
Alleviating the Sparsity in Collaborative Filtering
using Crowdsourcing∗

Jongwuk Lee, Myungha Jang†, Dongwon Lee‡

The Pennsylvania State University, PA, USA
{jxl90,dongwon}@psu.edu

Won-Seok Hwang, Jiwon Hong, Sang-Wook Kim
Hanyang University, Seoul, Korea

{hws23,nowiz,wook}@hanyang.ac.kr

ABSTRACT
As a novel method for alleviating the sparsity problem in
collaborative filtering (CF), we explore crowdsourcing-based
CF, namely CrowdCF, which solicits new ratings from the
crowd. We study three key questions that need to be ad-
dressed to effectively utilize CrowdCF: (1) how to select
items to show for crowd workers to elicit extra ratings, (2)
how to decide the minimum quantity asked to the crowd,
and (3) how to handle the erroneous ratings. We validate the
effectiveness of CrowdCF by conducting offline experiments
using real-life datasets and online experiments on Amazon
Mechanical Turk. The best configuration of CrowdCF im-
proves system-wide MAE by 0.07 and 0.03, and F1-score by
4% and 2% in offline and online experiments, compared to
the state-of-the-art CF algorithm.

1. INTRODUCTION
Collaborative Filtering (CF) is one of the prevalent recom-

mender techniques widely used in e-commerce. The key idea
behind CF is to utilize the preference patterns of users for
predicting unobserved ratings of items, e.g., movies, books,
and music. Unlike other recommendation algorithms, CF
only exploits the observed matrix of m users and n items,
O ∈ Rm×n. One challenging issue in CF is to manage the
sparsity of O. Because most users have limited experience on
items, the number of observed ratings in O is inevitably in-
sufficient, thereby incurring the data sparsity problem. The
degree of sparsity in well-known benchmark datasets such
as MovieLens and Netflix ranges from 95% to 98%.

To alleviate the sparsity problem, a natural idea is to “fill-
up” more cells in O. Specifically, [10] imputes unobserved

†This work was done while working as a research intern at
Penn State University (email: mhjang@cs.umass.edu).
‡Corresponding author
∗This work (Grants No. C0006278) was supported by Busi-
ness for Cooperative R&D between Industry, Academy, and
Research Institute funded by Korea Small and Medium Busi-
ness Administration in 2013.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ratings using heuristics, and [8, 9] exploits external infor-
mation such as user demographics or trust relationships to
complement the sparsity. As an alternative, Active Learning
(AL) asks target users to provide more ratings in O so that
CF learns user preferences more precisely [13]. AL is effec-
tive for improving the prediction accuracy for target users,
but is inapplicable for all users.

Crowdsourcing is a new computing paradigm for harness-
ing human computation. Amazon Mechanical Turk (AMT),
one of popular crowdsourcing platforms, issues a mirco-task,
called human intelligence task (HIT), that is answered by
human participants, called workers. In this paper, we pro-
pose to improve CF not by filling up cells in O, but by ap-
pending more ratings elicited from a large number of crowds.
Our crowdsourcing-based CF, namely CrowdCF, is comple-
mentary to existing solutions [8, 9, 10, 13] and can be used
together. Specifically, we focus on validating if CrowdCF is
effective in the movie domain.

Problem 1 Given an observed matrix O ∈ Rm×n made by
existing users and a new matrix W ∈ Rw×n made by the
crowd, can the CF algorithm predict an unobserved rating
oij of an arbitrary user in O more accurately using aug-
mented matrix A ∈ R(m+w)×n than using O?

Due to the idiosyncratic nature of crowdsourcing, a few
important challenges arise. We need to consider diverse fac-
tors, i.e., accuracy, budget, and latency. With the focus
of the accuracy in the movie recommendation domain, we
tackle the following challenging issues in CrowdCF:

Elicitation strategy: It is implausible to show entire items
to the crowd for ratings. We select a small set of items that
are effective for improving CF, and compare various elicita-
tion strategies in offline and online scenarios, respectively.

Minimum number of ratings: If crowd workers add more
sparse ratings to W by rating only 1-2 items per worker, it
is unlikely to improve the accuracy of CF. Thus, we need
to enforce workers to rate more than a minimum number of
ratings in order to collect at least the guaranteed number of
ratings. However, setting this minimum effectively is tricky.
If it is too low, the quantity of ratings is limited. If too high,
the quality of ratings can be sacrificed as workers would be
tempted to add random ratings to some items.

Spam worker detection: While the availability of millions
of crowd workers is an advantage of CrowdCF, the existence
of many spam workers is a downside. It is therefore nec-
essary to detect potential spam workers who give random
ratings to movies that they never watched. We use fake-
image-based spam detection for our HIT design.

2. RELATED WORK

Collaborative Filtering. As one of the popular tech-
niques, Collaborative Filtering (CF) has been widely used
in recommender systems. In general, CF can be categorized
as two types: memory-based and model-based approaches [1]:
(1) memory-based approaches exploit the neighborhood by
computing the similarity between users or items, and (2)
model-based approaches design a model to learn users’ pref-
erence patterns by leveraging observed user ratings as train-
ing data. Since CF is usually computed with an observed
matrix that is extremely sparse, it inherently suffers from
the data sparsity problem. To alleviate this problem, the
imputation-based approach [10] fills more cells by estimating
the ratings of unrated items from other rated items. Huang
et al. [8] employed demographic information as external re-
sources in addition to observed ratings, and the trust-based
approach [9] makes use of trust relationships between users
to complement the sparse observed matrix.

Active Learning to CF. As an alternative approach to al-
leviating the sparsity problem in CF, Active Learning (AL)
focuses on identifying the preferences of target users, as re-
viewed in [13]. Some work developed active learning algo-
rithms on the basis of model-based approaches. Specifically,
[3] observed that the usefulness of collected ratings can be
different depending on items rated by each user, thereby de-
veloping a multiple-cause vector quantization model. How-
ever, this assumed that users can provide the ratings for any
items. To relax this assumption, [7] extended Bayesian ac-
tive learning by distinguishing the items that the user can
rate. Our crowdsourcing-based CF is inspired by AL, but is
designed to “augment” the observed matrix by adding more
new ratings by the crowd.

Crowdsourcing. Crowdsourcing has recently become pop-
ular for integrating human and machine computations, which
is well-surveyed in [4]. Crowdsourcing is known to be ef-
fective for improving the accuracy of machine-based algo-
rithms, e.g., word processing [2], image search [15], and
query processing [6].

3. PROPOSED FRAMEWORK
Given a set of m users U = {u1, . . . , um} and a set of n

items E = {e1, . . . , en}, a set of ratings can be represented
by an observed matrix O ∈ Rm×n, where each entry oij
corresponds to the rating of user ui for item ej . If oij is
“observed,” it is associated with a positive integer value, e.g.,
oij ∈ {1, . . . , 5} in movie datasets. Otherwise, oij is set by
zero, implying an “unobserved” rating. Let yij denote a
binary variable for oij . If oij is rated by user ui, then yij is
one. Otherwise, yij is zero.

We present a crowdsourcing-based CF framework, termed
as CrowdCF. Specifically, we address the following challeng-
ing issues in CrowdCF: (1) how to select a set of items to
show to workers; (2) how to determine the minimum num-
ber of ratings that are requested to workers; and (3) how to
remove spam workers who incur noisy ratings.

3.1 Designing Elicitation Strategies
The first step of CrowdCF is to display a set of movie

images to workers. Since showing all movie items to workers
at once is unreasonable, we select a set of items s (s ≤ n). An

elicitation strategy S is represented by a function S(s,O, E)
= Esel. That is, S selects a set of s items Esel = {e1, . . . , es}
out of E using O, i.e., Esel ⊆ E .

To decide Esel, we consider two criteria: the number of
collected ratings and the usefulness of ratings. First, in order
to elicit as many ratings as possible from crowd workers, an
ideal S should select the items that workers are likely to rate,
e.g., popular or highly-rated movies. In this case, workers
can elicit sufficient ratings for sparse items. Second, an ideal
S needs to select informative items. This prevents that the
rated items between workers do not overlap too much, and
helps to get more informative ratings. It is thus important
to balance the two criteria.

We explore various strategies that take the two criteria
into account [5, 11, 12]. The elicitation strategies are inde-
pendent of item domains and CF algorithms. In this paper,
the elicitation strategies are plugged to probabilistic ma-
trix factorization [14], which is known as the state-of-the-art
CF algorithm. Given a function for measuring their crite-
ria, each strategy sorts items in decreasing order of function
scores, and selects a set of s items with highest scores.

Random (Rand): As a baseline strategy, Rand chooses s
items out of E in a random manner.

Popularity (Pop) [11]: Pop uses the number of user ratings
for each item, i.e., the frequency of items. The frequency
freq(ej) is computed by the number of observed ratings,
i.e., freq(ej) =

∑m
i=1 yij .

Highest rating (HRating) [5]: With the same goal as Pop,
HRating employs the average of observed ratings of item
ej , i.e., rating(ej) =

∑m
i=1 oij/

∑m
i=1 yij . This implies that

workers are likely to give more ratings for items with highest
average ratings.

Entropy (Ent) [11]: Ent uses the entropy for considering
the uncertainty of observed ratings. Entropy is the disper-
sion of observed ratings, i.e., ent(ej) = −

∑5
i=1 pij log2(pij),

where pij is the probability of observed ratings that are equal
to i for ej .

Highest rating0 (HRating0): This improves HRating by
considering unobserved ratings in O. When computing the
average rating of item ej , this takes into account the ratio
of unobserved ratings, i.e., rating0(ej) =

∑m
i=1 oij/m.

Entropy0 (Ent0) [12]: To improve Ent, Ent0 exploits a
weighted entropy function by considering unobserved rat-
ings, i.e., ent0(ej) = −

∑5
i=0 wipij log2(pij). As the ratio of

unobserved ratings is much higher than that of observed rat-
ings, w0 is empirically tuned, and other weights w1, . . . , w5

are set by (1− w0)/5.

Harmonic mean of entropy and logarithm of fre-
quency (HELF) [12]: To combine Ent and Pop, HELF [12]
exploits the harmonic mean of two metrics, i.e., helf(ej) =

2 × log2(freq(ej))×ent(ej)

log2(freq(ej))+ent(ej)
. Because the two metrics have dif-

ferent ranges for log2(freq(ej)) and ent(ej), it is non-trivial
to normalize the metric scores. To address this problem, we
optimized HELF by employing the rankings of items, i.e.,
rank(freq(ej)) and rank(ent(ej)), which can combine two
metrics independently of score ranges. That is, we leverage
the harmonic mean of two rankings for ej , i.e., helfrank(ej)

= 2× rank(freq(ej))×rank(ent(ej))

rank(freq(ej))+rank(ent(ej))
.

In addition to these strategies, there are a number of plau-

sible strategies. Some strategies can be further optimized by
leveraging domain-specific and algorithm-specific properties.
Furthermore, different metrics can be used, e.g., diversifica-
tion and coverage. The presented strategies can be used as
a guideline for designing better strategies.

3.2 Controlling Minimum Number of Ratings
Once Esel is chosen by strategy S and presented to work-

ers, each worker will rate only a subset of Esel for a variety
of reasons (e.g., a worker cannot rate unseen movie items).
Let Erated be a set of r rated items, i.e., Erated = {e1, . . . er}
such that Erated ⊆ Esel, and let w be the number of work-
ers. When Erated is collected from w workers, supplementary
ratings can be represented by a worker matrix W ∈ Rw×n.
By vertically concatenating two matrices O and W , we can
acquire an augmented matrix A ∈ R(m+w)×n.

Note that if workers give ratings to only a few items (e.g.,
rating only 2 movies from 100 movies presented, |Erated| = 2
and |Esel| = 100), then concatenating the new ratings is
unlikely to improve the accuracy of CF, possibly making
the whole matrix even sparser. We thus enforce workers
to rate at least the minimum number of items, denoted by
rmin. Otherwise, we reject the ratings from those workers
without paying rewards.

The challenging issue is then how to determine rmin. Sim-
ilar to the elicitation strategies, we need to consider two
criteria: worker effort and the accuracy of ratings. When
rmin is too high, we can accrue many ratings but workers
are tempted to give more noisy ratings to meet the require-
ment. On the other hand, when rmin is too low, workers
may give more accurate ratings to only the small number of
items, yielding low impact to quality of worker matrix W .

Toward this issue, we propose three heuristics as the guide-
line for setting rmin. They can be used for designing a cost
model for the trade-off between the two criteria. Let us use
the frequency function for user ui, i.e., freq(ui) =

∑n
j=1 yij ,

to denote the number of items rated by ui.

Minimum frequency: We calculate the distribution of
user ratings from O, and treat the minimum number of user
ratings in O as the minimum effort that a worker should put
in, i.e., rmin = min

ui∈U (freq(ui)).

Average frequency: Given O, a sparsity function for the

degree of sparsity is calculated as sp(O) = 1−
∑m

i=1 freq(ui)

mn
.

If the sparsity of A decreases from that of O, it can be
viewed as one benefit of CrowdCF. That is, the ideal sce-
nario in CrowdCF meets the following inequality, sp(A) ≤
sp(O) ⇔ sp(O)+sp(W)

2
≤ sp(O) ⇔ sp(W) ≤ sp(O). Un-

folding the inequality further, we get: 1 −
∑w

i=1 freq(ui)

wn
≤

1 −
∑m

i=1 freq(ui)

mn
⇔

∑w
i=1 freq(ui)

w
≥

∑m
i=1 freq(ui)

m
. That is,

in order to reduce the sparsity, the average number of rat-
ings that we collect from workers should be no smaller than
that from O. rmin can be set by the average number of user

ratings in O, i.e., rmin =
∑m

i=1 freq(ui)

m
.

Median frequency: We observed that O follows the Zip-
ifan distribution in general. As a balanced way of the two
heuristics, rmin can be set by the median ratings in O, i.e.,
rmin = median

ui∈U (freq(ui)).

3.3 Filtering Noisy Ratings
Compared to the case of active learning, the quality of

ratings obtained from crowd-sourcing can be nosier. Spam

MovieRating MovieLens MovieLens
(DMR) (DML1) (DML2)

of users (m) 500 943 6,040
of items (n) 1,000 1,682 3,952
of ratings 43,865 100,000 1,000,209

Avg. # of ratings 87.73 106.04 165.6

Table 1: Statistics on three datasets

workers may provide random ratings for movies that they
have not watched to get paid. We thus have to identify
and exclude those spam workers who incur noisy ratings.
Specifically, we consider the following two features:

Task-independent features: Regardless of tasks, we can
avoid ill-qualified workers using AMT features such as geo-
location, HIT approval rate, or category of workers. Em-
pirically, we found that the average quality of movie ratings
by “master” workers1 was significantly higher than those of
regular workers.

Task-dependent features: Depending on the given tasks,
we use three domain-specific features. (1) Fake movie filter-
ing: we inject fake movies to Esel, and we regard workers as
spam workers if they rate the fake movies beyond a thresh-
old. (2) The time spent for a HIT: workers who finish given
HITs abnormally faster than others can be viewed as po-
tential spam workers. (3) Correlation between ratings by
a worker and average ratings from O: if the correlation is
abnormally low, it may indicate that the worker randomly
gave ratings.

4. OFFLINE EVALUATION
In this section, we conducted offline evaluation to sim-

ulate crowdsourcing. We randomly selected users as crowd
workers. The main reason why we conducted the offline eval-
uation is, based on the assumption that crowd workers have
similar characteristics with existing users, we can validate
the effectiveness of CrowdCF as done in existing works for
active learning [5, 11, 12], and test extensive experimental
settings for parameter optimization.

4.1 Experimental Setup
We used three datasets (DMR, DML1, and DML2), ob-

tained from real-life movie datasets, i.e., MovieRating2 and
MovieLens3. The details of the three datasets are summa-
rized in Table 1. To simulate crowdsourcing in CF, each
dataset is divided into three partitions: crowdsourced (DW),
observed (DO), and validated (DV), respectively.

Crowdsourced (DW): To decide crowd workers, a total
set of users is divided into disjoint two sets: existing users
and simulated workers. The workers are randomly chosen
among users with at least 70 ratings (i.e., freq(ui) ≥ 70).
These ratings in DW are represented by new matrix W .

Observed (DO): Except for the crowdsourced partition,
the rest of the dataset is divided into two partitions: ob-
served and validated ratings. The observed ratings are used
as an input for CF algorithms, represented by O.

Validated (DV): The validated ratings are unknown to CF
algorithms, and are only used for evaluating the accuracy.

1AMT labels the most qualified workers as “master”.
2http://www.cs.usyd.edu.au/~irena/movie_data.zip
3http://www.grouplens.org/node/12

40 80 120 160 200
0

20

40

60

80

of items to show

A
vg

. #
 o

f
ra

ti
n

g
s

p
er

 w
o

rk
er

Rand
HRating
Ent
Pop
HRating0
Ent0
HELF

100 200 300 400
0

20

40

60

80

of workers

A
vg

. #
 o

f
ra

ti
n

g
s

p
er

 w
o

rk
er

Rand HRating Ent Pop HRating0 Ent0 HELF

(a) Varying |Esel| (b) Varying w

Figure 1: Change of the number of collected ratings for various strategies (DML1)

40 80 120 160 200
0.8

0.82

0.84

0.86

0.88

0.9

of items to show

M
A

E

Rand HRating Ent Pop HRating0 Ent0 HELF

40 80 120 160 200
0.36

0.38

0.4

0.42

0.44

of items to show

F
1−

sc
o

re

Rand HRating Ent Pop HRating0 Ent0 HELF

Figure 2: Change of MAE and F1-score with varying |Esel| for various strategies (DML1)

100 200 300 400
0.8

0.82

0.84

0.86

0.88

0.9

of workers

M
A

E

Rand HRating Ent Pop HRating0 Ent0 HELF

100 200 300 400
0.36

0.38

0.4

0.42

0.44

of workers

F
1−

sc
o

re

Rand HRating Ent Pop HRating0 Ent0 HELF

Figure 3: Change of MAE and F1-score with varying w for various strategies (DML1)

For instance, for DML1 with 943 users and 100,000 rat-
ings, a range of 100–400 users (with a range of 19,000–73,000
ratings) are randomly chosen as crowd workers. Depending
on the strategies, the numbers of ratings in DW are ranged
from 440–30,000 (Figure 1). 543 users with about 21,600
ratings are used for DO, and about 5,400 ratings are used
for DV with five-fold cross validation. Similar break-downs
with three partitions are applied for other datasets.

We employed two types of evaluation measures: (1) the
number of collected ratings by workers and (2) the accuracy
such as mean absolute error (MAE), F1-score, and normal-
ized discounted cumulative gain (NDCG). Given two strate-
gies S1 and S2, if S1 yields a higher number of collected
ratings than S2, S1 can be better than S2 in CrowdCF.
Let V be a set of ratings in DV , and P be a set of pre-
dicted ratings for V . Given P and V , MAE is defined
as: MAE = 1

|V |
∑

eij∈V,êij∈P |eij − êij |, where |V | is the

number of ratings in V and êij is the predicted rating of
eij ∈ V . Let Vhigh and Phigh be {eij ∈ V |eij = 4 or 5}
and {êij ∈ P |êij = 4 or 5}, respectively. Note that Phigh

is computed by rounding off predicted ratings. F1-score is
computed by harmonic mean for precision and recall with
Phigh and Vhigh. We also used NDCG to consider more
weights for higher ratings, and found that the results for
NDCG show similar tendency to F1-score. (Due to the space
limitation, we omit the results for NDCG, but provide the

details of NDCG results in this web page4.)

4.2 Experimental Results
We compared various strategies – Rand, HRating, Ent,

Pop, HRating0, Ent0, and HELF with the following proce-
dure. (1) Divide the dataset into three partitions – DW ,
DO, and DV ; (2) For each worker, generate a set of items to
show Esel, and collect a set of rated items Erated out of Esel;
(3) Run a recommender algorithm, e.g., probabilistic ma-
trix factorization5 [14]. Note that this algorithm is executed
in partitions containing both DW and DO (i.e., augmented
matrix A). We then measured both MAE and F1-score for
DV ; and (4) Repeat steps (1)–(3) with five-fold cross vali-
dation. For DML1, we varied the number of items to show
|Esel|: 40, 80, 120, 160, and 200, and the number of workers
w: 100, 200, 300, and 400. By default, we set |Esel| = 200
and w = 400, respectively.

Number of Collected Ratings. Figure 1 reports on the
average number of ratings collected per worker for differ-
ent strategies using DML1. The effect of parameters was
observed as follows: (1) The average number of ratings per
worker increased linearly proportional to |Esel| for all strate-
gies; (2) This stayed constant independently of w; and (3)
Pop, HRating0, Ent0, and HELF collected the largest num-

4http://pike.psu.edu/download/crowdrec13/
5http://www.utstat.toronto.edu/~rsalakhu/BPMF.html

HRating Ent Pop HELF
20

30

40

50

Strategies

A
vg

. #
 o

f
ra

ti
n

g
s

p
er

 w
o

rk
er

w/o spam filtering
w/ spam filtering

HRating Ent Pop HELF
0.82

0.84

0.86

0.88

0.9

Strategies

M
A

E

w/o spam filtering
w/ spam filtering

HRating Ent Pop HELF
0.34

0.36

0.38

0.4

0.42

Strategies

F
1−

sc
o

re

w/o spam filtering
w/ spam filtering

(a) Avg. # of ratings per worker (b) MAE (c) F1-score

Figure 4: Change of avg. # of ratings, MAE, and F1-score for various strategies (DML1)

ber of ratings in all settings. For instance, when 200 items
were shown to each worker, Rand only collected about 20
ratings (10%), and HRating and Ent collected 37∼40 rat-
ings (18∼20%). In contrast, Pop, HRating0, Ent0, and HELF
collected 70∼75 ratings (35∼37%). Meanwhile, when |Esel|
was 40 or 80, HRating collected the smallest number of rat-
ings, implying that some items with high ratings may have
been “unseen” by workers (e.g., unpopular movies with good
reviews by critics). HRating0 and Ent0, considering unob-
served ratings in their formulas, collected 35∼40 ratings,
thereby improving HRating and Ent. We found that the re-
sults of other datasets (DMR and DML2) were parallel to
those of DML1. (Please refer to our web page.)

Accuracy. Figure 2 depicts MAE and F1-score for the num-
ber of items to show |Esel|. We used a baseline algorithm
(dotted line) with probabilistic matrix factorization [14], a
state-of-the-art CF algorithm, only using O without crowd-
sourcing. First and foremost, every strategy in CrowdCF no-
ticeably improved both MAE and F1-score from the base-
line. This is because the sparsity in CF becomes low for
some items, and the collected ratings in CrowdCF can thus
help to predict unobserved ratings. As the answer for our
main question in this paper, it empirically validated that
crowdsourcing is indeed effective for improving the accuracy
of CF. When |Esel| = 40, the difference of MAE across
strategies is negligible. However, as |Esel| increases, MAE
decreases in Pop, HRating0, Ent0, and HELF. Similarly, in-
creasing F1-score was proportional to |Esel|. In addition,
Pop, HRating0, Ent0, and HELF consistently outperformed
other strategies. One interesting observation is that Ent was
better than HRating for MAE, but worse for F1-score. This
is because HRating, focusing on items with high ratings of
four or five, is more appropriate for F1-score. These findings
were consistently observed in other datasets as well.

Figure 3 reports on MAE and F1-score over varying w.
Compared to |Esel| in Figure 2, MAE and F1-score were less
sensitive to w. Specifically, Rand, HRating, and Ent stayed
constant for MAE and F1-score. In contrast, Pop, HRating0,
Ent0, and HELF improved better as w increases. In addition,
we consistently observed that Ent was better than HRating
for MAE, but vice versa for F1-score.

We lastly evaluated the minimum number of ratings rmin

and the effect of spam workers by simulating the ratio δ
of noisy ratings. For rmin, we found that the best set-
ting of rmin is sensitive to the number of items to show.
For example, when we show relatively small items, the av-
erage frequency or the median of rmin leads to lower accu-
racy, whereas they are good parameters when showing many

Parameters Value

Strategies HRating, Ent, Pop, HELF
of items to show (|Esel|) 204 (real: 180, fake: 24)

Min. # of requested items (rmin) 20
of workers per strategy (w) 100

Reward per worker $0.7

Table 2: Parameter settings used for our HITs

items. It suggests that the number of items to show should
be taken account when setting rmin. As for noisy ratings, we
found that, as the number of collected ratings increases, the
accuracy is improved even if some ratings are noisy. (Please
see detailed experimental results in our web page.)

5. ONLINE EVALUATION
In this section, we conduct online experiments on AMT to

validate CrowdCF in the real-life scenarios. We explain how
to design HIT interface (Section 5.1), evaluate the accuracy
of various strategies (Section 5.2), and examine our method
used for filtering spam workers (Section 5.3).

5.1 Experimental Setup
We used DML1 in online experiments. The key difference

from the offline evaluation is that we exploit crowdsourced
ratings obtained from workers on AMT. We issue a HIT that
shows a certain number of movies, and ask workers to rate
movies that they have watched. Workers are encouraged to
rate as many movies as possible, but required to rate at least
the minimum number of movies rmin. Each HIT shows a set
of items Esel populated from elicitation strategies. Table 2
shows parameter settings used in the online evaluation. We
issued 100 assignments (w = 100) for four strategies, col-
lecting ratings from a total of 400 workers, and set rmin

as 20, evaluating the minimum frequency heuristic in Sec-
tion 3.2. For other two heuristics (i.e., average and median
frequency), rmin is set by 106 and 80, it is unrealistic to ask
workers to rate rmin movies.

5.2 Evaluating Elicitation Strategies
We compared various strategies in online settings. It was

found in offline experiments that some strategies produced
item sets with high correlations. We thus chose four strate-
gies, i.e., HRating, Ent, Pop, and HELF, that had the least
correlation with each other.

Number of collected ratings. Figure 4(a) shows the av-
erage number of collected ratings per worker over the four
strategies. These results compare two scenarios, without

Figure 5: Correlation of rated movies for strate-
gies (Each row from top to bottom corresponds to
HRating, HELF, Ent, and Pop, respectively.)

and with spam worker filtering (to be explained in Sec-
tion 5.3). We found the following observations: (1) Pop
collects the largest number of ratings, which is consistent
with the offline evaluation; (2) Out of 180 real movies that
we showed to workers, we collected 45 ratings (22%) on av-
erage, which is much higher than rmin = 20. This shows
that workers participated actively in our online evaluation;
and (3) HRating was least effective for collecting ratings, im-
plying that the movies with high ratings are not necessarily
the ones that most workers are familiar with.

Figure 5 illustrates the correlation between 25 movies with
the most ratings across strategies. The white cell indicates
that the movie is not in Esel for the corresponding strategy.
The darker the cell is, the more the number of collected rat-
ings is. We found that some movies are highly correlated
although the movie sets to show differ from strategies, e.g.,
“Pulp Fiction” and “Titanic” are mostly rated by workers re-
gardless of strategies. Therefore, it is an interesting research
direction to extend the coverage of selected movies.

Accuracy. Figures 4(b) and 4(c) depict MAE and F1-score
for the four strategies. As observed in the offline evalua-
tion, we verified that crowdsourced ratings improve the ac-
curacy of CF algorithms, compared to the baseline (dotted
line) that does not use crowdsourced ratings. Overall, HELF
and HRating were the best strategies for MAE and F1-score,
respectively. However, the performance gap between the
strategies and the results without crowdsourcing narrows
down compared to the offline experiments, as the number
of collected ratings in the online evaluation was relatively
small. If more ratings are collected, we expect that the ac-
curacy can be improved as observed in offline experiments.

We also observed that crowdsourced ratings with spam fil-
tering improved the accuracy compared to the ones without
spam filtering in both metrics. The effect of spam workers
varies over different strategies. In Ent, the ratio of rated
fake movies was 13% including 4 spam workers. Meanwhile,
in HELF, the ratio of rated fake movies was only 5%, all
of which only checked 3 fake movies. Ent thus shows more
drastic performance increase than HELF when spam work-
ers were removed. In addition, as the number of collected
ratings increases, crowdsourced ratings are less sensitive to
the number of spam workers.

5.3 Filtering Spam Workers
We first applied a task-independent feature (e.g., workers

with HIT approval rate ≥ 95%) to avoid potential spam
workers. We then performed spam filtering using two task-
dependent features: the number of fake movies rated and

work time to finish the HIT. When displaying a set of movies,
we include some fake movies on purpose, e.g., coming-soon
movies to be released in 2014 and fan-made non-existent
movies. Using the two features, we labeled a worker wc as a
spam worker, if (1) wc rated more than 3 fake movies and (2)
wc’s work time is too shorter than the average of workers.

To consider how carefully workers rate items, we analyzed
the work time that each worker takes to complete the HIT.
The assumption is that the more time workers take to rate
items, the more careful they are. Our analysis show that
obvious spam workers who rated more than five fake movies
took about 3 seconds while non-spam workers who rated
zero fake movies took about 10 seconds on average. The
average work time per item was used as one of the filtering
features.

6. CONCLUSION
In this paper, we proposed CrowdCF to enhance the ac-

curacy of CF. In order to best utilize new ratings collected
from the crowd, we studied the three important issues raised
in CrowdCF: elicitation strategies, the minimum number of
ratings, and spammer filtering. We evaluated both offline
experiments and online experiments on AMT, and demon-
strated that CrowdCF can be the complementary method for
alleviating the sparsity problem in CF.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Trans. Knowl. Data Eng.,
17(6):734–749, 2005.

[2] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S.
Ackerman, D. R. Karger, D. Crowell, and K. Panovich. Soylent:
a word processor with a crowd inside. In UIST, pages 313–322,
2010.

[3] C. Boutilier, R. S. Zemel, and B. M. Marlin. Active
collaborative filtering. In UAI, pages 98–106, 2003.

[4] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing
systems on the world-wide web. Commun. ACM, 54(4):86–96,
2011.

[5] M. Elahi, V. Repsys, and F. Ricci. Rating elicitation strategies
for collaborative filtering. In EC-Web, pages 160–171, 2011.

[6] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing. In
SIGMOD, pages 61–72, 2011.

[7] A. Harpale and Y. Yang. Personalized active learning for
collaborative filtering. In SIGIR, pages 91–98, 2008.

[8] Z. Huang, H. Chen, and D. D. Zeng. Applying associative
retrieval techniques to alleviate the sparsity problem in
collaborative filtering. ACM Trans. Inf. Syst., 22(1):116–142,
2004.

[9] M. Jamali and M. Ester. TrustWalker: a random walk model
for combining trust-based and item-based recommendation. In
KDD, pages 397–406, 2009.

[10] H. Ma, I. King, and M. R. Lyu. Effective missing data
prediction for collaborative filtering. In SIGIR, pages 39–46,
2007.

[11] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee,
J. A. Konstan, and J. Riedl. Getting to know you: learning new
user preferences in recommender systems. In IUI, pages
127–134, 2002.

[12] A. M. Rashid, G. Karypis, and J. Riedl. Learning preferences of
new users in recommender systems: an information theoretic
approach. SIGKDD Explorations, 10(2):90–100, 2008.

[13] N. Rubens, D. Kaplan, and M. Sugiyama. Active learning in
recommender systems. In Recommender Systems Handbook,
pages 735–767. Springer, 2011.

[14] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In NIPS, 2007.

[15] T. Yan, V. Kumar, and D. Ganesan. CrowdSearch: exploiting
crowds for accurate real-time image search on mobile phones.
In MobiSys, pages 77–90, 2010.

