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Abstract—In online job marketplaces, it is important to estab-
lish a well-defined job title taxonomy for various downstream
tasks (e.g., job recommendation, users’ career analysis, and
turnover prediction). Job Title Normalization (JTN) is such a
cleaning step to classify user-created non-standard job titles into
normalized ones. However, solving the JTN problem is non-trivial
with challenges: (1) semantic similarity of different job titles, (2)
non-normalized user-created job titles, and (3) large-scale and
long-tailed job titles in real-world applications. To this end, we
propose a novel solution, named JAMES, that constructs three
unique embeddings (i.e., graph, contextual, and syntactic) of a
target job title to effectively capture its various traits. We further
propose a multi-aspect co-attention mechanism to attentively
combine these embeddings, and employ neural logical reasoning
representations to collaboratively estimate similarities between
messy job titles and normalized job titles in a reasoning space.
To evaluate JAMES, we conduct comprehensive experiments
against ten competing models on a large-scale real-world dataset
with over 350,000 job titles. Our experimental results show that
JAMES significantly outperforms the best baseline by 10.06%
in Precision@10 and by 17.52% in NDCG@10, respectively.
To further facilitate the acquisition of normalized job titles
for job-domain applications, our JAMES API is available at:
https://tinyurl.com/james-job-title-mapping.

Index Terms—multi-aspect embeddings, entity mapping, rep-
resentation learning, job title normalization

I. INTRODUCTION

Background. The recent proliferation of technology has wit-
nessed an increasing popularity of online professional plat-
forms. These online job marketplaces connect job seekers and
companies to find the best match for each other. For example,
LinkedIn and Indeed, two of the largest jobs marketplace
platforms, have more than 930 million users1 and 245 million
resumes2, respectively. The vast amount of data available on
job marketplaces, including resumes from job seekers and
job postings from companies, has spurred companies involved
in workforce development, talent intelligence, recruitment,
and job search engines to utilize AI techniques to enhance
their applications (e.g., job recommendation [1], [2], next
career prediction [3], [4], and career analysis [5]). These
AI-powered tools enable job seekers in finding their ideal
jobs and companies in recruiting talents that match their
roles. However, the workflow of such job-domain applications
involves a critical step, as illustrated in Figure 1. Before

1https://about.linkedin.com/
2https://www.indeed.com/about

building models for downstream tasks, the various entities
found in raw data, especially job titles, must be sorted,
consolidated, and normalized. For instance, a position called
“systems engineer” in a company A and another position
called “application programmer” in a company B may refer to
the same job. Normalizing these two job titles into “software
developer” (or noting their compatibility in context) is crucial
for job recommendations, career trajectory analysis, and search
result expansion. Therefore, the research question (RQ) we
investigate is: How can job titles be automatically normalized?
In particular, we aim to answer this RQ via the framing of the
Job Title Normalization (JTN) (to be defined in Section 3.1).
Challenges. Although the JTN problem appears simple in
nature, addressing it in practice poses several challenges. First,
job titles often bear a semantic closeness to one another that
is contingent upon the required skill sets and companies’
own definitions. For example, the job title “data scientist” is
prevalent today, and comprises skill sets such as mathematical
modeling, statistics, and coding. However, this role can be
related to “business analyst” or “data analyst” in some compa-
nies, and to “product scientist” in others. Thus, comparing job
titles alone is inadequate for solving JTN, and it is necessary
to represent them in a semantic space to ensure accurate
calibration. Second, job titles collected from users’ resumes
are often untidy due to non-standard naming conventions and
auxiliaries. The job title “software developer” in one resume
can be written as “SDE” in another. Moreover, creative job
titles such as “data geek” or “strategic futurist” that individuals
may list on their resumes do not necessarily appear in an
industry-wide job title taxonomy. Third, while an industry job
taxonomy contains only a few hundred to a few thousand job
titles, the number of job titles encountered on job marketplace
platforms is orders of magnitude larger. Nevertheless, existing
solutions have only employed either small-scale datasets or
company-created datasets (as opposed to user-written), in
which JTN was addressed through manual labeling/cleaning
or text normalization procedures. For instance, Zhang et al. [6]
employed a dataset with only 26 unique job titles for similar
expertise job matching, while Dave et al. [7] used a dataset of
4,325 unique job titles for job and skill recommendation tasks.
More recently Li et al. [8] developed a job title taxonomy
containing 30,000 entries on LinkedIn for a job understanding
task. However, the challenges inherent in JTN for the vast
number of job titles still remain inadequately addressed.



Fig. 1: Workflow of job-domain applications

Ideas. To address the aforementioned challenges in JTN,
we propose JAMES (Job title mApping with Multi-aspect
Embeddings and reaSoning), and demonstrates its effective-
ness using a real-world career dataset containing more than
350,000 job titles. Specifically, JAMES considers three unique
multi-aspect (i.e., graph, contextual, and syntactic) embed-
dings for candidate job titles. First, we establish a graph
embedding to represent the latent topological job title sim-
ilarity based on users’ job transitions, exploiting the fact
that users typically switch to similar positions or titles (i.e.,
changing from “data scientist” to “chef” is highly unlikely
although possible). We use a hyperbolic graph embedding for
the latent knowledge dependencies in a job title hierarchy, as
it outperforms Euclidean graph embeddings on hierarchical
structure datasets [9], [10]. In addition, hyperbolic graph
embeddings help mitigate the problem of incomplete and
inconsistent job transition patterns by providing a smaller
distortion and an exponential expansion of nodes [10], [11].
Second, we leverage a pretrained BERT embedding to account
for the contextual similarity between two candidate job titles,
which can identify contextually-related job titles, as language
models can measure the contextual and semantic distance.
Third, we create a syntactic embedding to capture the string-
to-string similarity between two input job titles, allowing for
the detection of misspelled (e.g., “electric engieer”) and user-
created (e.g., “cool data scientist”) job titles. Also, we design
a neural collaborative reasoning [12] that takes multi-aspect
embeddings as input and produces reasoning-based multi-
aspect embeddings to mitigate uncertainty among standard job
titles, covering job titles that are not accurately captured by ei-
ther contextual or syntactic embeddings. After building multi-
aspect embeddings using our large-scale resume dataset, we
develop a multi-aspect co-attention mechanism that considers
all three multi-aspect embeddings concurrently.

Contributions. Our contributions are as follows:

• We use a large-scale, real-world, and user-generated
dataset from a career platform (FutureFit AI), which
comprises over 350,000 unique job titles, for the job-
domain specific preprocessing task, Job Title Normaliza-
tion (JTN).

• To solve the JTN task, we propose a novel model,
JAMES, that employs multi-aspect embeddings and rea-
soning representations accounting for graph, contextual,
and syntactic embeddings.

• We conduct extensive experiments and demonstrate the
effectiveness of JAMES against ten competing base-

line models. JAMES significantly outperforms the best
baseline by 10.06% in Precision@10 and by 17.52% in
NDCG@10, respectively. We also apply JAMES to other
downstream tasks and report the findings and further
implications.

• We develop and release JAMES API publicly, allowing
for the acquisition of normalized job titles from job title
entities.

II. RELATED WORK

A. Job Title Classification

Previously, JTN was often overlooked and just addressed
through manual labeling or simple data preprocessing. How-
ever, there have been several prior works that attempt to
solve it as a task of job title classification [13], [14]. Wang
et al. [15] proposed a CNN-based approach that developed
text vectors using a job description dataset, while Zhu et
al. [16] built a KNN model using Word2Vec. While such
methods using job descriptions can be helpful, in the real
world, it is often difficult to obtain access to all companies’
job description datasets, and the applicability of such methods
to user-generated job titles extracted from resumes is not well
understood. Therefore, our work aims to develop a practical
solution applicable to a user-generated dataset (i.e., resumes).

As a job entity benchmarking, Luo et al. [17] created a
job transition graph using Random Walk-based vectors, and
indicated the potential of job graph embedding. Zhang et al.
[18] proposed Job2Vec as a job title benchmarking tool based
on job records. However, both works were only validated
in link and/or node prediction and not specifically designed
for JTN, resulting in uncertainty regarding their applicability
to JTN and normalization. Moreover, Job2Vec aimed to link
job titles of the same expertise level to calibrate salaries for
recruiters [18]. While these benchmarks could be used for job
title clustering, they manually filtered out low-frequency words
in job titles as a data preprocessing step, and limited their
dataset to the IT and finance domains, which restricts the gen-
eralizability of their representations to real-world scenarios.
Additionally, only 15 well-known companies such as Google
and Microsoft were chosen in their IT dataset, which may
not reflect a practical scenario where companies or individuals
want to map all job titles from users’ resumes into normalized
ones. In contrast, our study focuses on a realistic and large-
scale setting for JTN, utilizing a dataset from 165,086 unique
companies across all sectors. Our approach differs from pre-
vious works as we employ contextual embeddings to capture



the potential meaning of words, and syntactic embeddings to
detect misspelled and user-created words, addressing issues
not considered in prior works. Furthermore, we use reasoning
to obtain more robust representations.

B. Representation Learning in Job Domain

Liu et al. [19] conducted career path prediction using
multiple social media. For job skill representation, Shi et al.
[20] developed “Job2Skills”, a market-aware skill extraction
system, which considers the salient level of a skill and extracts
important skill entities from job postings and target members
using multi-resolution. Qin et al. [21] developed a person-job
fit model that applied a word-level semantic representation for
both job requirements and job seekers’ experiences based on
RNN. Yamashita et al. [22] proposed a long-term career path
prediction from large-scale resumes with multiple embeddings.
While these studies relied on job-domain entities, our JAMES
can be applied to such job-domain applications to normalize
job titles.

C. Hyperbolic Machine Learning

Hyperbolic geometry is a non-Euclidean geometry that
focuses on spaces of constant negative Gaussian curvature.
Hyperbolic space has been used to develop embedding and
machine learning models for hierarchical and graph structures,
due to its benefits such as embedding on smaller dimensions
[10]. Poincare embedding, proposed by Nickel et al. [9], en-
ables hierarchical data to be represented better than Euclidean
embeddings. Chami et al. [11] developed a hyperbolic tech-
nique for graph convolutional networks. In the case of career
trajectory datasets, they can be represented as graphs, as done
by Zhang et al. [6]. However, to the best of our knowledge,
our work is the first to apply hyperbolic geometry to career
transition data. Since hyperbolic embeddings work well on
tree-structured datasets, we consider hyperbolic embeddings
to be effective for representing latent knowledge dependencies
in job titles, which are often hierarchical (e.g., junior, senior,
VP). Hence, we incorporate hyperbolic embeddings into our
model and compare the baselines.

III. PRELIMINARY

Major notations used throughout the paper are summarized
in Table I. In this section, we describe a definition of the
problem, Job Title Normalization (JTN), and our dataset.

A. Problem Definition

We formally define the JTN task as follows:

Job Title Normalization (JTN): Given a set of job
titles X and a set of predefined and normalized job
titles in a job taxonomy Y , the Job Title Normaliza-
tion task aims to build a function f(·) that produces
matching probabilities from each job title ji ∈ X to
each normalized job title vk ∈ Y .

TABLE I: Definition of our notations in this paper
Notation Definition

j job title from resume
X a set of job titles from all resumes
v normalized job title from the ground truth
Y a set of normalized job titles from the ground truth

Xh hyperbolic graph embeddings
Xb BERT embeddings
Xs syntactic (string similarity) embeddings
A(hb) affinity matrices between Xh and Xb

A(hs) affinity matrices between Xh and Xs

A(bs) affinity matrices between Xb and Xs

W (hb) learnable weights between Xh and Xb

W (hs) learnable weights between Xh and Xs

W (bs) learnable weights between Xb and Xs

Kh attention graph for Xh , acknowledging supports from the
other embedding views Xb and Xs through A(hb) and
A(hs)

Kb attention graph for Xb , acknowledging supports from the
other embedding views Xh and Xs through Xh and A(hs)

Ks attention graph for Xs , acknowledging supports from the
other embedding views Xb and Xh through A(hb) and Xh

X̂h co-attentive multi-view embeddings from Xh

X̂b co-attentive multi-view embeddings from Xb

X̂s co-attentive multi-view embeddings from Xs

X′
b reasoning-based representation from Xh

X′
s reasoning-based representation from Xs

Note that during the training of the mapping function f(·),
we consider the JTN task as a multi-class classification task.
During the inference, with each ji ∈ X , we take the output
probability distribution over all normalized job titles vk ∈ Y
as the ranking scores to output top-k most similar job titles
vk ∈ Y .

B. Dataset

We obtained the dataset from a popular career platform
FutureFit AI3, which partners globally with other companies
and governments to assist employees in navigating career tran-
sitions. We randomly selected over 400,000 resumes from the
platform, which had at least five valid working experiences in
the United States (i.e., a path with five nodes in a job transition
graph). This was done to ensure that the job transition graph
was meaningful, while also being reasonably large. Table II
presents a summary of our dataset information, including the
average length of words and characters in job titles.

Our dataset contains 354,168 unique job titles from 165,086
unique companies, and more than 2.7 million job transition
trajectories. To solve the JTN task, we only extract the job
seeker’s basic information from their resume, such as company
ID, job title, start and end dates of working, while ensuring that
all private employee information is anonymized. On average,
job titles have 4.15 words and 28.9 characters. The top five
most frequent job titles are sales associate (0.33%), research
assistant (0.23%), administrative assistant (0.23%), project
manager (0.19%), and CEO (0.18%). Our dataset will be
available upon request.

In comparison to previous works [6], [7], [18], [23], our
dataset has a significantly larger number of job titles. Specif-
ically, our dataset contains over 11,500 times more job titles

3https://www.futurefit.ai/



TABLE II: Our large-scale resume dataset

# of Resumes 401,253
# of Job Titles 354,168
# of Companies 165,086
# of Transitions 2,738,403
Average length of words 4.15
Average length of characters 28.9

Fig. 2: Toy example of JAMES in Job Title Normalization.

than [6], over 69 times more job titles than [7], over 30
times more job titles than [23], and four times more job
titles than the Job2Vec (Finance) dataset [18]. To create our
ground truth dataset, we perform an exact search to match job
titles in our dataset with the European Skills/Competences,
qualifications, and Occupations (ESCO) taxonomy4, which
provides a hierarchical structure of job titles and normalized
job titles as job groups. For example, “software developers”
consists of “application developer”, “software engineer”, “soft-
ware architect”, etc. We remove proper nouns from the job
titles, and use the matched job titles as the ground truth labels
for our experiments.

IV. OUR PROPOSED MODEL: JAMES

In this section, we describe our job title normalization
model, JAMES. The main idea of JAMES is to learn multi-
aspect representations of an input job title and produce its
corresponding top-n normalized standard job title mappings
that are predefined in a standard job title taxonomy. Figure
2 shows a toy example of how JAMES works. First, the job
titles of a resume are extracted. Next, JAMES learns the multi-
aspect embeddings, including graph, semantic, and syntactic
embeddings, for each job title. In this example, the input job
title is “mobile app speciallist”, and JAMES utilizes the multi-
aspect embeddings to predict the matching standard job title,
resulting in “applications programmer”.

Figure 3 provides a more detailed overview of JAMES. To
learn the graph embeddings of the input job title, JAMES
employ the state-of-the-art hyperbolic graph representation
learning. To learn the semantic embeddings of the input
job title, JAMES use the well-known pretrained BERT. To
obtain the syntactic embeddings of the input job title, JAMES

4https://ec.europa.eu/esco/portal/escopedia/ESCO

Fig. 3: Model overview of JAMES.

Fig. 4: Architecture for hyperbolic graph embedding.

encodes a dense embedding vector with a size equal to the
number of standard job titles. Each element in the vector
represents the string-based similarity score between the input
job title and the corresponding standard job title. Next, we
propose a multi-aspect co-attention mechanism that assigns
attention scores to the three multi-aspect embeddings. We also
introduce a reasoning-based module in JAMES that collabo-
ratively reasons the multi-aspect embeddings in a reasoning
space. Finally, JAMES fuses all the output embeddings to
produce the top-n mapping normalized job titles for the input
job title as outputs. We provide a detailed description of
JAMES in the following subsections.

A. Multi-Aspect Embeddings

1) Hyperbolic Graph Embedding: To construct a hyper-
bolic graph embedding that captures the topological features
of our career trajectory dataset, we first create a job transition
graph, as illustrated in Figure 4. We define nodes as job titles
and links as the transitions between the job titles, where each
link is directed and asymmetric. For instance, if a person
changes their job title from “Software Engineer” (SWE) to
“Machine Learning Engineer” (MLE), the graph has a directed
link from SWE to MLE.

The job transition graph is defined as G = (V,E,W ),
where V is the set of job titles (i.e., nodes), E is the set
of job transitions (i.e., links in the graph), and W is the set
of link weights. The job transition weight Wi,j is formulated
as Wi,j = ei,j/

∑n
i=1

∑n
j=1 ei,j , where ei,j is the number

of transitions from node vi to node vj . Based on all job



(a) Euclidean embedding (b) Hyperbolic embedding

Fig. 5: Example visualizations for the Euclidean and Hyper-
bolic embeddings from job transition graph.

Fig. 6: Learning semantic embeddings of the input job tile via
the pretrained uncased BERT-base.

transitions, we construct a graph and derive graph embeddings.
To build the hyperbolic graph, we consider a head node (i.e.,
more recent user’s career) as the parent and a tail node (i.e.,
the previous career) as the child, assuming that the most
recent job title contains all the requirements and skill sets
from the previous job titles. We then embed the nodes in
hyperbolic space using Poincare embedding [9] as a hyperbolic
embedding and train a Poincare ball model from the relations
of nodes in the graph.

Since the Poincare ball is a Riemannian manifold, the
Riemannian metric tensor is represented in the d-dimentional
ball Bd = {x ∈ Rd|||x|| < 1}, where ||x|| is the Euclidean
norm. Then, the Riemannian metric tensor rx is defined as:

rx =
( 2

1− ||x||2
)2

rE (1)

where x ∈ Bd and rE is the Euclidean metric tensor. Then,
the distance of two points a, b ∈ Bd is defined as:

d(a, b) = arcosh
(
1 + 2

||a− b||2

(1− ||a||2)(1− ||b||2)

)
(2)

Based on these metrics, we construct the Poincare embedding
on the Poincare ball [9] with the input of the parent-child
pair dataset and obtain the m-dimensional embedding. Figure
5 provides a visualization comparison between Euclidean
and Poincare embeddings in a 2-dimensional ball, where the
hyperbolic embedding exhibits a hierarchy of dots, while each
dot in the Euclidean embedding is scattered disorderly. We
output Xh as the hyperbolic graph embedding of each input
job title.

2) BERT Embedding: To address the issue of different job
titles referring to the same position (e.g., “Data Analyst” vs
“Data Scientist”), we learn the semantic embeddings of the
input job titles using the pre-trained BERT [24]. Specifically,
we use the pre-trained DistilRoBERTa on SBERT [25] due to
its efficiency and effectiveness.

The architecture for the BERT embedding is illustrated in
Figure 6. For each input job title, we first tokenize it into

Fig. 7: Architecture for syntactic (string similarity) embedding.
Given the input job title “mobile app specialist”, we represent
it by an embedding vector Xs ∈ R|Y|, where Xs [k] = cosine-
sim(“mobile app specialist”, vk), with vk ∈ Y .

wordpieces using the BERT-base uncased tokenizer. Then,
we use the pretrained BERT-base uncased embeddings to
obtain the embeddings Xb of the [CLS] token as the final
representations of the input job title.

3) Syntactic Embedding: To capture the syntactic represen-
tation of job titles, we use cosine similarity to score the string
similarity between an input job title and all of the normalized
job titles in the job taxonomy (i.e., ESCO). Figure 7 shows the
architecture for this embedding. We calculate all pairs between
job titles and their parent job titles, and define the similarity
matrix as the syntactic representation.

For a given set of X input job titles and Y predefined
normalized job titles in the job taxonomy, the syntactic
embedding of a job title s ∈ X is a vector Xs of Y
dimensions, where each dimension indicates the string-string
cosine similarity with a character-level comparison between s
and each corresponding normalized job title in Y . For example,
Xs[0] = cosine-sim(s, v0), Xs[1] = cosine-sim(s, v1), ...,
Xs[|Y| − 1] = cosine-sim(s, v|Y|−1). We define the resulting
syntactic embeddings as Xs .

B. Multi-Aspect Co-Attention

In the previous sections, we extract three discrete embed-
dings for an input job title: (i) hyperbolic graph embeddings
Xh , (ii) BERT embeddings Xb , and (iii) syntactic embed-
dings Xs . However, the embeddings are learned separately
and may have redundant features. To address this issue, we
aim to learn multi-aspect embeddings that incorporate all three
embeddings and are attentive to each other. For this purpose,
a traditional method is to weigh each embedding view by
hierarchical attention [26], where the Xh can be used as
query, Xb can be used as key/value. Then the Xh and the
attentive Xb can be combined as a query, and Xs can be
used as key/value. As the hierarchical attention is performed
sequentially and is not practical for large-scale datasets with
millions of job titles. Therefore, we extend the traditional co-
attention mechanism [27] which takes only two input sources,
and propose a multi-aspect co-attention mechanism that can
work for p inputs (i.e., p ≥ 2). In this sense, our multi-aspect
co-attention mechanism uses k−1 views to guide the attention
weights for the left-over view in parallel.



Fig. 8: Architecture for Multi-view Co-attention.

Figure 8 shows the architecture for our multi-aspect co-
attention. We start by computing three affinity matrices for
three pairs of two embedding views: A(hb) between Xh and
Xb , A(hs) between Xh and Xs , and A(bs) between Xb and
Xs . Specifically, the affinity matrices, A(hb) , A(hs) , and
A(bs) are calculated as follows:

A(hb) = tanh
(
XhW

(hb)Xb
T
)

A(hs) = tanh
(
XhW

(hs)Xs
T
)

A(bs) = tanh
(
XbW

(bs)Xs
T
) (3)

, where W (hb) , W (hs) , and W (bs) are learnable weights.
Next, we measure the weight Kh for Xh , acknowledging
supports from the other embedding views Xb and Xs through
A(hb) and A(hs) as follows:

Kh = tanh
(
WhXh+Wbh(A

(hb)Xb)+Wsh(A
(hs)Xs)

)
(4)

In the same manner, we compute the weights Kb for Xb ,
and Ks for Xs as follows:

Kb = tanh
(
WbXb +Whb(A

(hb)TXh) +Wsb(A
(bs)Xs)

)
Ks = tanh

(
WsXs +Whs(A

(hs)TXh) +Wbs(A
(bs)TXb)

) (5)

Then, the co-attentive multi-aspect embeddings X̂h ,
X̂b and X̂s can be computed as follows:

X̂h = softmax(Kh)⊙ Xh

X̂b = softmax(Kb)⊙Xb

X̂s = softmax(Ks)⊙ Xs

(6)

where ⊙ is the element-wise product.

C. Reasoning-based Representations

Mapping an input job title j to a normalized job title v
based solely on their similarity score is unwary. To alleviate
uncertainty issues, it is necessary to also consider the similarity
scores of j with the rest of the normalized job titles in the set
Y . For example, if the mapping score between j and a certain
vk ∈ Y is high at 0.99, while the mapping scores between
j and the other vl ∈ Y (l ̸= k) are low at 0.01, then it is
considered certain that j maps to vk. However, if the mapping

score between j and vk ∈ Y is high at 0.9, and the mapping
scores between j and a few other vl ∈ Y (l ̸= k) are close to
(j, vk), then there is high uncertainty when mapping j to vk,
even though its mapping score is the highest. Therefore, we
need a mechanism that takes into account mapping scores of
j with all vk ∈ Y simultaneously.

In other words, we need a mechanism that considers col-
laborative supports across all the mapping scores. Specifically,
in the example above, the mapping decision can be made by
a reasoning procedure that checks if j is mostly similar to
vk, and totally dissimilar to the rest of the job titles vl ∈ Y
(l ̸= k), and concludes that j maps to vk. Such a reasoning
procedure can be represented as a logical structure, leading us
to use neural collaborative reasoning [12]. Furthermore, our
ablation study demonstrates that the reasoning improves the
performance of JTN. Thus, we can represent such a reasoning
procedure as a logical structure, as shown below:

sim(ji, v1) ∧ sim(ji, v2) ∧ sim(ji, v3) → v3 (7)

Hence, we are inspired to design a neural collaborative rea-
soning module [12] that learns reasoning-based representations
of the input job titles. In this sense, the problem of predicting
v2 as a correct mapping or not with the example above (i.e.,
Equation (7)) is converted into the problem of deciding if the
following Horn clause is True or False:

sim(ji, v1) ∧ sim(ji, v2) → sim(ji, v3) (8)

Note that due to the lack of topological information of
normalized job titles, we are not able to produce topological
embeddings for normalized job titles. However, producing se-
mantic embeddings and syntactic embeddings for normalized
job titles is straight-forward and follows a similar process as
for input job titles. As such, we define a Horn clause for
finding a mapping between the input job title ji and a correct
mapping standard job title vc ∈ Y with regard to the input
semantic embeddings of both ji and vk can be defined as
follows:

sim(j
(b)
i , v

(b)
1 ) ∧ · · · ∧ sim(j

(b)
i , v

(b)
|Y|) → sim(j

(b)
i , v

(b)
c ) (9)

Based on the De Morgan’s Law, we can re-write Equa-
tion (9) using only two basic logical operator OR (i.e., ∨) and
NOT (i.e., ¬) and obtain the reasoning-based representation
X′

b of ji as follows:

X′
b = ¬sim(j

(b)
i , v

(b)
1 ) ∨ · · · ∨ ¬sim(j

(b)
i , v

(b)
|Y|) ∨ sim(j

(b)
i , v

(b)
c )

(10)
Similarly, we can obtain the reasoning-based representation

X′
s of ji with regard to the syntactic embedding view as

follows:

X′
s = ¬sim(j

(s)
i , v

(s)
1 ) ∨ · · · ∨ ¬sim(j

(s)
i , v

(s)
|Y|) ∨ sim(j

(s)
i , v

(s)
c )

(11)
Figure 9 summarizes our architecture for the neural logi-

cal reasoning. With reasoning-based representations X′
b and

X′
s are now established together in Equation (10) and (11), as

well as co-attentive multi-aspect embeddings X̂h , X̂b , and



TABLE III: Neural Logical Regularizations. The NOT module is implemented by an one-layer MLP, and the OR module is
implemented by another one-layer MLP. The True and False are logical constants in the traditional logical equations, but are
learnable representations in our neural logical reasoning modules.

Logical Rule Equation Neural Logical Regularization.

NOT Negation ¬True = False r1 =
∑

j∈X sim(j,NOT (j)) +
∑

v∈Y sim(v,NOT (v))

Double Negation ¬(¬j) = j r2 =
∑

j∈X
(
1− sim(j,NOT (NOT (j)))

)
+

∑
v∈Y

(
1− sim(v,NOT (NOT (v)))

)
OR

Identity j ∨ False = j r3 =
∑

j∈X
(
1− sim(OR(j, False), j)

)
+

∑
v∈Y

(
1− sim(OR(v, False), v)

)
Annihilator j ∨ True = True r4 =

∑
j∈X

(
1− sim(OR(j, T rue), T rue)

)
+

∑
v∈Y

(
1− sim(OR(v, True), T rue)

)
Idempotence j ∨ j = j r5 =

∑
j∈X

(
1− sim(OR(j, j), j)

)
+

∑
v∈Y

(
1− sim(OR(v, v), v)

)
Complementation j ∨ ¬j = True r6 =

∑
j∈X

(
1− sim(OR(j,NOT (j)), T rue)

)
+

∑
v∈Y

(
1− sim(OR(v,NOT (v)), T rue)

)

Fig. 9: Architecture for reasoning-based representation.

X̂s (Equation (6)), we next fuse these embeddings to have a
final representation of the input job title.

D. Fusion

We concatenate the reasoning-based representations X′
b and

X′
s , and the co-attentive multi-aspect embeddings X̂h , X̂b ,

and X̂s . Then we project the final job title embeddings into
the size of all standard job titles |Y| and generate a class
probability distribution through the softmax operator.

ŷ = softmax(ReLU(W ([X̂h ;X̂b ;X̂s ;X′
b ;X′

s ]))) (12)

E. Learning Objective

We use the categorical cross-entropy as the loss function to
train our JAMES. The categorical cross-entropy loss function
is defined as following:

L(θ) = −
∑
j∈Y

yj log(ŷj) (13)

where θ refers to all the parameters in the entire model.
In our implementation for reasoning-based representaion

(Equation (10) and (11)), following [12], the OR module is im-
plemented by a multi-layer perceptron (MLP) with one hidden
layer, and the NOT/NEGATION module is also implemented
by another multi-layer perceptron. To explicitly guarantee that
these OR and NOT modules implement the expected logic
operations, we constraints them with logical regularization as
defined in Table III. The final loss function of our JAMES is
defined as followings:

L(θ) = −
∑
j∈Y

yj log(ŷj) +

6∑
q=1

rq (14)

where
∑6

q=1 rq is the summation of all six neural logical
regularizations that are defined in Table III.

V. EMPIRICAL VALIDATION

In this section, we present the evaluation results of our
proposed JAMES model against competing baselines. We
use our large-scale JTN dataset for the comparison, as other
JTN datasets from [6], [7], [23] are not publicly available.
We attempt to answer the following Evaluation Questions
(EQ):

• EQ1: How does JAMES perform against the baselines?
• EQ2: Which components in JAMES are more helpful?
• EQ3: Can JAMES be useful for other downstream tasks?

A. Experimental Settings

1) Baselines: We compare JAMES against an exhaustive
list of ten baseline models, including traditional simple solu-
tions and state-of-the-art models: KNN-based [16], Word2Vec-
based [28], DeepCarotene [15], Node2Vec [29], GloVe [30],
NEO [13], WoLMIS [14], SBERT [31], Job2Vec [18], and
Universal Sentence Encoder (USE) [32]. Note that as job
descriptions are not available in our dataset, we construct
the baseline models using only job titles to enable a fair
comparison.

2) Evaluation protocols: To evaluate the performance of all
compared models, we use two widely used ranking metrics,
Precision@N and NDCG@N, with N being the top-N results
produced by each model. Precision@N accounts for the num-
ber of relevant results among top-N output candidates, while
NDCG@N applies an increasing discount of log2 to items at
lower ranks. We divide the dataset into 64%, 16%, and 20%,
where we train for 64% using 16% as a validation, and then
test for 20% for the JTN task. Regarding our implementation
settings, we use their reported hyperparameter settings for
baseline models. For the GloVe-based (word-based) models,
the dimension is set to 300. For the Universal Sentence
Encoder (USE), we use 512 dimensions, which is the default
setting by the provider, and the SBERT’s embedding size is
set to 768 for the same reason. For Node2Vec, we choose 128
accounting for execution time on a large-scale graph dataset.
For our model, we vary the embedding size from {128, 256,
512}. During training, the number of epochs is set to 200 with
early stopping. Our model and all the baselines are trained with



TABLE IV: Precision@10 and NDCG@10 of JAMES and
baseline models on our dataset. The best results are in bold,
the best baseline’s performance is underlined.

Model Venue Precision@10 NDCG@10
(i) KNN-based [16] CoRR’16 0.0913 0.0871
(ii) Word2Vec-based [28] ECML’17 0.1254 0.0544
(iii) DeepCarotene [15] BigData’19 0.1255 0.0543
(iv) Node2Vec [29] KDD’16 0.1255 0.0609
(v) GloVe [30] EMNLP’14 0.3080 0.1817
(vi) NEO [13] ISWC’20 0.3422 0.2054
(vii) WoLMIS [14] IIS’18 0.3536 0.2480
(viii) SBERT [31] EMNLP’19 0.6121 0.4720
(ix) Job2Vec [18] CIKM’19 0.6122 0.4622
(x) USE [32] EMNLP’18 0.6619 0.4887

JAMES Ours 0.7285 0.5743

a batch size of 256 using the Adam optimizer and learning rate
of 10−3.

B. EQ1: Performance of JAMES

Table IV shows the overall performance of JAMES and
the compared models on our large-scale JTN dataset. We
observe that word-based baselines (baseline (i, ii, iii)) per-
form the worst. This can be attributed to two main reasons.
First, word-level baselines mostly rely on word embedding
techniques and do not account for contextual word semantic
relationships in job titles, which results in a failure to mitigate
the interdisciplinary correlation among job titles. Second, the
word-level semantic baselines use additional job descriptions
to enhance their performance, but job descriptions are not
always publicly available in JTN datasets, have limited access,
and are expensive to collect. Although baseline (v) performs
better than the word-based baselines, its performance is still
significantly lower than other models. JAMES significantly
outperforms Node2Vec (baseline (iv)), indicating that using
only graph representation learning is suboptimal.

Models that are more applied and job-specific (baseline
(vi, vii)) achieve higher performance compared to word-
level semantic models and topological baseline, as they are
able to deal with both messy and interdisciplinary job titles,
though JAMES still outperforms them. The sentence-level
semantic-based models (baseline (viii, ix, x)) perform very
well in contrast to other baselines because they can extract
and represent semantic meanings using pretrained models.

In short, JAMES vastly outperforms all related baselines
by utilizing our multi-aspect co-attentive reasoning representa-
tion. An important reason for this is that all prior models were
developed using company-generated “pure” job titles, while
our dataset is user-generated “impure” job titles. Compared to
the best baseline, i.e., USE, JAMES improves Precision@10
by 10.06% and NDCG@10 by 17.52%, confirming the effec-
tiveness of JAMES.

C. EQ2: Ablation Study

We conducted an ablation study to address EQ2. Since
SBERT (i.e., baselines viii and x) yielded relatively good
performance and BERT embedding is an essential feature of
our model, we evaluated the performance of removing each

TABLE V: Ablation study experiments for JAMES.

Model Precision@10 NDCG@10

JAMES 0.7285 0.5743

- CoAtt (= α) 0.6996 (↓ 4.13%) 0.5630 (↓ 2.01%)
- α - Reasoning (= β) 0.6958 (↓ 4.70%) 0.5344 (↓ 7.47%)
- β - Syntactic 0.6273 (↓ 16.13%) 0.4859 (↓ 18.19%)
- β - Hyperbolic Graph (= κ) 0.6159 (↓ 18.28%) 0.4801 (↓ 19.62%)
- κ - Syntactic 0.6121 (↓ 19.02%) 0.4720 (↓ 21.67%)

single component of JAMES except for the BERT embedding.
Table V presents the results. We observed two main findings.
First, hyperbolic graph embeddings have a significant contri-
bution to the JTN performance of JAMES. Removing this
component from JAMES without co-attention and reasoning
led to a reduction of Precision@10 by 18.28% and NDCG@10
by 19.62%. This demonstrates the effectiveness of hyperbolic
graph embeddings for the major issues in JTN task, such
as overlapping and messy job titles (i.e., Challenge 1-3 in
Introduction). Second, co-attention (CoAtt) and reasoning-
based representation (Reasoning) improved the performance
from the simple concatenation model by 4.70% in Preci-
sion@10 and 7.47% in NDCG@10, showing the effectiveness
of multi-aspect co-attention and fusion of co-attentive multi-
aspect embeddings and reasoning-based representations. In
summary, the removal of each component in JAMES reduced
its performance, indicating the effectiveness of our model.

D. EQ3: Other Downstream Tasks

To assess the performance of JAMES in other job-domain
downstream tasks, we conducted additional experiments as
follows.

1) Link Prediction: Link prediction is one of the most
common tasks for graphs and networks [33]–[35]. In this
part, to see the effectiveness of the multi-aspect embeddings
learned by JAMES, we present an additional capability of
JAMES in the link prediction task. We compare JAMES
with Node2Vec, Word2Vec, GloVe, USE, and Job2Vec as
representative baselines.

To generate the training/development/testing sets for the link
prediction task, we randomly removed 20% of the total number
of links in the graph, considering them as the positive links
in the testing set, and sampled the same amount of negative
links in the graph for the testing set. We also randomly
removed 20% of the positive links in the remaining 80%
positive links and sampled the same amount of negative links
to form a development set. The rest of the graph was kept
as a training set. Then, we followed [29] and used different
binary operators (i.e., Average, Hadmard, Weighted-L1, and
Weighted-L2) to obtain the link embedding from the employee
node embedding, the job-title node embedding obtained by
JAMES, and the link/edge that connects these two nodes. We
selected the best binary operator using the development set
and reported the performance metric using AUC.

Table VI shows the performance of JAMES and the com-
pared methods. The best baseline is Job2Vec, and we observe
that JAMES outperforms all of the baselines. Specifically,
JAMES relatively improves Job2Vec by 5.59% of AUC. This



TABLE VI: AUC in link prediction task.

Method AUC

Word2Vec-based [28] 0.5648
GloVe [30] 0.6278
USE [32] 0.8370
Node2Vec [29] 0.8743
Job2Vec [18] 0.9431
JAMES 0.9957

TABLE VII: Job Mobility Prediction

Method MAP@10

No JTN (unpreprocessed) + NEMO [23] 0.5349
Job2Vec [18] + NEMO [23] 0.6418
USE [32] + NEMO [23] 0.6529
JAMES + NEMO [23] 0.7013

result demonstrates that the multi-aspect embeddings from our
JAMES model are effective not only for JTN task but also for
link prediction.

2) Job Mobility Prediction.: Job mobility prediction is an
essential job-domain downstream task [3], [23], [36], [37].
It involves predicting a user’s next job titles based on their
sequence of job trajectories, wherein JTN is conducted for
preprocessing the dataset. Specifically, we use JAMES to
preprocess our resume dataset, by converting each input job
title with the top-1 matching standard job title. To compare
with our JAMES, we use Job2Vec, USE as baselines. We
also prepare the unpreprocessed dataset. For the job mobility
prediction model, we adopt NEMO [23] as it is the state-
of-the-art model, and evaluate its performance using mean
average precision at 10 (MAP@10) as the metric. Note that
we only consider the job title transition information for our
evaluation, as other features are costly to collect and are not
available in our dataset. We compare the impact of the JTN
methods on the model’s performance.

Table VII shows the performance of the job mobility predic-
tion task using the JAMES and baselines for preprocessing.
The results demonstrate that the JAMES has a considerable
impact on the job mobility prediction model’s performance. Its
multifaceted mapping approach assists job mobility prediction
models in learning more effectively, resulting in a performance
improvement. Although the accuracy improvement alone does
not provide insights into user behavior, the effectiveness
of JAMES in improving performance suggests its potential
applicability in various job-domain downstream tasks.

VI. JAMES API AND USE CASES

To make JAMES accessible as a public resource, we release
a RESTful API for JAMES. This API allows users to input
any textual job title entity and receive the corresponding
normalized job titles based on the public taxonomy (i.e.,
ESCO). Users are able to obtain up to the top-5 most relevant
normalized job titles, which helps individuals or organizations
in preprocessing and cleansing their job title datasets for
job-domain downstream tasks. The API provides the output
predicted by JAMES if the input job entity is included in our

Fig. 10: JAMES API demo page. This shows an example of
the job title normalization for “taxi driver”

graph. Otherwise, the API employs textual embeddings to get
the output so that users can use any text and retrieve relevant
normalized job titles. We also built a demo website that users
can touch and see the results more intuitively. Figure 10 shows
the screenshot of JAMES web app that uses our API behind.

Our JAMES API has the potential for a wide range of
applications and use cases, as listed below:

• Recruitment platforms: By integrating job titles, JAMES
API enables recruiters and job seekers to more easily
compare job titles and requirements across different com-
panies and industries.

• Resume standardization: JAMES API can be incorpo-
rated to automatically normalize job titles in users-
uploaded resumes on online platforms, facilitating the
matchmaking between job seekers with job postings.

• Market research: JAMES API is also beneficial in market
and economic research for tracking job trends and ana-
lyzing job requirements across different industries and
regions, as economic researchers typically need to clean
job titles for their analysis.

• Search query expansion: By mapping all variations of
an entity to a single normalized form, JAMES API
can be used to improve the relevance of job search
results, expanding the search to include all documents
that mention the normalized job titles.

VII. CONCLUSION

In this paper, we proposed a novel job title normalization
model, JAMES, toward creating a fine-grained job taxonomy
using a real-world and large-scale career trajectory dataset,
which contains more than 350K job titles. Our approach uti-
lized multi-aspect embeddings (i.e., graph, semantic, and syn-
tactic embedding), multi-aspect co-attention, and reasoning-
based representation to address the challenges of the Job Title
Normalization (JTN) task effectively. We conducted extensive
experiments comparing JAMES to ten baseline models on
the JTN task and performed an ablation study. Furthermore,
we conducted additional experiments on practical downstream
tasks, such as link prediction and job mobility prediction, to
assess the practical impact of our approach. Our results showed
that: (1) JAMES outperformed all baseline models in the JTN



task, and (2) JAMES was effective in job-domain downstream
tasks. Finally, we release JAMES as an API for public use,
which is useful for job-domain downstream tasks.
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