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ABSTRACT
Sites to share user-created video clips such as YouTube and
Yahoo Video have become greatly popular in recent years.
One of the challenges of such sites is, however, to prevent
video clips that violate copyrights by illegally copying and
editing scenes from other videos. Due to the sheer number
of clips uploaded every day, automatic methods to detect
(illegally) copied video clips in a large collection are de-
sirable. Toward this problem, in this paper, we present a
novel framework, termed as Video Linkage, that is based on
the record linkage techniques. Our proposal is based on the
observations that: (1) a video clip can be represented as a
“group” of key frames, (2) two video clips are deemed to be
similar if two groups of key frames are similar as a whole
– i.e., the similarity of two video clips can be measured by
means of graph-based similarity measures such as maximal
cardinality bipartite matching, and (3) if a video clip va is
copied to vb, then va and vb must be somehow similar, but
not all similar video clips are illegally copied ones – i.e., sim-
ilar videos can be used as a filter for fast detection of copied
videos. The validity of our observations and Video Linkage
technique is thoroughly evaluated using both real and syn-
thetic data sets – i.e., on average, our proposals achieved
0.94 as precision and 0.93 as recall across 10 genres and 6
editing patterns.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval – Information filtering, Retrieval models

General Terms: Algorithms, Design, Performance.

Keywords: Video, Copyright, Linkage

1. INTRODUCTION
Due to the surge of Web 2.0 in recent years, user-created

contents (UCC) such as blogs, photos, and videos, are ev-
erywhere. In particular, sites such as YouTube1 and Ya-
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Figure 1: Key frames of an original video
scene (a) from the movie “Forrest Gump”, three
copied/altered ones (b)-(d), and a similar one (e).

hoo Video2 where users upload video clips for sharing have
become very popular, partly thanks to the advancement of
video recording/editing, hardware/software and people’s de-
sire for interactive multimedia contents on the Web. One of
the challenges of such sites is, however, to prevent video
clips that violate copyrights by illegally copying and edit-
ing scenes from other videos. This is because people often
upload movie trailers or TV shows to such sites without
proper authorization, often knowing its illegal nature. For
instance, in 2007, Viacom3, the owner of MTV, asked the
removal of their copyrighted contents from YouTube that
have been viewed more than 1.5 billion times. Therefore, it
only gets more important for companies to be able to detect
and remove such illegal contents in their collections to avoid
serious legal and financial responsibilities.

Due to the sheer number of video clips uploaded/viewed
every day, however, manual operations to detect and remove
pirated videos cannot keep up with demand. According
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to comScore Video Metrix report4, 134 million Americans
viewed more than 9 billion online videos, 2.4 million of which
are from YouTube, during July 2007. The situation will get
only exacerbated as time passes. Naturally, therefore, auto-
matic methods to detect illegally copied video clips fast and
accurately in a large collection are greatly desirable. How-
ever, in general, detecting copied videos is a much harder
problem than detecting similar videos, as illustrated in the
following motivating example.

Example 1. Figure 1 shows selected key frames of an orig-
inal video scene, (a), from the movie “Forrest Gump”, three
other scenes, (b)-(d), that are possibly copied and altered
from (a), and one similar but non-copied scene, (e). We
obtained all video scenes except (a) from YouTube. It is
observed that the copied videos, (b)-(d), are edited by some
basic operations such as integrating several shots, chang-
ing format, and inserting title, transitions, and/or credit.
For example, Figure 1(b) is edited by adding a credit scene,
changing resolution, and cropping the original scene, while
Figure 1(c) by adding a transition scene and changing the
size of video. In particular, Figure 1(d) is (supposedly) ille-
gally captured by a camcorder, which causes a lot of noise
and unexpected modification like in the last key frame. How-
ever, on the other hand, Figure 1(e) is a similar video of Fig-
ure 1(a), but not copied one since it is an animation paro-
dying “Forrest Gump”. Therefore, a good system for copied
video detection should conclude that only Figure 1(b)-(d)
are copies of Figure 1(a) by utilizing editing methods. 2

Toward this Copied Video Detection (CVD) prob-
lem, in this paper, we present a novel solution, termed as
Video Linkage, that is based on the record linkage techniques
– i.e., to determine if two entities represented as relational
records are approximately the same or not (see the related
work in Section 3). Informally, given a video vq and a col-
lection of videos V , we aim at detecting all videos from V
that are copies of vq. For the detection, the Video Linkage
technique is based on the following observations. First, a
video can be represented as a “group” of shots and in turn
a shot as a “group” of image frames. Furthermore, inher-
ently, there is a temporal ordering among frames of a video.
Second, two videos are deemed to be similar if two groups of
frames are similar, and the notion of “groups” can be well
captured by graphs. Therefore, we can measure the similar-
ity between two videos by means of graph-based similarity
measures such as maximal cardinality or weighted bipartite
matching. Lastly, if a video va is illegally copied from a
video vb, then va and vb must be somehow similar (having
similar but altered shots). Therefore, we can prune dissim-
ilar videos out using a simpler similarity for fast detection
of copied videos.

Our contributions are as follows:

• To enable group based matching idea, we propose a
method to transform a video to a group of frames. A
set of shots are first identified from a video, and in turn
a small number of key frames are extracted from each
shot. For the frame-to-frame similarity, we extract a
feature set F from each frame that includes HSV color
histogram (fH), YCbCr color layout (fY ), and motion
vector (fM ). In addition, we compute a binary image
signature S for the efficient processing of CVD.

4
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Notation Description
V a set of videos (or shots)
v a video (or a video shot)
f a frame

simv(v1, v2) video-to-video similarity
simf (f1, f2) frame-to-frame similarity

θ / ρ threshold for simv(v1, v2) / simf (f1, f2)
F / S feature set / signature for a frame

Table 1: Notations used.

• Once videos are captured as a group of frames, we
propose five efficient group based video similarity mea-
sures: (1) two exact measures, V L and NCV L, based
on the maximum weight bipartite matching and max-
imum weight non-crossing bipartite matching, (2) one
greedy measure, gV L, and (3) two approximate mea-
sures, aV L and aNCV L. Further, we show the partial
order relationship among five measures and their util-
ity (in the filtered Video Linkage algorithm).

• Based on the five new measures, we propose two al-
gorithmic frameworks for the copied video detection
problem: (1) standalone Video Linkage algorithm and
(2) pipelined Video Linkage algorithm.

2. OVERVIEW OF PROBLEM & SOLUTION
Throughout the paper, we use notations in Table 1.

Problem Overview. The copied video detection prob-
lem can be modeled as both selection problem (i.e., select
top-k copied videos) as well as threshold problem (i.e., find
all copied videos above a threshold). To make the presen-
tation simple, hereafter, we use the threshold version of the
problem. Informally, the copied video detection problem in
our setting is defined as follows:

Copied Video Detection (CVD). Given a set of
query videos Vq and a collection of source videos Vs,
for each query video vq (∈ Vq), detect all copied videos,
Vc (⊆ Vs) that contain either duplicated or altered
video shots from vq.

A naive solution to the CVD problem can be conceptually
broken into two levels of quadratic computation. First, to
compute simv(va, vb) using the proposed bipartite graph
matching idea, one needs to compute all pair-wise frame-
to-frame similarities, simf (fi, fj), as follows:

for each frame fi ∈ va

for each frame fj ∈ vb

G[i, j] ← simf (fi, fj);
compute a graph matching M on G[i, j];
simv(va, vb) ← some similarity defined on M ;

However, often, the number of frames per video tends to
be extremely large – e.g., 18,000 frames for only 10 minutes
video clip. Therefore, one needs to devise an efficient way
to avoid the excessive computations of simf (fi, fj). Second,
once a similarity between two videos is determined, one still
needs to have nested-loop style computation among two col-
lections of videos as follows:

for each query video vq ∈ Vq

for each source video vs ∈ Vs

if simv(vq, vs) ≥ θ, return vs;



Both have costly time complexities of O(|va||vb|) and O(|Vq||Vs|),
respectively, making the naive solution prohibitively expen-
sive. Therefore, the objective of our proposal is to find the
efficient solutions for both simv and simf .

Since we focus on the efficient methods of simv and simf

using the record linkage context, the issue of multimedia
indexing for fast copied video detection is not discussed in
this paper. Instead, we will filter out non-similar video clips
using a signature (S) before Video Linkage algorithms are
applied. Based on the proposed group based similarity mea-
sures, we plan to develop such an indexing technique in fu-
ture work.

Solution Overview. In order to address the problem, we
first investigate frame-to-frame similarity measure simf () by
extracting features of frames. For the video-to-video simi-
larity measure simv(), we propose a variety of novel group
based solutions. Then, we study the algorithmic improve-
ment therein. The basic flow of our proposed solution is as
follows:

• (Sections 4.1 and 4.2) In order to avoid the quadratic
computation of simf () per video, we extract various
features from video frames, detect video shots using
those features, and identify “key” frames per video.
At the end, each video is captured as a group of ex-
tracted key frames. Since every frame in a shot con-
tains almost similar contents, we consider video shots
as primary processing units in the CVD problem5.

• (Section 4.3) For the efficient processing of CVD, non-
similar video clips are filtered out using a binary image
signature.

• (Sections 4.4 and 4.5) Since a video clip is a sub-
stantially more complex entity than a textual rela-
tional record in the record linkage problem, we inves-
tigate novel similarity measures that take advantage
of the notion of “group” and the constraint of tem-
poral order among frames. In particular, we propose
several group similarity measures based on the max-
imum weight bipartite matching and the maximum
weight non-crossing bipartite matching, respectively,
and then extend them into faster measures to address
the issue of simv in the above algorithm.

• (Section 4.6) Finally, the proposed five similarity mea-
sures are used in two Video Linkage algorithms.

3. RELATED WORK
The general data linkage problem has been known as vari-

ous names – record linkage, entity resolution, object match-
ing, merge-purge, etc (e.g., [1, 5, 16]). Readers are referred
to excellent survey papers (e.g., [18]) for the latest develop-
ment of the linkage problem. Two most relevant record link-
age techniques that we exploit in this paper is group record
linkage and blocking. Group record linkage [14] is a novel
record linkage that authors have developed to match data
objects that have a group of elements in them. In this paper,
we extend the technique further to accommodate temporal
ordering among frames of videos. Blocking technique was
first proposed by [7], and has been studied extensively [12]

5To make our presentation simple, we use a term “video”
instead of “video shot”.

where initial rough but fast clustering is followed by more
exhaustive record matching step. We apply the blocking
idea in the pipelined Video Linkage algorithm in Section 4.6.

The techniques in the CVD problem can be classified into
two main approaches: (1) watermarking based approach [10,
20, 15] utilizes invisible information embedded into the me-
dia to identify the ownership, and (2) content-based ap-
proach [9, 17, 8, 6, 19, 4] extracts persistent features to
determine copied or non-copied media by distance or simi-
larity measures.

In the watermarking based approach, non-visible infor-
mation (e.g., multimedia fingerprinting) is embedded into
the media by modifying a video, and detected to identify
the ownership by the detection system. For instance, Lin et
al. [10] utilized a block matching algorithm for embedding
and detecting the key. In [15], an active clustering approach
was proposed to achieve efficiency.

Since the watermarking based approach cannot be feasi-
ble to old media without watermarks, there have been more
research studies investigating the content based approach
that requires the persistent features and distance (or sim-
ilarity) measures. Depending on the editing methods to
generate copied videos, each algorithm proposed different
features and different (dis-)similarity measures. In [8], a
spatio-temporal sequence matching is proposed to handle
a wide range of modifications in videos, while [6] proposed
statistical similarity search for the CVD problem based on
an approximate search paradigm. A survey of comparative
study regarding to features and distance measures used in
the CVD problem can be found in several literatures [9, 4].

Almost all aforementioned approaches concentrated along
the transformations of media, such as contrast, blur, zoom
in and out, brightness and histogram equalization [9, 4].
However, the CVD problem based on the transformations is
very limited to capture the characteristics of copied videos in
popular video uploading sites, such as YouTube and Yahoo
Video. Based on our extensive observation over more than
12,000 video clips in YouTube, most common and popular
editing methods are simple operations such as integrating
several shots, changing format of videos, and inserting title,
transitions, or credit. Moreover, expensive processing costs
are required to keep the robustness over the various trans-
formations, which prevents fast processing over very large
video databases. [13] proposed a fast shot-based matching
strategy that employs a hash table to index the signatures
extracted from shots. However, it is limited to retrieve dupli-
cated shots, i.e., the proposed approach is close to a video re-
trieval system. Therefore, unlike existing works, we present
a novel solution, termed as Video Linkage, that is based on
the record linkage techniques to detect copied video from a
very large collection of videos efficiently.

4. MAIN PROPOSAL: VIDEO LINKAGE
The main idea of our Video Linkage proposal is based on

the premise that when a video vc is copied from a video vq,
(1) there exist major editing operations for the copy, such
as integrating shot, adding title, transitions or(and) credit,
changing format, and resizing of the original videos, and
(2) vq and vc must be somehow similar (having similar but
altered shots). We propose to capture the intuitions as the
notion of “group” in this section.



Figure 2: Copied vs. similar videos.

4.1 Characterization of Copied Videos
Generally, a copied video detection (CVD) system is dif-

ferent from a content-based video retrieval (CBVR) system.
The result of CVD is a set of copied videos that are ille-
gally edited videos from copyright protected videos, while
that of CBVR is a set of similar videos that are edited or
created videos with similar contents. Therefore, a CVD sys-
tem should utilize both the editing methods as well as sim-
ilar contents.

Figure 2 illustrates the difference between copied and sim-
ilar videos. As shown in the figure, a copied video vc in
sites such as YouTube and Yahoo Video is typically cre-
ated by editing the original video vq using “cut and paste,”
“cropping,” “adding logo/text,” “resizing,” “changing video
format/resolution,” and “adding title, transition, or(and)
credit.” When copied videos are captured as “groups” of
frames (to be discussed), we argue that the detection of edit
patterns be easier. On the other hand, a similar video can
be either an edited video or a non-copied videos with similar
contents.

In order to capture the characteristics of copied videos
discussed, we need a feature set F that can describe each
frame appropriately. For the feature set, we extracted three
features from each frame including HSV color histogram
(λH), YCbCr color layout (λY ), and motion vector his-
togram (λM ).

Let F = {λH , λY , λM} be a set of features extracted from
each frame. Then, each feature in F and its similarity mea-
sure between two frames, f1 and f2, are defined as follows:

1. λH represents a scalable color of the frame based on a
HSV color histogram. The color histogram, CH, has
256 bins (L) in total including 16 values in H (hue),
and 4 values in S (saturation) and V (value), i.e., L =
16 × 4 × 4 = 256 bins. A similarity measure for HSV
color histogram, simλH (), is defined as:

simλH (f1, f2) =

∑L−1
l=0 min(CHf1(l), CHf2(l))∑L−1

l=0 CHf1(l)

2. λY describes a color layout based on YCbCr color do-
main. This is for the spatial distribution of the col-
ors, i.e., first divide each frame into 16 × 16 pixels
block, second average YCbCr values for each block
with Y CbCravg = 2/3 · Y + 1/6 · Cb + 1/6 · Cr, and
lastly compute the similarity using cosine distance.
Let {v1m} and {v2m} for m = 1, 2, . . . , M be the fea-
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(a) An example of shot boundary detection
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(b) An example of key frames selection

Figure 3: Shot boundary and key frame selection.

ture vector of f1 and f2 for average YCbCr, respec-
tively. M is the number of blocks in one frame. A
similarity measure for average Y CbCr, simλY (), is de-
fined as:

simλY (f1, f2) =

∑M
m=1 v1m · v2m√∑M

m=1 v2
1m ·

∑M
m=1 v2

2m

3. λM represents a moving pattern of the frame based
on a motion vector histogram (MH). First, we find a
motion vector for each 16× 16 block over two consec-
utive frames. Each motion vector then falls into one
of 9 bins (N = 9), i.e., (0,0), (1,0), (1,1), (0,1), (-1,0),
(0,-1), (-1,-1), (1,-1), and (-1,1). A similarity measure
for motion vector histogram, simλM (), is defined as:

simλM (f1, f2) =

∑N−1
n=0 min(MHf1(n), MHf2(n))∑N−1

n=0 MHf1(n)

Each feature mentioned above characterizes a color scale,
a color layout, and a motion in a copied video, respec-
tively. Now, we define the frame-to-frame similarity mea-
sure, simf (), with the extracted feature set, F , as follows:

simf (f1, f2) =
∑
λ∈F

wλ · simλ(f1, f2) (1)

where wλ is a weight of a feature λ such that
∑

λ∈F wλ = 1,
and simλ() is a similarity of two frames with respect to the
feature λ. The frame-to-frame similarity measure, simf ()
will be used for any comparison between two frames in this
paper.

4.2 Group Formation
Once features are extracted from each frame, in this sec-

tion, we discuss how to transform a video (shot) into a
“group” of important frames (i.e., key frames) so that we
can detect copied videos using the notion of “group” later
on.

First, a shot is defined as a sequence of frames taken by
one camera operation. In other words, all frames in the
same shot tend to contain similar contents. Due to this



nature of shot, we select shots as a primary processing unit
to detect copied videos. We use simf () with F = {λH} in
Equation (1) to detect shot boundaries, since λH is robust
enough to detect them with the less computational cost. For
the detection, we compute the similarity of two consecutive
frames, fi and fi+1, and if simf (fi, fi+1) is more than a
certain threshold (ρshot), then fi and fi+1 are considered
as a shot boundary. Otherwise, both fi, fi+1 belong to the
same shot. Figure 3(a) illustrates how four shot boundaries
are detected when ρshot = 0.9.

Second, the key frame(s) is(are) one or more selected
frames that can represent the semantics of a video well. By
using a small number of key frames per shot, we aim at
reducing the computational cost of video processing drasti-
cally. To select the key frames, we consider three variations
– uniform, dynamic, and hybrid key selection strategies. In
the uniform strategy, a frame is selected as a key frame with
uniform gap (e.g., every 50 frames in a shot). In the dy-
namic strategy, frame similarity values obtained in detecting
shot boundaries are re-used to construct a similarity curve
that shows how the contents change over an entire video.
The high curvature indicates a significant change around
the frames while the flat indicates no change. Those frames
in high curvatures of a similarity curve are, thus, selected as
key frames. To detect the high curvature points, we employ
the algorithm proposed by [2]. In order to avoid noise, the
similarity curve is smoothed by applying convolution with
Gaussian filter (σ = 1). Finally, in the hybrid strategy,
we first apply the dynamic strategy and if no key frame is
selected for k consecutive frames by the dynamic strategy,
(k + 1)-th frame from the previously selected key frame is
selected as a key frame.

Figure 3(b) shows the example including an original sim-
ilarity curve, a smoothed curve, and detected key frames
(marked as circle). In practice, both shot boundary detec-
tion and key frame extraction steps can be done in a single
scan of a video sequence.

4.3 Binary Image Signature
A binary image signature is computed for each key frame

used for efficient processing of CVD. The purpose of binary
image signature is to filter non-similar video shots out very
fast by a simple boolean operation. Therefore, the same
or similar key frame should have the same binary signa-
ture. For this requirement, extreme quantization is applied
to transform complex image data to a series of binary in-
formation. A binary image signature of a key frame can be
computed as shown in Figure 4. First, a key frame is di-
vided to 25 macro blocks (Figure 4(a)). Second, we average
Y component in YCbCr color layout for each macro blocks
(Figure 4(b)). Third, we find a median value among 25 Y
average values (Figure 4(c)). Finally, extreme quantization
is applied, i.e., if a value is less than the median, it becomes
0. Otherwise, 1. In this case, a binary image signature of a
given image S is ‘1000010011111110001100000’.

If a video is a copy of another, then there should be at
least one frame that has a common image signature. In ad-
dition, similar images should have the same image signature
because it is computed by extreme quantization. We assume
that no extreme distortion can be applied to all frames in a
copied video. Therefore, we can use the signature to filter
non-similar video clips out for efficient processing. In other
words, if we find the same signature in two different videos,

(a) 25 macro blocks (b) Y component

(c) Average Y value (d) Binary image signature

Figure 4: Steps to compute a binary image signature
by extreme quantization.

one of Video Linkage algorithms will be applied to detect
actual copied videos. Otherwise, we just ignore it.

4.4 Video Linkage Measures
Once a video is captured by key frames as shown in Sec-

tion 4.2, now, we are ready to discuss how to measure the
similarity between two videos utilizing the “group” informa-
tion and video characteristics. In essence, we significantly
extend the group based record linkage techniques developed
by authors in [14] in order to exploit the temporal order
among frames, and propose five Video Linkage measures and
two Video Linkage algorithms.

Definition 1 (Video as Group) A video v is captured as
a group of frames: g={f1, . . ., fm}. 2

Given two groups g1 and g2, one of the simplest and most
intuitive similarity measures is the Jaccard similarity, de-

fined as |g1∩g2|
|g1∪g2|

. By generalizing the Jaccard similarity to be

able to handle approximate matching between two frames,
we can use the bipartite graph idea.

Definition 2 (Weighted Bipartite Graph for Groups)
Given two groups of image frames, g1 = {f11, f12, . . . , f1m1}
and g2 = {f21, f22, . . ., f2m2}, a weighted bipartite graph
is a bipartite graph G = {N, E, Ω}, where N = g1 ∪ g2,
E = g1 × g2, and Ω={ω(i, j)|ω(i, j) = simf (f1i, f2j)} 2

Definition 3 (Maximum Weight Bipartite Matching)
A matching is a set of pairwise non-adjacent edges in E. A
maximum weight bipartite matching M is a matching M
such that

∑
(f1i,f1j)∈M (ω(i, j)) is the maximum. 2

Conceptually, the numerator and denominator of the Jac-
card similarity are equivalent to the sum of weights in M and
the number of nodes in N , offset by the number of edges in
M , respectively. Based on this observations, now, we pro-
pose our group based video similarity measure as follows:

Definition 4 (Video Linkage) For the bipartite group G
= {N , E, Ω} over two groups of image frames, g1 = {f11,
f12, . . ., f1m1} and g2 = {f21, f22, . . ., f2m2}, the Video
Linkage measure, V Lω,ρ, is the normalized weight of the the



maximum weight bipartite matching M1:

V Lω,ρ(g1, g2) =
Σ(f1i,f2j)∈M1(ω(i, j))

m1 + m2 − |M1|
such that ω(i, j) ≥ ρ, where ρ is a user-set minimum thresh-
old for edge similarity. 2

Note that the denominator of V Lω,ρ adds up the num-
ber of edges in the matching, M1, and the number of “un-
matched” frames in each of g1 (i.e., m1 − |M1|) and g2 (i.e.,
m2−|M1|). When the numerator is large, it capture the intu-
ition that two videos have “many” similar frames. Similarly,
when the denominator is small, it captures the intuition that
a large fraction of frames in the two groups are similar. Note
also that we do not consider all pair-wise edges between two
groups. Rather, we prune away those edges whose ω is sub-
stantially low (i.e., ω(i, j) < ρ). Not only this early pruning
helps improve the accuracy of Video Linkage technique, it
speeds up computation significantly since all subsequent al-
gorithms work faster on a “sparse” bipartite graph.

In addition to V Lω,ρ, we also observe that there might
be the inherent temporal order among frames. Suppose a
pirate copies a portion of video scenes, say 10 seconds with
300 frames, into his own video and alters them (e.g., adding
logo and subtitle and changing contrast and brightness). Al-
though the visual effects and characteristics of 300 frames
might have changed, temporal order among 300 frames is
still intact. Although it is possible to change temporal or-
der among copied frames, we believe such cases are rare.
Therefore, we extend V Lω,ρ to take advantage of the order
among elements of groups.

Definition 5 (Non-Crossing Bipartite Matching)
Consider an “ordered” bipartite graph G={N , E, Ω} over
groups g1 and g2, where nodes in each group are numbered
in increasing order from top to bottom. Two edges between
nodes, e1 = (i, j) and e2 = (p, q), are said “crossing” iff
(i ≤ p and j ≥ q) or (i ≥ p and j ≤ q). Then, a non-
crossing matching is a subset of edges M2 (∈ E) such that
no two edges of M2 cross, including crossing at nodes. A
maximum weight non-crossing bipartite matching is a non-
crossing matching such that

∑
(f1i,f1j)∈M2

(ω(i, j)) is the

maximum. 2

When applied to the problem of matching two videos, v1

and v2, a non-crossing bipartite matching captures the in-
tuition that once a frame f1i (∈ v1) and a frame f2j (∈ v2)
match each other, no crossing matching can occur (i.e., the
sequential order among frames must be followed). By cap-
italizing on this intuition, then we define our second group
based video linkage measure as follows:

Definition 6 (Non-Crossing Video Linkage) For the
“ordered” bipartite graph G={N , E, Ω} over two groups
g1={f11, f12, . . ., f1m1} and g2={f21, f12, . . ., f2m2}, the
non-crossing Video Linkage measure, NCV Lω,ρ, is the the
normalized weight of the maximum weight “non-crossing”
bipartite matching M2:

NCV Lω,ρ(g1, g2) =
Σ(f1i,f2j)∈M2(ω(i, j))

m1 + m2 − |M2|
such that ω(i, j) ≥ ρ, where ρ is given. 2

Both V Lω,ρ and NCV Lω,ρ are guaranteed to be between
0 and 1. Furthermore, from the definitions, the following
follows.

Lemma 1. For two groups g1 and g2:

NCV Lω,ρ(g1, g2) ≤ V Lω,ρ(g1, g2)

where ρ is given.

Proof. Let us compare V Lω,ρ of Definition 4 and NCV Lω,ρ

of Definition 6. Then, (1) the numerator of V Lω,ρ is at
least as large as the numerator of NCV Lω,ρ since M2 can
have only equal or lower weighted edges than M1 has due to
the “non-crossing” constraint: i.e., Σ(f1i,f2j)∈M2 (ω(i, j))≤
Σ(f1i,f2j)∈M1 (ω(i, j)), and (2) the denominator of V Lω,ρ is
no larger than the denominator of NCV Lω,ρ since |M1| ≥
|M2|: i.e., m1 + m2 − |M1| ≤ m1 + m2 − |M2|. Since the
numerator is larger and the denominator is smaller, V Lω,ρ

is at least as large as NCV Lω,ρ. (q.e.d)

4.5 Faster Video Linkage Measures
Both V Lω,ρ and NCV Lω,ρ capture the intuitions of two

matching videos very well. However, both measures are
computationally costly because of the requirement that “no
node in the bipartite graph can have more than one edge
incident on it.” The known algorithms to find maximum
weight bipartite matching and maximum weight non-crossing
bipartite matching have time complexities of O(N2E) [3]
(e.g., Hungarian or Bellman-Ford) and O(N2) [11], respec-
tively. In search of faster video linkage measures, therefore,
we relax this requirement of the bipartite matching using
the greedy strategy.

Definition 7 (Greedy Video Linkage) Consider the bi-
partite graph G={N , E, Ω} over two groups g1={f11, f12,
. . ., f1m1} and g2={f21, f12, . . ., f2m2}.
• For each frame fi ∈ g1, find a frame fj ∈ g2 with the

highest ω (≥ ρ) and denote the set of all such frame
pairs as S1.

• Symmetrically, for each frame fj ∈ g2, find a frame
fi ∈ g1 with the highest ω (≥ ρ) and denote the set of
all such frame pairs as S2.

Then, a greedy Video Linkage measure, gV Lω,ρ, is:

gV Lω,ρ(g1, g2) =
Σ(f1i,f2j)∈S1∪S2(ω(i, j))

m1 + m2 − |S1 ∪ S2|

such that ω(i, j) ≥ ρ, where ρ is given. 2

Note that neither S1 nor S2 may be a matching. In S1,
the same frame in g2 may be the target of more than one
frame in g1 (thus violating the definition of “matching”).
Similarly, in S2, the same frame in g1 may be the target of
more than one frame in g2.

Lemma 2. The greedy video linkage measure, gV Lω,ρ(g1, g2),
can be computed in O(N + E log E) time on the bipartite
graph G={N , E, Ω} over two groups g1 and g2.

The usefulness of the greedy group based video linkage
measure, gV Lω,ρ, lies on the fact that its similarity value is
always an over-estimation of true similarity value of V Lω,ρ.
Therefore, the value of gV Lω,ρ is not bounded between 0
and 1.

Lemma 3. For two groups g1 and g2:

V Lω,ρ(g1, g2) ≤ gV Lω,ρ(g1, g2)

where ρ is given.



Measure Time Complexity

V Lω,ρ(g1, g2) O(N2E)
NCV Lω,ρ(g1, g2) O(N2)
gV Lω,ρ(g1, g2) O(N + E log E)
aV Lω,ρ(g1, g2) O(E log E)

aNCV Lω,ρ(g1, g2) O(E2)

Table 2: Time complexities of five measures.

Proof. Let us compare V Lω,ρ of Definition 4 and gV Lω,ρ

of Definition 7. Then, (1) the numerator of gV Lω,ρ is at
least as large as the numerator of V Lω,ρ: i.e., Σ(f1i,f2j)∈M1

(ω(i, j))≤ Σ(f1i,f2j)∈S1∪S2 (ω(i, j)), and (2) the denomina-
tor of gV Lω,ρ is no larger than the denominator of V Lω,ρ:
i.e., m1 + m2 − |S1 ∪ S2| ≤ m1 + m2 − |M1|. Since the
numerator is larger and the denominator is smaller, gV Lω,ρ

is at least as large as V Lω,ρ. (q.e.d)

Next, we propose two heuristics based approximations of
the bipartite matching.

Definition 8 (Approximate Video Linkage) Consider the
bipartite graph G={N , E, Ω} over two groups g1={f11, f12,
. . ., f1m1} and g2={f21, f12, . . ., f2m2}. For two empty sets,
R1 and R2,

• Sort all edges (∈ E) by ω in decreasing order.

• For each edge eij=(f1i,f2j) in order, if neither f1i nor
f2j is visited, add eij into R1 and mark f1i,f2j as “vis-
ited” (initially, all nodes are set as “unvisited”).

• For each edge eij=(f1i,f2j) in order, if eij does not
“cross” any edges from R2, add eij into R2.

Then, two approximate Video Linkage measures are:

aV Lω,ρ(g1, g2) =
Σ(f1i,f2j)∈R1(ω(i, j))

m1 + m2 − |R1|

aNCV Lω,ρ(g1, g2) =
Σ(f1i,f2j)∈R2(ω(i, j))

m1 + m2 − |R2|
such that ω(i, j) ≥ ρ, where ρ is given. 2

Note that unlike S1 and S2, both R1 and R2 are still a
matching since no nodes participate more than once. How-
ever, they may not be a maximum matching. Therefore, the
following holds.

Lemma 4. For two groups g1 and g2:

aNCV Lω,ρ(g1, g2) ≤ aV Lω,ρ(g1, g2) ≤ V Lω,ρ(g1, g2)

aNCV Lω,ρ(g1, g2) ≤ NCV Lω,ρ(g1, g2)

where ρ is given.

Proof. Omitted. (q.e.d)

Since the bipartite graph that we deal with is often very
sparse (i.e., N � E) due to the early pruning from the con-
straint of ω(i, j) ≥ ρ, these two approximate video linkage
measures can be computed faster than their corresponding
exact video linkage measures.

Lemma 5. On the bipartite graph G={N , E, Ω} over two
groups g1 and g2, both aV Lω,ρ(g1, g2) and aNCV Lω,ρ(g1, g2)
can be computed in O(E log E) and O(E2) times, respec-
tively.
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Figure 5: An illustration of Example 2.

The time complexities of five Video Linkage measures are
summarized in Table 2.

Example 2. Consider a sparse bipartite graph G={N , E,
Ω} where Ω= {ω(f11, f22) = 0.8, ω(f12, f21) = 0.6, ω(f12, f23)
= 0.3, ω(f13, f21) = 0.9, ω(f13, f22) = 0.2, ω(f13, f23) = 0.5}.
Then, five video linkage measures are computed as follows:

• Since M1 = {(f11, f22), (f12, f23), (f13, f21)}, V L =
0.8+0.9+0.3

3+3−3
= 0.67.

• Since M2 = {(f11, f22), (f13, f23)}, NCV L = 0.8+0.4
3+3−2

= 0.3.

• Since S1={(f11, f22), (f12,f21), (f13,f21)}, S2 = {(f13,
f21), (f12, f21), (f13, f23)}, and S1 ∪ S2 = {(f11,f22),
(f12,f21), (f13,f21), (f13,f23)}, gV L = 0.8+0.6+0.9+0.4

3+3−4
= 1.35.

• Since R1 = {(f13, f21), (f11, f22), (f12, f23)}, aV L =
0.9+0.8+0.3

3+3−3
= 0.67.

• Since R2 = {(f13, f21)}, aNCV L = 0.9
3+3−1

= 0.18.

Figure 5 illustrates the example. 2

Lemma 6. There is no bounding between aV Lω,ρ(g1, g2)
and NCV Lω,ρ(g1, g2).

Proof. For two bipartite graphs G={N , E, Ω} where Ω=
{ω(f11, f21) = 0.5, ω(f11, f22) = 0.6, ω(f12, f22) = 0.5}.
Since M2 = {(f11, f21), (f12, f22)}, NCV L = 0.5+0.5

2+2−2
=0.5.

However, since R1 = {(f11, f21)}, aV L = 0.6
2+2−1

= 0.2. This
leads to aV L < NCV L. However, Example 2 illustrates an-
other case where aV L > NCV L holds. (q.e.d)

Finally, combining Lemmas 1, 3, 4, and 6, we get the
partial order among five Video Linkage measures.

Theorem 1. The following partial order exists among five
video linkage measures:

aNCV L ≤ NCV L, aV L ≤ V L ≤ gV L

That is, V L and NCV L are bounded by aNCV L (lower
bound) and gV L (upper bound).

The advantage of these partial order is that both gV Lω,ρ

(g1, g2) and aNCV Lω,ρ(g1, g2) can be computed faster than
both V Lω,ρ(g1, g2) and NCV Lω,ρ (g1, g2), respectively. There-
fore, quickly computing both gV Lω,ρ(g1, g2) and aNCV Lω,ρ



Input : A query video vq and a source video set Vs

Output : A copied video set Vc (⊆ Vs)

linkage ← {V L, NCV L, gV L, aV L, aNCV L};
Vc ← ∅;
foreach vs (∈ Vs) do

if linkage(vq, vs) ≥ θ then Vc ← Vc ∪ vs;

return Vc;

Algorithm 1: Standalone Video Linkage.

(g1, g2) can help us efficiently address our video linkage
problem. For instance, imagine that we want to check if two
videos v1 and v2 have a similarity above θ or not. Then,
since gV Lω,ρ is an upper bound of V Lω,ρ, if gV Lω,ρ(g1, g2)
< θ, then it must be the case that V Lω,ρ(g1, g2) < θ. Hence,
(g1, g2) is guaranteed to not be part of the answer and
can be pruned away. Reversely, using aNCV Lω,ρ(g1, g2)
as the lower bound of V Lω,ρ, if aNCV Lω,ρ(g1, g2) ≥ θ,
then (g1, g2) is guaranteed to be part of the answer since
V Lω,ρ(g1, g2) ≥ θ is true.

Proposition 1. To speed up computation, both gV Lω,ρ

(g1, g2) and aNCV Lω,ρ(g1, g2) can be used in filtering for
both V Lω,ρ (g1, g2) and NCV Lω,ρ(g1, g2), respectively. It
is guaranteed that this filtering does not incur any false neg-
atives.

4.6 Putting All Pieces Together
Based on the findings in Section 4.4 and 4.5, in this sec-

tion, we propose two different Video Linkage techniques –
Standalone Video Linkage and Pipelined Video Linkage. Given
two videos v1 and v2 that are passed through the filtering
step in Section 4.3, suppose that we want to determine if
their similarity is above θ or not. Then,

• Standalone Video Linkage algorithm computes one of
five video linkage measures {V L, NCV L, gV L, aV L,
aNCV L} to determine if simv(v1, v2) ≥ θ or not.

• Pipelined Video Linkage algorithm exploits Proposi-
tion 1. That is, to determine if simv(v1, v2) ≥ θ or not,
we first check the fast (but approximate) greedy mea-
sure gV Lω,ρ(v1, v2) < θ. If so, we conclude simv(v1, v2)
6≥ θ. Else, we next check another fast (but approxi-
mate) measure aNCV Lω,ρ(v1, v2) ≥ θ. If so, we con-
clude simv(v1, v2) ≥ θ. Else, finally, we resort back to
standalone Video Linkage and check simv(v1, v2) ≥ θ
using one of slow but exact video linkage measures
{V L, NCV L} for simv() function.

The details of two Video Linkage algorithms are illustrated
in Algorithms 1 and 2, respectively.

5. EXPERIMENTAL VALIDATION
To validate our proposals, we have performed experiments

with real videos downloaded from YouTube (with respect
to the following aspects): (1) Whether the proposed Video
Linkage measures are robust over various editing methods,
genres, and thresholds, and (2) Whether the proposed Video
Linkage measures provide enough performance to detect copied
video in terms of speed, scalability, and accuracy. All pro-
posed algorithms are implemented in Java and JMF 2.1e,
and executed in a desktop with Intel Celeron 3.20GHz, 2GB

Input : A query video vq and a source video set Vs

Output : A copied video set Vc (⊆ Vs)

slow-linkage ← {V L, NCV L};
Vc ← ∅;
foreach vs (∈ Vs) do

if gV L(vq, vs) < θ then continue;
if aNCV L(vq, vs) ≥ θ then Vc ← Vc ∪ vs; continue;
if slow-linkage(vq, vs) ≥ θ then Vc ← Vc ∪ vs;

return Vc;

Algorithm 2: Pipelined Video Linkage.

Genre # of Vs # of Vq # of Vc # of shots
AV 261 10 90 146,746
CO 284 10 90 131,713
ET 239 10 90 140,029
MU 230 10 90 160,278
HS 247 9 81 107,725
PB 440 10 90 270,115
NP 289 10 90 184,249
PA 394 9 81 126,097
TE 332 10 90 196,575
GA 216 10 90 117,653

2,932 98 882 1,581,180

Table 3: Description of data set.

RAM. To extract the features from *.flv video format used
in YouTube videos, Java wrapper for ffmpeg, i.e., fobs4jmf,
is applied for our implementation.

5.1 Set-Up
Data Sets. For a source video data set (Vs), we down-
load 2,050 video clips from YouTube throughout all cate-
gories. Among the 12 categories in YouTube, 9 categories
are selected: Autos & Vehicles (AV), Comedy (CO), Enter-
tainment (ET), Howto & Style (HS), Music (MU), News &
Politics (NP), People & Blogs (PB), Pets & Animals (PA),
and Travel & Events (TE). In addition Game (GA) category
is added for the purpose of diversity. In order to synthesize
copied videos, we select 98 videos as original videos (Vq)
from 10 genres. For each original video, 10 copied videos
are generated by ‘cut’ in a video (3), ‘cut and paste’ in
a video (2), ‘cut and paste’ from different videos (1), ‘re-
size/resolution’(2), ‘adding title and credit’(1), and ‘adding
logo/title’ (1) ((·) indicates the number of copies). There-
fore, 882 copied videos (Vc) are created in total. All copied
videos are added to a source video set in the corresponding
genre. As a result, we have 2,932 source videos for the data
set. Since Video Linkage schemes use shots as a primary pro-
cessing unit, each video in the data set is segmented into a
number of shots using the shot boundary detection method
mentioned in Section 4.2. Table 3 summarizes the statistics
of the data sets. The second column (Vs) is the number
of source videos, while the third and fourth columns are
the number of original (Vq) and copied (Vc) videos, respec-
tively. The last column indicates the total number of shots
extracted from each genre.

Schemes and Evaluation Metrics. Due to space con-
straint, in the following presentation, we will use two schemes
from Standalone Video Linkage algorithm (i.e., V L and NCV L),
and two others from Pipelined Video Linkage (i.e., gV L|V L
and gV L|NCV L). The notation “gV L|V L” means that
two steps, gV L and V L, are applied in a row as in the
pipeline. Two standpoints are considered as performance
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Figure 6: Performance of each scheme over 6 edit-
ing methods and average performance over all edit-
ing methods; cut in a video (CV), cut and paste
in a video (CP), cut and paste from different videos
(CD), adding title and credit (TC), adding logo/title
(LT), and change resolution (CR).

metrics: (1) accuracy in terms of precision (NT rueP ositive
NAllP ositive

),

recall (NT rueP ositive
NAllT rue

), and F-measure ( 2×(Precision×Recall)
Precision+Recall

),

and (2) performance in terms of wall-clock running time.

5.2 Robustness of Video Linkage
Editing Methods. As stated earlier, a copied video vc in
sites such as YouTube and Yahoo Video is typically created
by altering the original video vq using several basic edit-
ing methods. Therefore, a good measure for CVD should
be robust against such editing methods including ‘cut in a
video (CV)’, ‘cut and paste in a video (CP)’, ‘cut and paste
from different videos (CD)’, ‘adding title and credit (TC)’,
‘adding logo/title (LT)’, and ‘change resolution (CR)’. Fig-
ure 6 shows the performance of each scheme for 6 editing
methods, and average performance over all editing methods.
Figure 6(a)-(d) are the results of V L, NCV L, gV L|V L, and
gV L|NCV L, respectively. In addition, Figure 6(e) shows
the average performance of 3 Video Linkage measures. As
shown in the figure, our proposed Video Linkage measures
are robust over all editing methods, i.e., 0.93 in recall, 0.94
in precision and 0.935 in F-measure on average. Specifically,
the high precision and recalls of Video Linkage measures in-
dicate that our proposals go a good job in detecting copied
videos accurately from data sets.
Genres. Since many existing methods of CVD are depen-
dent on data domain, it is crucial for CVD to work with
various genres of videos. In order to verify the robustness
of Video Linkage measures against video contents, we test 4
measures on 10 genres data set mentioned in Table 3. Each
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Figure 7: Performance of each scheme over 10 gen-
res; Autos & Vehicles (AV), Comedy (CO), Enter-
tainment (ET), Howto & Style (HS), Music (MU),
News & Politics (NP), People & Blogs (PB), Pets
& Animals (PA), Travel & Events (TE), and Game
(GA).

genres has its unique characteristics of video contents. For
example, a video in People & Blogs (PB) genre usually has
very static images with relatively long shots, while that of
Entertainment (ET) contains a lot of fast movements. Fig-
ure 7 shows the performance results of each scheme for 10
genres, and the overall average performance on all genres.
Figure 7(a)-(d) are the results of V L, NCV L, gV L|V L, and
gV L|NCV L, respectively. Also, the overall performance of
Video Linkage can be found at Figure 7(e). As the graph
shows, Video Linkage measures provide very consistent re-
sults over various genres in terms of recalls. However, the
precisions and F-measure are relatively lower than recalls in
some genres, such as Comedy (CO), Entertainment (ET),
and Travel & Events (TE). This is caused by a lot of motion
changes in a short time period. In order to increase the per-
formance in terms of precision and F-measure in the specific
genre, we can adjust the weight value of each feature (wλ)
to the contents. To keep the purpose of general solution of
CVD, we use the same wλ in this paper.
Thresholds. As mentioned in Section 2, we use the thresh-
old version of the CVD problem. Therefore, we need an ap-
propriate threshold value θ for all Video Linkage measures.
However, predicting an optimal θ value is a challenging prob-
lem itself. To decide the threshold, we investigate the aver-
age recalls of all schemes over various values of θ, i.e., 0.85
to 0.98. Figure 8(a) shows the results of average recalls for
NCV L. As observed in the figure, NCV L has hight recall
values with θ < 0.93. Therefore, we used 0.93 as our default
threshold value.
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Figure 8: Various performance results.

5.3 Performance of Video Linkage
Next, we evaluate the performance of our Video Linkage

methods with respect to the running time and # of com-
parison of Video Linkage schemes. Figure 8(b) first shows
the running time of four methods, V L, gV L|V L, NCV L,
and gV L|NCV L, over video sets in all genres. As expected,
V L is the slowest method, regardless of genres, due to its
high computational cost. Furthermore, the application of
gV L as the “filter” in gV L|V L speeds up the performance
significantly (on average 5 times faster than without filter).
In fact, NCV L is faster than both V L and gV L|V L be-
cause of different time complexities shown in Table 2, and
gV L|NCV L is the fastest among all 4 measures.

Figure 8(c) shows the performance of Video Linkage mea-
sures with respect to the number of computations. The
number of computations during the copied video detection
is the dominant component for the performance of overall
CVD procedure. Thus, we count the number of computa-
tion for Video Linkage measure to evaluate the performance.
We can observe that gV L|V L requires the smallest number
of computations during the CVD. Since it filters out a lot
of non-similar videos, one can reduce the computation time.
Figure 8(d) shows the scalability of Video Linkage measures
over the number of shot comparisons. As expected, the to-
tal computational time of all Video Linkage measures are
increasing monotonic over the number of shot comparisons.
Specifically, gV L|NCV L is the best algorithm in terms of
scalability. That indicates the proposed scheme can be ap-
plied into a real life system to detect copied videos easily.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented the novel idea of group

based copied video detection. In order to enable group
based matching idea, we introduce a method to transform
a video to a group of key frames. Once videos are captured
as a group of frames, we propose five Video Linkage mea-
sures that are exhaustive, greedy, or approximate solution.
Then, for efficient processing of Video Linkage solutions, non-
similar videos are filtered out using a binary image signature.
Finally, two algorithmic frameworks are proposed for the
copied video detection problem: standalone and pipelined

Video Linkage algorithms. Using videos downloaded from
YouTube, our proposals are validated with respect of ro-
bustness and performance.

Video Linkage implementations and sample data sets used
in this paper are available at:

http://pike.psu.edu/download/civr08/
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