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Abstract. We introduce a classification framework for continuous multivariate 
stream data. The proposed approach works in two steps. In the preprocessing 
step, it takes as input a sliding window of multivariate stream data and discre-
tizes the data in the window into a string of symbols that characterize the signal 
changes. In the classification step, it uses a simple text classification algorithm 
to classify the discretized data in the window. We evaluated both supervised 
and unsupervised classification algorithms. For supervised, we tested Naïve 
Bayes Model and SVM, and for unsupervised, we tested Jaccard, TFIDF, Jaro 
and JaroWinkler. In our experiments, SVM and TFIDF outperformed the other 
classification methods. In particular, we observed that classification accuracy is 
improved when the correlation of attributes is also considered along with the  
n-gram tokens of symbols. 

1   Introduction 

Different sensor network applications generate different types of data and have differ-
ent requirements for data processing (e.g., long term monitoring of sea level change 
vs. real-time intrusion detection). Different data processing strategies need to be  
considered for the different types of applications. Even in the same application, the 
characteristics of data generated in the network sometimes changes over time. For 
example, in a network monitoring application, users may want to receive only 5% 
samples of original data when network operates normally, while they might want to 
receive full data for further analysis when an interesting pattern (e.g., similar to a 
predefined intrusion pattern) is detected. The ability of handling sensor data adap-
tively by detecting changing characteristics of data becomes important in many data-
centric sensor applications. 

In order to address this problem, we propose a scalable framework for multivariate 
stream data classification that allows using simple, well-understood text classifiers to 
classify multivariate streams, instead of building custom classification algorithms for 
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different sensor applications. The proposed method works in two steps as follows. It 
first discretizes the stream data into a string of symbols that characterize the signal 
changes, and then applies classification algorithms to classify the transformed data. 
This transformation simplifies the classification task significantly.  

The classification model is learned from a user-labeled data. Users assign a de-
scriptive label to each window in the training set. For example, if the sensor data in a 
window contains an intrusion pattern, the user labels the window as “intrusion”. Simi-
larly, if a window contains normal signals, it can be labeled as “normal”. Once the 
classification model is built, the classifier can start taking new windows of data and 
predict the labels for the windows. For the classification step, we evaluated both su-
pervised and unsupervised methods. For supervised, we tested Naïve Bayes Model 
and SVM, and for unsupervised, we tested Jaccard, TFIDF, Jaro and JaroWinkler.  

We identify the contributions of our work as follows: 

1. In order for fast pattern matching, we discretized the continuous sensor streams 
into a string of symbols characterizing signal changes. In order to allow partial 
matches and to retain temporal locality of patterns, we chunked the symbol strings 
into various lengths of n-grams. This representation gives rise to a large number of 
widely used string and vector-space classifiers. 

2. The proposed framework and the classification model can be utilized for the sensor 
network querying and monitoring in general. It enables the real-time monitoring of 
continuous sensor data. Moreover, it can also be used for the analysis of historical 
data accumulated in a server. Using the method, we can serve ad-hoc queries such 
as finding windows that have similar data to the input pattern. 

The rest of the paper is organized as follows. Section 2 introduces related work. 
Section 3 describes our multivariate stream data classification methods. Section 4 
presents experimental results and Section 5 presents concluding remarks. 

2   Related Work 

In our problem context, sensor data is an unbounded multivariate time series data. 
Multivariate time series data classification methods were studied in [4, 5, 6, 7, 8], 
including On-demand Classifier [4], HMM (Hidden Markov Models) [5], RNN (Re-
current Neural Network), Dynamic Time Warping [5], weighted ensemble classifier 
[6] and SAX [7]. These methods involve large numbers of parameters and complex 
preprocessing step that need to be tuned. Due to the dynamic nature of sensor network 
environment and the diverse types of applications, the applicability and effectiveness 
of these specialized solutions is not immediately clear for the sensor network applica-
tions. 

On the other hand, there exist many popular general purpose classifiers that work 
for string and vector-space models, including Bayesian classifiers [11], Support Vec-
tor Machines (SVM) [12] and string-distance based methods [14]. In our proposed 
approach, we discretize the multivariate continuous time series data into a series of 
symbols. This transformation allows sensor data to be viewed as a sequence of words 
consisting of the symbols, giving rise to such general purpose classifiers. 
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3   Multivariate Stream Data Classification 

3.1   Problem Definition 

In a hierarchically organized sensor network as shown in Fig. 1, a sensor node repre-
sents a collection of heterogeneous sensors collocated in the same geographical loca-
tion. Each of these sensors monitors or detects different target objects or events. The 
sensor data generated from such a sensor node collectively forms a multivariate data 
stream. Each sensor node temporarily accumulates the sensor data and periodically 
sends it to the parent node in the upper layer. The parent node then collects data 
transmitted from children nodes and either relays it up to the chain (e.g., from sensor 
node to base station), or stores them in the repository or feeds them to the application 
for further processing (server node). 

The problem we attempt to address in this paper can be formulated as follows. As 
illustrated in Fig.1, let ti = [s1i, s2i, …,smi] be an m-dimensional tuple, representing 
sensor readings from m different sensors (s1 to sm) at time point i. Let Wj = [tj*p+1, 
tj*p+2, …, t(j+1)*p] be a j-th window of size p, containing p tuples from tj*p+1 to t(j+1)*p. 
Finally, let T = [W1, W2, …, W∞] be an unbounded stream of windows. Suppose the  
 

Fig. 1. Overview of real-time data analysis in wireless sensor networks 
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first k windows (W1 to Wk) are pre-labeled by the user. Each user labeled window has 
a class label chosen from n labels, C1 to Cn. Then, the problem is to build a classifier 
to predict the labels for all subsequent windows (Wk+1 to W∞) based on the labeled 
windows. 

3.2   Preprocessing Step 

Fig. 2 shows the preprocessing step for our approach. In this step, the continuous 
sensor stream is transformed into the combinations of discrete symbols which repre-
sent signal changes in each sensor stream, such as upward (U for steep inclination and 
u for moderate inclination), downward (D for deep and d for moderate) or stable (S) 
for a given time interval [ti, ti+k] where k being a constant between 1 and the window 
size p. This transformation greatly reduces the complexity of the raw data while re-
taining the structure of the time series data. For fast trend analysis and pattern match-
ing, we use a hierarchical piecewise linear representation [9] and n-gram model [11] 
which together can represent various different types of multivariate stream data. In 
this paper, we used the five symbols (U, u, D, d, and S) as shown in Fig. 2(a). All the 
attributes in a window can be represented as in Fig. 2(b) using this representation. 

We extended the original hierarchical piecewise linear representation, which splits 
the original patterns into a set of disjoint sub-patterns, with n-gram based pattern 
chunking in order to support partial matches and to preserve the orderings between the 
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Fig. 2. The preprocessing step in multivariate data classification 
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sub-patterns. Fig. 2(c) shows an example of n-gram based chunking. Moreover, in 
order to improve the classification accuracy, we exploit the inter-dependency structure 
that exists among the sensors (e.g., light and temperature), as illustrated in Fig 2(d). 

We added the symbols representing the pairings of sensors that have a strong cor-
relation (we used 0.6 as a threshold) into the list of original n-gram symbols as shown 
in the last row of Fig. 2(c). For example, if sensor a1 and a2 are correlated, we add a 
word, “a1a2”, to the list.  Once the data is transformed, we can simply treat them as a 
string of words and apply simple text classification algorithms to classify the data. In 
what follows, we will describe the details of the classification algorithms that we 
considered in our framework. 

3.3   Supervised Methods 

NBM (Naïve Bayes Model): Bayesian classifiers are statistical classifiers and have 
exhibited high accuracy and speed when applied to a large database [11]. This tech-
nique chooses the highest posterior probability class using the prior probability com-
puted from the training data set. For example, in the training phase, it learns the prior 
probability distribution such as, P(uD|class=intrusion) and P(a1a2|class=normal),  
from the training data. In the test step, for each unlabeled window, a posterior prob-
ability is evaluated for each class Ci, as shown in (1). The test data is then assigned to 
class Ci for which P(Ci|X) is the maximum. 

i i
i

P( X |C )P( C )
P( C | X )

P( X )
= , where 

1

n

i k i
k

P( X | C ) P( x |C )
=

= ∏ for 1 i, j m, i j≤ ≤ ≠  (1) 

SVM (Support Vector Machine): This method is one of the most popular supervised 
classification methods. SVM is basically two-class classifier and can be extended for 
the multi-class classification (e.g., combining multiple one-versus-the-rest two-class 
classifiers). In our model, each window is mapped to a point in a high dimensional 
space, each dimension of which corresponds to an n-gram word or a correlation pair. 
For example, if a sliding window, Wi is {uD=2, UUd=10, UDDD=5, aiai+1=0.8}, 
feature vector lists are {uD, UUd, UDDD, aiai+1} and values according to the fre-
quency factor are {0.2, 0.8, 0.6, 0.8}. The coordinates of the point are the frequencies 
of the n-gram words or coefficients of the correlation pairs in the corresponding di-
mensions. SVM learns, in the training step, the maximum-margin hyper-planes sepa-
rating each class.  

In testing step, it classifies a new window by mapping it to a point in the same 
high-dimensional space divided by the hyper-plane learned in the training step. For 
experiments, we used the Radial Basis Function (RBF) kernel [12], 

( )2 0i ix y
i iK( x ,y ) e ,γ γ− −= > . The soft margin allows errors during training. We set 0.1 for 

the two-norm soft margin value. 

3.4   Unsupervised Methods 

String-based Distance: This scheme measures the distance between two strings in 
order to measure the similarity. We can obtain the best matching class by comparing 
the feature vectors (standard vector space representations of documents) of each 
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known class with that of input data. Among many possible distance measures, we 
used two token-based string distance (Jaccard and TFIDF) and two edit-distance-
based metrics (Jaro and Jaro-Winkler) that were reported to give a good performance 
for the general name matching problem in [14]. We briefly describe the metrics be-
low. For details of each metric, refer to [13]. Using the terms of Table 1, the four 
metrics (2-5) can be defined as follows. 

Table 1. Terms for string-based distance 

Name Descriptions Name Descriptions 
x , y  n-grams and correlations 

for each sensor attribute. 
x ,yCC  All characters in x  common with 

y  

xC  All characters of x . xT  All n-gram and correlation terms 
for x . 

x ,yX  # of transpositions of char in x  relative to y  
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1
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max L ,
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longest common prefix of x and y  
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Vector-based Cosine Distance: This approach uses vector based distances to meas-
ure the similarity of the symbols. We model the n-gram symbols and correlation lists 
as vectors in the vector space. Each dimension of a vector corresponds to a unique 
term (i.e., an n-gram or an attribute pair for correlation) whose value consists of either 
a frequency of the term in the given window (if an n-gram) or the correlation coeffi-
cient of the two attributes (if an attribute pair). In order to measure the similarity of 
two vectors, we use a cosine distance, which is an angle between the two vectors, 

defined as: 1 2

1 2

W W
Cos

W W
θ •

=
•

[11]. 
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4   Experimental Results 

In our experiment, we used two types of multivariate time series data obtained from 
[16]. Fig. 3(a) shows an example of the first data set containing six different classes of 
control patterns (Normal (a), Cyclic (b), Increasing trend (c), Decreasing trend (d), 
Upward shift (e), Downward shift (f)). Fig. 3(b) shows a fragment of the second data 
set which is robot traces containing force and torque measurements on a robot moving 
an object from one location to another. Each movement is characterized by 15 
force/torque samples collected at regular time intervals starting immediately after 
failure detection. The trace data consists of 5 datasets, each of them defining a differ-
ent learning problem labeled from LP1 to LP5 [16]. For experiments, we prepared a 
training data set that includes six different classes of control patterns and robot behav-
ior classes such as normal, collision, and obstruction. 
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(b) Examples of typical robot traces 

Fig. 3. Data set: SCCTS and robot execution data 

We performed k-fold cross-validation in order to evaluate the accuracy of each 
classification method. For the k-fold cross-validation, an input data set (S) is ran-
domly partitioned into k mutually exclusive subsets (S = {S1,S2,…,Sk}) of equal size. 
Training and testing is performed k times. In iteration i, the subset Si is reserved as the 
test set, and the remaining subsets are collectively used to train the classifier. The 
accuracy of the classifier is then the overall number of correct classifications from the 
k iterations, divided by the total number of trials. 

The result of experiments is shown in Fig 4. Fig 4(a) shows the accuracy of the six 
classifiers discussed in Section 3 using only the n-gram tokens and not considering 
the correlation tokens (see Fig 2(c).) Fig 4(b) shows the result using the both types of 
tokens. Different lengths of n-gram tokens are compared. For example, “3-gram” in 
the x-axis represents the classifications using only tokens up to length three (i.e., 1-3 
grams). 

As expected, the accuracy was gradually improved as longer tokens were taken 
into consideration. The longer tokens are likely to capture more temporal locality of 
patterns. The accuracy was generally higher when the correlation tokens were used 
along with the n-gram tokens. Noticeable improvements were observed in 3 and 4-
gram experiments as shown in Fig. 4. 
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As expected, supervised methods (NBM and SVM) were more accurate than unsu-
pervised methods. SVM showed the best performance among the tested methods. 
Among the unsupervised methods, classifiers using token-based string distance met-
rics were more accurate than the ones using edit-distance metrics. For this experi-
ment, we used the classification library and package obtained from [17, 18]. 

Fig. 4. Accuracy comparison (number of shapes and correlations between attributes) 

Naïve Bayesian classifier in Fig. 4(a) assumes that the effect of an attribute on a 
given class is independent of the values of the other attributes. This assumption is 
called class conditional independence. However, attribute values of multivariate stream 
data collected from WSN may not be entirely independent from each others. For ex-
ample, it is likely that the sensor readings of light and temperature would be correlated. 
In order to address this problem, in our experiment, we considered a set of extended 
Bayesian classifiers known to work well with correlated data, including TAN (Tree 
Augmented Naïve Bayes), FAN (Forest Augmented Naïve Bayes), STAN(Selective 
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Tree Augmented Naïve Bayes), and SFAN(Selective Tree Augmented Naïve Bayes) 
[15, 19]. Experimental results show that TAN and STAN method are better than the 
other methods as shown in Fig. 4(c). The result shows that the dependencies among 
attributes affect the classification accuracy for multivariate stream data. 

5   Conclusion 

In this paper, we proposed a scalable framework for multivariate stream data classifi-
cation for continuous stream data. For classification, we employed the hierarchical 
piecewise linear representation to transform the continuous sensor streams into a 
discrete symbolic representation, which allows us to choose a classifier from a large 
pool of well-studied classification methods. We considered supervised methods in-
cluding Naïve or extended Bayesian Model and SVM, and unsupervised methods 
including Jaccard, TFIDF, Jaro and Jaro-Winkler. In experimental results, SVM and 
TFIDF outperformed the other classification methods, and classification accuracy is 
higher when the correlations of attributes are also considered along with the n-gram 
token list. 
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