade-

off between positive and negative transfer. Table. 3 gives an overall

view of the answer, that the proposed architecture does perform

better. Further more, here we take a detail view. In Table. 4, the av-

erage task-wise improvement is presented. For each model on each

dataset, we calculate its performance on each task 𝑡 as 𝑝𝑒𝑟 𝑓𝑚𝑜𝑑𝑒𝑙,𝑡
of the dataset. After that, for each task, we calculate the rela-

tive improvement over the Separate model 100 ∗ (𝑝𝑒𝑟 𝑓Separate,𝑡 −
𝑝𝑒𝑟 𝑓𝑚𝑜𝑑𝑒𝑙,𝑡 )/𝑝𝑒𝑟 𝑓Separate,𝑡 . This task-wise improvement provides



Dataset synthetic MNIST-MTL AwA2 School MCSEM

Separate 0.00 0.00 0.00 0.00 0.00

Shared-bottom 2.44 -0.09 3.05 3.18 3.08

Single 2.75 -48.66 -9.70 -2.04 2.20

Inter-task-𝑙2 2.79 0.10 3.05 1.96 3.39

DMTRL 1.75 -0.01 3.22 5.56 2.68

MRN 2.49 -0.08 -2.34 -0.05 3.00

Cross-stitch 2.23 -0.08 3.35 2.76 2.98

MMoE 2.57 0.00 -6.29 8.96 2.39

TOMATO-el 2.94 0.16 3.88 16.74 3.38

TOMATO-ex 2.92 0.28 2.41 12.93 3.62
Table 4: Average task-wise improvement percentage. Bold
(underlined) are the best (second) for each data set.
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(a) Performance over different number of topics 𝐾
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(b) Performance over different sparsity constraint strength 𝜆

Figure 5: Ablation Study in MNIST-MTL data

the judgement of positive or negative transfer. When this improve-

ment is negative, for the specific task, there is no benefit to take

into account other tasks, which is negative transfer, and vice versa.

For each entry in Table. 4, we report the average task-wise im-

provement percentage over all tasks of a datasets from a model.

We observe that the proposed models give consistent and better

improvement over all datasets (i.e., from 5% to 46% better than

competing models in different datasets). Therefore, it shows that

the proposed methods do achieve better trade-off between positive

and negative transfer.

5.5.4 Q4. Ablation study: Are the proposed architecture and
MTLdesign nontrivial in realworld data? Wenotice that there

are two hyperparameters that distinguish the proposedmodels from

the existing ones. Here we show ablation study results in MNIST-

MTL data. Similar results can be obtained in other datasets. First

when the number of topics 𝐾 = 1, the proposed topic-wise multi-

task architecture reduces to conventional MTL architecture. From

the ablation study with different 𝐾 values, Fig. 5(a), the perfor-

mance of TOMATO-el (TOMATO-ex) with 𝐾 = 16 (𝐾 = 4) is better

than that of trivial model with 𝐾 = 1. This validates the topic-wise

multi-task architecture. Second when the sparsity penalty strength

vanishes, 𝜆 = 0, the sparsity constraints are disabled. From the ab-

lation study with different 𝜆 values, Fig. 5(b), the best performance

is achieved with 𝜆 = 1𝑒 − 2. It validates the topic-task-sparsity MTL

design.

Further, we show the 𝑙2 norm of the learnt topic-task-sparsity pa-

rameter 𝜃𝑠
𝑡,𝑘

norm in Fig. 6 which manifests the design visualized in

Fig. 3. Both TOMATO-el and TOMATO-ex show the proposed topic-

wise multi-task sparsity structures, where within different topics,

task relationship is different. For example, in Fig. 6(b), only topic 0

shows clear sparsity structure among tasks, which indicates strong

task relationship among data from topic 0. Such data-dependent

task relationship helps TOMATO explore task relationship within

certain groups of data and avoid negative transfer effect from data

without task relationship.

Moreover, the topic-task-element constraints result in topics

with all topic-task-sparsity parameters zero-out, as shown in Fig. 6(a),

while the topic-task-exclusive constraints will not, in Fig. 6(b), as

expected from the analysis in Section. 4.4. More specifically, we

notice there are more than one topics with all topic-task-sparsity

parameters zero-out for TOMATO-el, as shown in Fig. 6(a). From

the viewpoint of task relationship, those topics should be degen-

erated as the task relationship among them are the same (i.e., all

tasks are the same). However, if we use smaller number of topics

𝐾 = 8, which is sufficient for the optimal parameters state shown

in Fig. 6(a) for 𝐾 = 16, the performance gets worse, as shown in

Fig. 5(a). It may be attributed to the effect of optimization process

on the final local optimal parameter state.

6 CONCLUSION
In this work, from a closer look into the validity of task relationship,

we propose a within-topic task relationship hypothesis and develop

a topic-wise multi-task architecture which is general enough to be

combined with existing MTL designs. Further, we propose the topic-

task-sparsity MTL design, specially designed for the topic-wise

multi-task architecture, along with two types of sparsity constraints.

The architecture, combined with the topic-task-sparsity design,

constructs our proposed TOpic-wise Multi-tAsk sparsiTy mOdel

(TOMATO). The experiments on both synthetic and real-world

datasets show that the proposed models consistently outperform

existing state-of-the-art models, which supports the validity of the

within-topic-task relationship hypothesis.
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