
Human-Powered Blocking in Entity Resolution:
A Feasibility Study

Weiling Li Jongwuk Lee Dongwon Lee
The Pennsylvania State University
University Park, PA 16802, USA

{wul135, jxl90, dongwon}@psu.edu

ABSTRACT
Entity Resolution (ER) is the problem of matching the records that
refer to the same entity within or across two or more data sources.
In recent years, human-powered ER solutions have been proposed
so that challenging ER tasks, that machines cannot do well, can
be helped by human workers. While successful in achieving high
matching accuracy, existing human-powered ER methods did not
incorporate a core technique, i.e., blocking, for improving the scal-
ability of the ER process. To address this issue, this paper carries
out the feasibility study to validate whether the blocking technique
can be integrated into the human-powered ER. Specifically, we first
propose two variations of human-powered blocking methods. We
then validate their effectiveness in improving the scalability of the
ER process through simulated crowdsourcing and AMT-based ex-
periments in synthetic and real-life datasets, respectively.

Categories and Subject Descriptors
H.2.0 [Database Management]: General

General Terms
Design, Management

Keywords
Crowdsourcing, Entity Resolution, Blocking

1. INTRODUCTION
Entity Resolution (ER) is the process of identifying all pairs of
records that represent the same real-world entity. The recent ex-
plosion in both volume and velocity of data within scientific and in-
dustrial settings has made ER one of the critical data pre-processing
techniques utilized before data analysis takes a place. A significant
number of work has addressed these needs by attempting to de-
velop machine-based techniques of entity resolution (e.g., [2, 5, 6,
11, 18]). Despite their success, some ER tasks are still inherently
challenging for machines to obtain high accuracy. To illustrate this,
we explain the following example scenario.

Example 1. There are four images in Figure 1 and suppose “match-
ing” images need to be identified. Note that the precise definition

(1) (2) (3) (4)

Figure 1: Description of four sport images for ER

of the “matching” can be determined differently in various appli-
cations. This example shows a scenario where image matching is
determined in a more semantic sense (i.e., identifying images of
the same sport type). This can be a challenging task, even when
using the latest techniques in image processing. Not only it can be
computationally challenging, diverse features such as color, shape,
texture, or position can lead to different results. However, if the
same set of images is given to humans, it would be relatively easy
to identify that images (1) and (3) include cycling as the same ac-
tivity.

Recently while addressing this challenge, an array of new attempts
(e.g., [7, 15, 16, 17]) have been made to incorporate a crowdsourc-
ing framework into the ER process. The underlying premise of
such attempts is that some ER tasks (e.g., Example 1) are inher-
ently challenging for machines to perform well (using any contem-
porary state-of-the-art techniques), though much easier for humans.
Therefore, the new methods first identify the subset of ER tasks that
are challenging for machines, and have them solved through human
workers in crowdsourcing marketplaces such as Amazon Mechan-
ical Turk (AMT)1 or CrowdFlower2.

Leveraging on these work, this paper investigates a core technique,
called blocking in the ER literature that reduces the quadratic na-
ture of all pair-wise comparisons of records. By grouping records
that are more likely to match into the same “block” and run pair-
wise comparisons only within blocks, the time of the ER process
on n records would be reduced from O(n2) to O(n+ kb̃2), where
k is the number of blocks and b̃ is the average number of records in
a block. Because k and b̃ are often much smaller than n, this adop-
tion of blocking can decrease the running time of the ER process
dramatically.

1http://www.mturk.com/
2http://www.crowdflower.com/

In particular, when crowdsourcing is involved in the ER process,
the number of tasks assigned to human workers, referred to the
Human Intelligence Task (HIT), is proportional to the cost paid to
human workers. That is, it is important to design human-powered
ER methods that achieve high accuracy while keeping the expenses
low. With the adoption of blocking, if the number of comparisons
is reduced from O(n2) to O(n+kb̃2), it would essentially amount
a reduction in HITs, thereby reducing the cost.

In this paper, the objective of the feasibility study is to investigate
whether the blocking technique can be successfully incorporated
into human-powered ER. Toward this goal, we first propose two
human-powered blocking methods. Then, each method is validated
in its effectiveness in reducing overall cost through both simulated
crowdsourcing and AMT-based experiments in synthetic and real-
life datasets, respectively.

To summarize, this paper makes the following main contributions:

• We identify fundamental human-powered operations that are
needed to perform human-powered ER tasks.

• We develop two methods for human-powered blocking build-
ing upon the fundamental human-powered operations.

• We validate that our two proposed human-powered blocking
methods significantly reduce the cost of human-powered ER
while maintaining reasonable ER accuracy.

This paper is organized as follows. In Section 2, we overview our
research background and related work. In Section 3, we illustrate
fundamental human-powered operations. In Section 4 two varia-
tions of human-powered blocking are proposed using the funda-
mental operations. In Section 5, we report and analyze the experi-
mental results of our proposed human-powered ER blocking meth-
ods. In Section 6 we finally conclude our work.

2. BACKGROUND
In recent years, crowdsourcing has developed rapidly and has made
tremendous contributions to the database community [13], data min-
ing algorithms [1], and data integration techniques [4, 10, 14, 20].
In addition, crowdsourcing is newly applied to entity resolution.
Wang et al. [15] first incorporated crowdsourcing in ER. To mini-
mize the number of crowd-labeled pairs, a threshold of the machine-
based similarity between records [15] and transitive relations [16,
17] are applied. Moreover, more sophisticated algorithms are ex-
tended for ER such as approximation approaches [15] and proba-
bilistic networks and machine learning [7, 17]. In general, most
work uses crowd-human computation by crowdsourcing only in
parts of the ER workflow, (i.e., a matcher), but it needs develop-
ers in the remaining parts. Corleone [7] first introduced the no-
tion of hands-off crowdsourcing, where crowdsourcing rather than
machine-based techniques is used in the entire workflow of ER.
Similarly, in this paper, we also take advantage of crowdsourcing
in the multiple steps of ER.

As studied in existing work, the need for ER tasks is growing rapidly.
Becuase the real-life datasets are usually large, ER tasks are costly.
The common approach to enhancing the performance of ER is to
reduce the number of pairs to be matched in the blocking step,
which is the first step of the ER workflow. Many studies [2, 3,
18] have demonstrated the importance of blocking, and applied it

Are two images similar?

Yes No

Select the image that is most similar to Target

Target

. . .

(a) hp_match (b) hp_most_similar

Figure 2: Basic human-powered operations as HITs.

in ER. Specifically, an entire dataset is first partitioned into smaller
multiple partitions (so-called blocks) with similar records by block-
ing. In this case, matching is only used within the same block, and
pair-wise comparisons are made on a smaller number of candidate
records. However, these works on large-scale ER [2, 3, 18] do not
employ crowdsourcing in the blocking step in ER.

So far, we found that Corleone [7] first attempted the combination
of crowdsourcing and blocking in a naïve manner. Similarly, crowd
clustering was proposed for leveraging crowdsourcing to assess the
similarity of records [8, 19]. In the clustering problem, the selec-
tion of centroids is a key part to perform clustering algorithms. To
address this problem, the crowd-median algorithm [9] developed
the crowdsourced median selection, and applied it to the k-means
clustering algorithm (including assign, update steps). Nevertheless,
there is an urgent need for more advances in crowdsourcing block-
ing.

In this paper, we study how to extend crowdsourcing to the block-
ing methods in ER. Toward this goal, we first introduce basic human-
powered operations used in the blocking methods. We then de-
velop two blocking methods: (1) an extension of the crowd-median
method [9] for blocking and (2) a hierarchical blocking method.
Different from other crowdsourced techniques, our blocking meth-
ods for ER are built upon fundamental operations, and therefore are
intuitive and easy to implement.

3. HUMAN-POWERED OPERATIONS AND
COMPONENTS

In this section, we first introduce two fundamental human-powered
operations. Using these operations, questions are asked to human
workers and their answers are used in the human-powered ER. We
then describe the human-powered components that are composed
of the fundamental operations, which are used for our proposed
human-powered blocking methods. Specifically, we first explain
the following two human-powered operations:

• hp_match(r, r′): This operation presents two records, r
and r′ to humans, as illustrated in Figure 2(a). It asks hu-
man workers whether two records are matching or not. If
workers answer “yes”, two records are matched. Otherwise,
they are unmatched. As mention in Example 1, the meaning
of matching two records can be ambiguous. Therefore, the
definition of matching should be mentioned precisely in this
operation.

• hp_most_similar(rt, C): This operation asks workers to
choose a single record that is most similar (per whatever
given definition) to the target record rt among a set of candi-
dates C, as illustrated in Figure 2(b).

Algorithm 1 FindCentroids

Input: D: a set of records
Output: C: a set of block centroids
1: Shuffle D
2: C ← {D[0]} . Set the first centroid
3: for each r ∈ D \ C do
4: if r is dissimilar to all current centroids c ∈ C then
5: C ← C ∪ {r} . Add a new centroid
6: end if
7: end for
8: return C

We next describe key components used in human-powered block-
ing. Human-powered blocking groups a set of records, via human
workers, into multiple blocks so that matching records are most
likely to be clustered into the same block. To perform this pro-
cess, our human-powered blocking consists of three components:
FindCentroids, Assign and PairwiseMatch.

We explain how to execute each component using fundamental op-
erations as follows.

1. FindCentroids: Let human workers select a set of most rep-
resentative records, called centroids, where the number of
centroids can be explicitly specified or set arbitrarily. Algo-
rithm 1 illustrates the overall procedure of FindCentroids,
which is based on the aforementioned human-powered oper-
ation, hp_match(r, c), for all existing centroids c ∈ C (see
line 4). That is, we scan over the dataset D, compare ev-
ery record r ∈ D with the current block centroids founded.
If r is different with respect to every block centroid, then r
is a newly founded block centroid added to the set of block
centroids.

2. Assign: Let human workers assign each remaining record
to the most similar centroid among K centroids (thus form-
ing K blocks). Algorithm 2 illustrates the implementation
of the Assign component based on hp_most_similar(r, C),
that determines to which block a current record r should be
assigned to.

3. PairwiseMatch: For every pair of records within each block,
let human workers determine whether or not two records are
matching. Algorithm 3 illustrates the implementation of the
PairwiseMatch component that again utilizes hp_match(r,
r′) for every pair (r, r′) in a block.

4. HUMAN-POWERED BLOCKING
In this section, we present two human-powered blocking methods
using the three components introduced in Section 3. First, Algo-
rithm 4 illustrates the conceptual workflow of the blocking-based
ER process. Within each block, we employ pair-wise compar-
isons. As the possible implementation of Blocking() module in
Algorithm 4 (line 2), we propose two variations: (1) a flat blocking
with crowd-median method in [9], and (2) a recursive hierarchical
blocking.

4.1 Median-based Human-Powered Blocking
Heikinheimo and Ukkonen [9] proposed a crowd-based method to
identify the median of a collection via asking a sample of triplet

Algorithm 2 Assign

Input: D: a set of records
C: a set of block centroids

Output: B: a set of blocks of records
1: for each centroid ci ∈ C do
2: Bi ← {ci}
3: end for
4: B ← {B1, B2, . . . , Bk} . Initialize blocks
5: for each record r ∈ D \ C do
6: ci = hp_most_similar(r, C)
7: Bi ← Bi ∪ {r}
8: end for
9: return B

Algorithm 3 PairwiseMatch

Input: D: a set of records
Output: P : a set of matching record pairs
1: P ← ∅ . Initialization
2: for each r ∈ D do
3: for each r′ ∈ D \ {r} do
4: if hp_match(r, r′) then
5: P ← P ∪ {(r, r′)}
6: end if
7: end for
8: end for
9: return P

questions (i.e., “Out of three items pick an outlier that appears
to be different from the two others") to human workers, and then
demonstrated its usage by simulating the k-means clustering al-
gorithm. The main idea is abstracted as UpdateCentroids(B) in
Algorithm 5, whereB is a set of blocks. Because centroids directly
affects the quality of clustering, we optimizes the centroid selection
by finding the median of each individual cluster (Bi ∈ B) that min-
imizes the sum of the distance to every other record in the cluster,
respectively. The distance can be implicitly induced by the workers
through making decisions on the similarity between records.

Specifically, UpdateCentroids(B) takes in a set of blocks as in-
put. Within each block, it first computes a penalty score for each
record, defined as the number of times the record is chosen to be
“different" in triplets (a set of three records chosen from the block)
by the crowd. It then returns the record with the lowest penalty
score, which is the block centroid. To reduce the number of HITs,
the scheme in [9] also allows the inputs of two sampling parame-
ters, the number of pruning cycles (L) and the number of passes
(H) over the database to obtain sampling of triplets. Here, for the
sake of simpler presentation, we omit such inputs in Algorithm 5.
We can refer to more detailed implementation for UpdateCen-
troids(B) in [9].

Algorithm 5 illustrates the overall procedure of median-based block-
ing method. This blocking methods essentially starts with the ran-
dom centroid-based initial blocking (using FindCentroids and As-
sign) and subsequently updates on the quality of blocking via the
crowd-based median method (using UpdateCentroids). Update-
Centroids and Assign are performed recursively until the number
of iterations reaches the maximum number or the algorithm con-
verges when the assignments no longer change.

4.2 Hierarchical Human-Powered Blocking

Algorithm 4 Entity Resolution (ER)

Input: D: a set of records
Output: P : a set of matching record pairs
1: P ← ∅ . Initialization
2: B ← Blocking(D) . Create blocks
3: for each block Bi ∈ B do . matching within each block
4: P ← P∪ PairwiseMatch(Bi)
5: end for
6: return P

Algorithm 5 Median-based Human-Powered Blocking

Input: D: a set of records
maxIter: the # of maximum iterations

Output: B: a set of blocks of records
1: iter ← 1
2: C ← FindCentroids(D) . Initial centroids
3: B ← Assign(D,C)
4: iter ← iter + 1
5: changed← true
6: while iter ≤ maxIter and changed = true do
7: oldB ← B . existing blocks
8: C ← UpdateCentroids(B) . updated centroids
9: B ← Assign(D,C)

10: if oldB = B then
11: changed← false
12: end if
13: iter ← iter + 1
14: end while
15: return B

This method incorporates the hierarchical blocking idea to reduce
the number of comparisons and improve the accuracy. To improve
the overall accuracy, the algorithm runs multiple iterations, miti-
gating the randomness effect of initial centroids. In each iteration,
the algorithm builds a K-ary tree of blocks in a top-down fashion
outlined in the Hierarchy procedure (Lines 9-23) in Algorithm 6.
Splits are performed recursively by applying the human-powered
FindCentroids and Assign components when moving down the
hierarchical tree. The final blocks are the union of blocks through
all iterations (Line 4 in Algorithm 6). In the end, pair-wise match-
ing will be implemented within each final block, and duplicated
matching will be avoided.

One issue to address is deciding when to stop the splitting of blocks.
In this paper, we experimented the following two heuristics:

1. the number of current blocks exceeds the maximum number
of blocks, and

2. the number of HITs due to further blocking exceeds that from
direct matching. (abstracted as split_costs_more in Line
14 in Algorithm 6.)

Algorithm 6 illustrates the overall procedure of hierarchical block-
ing method. The blocking is recursively partitioned and two split-
ting criterion are used in line 14. Direct matching involves pair-
wise comparisons, therefore needs n ∗ (n − 1)/2 HITs, where n
is the current size of the partition. It is not easy to estimate the
number of HITs needed for further blocking and matching within
blocks. However, we can estimate the minimum value that will be
explained in Section 5.

Algorithm 6 Hierarchical Human-Powered Blocking

Input: D: a set of records
S: a block-size threshold
K: a K-ary tree
maxIter: the # of maximum iterations

Output: B: a set of blocks of records
1: procedure HIERARCHICALBLOCKING(D,S,K,maxIter)
2: B ← ∅, iter ← 1 . Initialization
3: while iter ≤ maxIter do
4: B ← B∪ Hierarchy(D,S,K)
5: iter ← iter + 1
6: end while
7: return B
8: end procedure
9: procedure HIERARCHY(D,S,K)

10: B ← ∅
11: if |D| > S then
12: C ← FindCentroids(D,K)
13: IB ← Assign(D,C) . IB: Intermediate blocks
14: for each IBi ∈ IB do
15: if |IBi| > S && split_costs_more then
16: Hierarchy(IBi, S,K)
17: else
18: Bi ← IBi

19: B ← B ∪ {Bi}
20: end if
21: end for
22: else
23: B ← {D}
24: end if
25: return B
26: end procedure

5. EXPERIMENTS
In this section, we evaluate our proposed methods in both synthetic
and real-life datasets. In particular, we employ two different HIT
designs, binary and n-ary HIT designs, utilized for the human-
powered operations. Since displaying more records can provide
crowd workers with more information as discussed in [12], we em-
pirically validate the differences between the two HIT designs in
terms of accuracy and the number of HITs. Specifically, we de-
scribe the two HIT designs for FindCentroids and Assign compo-
nents. As only one pair of records is displayed at a time for the
PairwiseMatching component, it is simply represented by the bi-
nary HIT.

• binary HIT: This only processes two images at a time. In
order to generate K block centroids using FindCentroids, it
requires us to generate at least 1 + 2 + · · · + (K − 1) =
K × (K − 1)/2 HITs. In addition, in order to assign a non-
centroid record into one of K blocks using Assign, we need
(|D| − K) × (K − 1) HITs for (|D| − K) non-centroid
records, where |D| is the number of records in D.

• n-ary HIT: Suppose that all centroids can be displayed to
the workers at once. In order to find K block centroids us-
ing FindCentroids, it thus requires us to generate at least
(K − 1) ∗ 1 = K − 1 HITs, i.e., each n-ary HIT generates a
new centroid in the best case. In addition, in order to assign
a non-centroid record into one of K blocks using Assign,
we need (|D| − K) HITs. Compared to the binary HIT, n-

1 2 3
0

0.2

0.4

0.6

0.8

1

Iterations

R
ec

al
l

MedianBlocking
HierarchicalBlocking

Figure 3: Recall comparison between the median-based block-
ing and hierarchical blocking over various iterations.

1 2 3
0

1

2

3

4

5

6

7
x 10

5

Iterations

of

 H
IT

s

MedianBlocking (binary)
MedianBlocking (n−ary)
HierarchicalBlocking (binary)
HierarchicalBlocking (n−ary) Naive

Figure 4: The number of HITs for median-based blocking and
hierarchical blocking over various iterations. Naive indicates
the baseline method by all pair-wise matchings.

ary HIT can significantly reduce the number of HITs in both
FindCentroids and Assign components.

5.1 Evaluation on Synthetic Data
In order to simulate crowdsourcing, we randomly generate 1000
two-dimensional points consisting of 10 clusters3 by Weka4. To
measure the similarity between two points p and q, Euclidean dis-
tance d(p, q) is used. Depending on a distance threshold δ, a pair of
points can be matched or non-matched. Specifically, if d(p, q) ≤ δ,
points are matched. Otherwise, they are non-matched. We use
the same distance threshold to determine whether two points are
similar or not. The distance comparison can be used to simu-
late the fundamental human-powered operations, hp_match and
hp_most_similar. In our simulation, we set δ as 1.41, where 3%
3www.personal.psu.edu/~wul135/CrowdSens14/1k
4www.cs.waikato.ac.nz/ml/weka

Figure 5: Hierarchy of the images dataset. The number in the
leaf node indicates the number of images in the ground truth.

of point pairs (i.e., 14,985 out of 499,500 pairs) are matched.

We next explain the detailed settings of our proposed blocking
methods: median-based blocking and hierarchical blocking. First,
in the median-based blocking method, we use a sampling method
proposed in [9]. By default, two parameters for sampling are set
as L = 1 and H = 5 to obtain sampling of triplets, where L and
H denote the number of pruning cycles and the number of passes
respectively. Next, the hierarchical blocking has two parameters ,
i.e., the block size threshold S and the arity of the tree K. By de-
fault, we set S = 100 and K = 5. For simplicity, we assume that
human workers always give the correct answers for given HITs.
In this case, the outcomes for all human-powered operations (i.e.,
FindCentroids, Assign and PairwiseMatch) are correct for either
binary or n-ary HIT designs, thus the precision is always 1.0. In
both binary and n-ary designs, we also assume the order of records
for every operation are the same as input. In this case, because the
same results could be achieved from two different HIT designs, the
recall can be equal in both binary and n-ary designs. However, such
two assumptions do not hold in our AMT-based experiments.

We next report our experimental results for the number of HITs and
recall to quantify the cost and accuracy, respectively. The recall of
the baseline method is 1.0 when we do all pair-wise matchings.
Figure 3 demonstrates the significant improvement for the recall,
as hierarchical blocking is iterated. After 3 iterations, the recall
reaches about 0.9. Meanwhile, the recall for median-based block
method stays constant regardless of iterations, i.e., it is about 0.5
for all the iterations. This implies that the updated centroids do not
help to improve the recall. Next,

Figure 4 shows that our proposed blocking methods can help to
reduce the number of HITs, compared our baseline method that
generates all pair-wise matching. That is, the naïve method needs
1000*(1000-1)/2 = 499,500 HITs (see the red dash in Figure 4).
As expected, we observed that the n-ary HIT design can further re-
duce the number of HITs than the binary HIT design in both block-
ing methods. As the number of iterations increases, the number
of HITs increases as well. Nevertheless, hierarchical blocking still
generates a small number of HITs for both HIT designs. The simu-
lation study shows that, when hierarchical blocking is employed in
ER, we can achieve high recall with a low cost for binary and n-ary
HIT designs.

5.2 Evaluation on Real-life Data

1 2 3
0

0.2

0.4

0.6

0.8

1

Iterations

F
1−

sc
or

e

MedianBlocking (binary)
MedianBlocking (n−ary)
HierarchicalBlocking (binary)
HierarchicalBlocking (n−ary) Naive

Figure 6: F1-score comparison between median-based block-
ing and hierarchical blocking over various iterations. Naive
indicates the baseline method by all pair-wise matchings.

1 2 3
0

20

40

60

80

100

Iterations

M
on

et
ar

y
co

st
 (

$)

MedianBlocking (binary)
MedianBlocking (n−ary)
HierarchicalBlocking (binary)
HierarchicalBlocking (n−ary)

Naive

Figure 7: Monetary cost in AMT for median-based blocking
and hierarchical blocking over various iterations. Naive indi-
cates the baseline method by all pair-wise matchings.

We next evaluate our proposed algorithms in a real-life dataset. We
collected 100 images 5 from ImageNet6. Specifically, ImageNet is
an image database organized according to the WordNet hierarchy,
where each node of the hierarchy includes hundreds of thousands
of corresponding images. If two images share the same parent node
in the hierarchy, they are matched. The hierarchy of our dataset is
shown in Figure 5. This data set has 585 pairs of matching records
in eight leaf nodes. Therefore, our human-powered ER task is to
identify the images in the same categories via crowdsourcing.

We also implemented two human-powered blocking methods with
both n-ary and binary HIT designs. For median-based blocking,
two parameters for sampling are set as L = 1 and H = 5. For

5www.personal.psu.edu/~wul135/CrowdSens14/100imgs
6www.image-net.org/

1 2 3
2

2.1

2.2

2.3

2.4

Iterations

of

 a
ss

ig
nm

en
ts

 p
er

 H
IT

MedianBlocking (binary)
MedianBlocking (n−ary)
HierarchicalBlocking (binary)
HierarchicalBlocking (n−ary)

Figure 8: The average number of assignments per HIT in AMT
for the median-based blokcing and hierarchical blocking over
various iterations

hierarchical blocking, we set S = 15 and K = 4. In both blocking
methods, the maximum number of iterations are 3, i.e.,maxIters =
3. We created HITs on Amazon Mechanical Turk (AMT), which
is the most famous crowdsourcing platform. For each question, we
paid $0.01 to crowd workers. While a binary HIT is assigned to
three different workers, an n-ary HIT requires (n + 1) workers.
The final answers of HITs are then decided by majority voting. To
reduce the number of assignments (i.e., the replicated times a HIT
is assigned to different workers), we simply optimize HIT assign-
ments for both HIT designs: Initially, each HIT is assigned to two
workers. If the answers of the two workers are different, the HITs
are iteratively assigned to the other worker until we obtain the an-
swers with majority votes.

However, the F1-score remains low after iterations. The accuracy
for ER with hierarchical blocking is not improved much after itera-
tions. However, the F1 score is slightly higher than 0.7 even in the
first iteration.

When measuring the accuracy, we adopted F1-score, which is widely
used in the IR literature. This is computed by the harmonic mean
of precision and recall. The closer the F1-score is to 1, the more
accurate the ER solution is. In addition, the costs for different iter-
ations have been analyzed. The baseline of accuracy is 0.9, and the
cost is $101.3 when the naïve method is only run one time (see red
dashes in Figures 6 and 7).

Figure 6 illustrates that hierarchical blocking can achieve higher ac-
curacy for F1-score than the median-based blocking. As the num-
ber of iteration increases, the F1-score for both blocking method
becomes slightly higher. For instance, after 3 iterations, the F1-
score for hierarchical blocking reaches about 0.74. The F1-score
is improved by 5% in the n-ary HIT design and 9% in the binary
HIT design. In Figure 6, it is clear that blocking methods with n-
ary HIT design help to improve the accuracy. This implies that the
n-ary HITs give more information than the binary HITs.

Figure 7 shows the comparisons results between two blocking meth-
ods in terms of monetary cost. As observed in the simulation study,

the binary HIT design requires more cost than n-ary HIT design
in both blocking. Specifically, the median-based blocking gener-
ated 6 blocks by the binary HIT design and 23 blocks by the n-ary
HIT design at each iteration. Meanwhile, the hierarchical blocking
using both HIT designs generated 10-13 blocks at each iteration.
Although in the n-ary HIT design, the cost for hierarchical block-
ing is higher than that for median-based blocking by around $10, it
still much lower than the baseline.

Lastly, Figure 8 depicts an n-ary HIT design requires slightly larger
number of assignments per HIT than the binary HIT design. For
both HIT designs, less than 2.3 assignments are needed for each
HIT. This suggests that, because crowd workers usually return con-
sistent answers, our simple optimization for assignment can help to
reduce the overall cost.

6. CONCLUSION AND FUTURE WORK
We have proposed two variations of human-powered blocking for
ER, i.e., the median-based and the hierarchical human-powered
blocking algorithms, based upon the fundamental human-powered
operations that are simple and easy for crowd workers to answer.
The feasibility study indicates our proposals can reduce the cost
and maintain a relative high accuracy. Our human-powered block-
ing methods can also be applied to large-scale entity resolution
problems (i.e., big data), and extended to other data integration
tasks to enhance the overall performance as well as accuracy. As
the future work, we will apply machine learning algorithms for
constructing blocking functions to reduce uncertainty and hence
improve the accuracy while maintaining a low cost.

7. REFERENCES
[1] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart.

Crowd mining. In Proceedings of the 2013 international
conference on Management of data, pages 241–252. ACM,
2013.

[2] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. Knowledge and Data
Engineering, IEEE Transactions on, 24(9):1537–1555, 2012.

[3] A. Das Sarma, A. Jain, A. Machanavajjhala, and
P. Bohannon. An automatic blocking mechanism for
large-scale de-duplication tasks. In Proceedings of the 21st
ACM international conference on Information and
knowledge management, pages 1055–1064. ACM, 2012.

[4] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
Zencrowd: leveraging probabilistic reasoning and
crowdsourcing techniques for large-scale entity linking. In
Proceedings of the 21st international conference on World
Wide Web, pages 469–478. ACM, 2012.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. Knowledge and Data

Engineering, IEEE Transactions on, 19(1):1–16, 2007.
[6] L. Getoor and A. Machanavajjhala. Entity resolution: theory,

practice & open challenges. Proceedings of the VLDB
Endowment, 5(12):2018–2019, 2012.

[7] C. Gokhale, S. Das, A. Doan, J. F. Naughton, R. Rampalli,
J. Shavlik, and X. Zhu. Corleone: Hands-off crowdsourcing
for entity matching.

[8] R. Gomes, P. Welinder, A. Krause, and P. Perona.
Crowdclustering. 2011.

[9] H. Heikinheimo and A. Ukkonen. The crowd-median
algorithm. In First AAAI Conference on Human Computation
and Crowdsourcing, 2013.

[10] S. R. Jeffery, L. Sun, M. DeLand, N. Pendar, R. Barber, and
A. Galdi. Arnold: Declarative crowd-machine data
integration. In CIDR, 2013.

[11] H. Köpcke and E. Rahm. Frameworks for entity matching: A
comparison. Data & Knowledge Engineering,
69(2):197–210, 2010.

[12] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. In Proceedings of the 39th
international conference on Very Large Data Bases, pages
109–120. VLDB Endowment, 2012.

[13] B. Mozafari, P. Sarkar, M. J. Franklin, M. I. Jordan, and
S. Madden. Active learning for crowd-sourced databases.
arXiv preprint arXiv:1209.3686, 2012.

[14] N. W. Paton and A. A. Fernandes. Crowdsourcing feedback
for pay-as-you-go data integration. DBCrowd 2013, page 32,
2013.

[15] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. Proceedings of the VLDB
Endowment, 5(11):1483–1494, 2012.

[16] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
Proceedings of the 2013 international conference on
Management of data, pages 229–240. ACM, 2013.

[17] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question
selection for crowd entity resolution. Proceedings of the
VLDB Endowment, 6(6):349–360, 2013.

[18] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking.
In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pages 219–232. ACM,
2009.

[19] J. Yi, R. Jin, A. K. Jain, and S. Jain. Crowdclustering with
sparse pairwise labels: A matrix completion approach. In
AAAI Workshop on Human Computation, volume 2, 2012.

[20] C. J. Zhang, L. Chen, H. Jagadish, and C. C. Cao. Reducing
uncertainty of schema matching via crowdsourcing.
Proceedings of the VLDB Endowment, 6(9):757–768, 2013.

