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ABSTRACT
We study the performance issue of the “iterative” record
linkage (RL) problem, where match and merge operations
may occur together in iterations until convergence emerges.
We first propose the Iterative Locality-Sensitive Hashing (I-
LSH) that dynamically merges LSH-based hash tables for
quick and accurate blocking. Then, by exploiting inherent
characteristics within/across data sets, we develop a suite
of I-LSH-based RL algorithms, named as HARRA (HAshed
RecoRd linkAge). The superiority of HARRA in speed over
competing RL solutions is thoroughly validated using var-
ious real data sets. While maintaining equivalent or com-
parable accuracy levels, for instance, HARRA runs: (1) 4.5
and 10.5 times faster than StringMap and R-Swoosh in it-
eratively linking 4,000 × 4,000 short records (i.e., one of the
small test cases), and (2) 5.6 and 3.4 times faster than basic
LSH and Multi-Probe LSH algorithms in iteratively linking
400,000 × 400,000 long records (i.e., the largest test case).

1. INTRODUCTION
The quality of the data residing in databases gets de-

graded due to a multitude of reasons: i.e., transcription er-
rors (e.g., lexicographical errors, character transpositions),
lack of standards for recording database fields (e.g., per-
son names, addresses), or various errors introduced by poor
database design (e.g., update anomalies, missing key con-
straints). To be able to query and integrate such data in
the presence of data quality errors, a central task is to iden-
tify whether two entities are approximately the same. When
each entity is represented as a relational record, this prob-
lem is often referred to as the Record Linkage (RL) prob-
lem: Given two1 collections of compatible records, A={a1,
..., am} and B={b1, ..., bn}, RL does: (1) identify and
merge all matching (i.e., ≈) record pairs (ai,aj), (bi,bj), or

∗Partially supported by NSF DUE-0817376 and DUE-
0937891 awards.
1Cleaning single collection A is handled as a self-clean case
of A×A.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

4

5

on
s 
se
c.
) Stringmap

R‐Swoosh

2

3

e 
( x

 M
ill
io

1 month

0

1

nn
in
g 
Ti
m
e

1 day
1 week

1 10 100Ru

# of records ( x 1,000)

400

30
35
40

on
s 
se
c.
) Stringmap

R‐Swoosh1 year

15
20
25

e 
( x

 M
ill
io

6 month

0
5
10

nn
in
g 
Ti
m
e

1 month

1 10 100Ru

# of records (x 1,000)

400

(a) short record (e.g., names)(b) long record (e.g., citations)

Figure 1: Running times of two RL solutions,
StringMap and R-Swoosh, for two data sets (in self-
clean case). X-axis is on Logarithmic scale.

(ai,bj), and (2) create a merged collection C={c1, ..., ck} of
A and B such that ∀ci, cj ∈ C, ci 6≈ cj. Such a problem is
also known as the de-duplication or entity resolution prob-
lem and has been extensively studied in recent years (to be
surveyed in Section 2.2).

Despite much advancement in solving the RL problem,
however, the issue of efficiently handling large-scale RL prob-
lem has been inadequately studied. At its core, by and large,
RL algorithms have a quadratic running time. For instance,
a naive nested-loop style algorithm takes O(|A||B|) running
time to link two data collections, A and B, via all pair-
wise comparisons. A more advanced modern two-step RL
algorithms avoid all pair-wise comparisons by employing so-
phisticated “blocking” stage so that comparisons are made
against only a small number of candidate records within a
cluster, thus achieving O(|A| + |B| + c̄(c̄ − 1)|C|) running
time, where c̄ is the average # of records in clusters and C
is a set of clusters (“blocks”) created in the blocking stage.
Since # of clusters is usually much smaller than the size of
data collection is and on average each cluster tends to have
only a handful of records in it, often, |A||B| � c̄(c̄ − 1)|C|
holds. Therefore, in general, blocking based RL solutions
run much faster than naive one does.

However, in dealing with large-scale data collections, this
assumption no longer holds. RL solutions that did not care-
fully consider large-scale scenarios in their design tend to
generate a large number of clusters and a large number of
candidate records in each cluster. In such a case, the cost
of the term, c̄(c̄ − 1)|C|, alone becomes prohibitively ex-
pensive. Take two popular RL solutions, StringMap [19]
and R-Swoosh [6], for instance. Figure 1 shows the running
times (from the beginning of data load to the finish of the
linkage) of both algorithms for self-cleaning data collections



with short records (e.g., people names) and long records
(e.g., citations). The number of records varies from 1,000 to
400,000 records2. Note that both algorithms are not suitable
to handle the given RL task, showing quadratic increase of
running times for small data (see Inset of Figure 1) or for
large data collections (or for both).

The inadequate performance issue of modern RL solutions
for large-scale data collections gets much exacerbated when
the RL problem becomes “iterative” in nature. In the con-
ventional match-only RL model, when two records are de-
termined to be matched, the pair is returned and no further
action is needed. However, in the more general match-merge
RL model [25], once two records ra and rb are matched and
merged to a new record rc, rc needs to be re-compared to the
rest of records again since it may incur new record match-
ing. This makes the RL process “iterative”until convergence
emerges. In such an iterative RL model with large-scale data
collections, as demonstrated in Figure 1, conventional RL
solutions become simply too slow.

Toward this challenge, for the more general match-merge
RL model, we present novel hashed record linkage algo-
rithms that run much faster with comparable accuracy. In
particular, our contributions in this paper are: (1) We for-
mally introduce the RL problem with separate match and
merge steps, and exploit them to have better RL framework
for three data collection scenarios (i.e., clean-clean, clean-
dirty, and dirty-dirty); (2) We extend the MinHash based
LSH technique to propose the Iterative LSH (I-LSH) that
iteratively and dynamically merges LSH-based hash tables
to provide a quick and accurate blocking; (3) Using the I-
LSH proposal, depending on three scenarios, we propose a
suite of RL solutions, termed as HARRA (HAshed RecoRd
linkAge), that exploits data collection characteristics; and
(4) The superiority of HARRA in speed over competing RL
solutions is thoroughly validated using various real data sets
under diverse characteristics. For instance, while maintain-
ing equivalent or comparable accuracy levels, HARRA runs:
4.5 and 10.5 times faster than StringMap and R-Swoosh al-
gorithms in linking 4,000 × 4,000 short records (i.e., one of
the small test cases), and 5.6 and 3.4 times faster than basic
LSH and Multi-Probe LSH algorithms in linking 400,000 ×
400,000 long records (i.e., the largest test case),

2. BACKGROUND

2.1 Preliminaries
Consider two records, r and s, with |r| columns each,

where r[i] (1 ≤ i ≤ |r|) refers to the i-th column of the record
r. Further, let us assume that corresponding columns of r
and s have compatible domain types: dom(r[i]) ∼ dom(s[i]).

Definition 1 (Record Matching) When two records, r
and s, refer to the same real-world entity, both are said
matching, and written as r ≈ s (otherwise r 6≈ s). 2

Note that how one determines if two records refer to the
same real-world entity or not is not the concern of this paper.
Assuming the existence of such oracle, we instead focus on

2Running times for 1,000 – 4,000 records were obtained by
actually running publicly available codes of both algorithms
while the remaining values were fitted by the quadratic
polyfit function in Matlab since neither codes finished
within reasonable time.

Symbol Meaning

A, B, ai, bj two input collections and records in A, B
m and n size of A and B, i.e., m = |A|, n = |B|
cij or ci,j a merged record from ai and bj

θ threshold for ai ⊕ bj

contain(ai,bj) returns True if ai contains bj , or False
match(ai,bj) returns w, v, ≡, ⊕, or 6≈
merge(ai,bj) returns cij

binary(ai) returns a binary vector, vi, of a record ai

H (or HA, HB) a hash table (or a hash table created from A, B)
AList a bucket of a hash table

Table 1: Summary of notations.

how to find matching records more effectively and faster.
In practice, however, the matching of two records can be
often determined by distance or similarity functions (e.g.,
Jaccard).

When two records, r and s, are matching (i.e., r ≈ s),
four relationships can occur: (1) r w s: all information of s
appears in r, (2) r v s: all information of r appears in s, (3)
r ≡ s: information of r and s is identical (i.e., r w s∧r v s),
and (4) r ⊕ s: neither (1) nor (2), but the overlap of infor-
mation of r and s is beyond a threshold θ. Note that to be
a flexible framework we do not tie the definitions of the four
relationships to a particular notion of containment or over-
lap. Instead, we assume that the containment or overlap of
two records can be further specified by users or applications.
Let us assume the existence of two such functions: (1) con-
tain(r,s) returns True if r contains s, and False otherwise,
and (2) match(r,s) returns True (i.e., one of the four inter-
record relationships) or False for non-matching. We assume
that match(r,s) is implemented using contain(r,s) function
internally (e.g., if both contain(r,s) and contain(s,r) return
True, then match(r,s) returns r ≡ s).

In this paper, we focus on the match-merge RL model, in-
troduced in [25]. Since the match-merge RL model is more
general than traditional match-only RL model, an RL solu-
tion that solves the match-merge RL model (e.g., Swoosh,
HARRA) can also solve the match-only RL model without
any change. Therefore, when two records r and s are match-
ing (i.e., r v s, r w s, r ≡ s, or r⊕s), one can “merge” them
to get a record with more (or better) information. Again,
how exactly the merge is implemented is not the concern of
this paper. We simply refer to a function that merges r and
s to get a new record w as merge(r,s). We use the following
two terms to describe the quality of data collections.

Definition 2 (Clean vs. Dirty) When a collection A has
no matching records in it, it is called clean, and dirty oth-
erwise. That is, (1) A is clean iff ∀r, s ∈ A, r 6≈ s, and (2)
A is dirty iff ∃r, s ∈ A, r ≈ s. 2

Unlike the similarity between numerical values can be eas-
ily computed by L-norm distance, the similarity between
string values are not. To use hashing for the RL process,
in particular, we convert string format records into multi-
dimensional binary vectors as follows. First, unique q-gram
tokens (e.g., bi-gram or tri-gram) from all records are gath-
ered. If one only considers English alphabets, the maximum
dimensions, N , are 262 = 676 and 263 = 17, 576 for bi-
gram and tri-gram, respectively. The N dimensions of a
token vector, D, is expressed by {d1, d2, ..., dN} where di is
a unique token in a data collection. Note that each record r
contains non-duplicate tokens of {t1, t2, ..., tn}. Then, an N -
dimensional binary vector of a record is obtained by setting



the value of a token dimension to 1 if the token in a record
exists in {d1, d2, ..., dN}, and 0, otherwise. We refer to a
function that converts a string format record r to a binary
vector v as binary(r). Table 1 summarizes the notations.

2.2 Related Work
The general record linkage (RL) problem has been also

known as various names: merge-purge (e.g., [18]), entity res-
olution (e.g., [30, 27]), object matching (e.g., [9]), identity
uncertainty (e.g., [29]), citation matching (e.g., [28]), and
approximate string join (e.g., [17]) etc.

Since the focus of our paper is orthogonal to many of these
works, in this section, we survey a few recent representative
works only. [14] studies the name matching for informa-
tion integration using string-based and token-based meth-
ods, while [28] conducts an in-depth study on the RL prob-
lem in digital library context. ALIAS system in [30] proposes
a framework to detect duplicate entities, but its focus is on
learning. In recent years, there have been many attempts
to exploit additional information beyond string comparison
for RL. For instance, [20] presents a relationship-based data
cleaning which exploits context information for RL, while [7]
exploits additional relational information in data (e.g., co-
reference). Similarly, [12] proposes a generic semantic dis-
tance measure using the page counts from the Web. In ad-
dition, [22] exploits the given data characteristics (clean vs.
dirty) in improving “parallel” RL performance. In this pa-
per, similar idea is significantly extended to accommodate
the benefits of iterative LSH.

Methods to speed up the performance of RL vary greatly.
For instance, the traditional “blocking” technique was first
proposed in [21] and further improved in [24]. Unlike the
traditional methods exploiting textual similarity, constraint-
based entity matching [32] examines semantic constraints
in an unsupervised way. [6] presents a generic framework,
Swoosh algorithms, for the entity resolution problem. The
recent work by [15] proposes an iterative de-duplication so-
lution for complex personal information management. Their
work reports good performance for its unique framework
where different de-duplication results mutually reinforce each
other. More recently, the group of works on the set-similarity
join (SSJoin) [31, 10] are relevant to our proposal. Opti-
mization techniques developed in the literature (e.g., size
filtering [3], prefix filtering [10], order filtering [5], or suffix
filtering [33]) can be applied to the RL problem (and thus to
our techniques) when the threshold model is used for mea-
suring similarities (as opposed to the top-k model). In a
sense, all these optimization techniques aim at reducing the
size of clusters via more sophisticated blocking techniques.
However, none of these works considered the iterative RL
with match-merge model. We leave the investigation of in-
corporating SSJoin optimization techniques to our HARRA
as future work.

On the other hand, the Locality-Sensitive Hashing (LSH)
scheme [16, 2] was proposed to be an indexing method in
approximate nearest neighbor (ANN) search problem. How-
ever, it still has limitations such as: how to find a family of
locality-sensitive functions, how to handle excessive space
issues due to hash tables, and how to select right number
of functions or tables? Recently, distance-based hashing
(DBH) [4] is proposed to address the issue of finding a family
of hash functions in LSH. Similarly, multi-probe LSH [23] is
introduced to overcome the space issues. In many varieties of

Data Model Blocking Metric

[19] 54,000/133,101 names match R-tree based running time,
20,000 DBLP only accuracy

[6] 5,000 products match- N/A running time,
14,574 hotels merge accuracy

15,853 UNIPEN match distance accuracy,
[4] 70,000 MNIST only based efficiency

80,640 hand images (VP-tree like)
[23] 1,312,581 images match LSH based recall, query time,

2,663,040 words only memory usage
[8] Cora (1,295) match trained accuracy

DBGen (50,000) only blocking
[26] 864 restaurants match trained accuracy

5,948 cars only blocking

Table 2: Comparison of a few recent RL algorithms.

LSH-based algorithms, data sets are mostly specified to con-
tain numerical features (e.g., image, audio, or sensor data).
For string or sequence comparisons, substitution-based mea-
sures are proposed in [1]. In this paper, we extend the LSH
technique and propose the Iterative LSH (I-LSH) technique
(and a suite of HARRA algorithms) that addresses the hash
table size problem and deals with the intricate interplay be-
tween match() and merge() tasks in the RL problem. Em-
pirically, we show that our proposal is able to address the
efficiency issues well in terms of space and running time
while maintaining high accuracy.

Table 2 shows the comparison among a few recent RL al-
gorithms. Among these, in this paper, we compare HARRA
against unsupervised RL solutions such as [19, 6, 23] since
they tend to be faster than supervised ones and their imple-
mentations are readily available.

3. ITERATIVE LSH

3.1 LSH with MinHash
The basic idea of the Locality-Sensitive Hashing (LSH)

technique was introduced in [16]. The LSH method origi-
nally addresses the approximate nearest neighbor problem
by hashing input data objects (with respect to their fea-
tures) such that similar objects are put into the same buck-
ets with high probability. Since the number of buckets is
much smaller than that of universe, LSH can be also viewed
as a method for probabilistic dimension reduction. In the
context of the RL problem, therefore, if LSH can hash in-
put records into buckets such that duplicate records are put
into the same buckets (and non-duplicate records in differ-
ent buckets), then LSH can solve the RL problem. We first
briefly introduce LSH. Let R be the domain of objects, and
dist() be the distance measure between objects. Then,

Definition 3 (LSH function family) A function family
H = {h : R→ U} is called (γ, cγ, p1, p2)-sensitive for dist()
if for any r1, r2 ∈ R:

• If dist(r1, r2) < γ, then PrH [h(r1) = h(r2)] ≥ p1

• If dist(r1, r2) > cγ, then PrH [h(r1) = h(r2)] ≤ p2 2

We pick c > 1 and p1 > p2 for proper LSH. Different LSH
function families can be used for different distance measures.
By concatenating K number of LSH functions in H, one
can generate a table hash function, g(). Therefore, various
multi-table LSH indexing methods can be constructed by
controlling two parameters, K and L, as follows (refer to
Figure 2):



r
g1(r)={h11(r), h12(r), , h1K(r)}  
g2(r)={h21(r), h22(r), , h2K(r)}  

…

gL(r)={hL1(r), hL2(r), , hLK(r)}  

K hash functions

L table 
hash 

functions

key11

key12

…

key1M

R11

R12

…

R1M

keyL1

keyL2

…

keyLN

RL1

RL2

…

RLN

Keyij = a key in the jth bucket in ith table
Rij = a set of records in the jth bucket in ith table

L hash 
tables

Figure 2: A basic LSH structure.

• K: # of hash functions from function family G={g :
S → UK} such that g(r)={h1(r), h2(r), ..., hK(r)}
where hi() ∈ H and r ∈ R.

• L: # of table hash functions (i.e., # of hash tables),
{g1, g2, ..., gL}, where gi(r)={h1(r), h2(r), ..., hK(r)}.

As one increases K (i.e, the number of h()), one can reduce
the probability of having non-matching records in the same
buckets. However, it also increases the possibility of having
matching records in different buckets. Therefore, in general,
multiple hash tables, controlled by L, are required to achieve
overall good precision and recall results. The overall struc-
ture of the LSH idea is illustrated in Figure 2. A record,
r, returns L hash keys from gi(r) where 1 ≤ i ≤ L. Each
key, gi(r), returns candidate records in a bucket in i-th hash
table. From L hash tables, then, the one final bucket con-
taining all candidate records is selected for further probing.
For further details of LSH, readers may refer to [16].

There are several methods to construct an LSH family
such as bit sampling or random projection. In particular,
MinHash [13] was shown to work well with sparse binary
vectors. In our context, MinHash can be used as follows:
(1) Select random re-ordering of all vector dimensions – i.e.
select a random permutation of indices of D; (2) Apply this
random permutation to re-order indices of a sparse binary
vector. Note that one selected random permutation is used
for all records to generate one digit of a key; and (3) Find
the index (i.e., position) in which the first “1” occurs in a
vector. This index becomes one of components in a hash
key. Suppose a function fi() returns the first index con-
taining “1” while rp() returns a selected random permuta-
tion. Then, with the record r and its binary vector rep-
resentation v, the hash functions in H can be defined as:
hi(r) = fi(rp(binary(r))) = fi(rp(v)). We choose K ran-
dom permutations to generate K hash functions, {h1(), ...,
hK()}. By concatenating K hash functions, we finally ob-
tain gi() as the i-th table hash function.

Example 1. Using three binary vectors as input: v1 =
[1,1,1,0,0], v2 = [0,1,1,0,0], and v3 = [0,0,1,1,1], let us con-
struct a hash table g(r) = {h1(r), h2(r)}. The indices of vec-
tors are (1,2,3,4,5). Suppose we select two random permuta-
tions: rp1()=(2,3,5,4,1) and rp2()=(5,4,2,1,3). Then, h1(r1)
= fi(rp1([1, 1, 1, 0, 0])) = fi([1, 1, 0, 0, 1])=1 and h2(r1) =
fi(rp2([1, 1, 1, 0, 0])) = fi([0, 0, 1, 1, 1]) = 3. Hence, a key
of r1 is g(r1) = {h1(r1), h2(r1)} ={1,3}. Likewise, g(r2)
={1, 3} and g(r3) ={2, 1}. Therefore, in a hash table, two
records, r1 and r2, are put into the same bucket, while r3 in
other bucket. Note that if we select rp2()=(5,1,2,4,3), then
r1 and r2 are placed in different buckets. To overcome this
issue, the basic LSH requires multiple hash tables. 2
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Hash table in i-th iteration

Figure 3: The general structure of I-LSH.

3.2 Iterative LSH to Clean Single Data Set
The basic LSH scheme hashes input records to different

buckets in multiple hash tables. Despite its fast and effective
performance, however, the basic LSH does not consider the
“iterative”nature of match-merge process in the RL problem
and has the following problems: (1) substantial hash table
generation time using entire records at each iteration; (2) ex-
cessive memory requirement for hash tables and candidate
record sets; and (3) high running time to handle many du-
plicate records in a candidate set. Therefore, the basic LSH
scheme is not suitable for linking large-scale record collec-
tions. To address these problems, in this section, we intro-
duce the Iterative Locality-Sensitive Hashing (I-LSH) where
hash table generation time is greatly reduced via only single
(re-usable) hash table.

Figure 3 illustrates the basic flow of I-LSH while Algo-
rithm 1, h-Dself , shows the detailed steps to clean single
dirty data set. When a record, aj , is hashed (by the Min-
Hash key selection) into one of the buckets in a hash table, if
the bucket (i.e., AList in Algorithm 1) is empty, aj is initially
placed in the bucket. If the bucket contains other records
already, aj is compared to existing records of the bucket, say
ak. If match(ak, aj) returns ≡ or w, we remove one of the
equivalent copies, say aj , from A and continue to process a
subsequent input record, aj+1. For v relationship, on the
other hand, we remove ak from the bucket and aj continues
to be compared to a next record ak+1 in the bucket. For
⊕ relationship, ak is removed from the bucket, then aj is
replaced by the “merged” record, created by merge(ak, aj).
Then, aj is compared to the rest of records in the bucket.
Once, the system scans all records in A, then A is reset with
all records in the hash table, and hashed again until the
termination condition is met.

Every match-merge step of I-LSH reduces the size of both
record set and hash table. Ideally, iteration will stop when
convergence emerges (i.e., no more merge occurs). How-
ever, in practice, it is not plausible to re-iterate whole in-
put only because single merge occurs in the previous itera-
tion. Therefore, instead, I-LSH stops if the reduction rate

σi (= 1 − |semi-cleaned seti|
|input seti|

) at i-th iteration is less than a

given threshold. This termination condition is captured as
the “if” statement at line 2 of Algorithm 1.

Now, we analyze the time/space complexities of h-Dself .
The running time of h-Dself at one iteration is bounded by
the quadratic upper bound of two nested “while” loops in



Algorithm 1: h-Dself .

Input : A non-empty dirty list A

Output : A non-empty clean list C

Make H as an empty hash table;
Flag ← true; /* Flag determines iterations */
while Flag = true do

Flag ← false; j ← 1;
while j ≤ |A| do

/* hash aj to a bucket, AList */
key ← gi(aj); AList = H.get(key);
if AList6= ∅ then

k ← 1;
while k ≤ |AList| do

switch match(ak, aj) do
case ak ≡ aj or ak w aj

Flag ← true; remove aj from A;
go to line 1;

case ak v aj

Flag ← true;
remove ak from AList; k ← k + 1;

case ak ⊕ aj

Flag ← true;
remove ak from AList & aj from A;
aj ← merge(ak, aj); k ← 1;

case ak 6≈ aj

k ← k + 1;

AList.add(aj); H.put(key,AList);
1 j ← j + 1;

A← H.getAll(keys); /* put all records back to A */
i← i + 1 /* re-hash in next iteration using gi+1 */

2 if termination condition is met then Flag ← false;

C ← A; return C;

Algorithm 1. The worst case occurs when all records of A
are hashed into the same bucket. Then, # of required com-

parison in h-Dself becomes: 1+2+ ...+(m−1) = (m−1)(m)
2

,
where m = |A|. That is, h-Dself does not improve much
upon the naive pair-wise comparison. Reversely, the best
case occurs when no hash collision occurs. Then, # of re-
quired comparison at one iteration becomes simply m since
a single scan of A suffices. In general, h-Dself at one itera-
tion has the running time of O(mĉ), where ĉ is the average
# of hashed records in dynamically-changing buckets3 in
a hash table (i.e., AList in Algorithm 1). With a proper
choice of hash functions, hash collisions should occur rarely.
Therefore, in general, ĉ is relatively small. Furthermore, in
Algorithm 1, whenever one of the matching conditions oc-
curs, the removal of a record either from A or AList occurs,
limiting the growth of ĉ.

Lemma 1. h-Dself (A) has the complexity of O(
∑T

i=1 mσiĉi),
where T is the number of iterations, m = |A|, σi and ĉi are
the reduction rate and the average # of records in buckets,
respectively, at i-th iteration.

Note that, for a given data collection, most of similar
records are merged during the first a few iterations (to be
experimented in Figure 10 of Section 5). As a result, the
reduction rate σ is significantly abated, i.e., only a small
number of merges occur at later iterations. In addition, in
h-Dself , the final running time is heavily influenced by the
time to generate hash keys and hash tables.

As to the space complexity, since a hash table is re-used
in I-LSH, regardless of the number of iterations, h-Dself (A)

3Note that we use a notation ĉ, slightly different from c̄ in
Section 1 to emphasize that buckets in I-LSH are dynami-
cally expanding or shrinking.

requires only O(P ), where P is # of keys in a hash table.
Similarly, since a set A is re-used at each iteration for a
semi-cleaned set, the initial size of A is the largest needed.

Lemma 2. h-Dself (A) has the space complexities of O(P )
for a hash table and O(m) for a data set, respectively, where
P is # of keys in a hash table.

Unlike h-Dself scheme, one can alternate match-merge
process to make two output sets: one clean set A′ and one
dirty set M . We call this variation as h-Dalter. When
match() returns ⊕ relationship in h-Dself , h-Dalter scheme
instead adds a merged record to a merged set M : i.e., M ←
M ∪ {merge(ak, aj)}. This avoids the direct re-feeding of
the merged record to a dirty set to compare with others. In
other words, in A′, all records contain original information
(i.e., no additional information by ⊕ relationship), while in
M , the records have been changed by the merge function.
We utilize this h-Dalter in a suite of HARRA algorithms.

4. HASHED RECORD LINKAGE: HARRA
In this section, we investigate three different scenarios de-

pending on the types of input collections, in terms of “clean”
and “dirty”, and present a suite of RL algorithms, HARRA,
based on the I-LSH idea. In total, we propose six variations
of HARRA. Each HARRA algorithm is denoted by the prefix
“h” followed by one of three scenarios, CC for clean-clean,
CD for clean-dirty, and DD for dirty-dirty cases.

4.1 Clean vs. Clean
Recall that unlike database join, in the match-merge RL

model, if two records ak and bj match, then a merged record
ckj (= merge(ak,bj)) may be created and re-feeded into A
and B. In particular, when ak ≡ bj holds, since both A and
B are known to be “clean” already, there cannot be any fur-
ther records that match either ak in A or bj in B. Therefore,
one does not need n − j + m − k times of match() compu-
tations between ak and {bj+1, ..., bn} and those between
bj and {ak+1, ..., am}. Similarly, if ak v bj holds, since
bj contains all information of ak, bj itself will be used as a
merged record, and one can save n−j times of match() com-
putations between ak and {bj+1, ..., bn}. Symmetrically, if
ak w bj holds, one can save m− k times of match() compu-
tations between bj and {ak+1, ..., am}. Finally, when ak⊕bj

holds, ckj is used as the new merged record and one can save
n − j + m − k times of match() computations between ak

and {bj+1, ..., bn} and those between bj and {ak+1, ..., am}.
Figure 4 illustrates the structure of h-CC(A, B), while

Algorithm 2 shows the details. Once A is hashed to a
hash table HA, B is hashed again to HA using the same
hash function. Then, one can perform match(ak, bj) and
merge(ak, bj) only within the same bucket of HA, by using
both matching relationship and set characteristics as shown
in Algorithm 2. In order to optimize the memory usage for
hash tables through multiple iterations, we use the same
spaces of A and B repeatedly. After one iteration, for in-
stance, records in A and B are distributed to four sets: A′,
B′, E, and M , where E contains records that have ≡ rela-
tionship with other records while M contains newly created
merged records. Then, at subsequent iteration, we reset A
to A′ ∪B′ ∪E and B to h-Dself (M). Note that we have to
clean M first via h-Dself since newly created merged records
in M may again match each other within M , making M as
a “dirty” collection.
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Figure 4: The structure of h-CC.

Algorithm 2: h-CC.
Input : Two non-empty clean lists A and B

Output : A non-empty clean list C

Make H as an empty hash table;M ← ∅;
Flag ← true; i← i + 1;
while Flag = true do

Flag ← false; j ← 1;
while j ≤ |A| do

key ← gi(aj); AList = H.get(key);
AList.add(aj); H.add(key,AList); j ← j + 1;

j ← 1;
while j ≤ |B| do

key ← gi(bj); AList ← H.get(key); k ← 1;
while k ≤ |AList| do

ak ← AList.get(k);
switch match(ak, bj) do

case ak ≡ bj

Flag ← true; E.add(ak);
remove ak from AList; remove bj from B;
go to line 1;

case ak w bj

Flag ← true; remove bj from B; go to line
1;

case ak v bj

Flag ← true; remove ak from AList; k ←
k + 1;

case ak ⊕ bj

Flag ← true; M ← M∪ {merge(ak, bj)};
remove ak from AList, remove bj from B;
go to line 1;

case ak 6≈ bj

k ← k + 1;

1 k ← 1; j ← j + 1;

A← H.getAll(keys); /* put all records in H to A */
i← i + 1;
if A 6= ∅ or B 6= ∅ then Flag ← false;
if termination condition is met then Flag ← false;

A← A ∪ B ∪ E;
if |M | > 0 then B ← h-Dself (M); C ← h-CC(A, B);
return C;

Example 2. Suppose the match() function uses Jaccard
similarity with threshold 0.5 and merge() uses ∪. Given two
clean sets, A = {a1 = [1, 1, 1, 0, 0], a2 = [0, 0, 1, 1, 1], a3 =
[1, 0, 0, 0, 1], a4 = [1, 0, 0, 1, 0]} and B={b1 = [1, 0, 0, 0, 1],
b2 = [1, 1, 0, 1, 0], b3 = [0, 0, 0, 1, 1]}, we apply a table hash
function, gi at i-th iteration, to each record. Assuming g1 =
{h11, h12} where rp11 = (2, 3, 5, 4, 1) and rp12 = (5, 4, 2, 1, 3),
and g2 = {h21, h22} where rp21 = (2, 1, 4, 3, 5) and rp22 =
(1, 2, 5, 3, 4), then g1(a1) = {1, 3}, g1(a2) = {2, 1}, g1(a3) =
{3, 1}, g1(a4) = {4, 2}, g1(b1) = {3, 1}, g1(b2) = {1, 2},
g1(b3) = {3, 1}. Due to a3 ≡ b1, we get E = {a3}, A′ =
{a1, a2, a4}, and B′ = {b2, b3}. Note that a3 in E is clean
toward other records in A′ and B′. At the second itera-
tion with g2, we use only the records in A′ and B′. Thus,
g2(a1) = {1, 1}, g2(a2) = {3, 3}, g2(a4) = {2, 1}, g2(b2) =
{1, 1}, g2(b3) = {3, 3}, then match(a1, b2) = ⊕ and match(a2,
b3)=w. Then, A′ = {a2, a4}, B′ = Φ, and M = {c1,2} where
ci,j = merge(ai ⊕ bj). Since B′ is empty, I-LSH will stop.
At the second h-CC call, A = A′ ∪ B′ ∪ E = {a2, a3, a4}

Algorithm 3: h-CD.
Input : Non-empty clean list A and dirty list B

Output : A non-empty clean list C
...
while Flag = true do

...
while j ≤ |B| do

key ← gi(bj); k ← k + 1; AList ← H.get(key);
while k ≤ |AList| do

ak ← AList.get(k);
switch match(ak, bj) do

case ak ≡ bj

Flag ← true; remove bj from B;
go to line 1;

...

1 k ← 1; j ← j + 1;

B ← B ∪M ; M ← ∅;
A← H.getAll(keys) /* put all records in H to A */;
if A 6= ∅ or B 6= ∅ then Flag ← false;
if termination condition is met then Flag ← false;

(B′, M)← h-Dalter(B); A← A ∪ B′;
if M ′ 6≡ ∅ then C ← h-CD(A, M); else C ← A;
return C;

and B =h-Dself (M), and c1,2 in a new B will eventually
contain a4. As shown, I-LSH scheme is used with recur-
sive calls to complete all necessary comparisons to handle
merged records. 2

4.2 Clean vs. Dirty
The detailed procedure for clean-dirty case, h-CD, is shown

in Algorithm 3 that uses h-Dalter as a sub-step. In this al-
gorithm, we consider one clean collection A and one dirty
collection B. Similar to h-CC, first, A is put to a hash
table HA without merging records. Then, records in B are
hashed to HA. Between ak and bj records, five relationships
are considered. The only difference from h-CC is the case
of ≡. When ak ≡ bj holds, only bj is removed from B and ak

proceeds to the next match-merge step with bj+1. ak is not
removed since ak may still find matching records in B since
B is “dirty”. Once all records in B have been scanned by
HA, a set M that contains newly created merged records is
added to a dirty collection B. This new set of B∪M should
be re-compared with A since there may be new matching
records. This iteration will stop if no more merge occurs or
other termination conditions are met.

When one iteration of match-merge steps finishes, we have
a new clean set A and a new dirty set B. Because, in
previous iteration, the relationships between A and B were
fully investigated, the new sets do not have to be compared
again. However, since B is still dirty, B can be cleaned by
h-Dself . When B is cleaned by h-Dself , however, if merged
records are generated, they should be compared again with
all other records in A and B. In addition, if the informa-
tion of a record does not change while B is self-cleaned, it
does not have to be compared again with records in A. For
this reason, in order to avoid duplicate comparisons, we use
h-Dalter(B) (instead of h-Dself ) to extract “un-changed”
records in B′ and “merged” records in M . We simply add
all records in B′ to A by union operation (i.e., A← A∪B′),
and call h-CD(A, M) recursively until no merge occurs in
the h-Dalter step. Finally, one clean set C will be returned.

An alternative way to handle the clean-dirty case to use h-
Dself and h-CC – i.e., clean the dirty collection A using h-
Dself first and apply h-CC. To distinguish this alternative
from h-CD of Algorithm 3, we denote this variation as h-
CDself . Algebraically, the following holds: h-CDself (A, B) ≡



Scheme Space(HT) Space(data size) Time
h-CC O(PA + PB) O(m + n + |A ∩ B|) O(α(m + n) + 2βN)
h-CD O(PA + PB) O(m + n + |A ∩ B|) O(α(m + n) + 2βN)

h-CDself O(PA + PB) O(m + n + |A ∩ B|) O(α(m + n) + 2βN)
h-DD1 O(PA∩B) O(m + n) O(α(m + n) + 2βN)
h-DD2 O(PA + PB) O(m + n + |A ∩ B|) O(α(m + n) + 2βN)
h-DD3 O(PA + PB) O(m + n + |A ∩ B|) O(α(m + n) + 2βN)

Table 3: Complexities of six HARRA algorithms,
where α =

∑T
i=1 σiĉi, β =

∑T
i=1 σi, N is time for gen-

erating a hash table at 1-st iteration, and PX is # of
keys in a hash table for a set X.

h-CC(A,h-Dself (B)).
Note that algorithms h-CD and h-CDself behave differ-

ently depending on the level of “dirtiness” within B or be-
tween A and B. For instance, consider three records, ai ∈ A
and bj ,bk ∈ B. Suppose the following relationship occurs:
ai w merge(bj , bk). Then, using h-CDself , merge(bj , bk)
will be compared again with other records in B. However,
using h-CD, bj and bk will be removed, saving |B| number
of comparisons. On the other hand, for instance, assume
that ai 6≈ bj , bj ≈ bk, and ai 6≈ bk. Using h-CDself , there is
only one comparison after bi ≈ bk is made. However, using
h-CD, both bj and bk are compared to ai before bj ≈ bk

occurs, increasing the number of comparisons. In general, if
the number of matches in B is significantly higher than that
between A and B, h-CDself is expected to perform better.

4.3 Dirty vs. Dirty
Since neither collection A or B is clean, more comparisons

are needed for dirty-dirty case. By using HARRA algorithms
for clean-clean or clean-dirty cases, we propose three varia-
tions, referred to as h-DD1, h-DD2, and h-DD3.

• h-DD1(A, B) ≡ h-Dself (A ∪B)

• h-DD2(A, B) ≡ h-CD(h-Dself (A), B)

• h-DD3(A, B) ≡ h-CC(h-Dself (A), h-Dself (B))

The different behaviors of variations will be evaluated ex-
perimentally.

Lemma 3. All HARRA algorithms have polynomial upper
bounds in time/space complexities, as shown in Table 3.

5. EXPERIMENTAL VALIDATION
Under various settings (e.g., different data distributions,

varying sizes of data sets, and dirtiness), we evaluated six
HARRA algorithms (h-CC, h-CD, h-CDself , h-DD1, h-
DD2, and h-DD3). Two main questions to study in ex-
periments are: (1) Is HARRA robust over various settings?
(2) Does HARRA achieve high accuracy and good scalabil-
ity? All algorithms are implemented in Java 1.6 and exe-
cuted on a desktop with Intel Core 2 Quad 2.4GHz, 3.25GB
RAM, and Windows XP Home. For comparison with exist-
ing RL solutions (that were optimized to run in Unix Sys-
tem), LION-XO PC Cluster at Penn State4 (with dual 2.4-
2.6GHz AMD Opteron Processors and 8GB RAM) was used.
Note that HARRA are also run on LION-XO for comparison
purpose.

4http://gears.aset.psu.edu/hpc/systems/lionxo
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Figure 5: Example records distributions in two dif-
ferent CiteSeer sets with 100,000 records.

Symbol Description
HT Hash table
RT Running Time
PL Power-Law distribution
GA Gaussian distribution
K # of indices = # of random functions = length of a key
L # of HTs or table hash functions = # of keys per record
T # of iterations of HARRA

Table 4: Symbols used in experiments.

5.1 Set-Up
Data Sets. The raw data that we used is 20 Million ci-
tations from CiteSeer whose ground truth is known to us.
From this raw data, through random sampling, we gener-
ated test sets with different sizes between 10,000 and 400,000
records. As a whole, CiteSeer shows the Power-Law distri-
bution in terms of # of matching citations. That is, while
most citations have only 1-2 duplicates known, a few have
more than 40 matching citations. From this raw data set,
we created two types of distribution patterns – Power-Law
(PL) and Gaussian (GA) distributions. Figures 5(a) and (b)
show the corresponding distributions of # of duplicates (up
to 20 duplicates) with the size of 100,000 records. For PL

distribution, f(x) = (1−x)
1

1−α is used where α = 0.5 and x
is uniformly distributed between 0 and 1. The value of f(x)
is quantized to 20 bins, and the event of x is accumulated
to a corresponding bin. For GA distribution, we used the
mean of 11 and variance of 1. Similar to PL distribution,
the Gaussian randomized values are quantized to 20 bins.

In addition to different distributions, we also used two
matching rates: (1) Internal Matching Rate of A: IMR(A) =
# of dirty records in A
# of all records in A

, and (2) Cross Matching Rate of A against

B: CMR(A,B) = # of records in A that matches a record in B
# of all records in A

. For
instance, if IMR=0.5, then half of records in a collection are
dirty and need to be merged. By varying both IMR and
CMR, we control the “dirtiness” within a data set, and be-
tween two data sets. Various IMR and CMR combinations
are investigated to study the differences between h-CD and
h-CDself in clean-dirty scenario, and among h-DD1, h-
DD2, and h-DD3 in dirty-dirty scenario.

Evaluation Metrics. For measuring the similarity be-
tween records, we used the Jaccard similarity with the thresh-
old, θ = 0.5, by default. Two standpoints are considered
as evaluation metrics: (1) accuracy in terms of precision

= NT rueP ositive
NAllP ositive

, recall = NT rueP ositive
NAllT rue

, and F-measure =
2×precision×recall

precision+recall
and (2) scalability in terms of wall-clock

running time denoted by RT along the size of data set.

Symbols used in experiments are summarized in Table 4.
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Figure 6: Impact of K and T using h-Dself to one
dirty set generated by PL distribution.

5.2 Choice of Parameters: K, L, and T
Several factors may impact the performance of HARRA

algorithms – some of them (e.g., K, L, and T ) are control
parameters that HARRA relies on to fine tune its perfor-
mance, while others (e.g., distribution pattern or dirtiness)
are parameters determined by data sets. We first discuss
the choices of K, L, T parameters in current HARRA im-
plementations (and their rationale) in this section. On the
other hand, the robustness of HARRA with respect to vary-
ing distribution patterns and dirtiness of data sets is vali-
dated through Sections 5.5–5.7.

K: # of random permutation functions to generate a sin-
gle hash key per record (K) plays an important role in the
performance of any LSH techniques. For a closer study, we
ran h-Dself to a data set with 100,000 records of PL distri-
bution. As shown in Figure 6(a), precision increases along
K (worst at K = 2), but decreases along T . Asymmetri-
cally, recall increases along T , but decreases along K. This
phenomenon is expected since small K tends to increase the
probability of having non-matching records located in the
same bucket (mistakenly), which increases running time. On
the other hand, large K may increase the chance of having
matching records put into different buckets, which usually
lowers recall. The F-measure in Figure 6(a) shows that over-
all we get the best precision and recall trade-off when K is
around 2–5.

In terms of running time (RT) of Figure 6(b), clearly, RT
is proportional to T . That is, if HARRA runs more iterations,
its overall RT increases as well. However, the relationship
between K and RT is peculiar in that when K is set very
small (K=2), RT becomes longer than when K ≥ 3. This
is because with K = 2, each cluster (i.e., block) tends to
have excessive number of irrelevant records, causing expen-
sive pair-wise computations in subsequent stage of RL. In
addition, if K is set very high (K = 15), RT also increases
substantially since most of RT is devoted on the generation
of “long” hash keys of records. As a result, in Figure 6(b),
RT has a convex shape along K throughout varying itera-

tions, suggesting that K should be set neither too high nor
too low. Figure 6(c) shows the summary of precision, recall
and F-measure of varying K with T = 25. The normalized
RT of Figure 6(c) is computed by dividing all RT’s by the
maximum RT at K = 2. Based on Figure 6(c), therefore,
we conclude that using K = {3, 4, 5} gives the best com-
promised accuracy and RT overall for the given data sets.
This result is also consistent with the finding of other LSH
schemes in literature [4, 23] . For this reason, in subsequent
experiments, we used K = 5. Note that in Section 5.4 where
we compare HARRA against two other LSH based schemes,
all of them use the same value: K = 5. Therefore, the choice
of K value does not affect the results of Section 5.4 at all.

L: The behavior of conventional LSH schemes (e.g., [16,
23]) is controlled by both K and L parameters. While
HARRA uses K in the same way as conventional LSH, it
uses L differently. In conventional LSH, L is assumed to
be # of hash tables. Then, # of keys per record is also
L. However, in HARRA, one key per record is generated
per iteration (see Figure 3). In order to have a fair com-
parison between HARRA and conventional LSH schemes in
Section 5.4, we need to have the same number of keys per
record. Therefore, in HARRA, we have to have at least L
times of iterations to have L keys per record. As a conclu-
sion, in HARRA, L is set dynamically, proportionate to # of
iterations, T . Since all LSH based schemes in experiments
have the same number of keys per record, they all show very
similar accuracy, later to be shown in Figure 8(b).

T: # of iterations (T ) has a direct impact on the run-
ning time of an iterative RL algorithm. Ideally, an RL al-
gorithm wants to run as few times of iterations as possible
while achieving the highest accuracy. In current implemen-
tations of HARRA, instead of having fixed number for T ,
it dynamically stops the iteration if the reduction rate σi

(= |semi-cleaned seti|
|input seti|

) at i-th iteration is less than a thresh-

old. For instance, σi becomes 0.1 if 10 merged records are
generated from 100 input records. Note that σi behaves
differently for different data distributions (PL vs. GA). In
addition, the size of the final cleaned set is different be-
tween PL and GA distributions – final cleaned set with PL
distribution is usually larger than that with GA distribu-
tion. It also implies that σi with PL distribution tends to
be smaller than that with GA distribution at each iteration.
Thus, HARRA usually performs less number of iterations T
with PL distribution. In all of subsequent experiments, we
used σi = 0.01.

5.3 Comparison Against Existing RL Solutions
First, we chose two well-known RL algorithms5, StringMap6

[19] and R-Swoosh7 [6], and compared them against one of
HARRA algorithms, h-Dself , for the case of cleaning one
dirty set. The first three columns of Table 5 show the differ-
ences among StringMap, R-Swoosh, and HARRA in detail.
Since StringMap supports only the match-only8 RL model,

5We also considered Febrl [11] for the comparison. However,
since Febrl does not provide means to measure running time
and its installation was problematic due to a version conflict,
we omitted it.
6http://flamingo.ics.uci.edu/releases/2.0.1/
7http://infolab.stanford.edu/serf/
8[19] actually supports merge() operation. However, the



StringMap R-Swoosh HARRA Basic LSH MP LSH

Input text XML text text text
Language C++ Java Java Java Java

Model match-onlymatch-mergematch-mergematch-onlymatch-only
Blocking R-tree N/A I-LSH LSH MP LSH
Distance Jaccard Jaro Jaccard Jaccard Jaccard

Table 5: Comparison between HARRA and four other
RL solutions.

Data size 1,000 2,000 3,000 4,000
pre. rec. pre. rec. pre. rec. pre. rec.

HARRA 1 0.998 1 0.996 1 0.992 1 0.985
StringMap 1 0.999 1 1 1 1 1 1
R-Swoosh 1 1 1 1 1 1 1 1

Table 6: Precision & Recall comparison among h-
Dself , StringMap, and R-Swoosh.

comparison was done under the match-only RL model (i.e.,
no merges). Since both StringMap and R-Swoosh could not
finish larger data sets within a reasonable time, data sets
with 1,000 – 4,000 records were mainly used for compari-
son. Two record types were used: short records (e.g., peo-
ple names of 10-20 characters) are from StringMap pack-
age while long records (e.g., citations of 100-200 characters)
are made from CiteSeer data set. Since short records from
StringMap did not have a ground truth, we estimated one
by running naive pair-wise comparison first.

As shown in Figure 7(a), with simple record contents such
as people names, all three algorithms run well within a rea-
sonable time. Both HARRA and StringMap show linear in-
crease along the size of records thanks to the blocking step,
while R-Swoosh shows a quadratic increase due to nested-
loop style comparisons. With an efficient blocking via I-LSH,
HARRA provides the best running time among all for all size
ranges. The StringMap which also employs blocking was
slow (but still faster than R-Swoosh) since it spent majority
of time in generating R-tree based structure as part of block-
ing. As we demonstrated in Figure 1, if both StringMap and
R-Swoosh could have been able to run for larger data sets
such as 400,000 records, the gap between HARRA and them
would have widened further. For the second type of a long
record set, as shown in Figure 7(b), StringMap works worse
than R-Swoosh. With initial data set of 1,000 citations,
RT of HARRA is only 3.428 sec., for instance, while RT of
StringMap is 4,318 sec. R-Swoosh also shows its quadratic
nature in running time. Thus, with larger number of records,
R-Swoosh becomes impractical.

Next, in terms of precision and recall trade-off, R-Swoosh
is the best, as Table 6 shows. The precision values for all 3
methods are all equal as 1.0. Recall that the ground truth of
this experiment in Section 5.3 was “estimated” by running a
blockbox match function since data set (i.e., short and long
records) from StringMap package did not provide one. Then,
for a fair comparison, all 3 methods used more or less the
same blackbox match step but different blocking strategies.
Therefore, all 3 have the identical precision of“1”but varying
recall, since some blocking may miss true positives9. Since

merged record does not incur new comparison in subsequent
iterations.
9However, for subsequent experiments with data sets from
CiteSeer, which already provides a ground truth, we have
varying precision scores depending on the choice of match
functions.
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Figure 7: RT comparison among h-Dself ,
StringMap, and R-Swoosh. Note that Y-axis
of (b) is on Logarithmic scale.

R-Swoosh essentially does all pair-wise comparisons, it does
not miss any matching record pairs and yields perfect recall
all the time. For both HARRA and StringMap, due to the
blocking stage, some false dismissals may occur. Therefore,
for four data sets of {1,000, 2,000, 3,000, 4,000} records,
StringMap got recalls of {0.999, 1, 1, 1} while HARRA got
{0.998, 0.996, 0.992, 0.985}.

Overall we claim that HARRA runs much faster with neg-
ligible loss of recall. For instance, HARRA runs 4.5 and
10.5 times faster than StringMap and R-Swoosh with 4,000
short name record data set while missing only 1.5% of true
matches out of 4,000 × 4,000 record pairs.

5.4 Comparison Against Existing LSH Based
RL Solutions

Next, we compare h-Dself against both basic LSH [16]
and multi-probe LSH [23] algorithms for the case of cleaning
one dirty set, made from CiteSeer data. Unlike StringMap
and R-Swoosh, now, both basic LSH and multi-probe LSH
algorithms are capable of handling large data sets such as
400,000 records in multiple iterations. Therefore, this time,
the comparison was done for all ranges of data sets. The
last three columns of Table 5 show the differences among
HARRA, basic LSH, and multi-probe LSH in detail.

Figure 8(a) shows the comparison of RT among three
approaches with varying size of input records, while Fig-
ure 8(b) shows the trend of precision and recall which are
managed to be similar for the proper RT comparison. Since
HARRA uses one re-usable hash table, the memory usage of
HARRA is significantly lower than regular LSH techniques.
In fact, the memory requirement in both basic LSH and
multi-probe LSH depends on the number of hash tables used
in the systems, while HARRA uses one dynamic reusable
hash table. In addition, with respect to running time for
400,000 records (i.e., the largest test set), HARRA runs 5.6
and 3.4 times faster than basic LSH and multi-probe LSH,
respectively while maintaining similar precision and recall
levels. This is because the decrease of the total size of a set
will affect the hash table generation time at each iteration in
HARRA system, while all records are used to build hash ta-
bles in both basic LSH and multi-probe LSH. Furthermore,
even though multi-probe LSH provides better results than
basic LSH, it may not avoid the nature of quadratic num-
ber of comparisons, since input records should be compared
with many records from multiple buckets in a hash table.
Therefore, the processing time of multi-probe LSH is not
improved enough for the case of cleaning sets.

Since the comparison of remaining HARRA algorithms against
the basic and multi-probe algorithms shows similar pattern,
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in subsequent sections, we focus on comparing various as-
pects among HARRA algorithms in detail.

5.5 Cleaning Single Data Collection
Next, the h-Dself algorithm is closely evaluated with two

data distributions – Power-Law (PL) and Gaussian (GA).
As shown in Figure 9, h-Dself works efficiently and robustly
for both data sets. As the size of a dirty data set increases,
both precision and recall values decrease slightly. However,
the running time to clean a dirty data set increases linearly.
This suggest that h-Dself is scalable to the size of a data
set regardless of statistical distributions.

The number of iterations can be pre-defined as a constant
by investigating the number of records in a semi-clean set
at each iteration. As mentioned earlier, the reduction rate
between the size of input set and that of output set can be
used as a control factor to stop iterations. In Figure 10, both
# of records in a semi-clean set and # of buckets (= # of
keys = the size of a hash table) from records in a semi-clean
set are depicted with the number of iterations. As can be
seen in Figures 10 (a) and (b), if reduction rate is used as
a control factor, the number of iterations in GA distributed
set is greater than that in PL distributed set. This happens
because the size of the final clean set in GA distributed set
is smaller than that in PL distributed set. In other words,
the dirtiness of GA distributed set is greater than that of PL
distributed set in terms of the number of matched records.
At each iteration, both # of records in a semi-clean set and
# of buckets in a hash table decrease as expected. Note that
the size of a hash table is always smaller than the number
of records due to duplicate keys from different records.

5.6 Cleaning Pairs of Data Collections
In this section, we validate all HARRA algorithms with

test sets with different characteristics. When one knows if
a set is “clean” or “dirty” beforehand, one can exploit such
characteristics to reduce running time. In addition, the re-
lationship between records can enhance the running time
further. On the other hand, when one does not know if a
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Figure 10: # of records & # of buckets in a hash
table at each iteration with 200,000 records.
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Figure 11: All algorithms for different scenarios.

set is “clean” or “dirty” beforehand, even though the set is
clean, algorithms should use “dirty” characteristics.

1. With Known Characteristics. Figure 11 shows the scal-
ability and accuracy of four HARRA algorithms for clean-
clean, clean-dirty, and dirty-dirty scenarios. Virtually, all
algorithms show similar patterns. As to scalability, as shown
in Figure 11(a), all four algorithms show that running time
increases linearly as input data size increases, suggesting all
algorithms are scalable with respect to their input size. Note
that h-CC is the fastest while h-DD1 is the next. h-CC
uses the clean-clean characteristics so that records in hash
table from one set does not have to be compared. Thus, we
can save time by reducing the number of comparisons by an
expensive match() function. In addition, the iteration will
stop sooner than others when the same reduction rate is set
for all algorithms. For dirty-dirty sets, because HARRA uses
a semi-cleaned data set by merging records that hit in a hash
table at each iteration, the size of hash table will be reduced
drastically along the number of iteration, even though more
iterations are requested. This results in the reduced total
running time in h-DD1. Between h-CD and h-CDself ,
we apply both algorithms to the same data sets. Because
the effect of CMR is more forceful than that of IMR, the
effect of merging between two sets is higher than that of
self-merging. Thus, h-CD shows better running time than
h-CDself . The detailed comparison between h-CD and
h-CDself will be more investigated in subsequent sections.
As to accuracy, as shown in Figure 11(b), all four algorithms
again achieve similar precision and recall, ranging from 0.91
to 1.

2. With Unknown Characteristics. Three different al-
gorithms from three different scenarios are compared by
putting 10,000 to 400,000 records with IMR=0.0 and CMR=0.5.
Although data is a clean-clean case (i.e., IMR=0.0), algo-
rithms for clean-dirty or dirty-dirty cases pretend not to
know that they are clean so that comparison is possible.

The running times among h-CC, h-CD, and h-DD1
in Figure 12(b) appear “faster” than those shown in Fig-
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Figure 12: Comparison among h-CC, h-CD, and h-
DD1 with 10,000 to 400,000 records (Note that run-
ning time between (a) and (b) are not comparable)

 IMR 0.0 IMR 0.4 
CMR 0.0 0.2 0.4 0.6 0.8 1.0 CMR 0.0 0.2 0.4 0.6 0.8 1.0 

Pr
ec

is
io

n 

h-CD .98 .98 .98 .98 .98 .98 h-CD .98 .98 .99 .99 .99 .99 
h-CDself .98 .98 .98 .98 .98 .98 h-CDself .98 .98 .98 .98 .98 .98 
h-DD1 .97 .97 .98 .97 .98 .98 h-DD1 .98 .98 .98 .98 .98 .98 
h-DD2 .98 .98 .98 .98 .98 .98 h-DD2 .99 .99 .99 .99 .99 .99 
h-DD3 .98 .98 .97 .98 .98 .98 h-DD3 .99 .99 .96 .95 .94 .94 

R
ec

al
l 

h-CD 1.0 .97 .95 .92 .89 .86 h-CD .94 .93 .92 .90 .89 .86 
h-CDself 1.0 .97 .95 .92 .89 .86 h-CDself .94 .93 .92 .91 .9 .87 
h-DD1 1.0 .98 .96 .93 .92 .90 h-DD1 .93 .92 .90 .89 .89 .86 
h-DD2 .98 .97 .94 .91 .88 .85 h-DD2 .88 .87 .85 .84 .82 .79 
h-DD3 .97 .97 .94 .90 .87 .85 h-DD3 .90 .87 .83 .80 .77 .74 

 

With 18 keys per records 

 IMR 0.0 IMR 0.4 
CMR 0.0 0.2 0.4 0.6 0.8 1.0 CMR 0.0 0.2 0.4 0.6 0.8 1.0 

Pr
ec

is
io

n 

h-CD .98 .98 .98 .98 .98 .98 h-CD .98 .98 .98 .98 .98 .99 
h-CDself .98 .98 .98 .98 .98 .98 h-CDself .98 .98 .98 .98 .98 .98 
h-DD1 .96 .96 .97 .97 .97 .97 h-DD1 .97 .97 .98 .98 .98 .98 
h-DD2 .97 .97 .98 .98 .98 .98 h-DD2 .98 .98 .98 .98 .98 .98 
h-DD3 .97 .97 .97 .98 .98 .98 h-DD3 .99 .98 .96 .95 .93 .93 

R
ec

al
l 

h-CD 1 .98 .96 .94 .92 .90 h-CD .96 .95 .94 .93 .92 .90 
h-CDself 1 .98 .96 .94 .92 .90 h-CDself .96 .95 .94 .93 .93 .90 
h-DD1 1 .99 .97 .96 .94 .92 h-DD1 .95 .94 .93 .92 .92 .90 
h-DD2 1 .98 .96 .94 .91 .89 h-DD2 .99 .96 .96 .94 .90 .88 
h-DD3 1 .98 .95 .93 .90 .88 h-DD3 .95 .90 .88 .85 .82 .80 

 

 Table 7: Precision and recall with various dirtiness

ure 12(a), contrary to the intuition. This is because two
cases use different data set. For Figure 12(b) with unknown
characteristics, single data set is used to exploit clean char-
acteristic for all algorithms when it is known to user. In
h-CC, one does not need to compare records internally in
each input set. In other words, at each hash-match-merge
iteration, after hash step, we do not perform match-merge
steps within one set. In addition, we can save more time us-
ing E set that only exists in h-CC algorithm by using clean
characteristic on both input sets. However, h-CD uses the
clean characteristic on one side only. Thus, the algorithm
requires the steps to clean the other set. Therefore, h-CD
demands more processing time. Similarly, h-DD1 considers
that all sets are dirty, i.e., the clean property is not used at
all. We may require more processing time to clean both sets.
For proper comparison, the same number of keys are gener-
ated for one record in all algorithms by setting the number
of iterations.

5.7 Robustness of HARRA
In section 5.5, we already showed the robustness of h-

Dself with different statistical distribution of data sets. In
this section, we also show the robustness of HARRA against
the varying dirtiness of data sets. Within the same sce-
nario, we compare different approaches to clean data sets
with various setting of reduction rate. For clean-dirty case,
we investigate the difference between h-CD and h-CDself

by comparing running time with various IMR and CMR.
For dirty-dirty case, we also compare three different algo-
rithms of h-DD1, h-DD2, and h-DD3 with various IMR
and CMR. All data sets include 100,000 records.

First, Table 7 shows the details of both precision and re-
call with different combinations of IMR and CMR values.
Note that regardless of the chosen combination, accuracy
of HARRA is robust – always both precision and recall are
above 0.9 except a few very dirty cases. For this experiment,
we use the same number of keys per record.

1. Clean-Dirty Case. Many data sets are generated by
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Figure 13: Algorithm comparison in clean-dirty case
by varying IMR and CMR, with 100,000 records

2 variations of IMR (0.0 and 0.4) and 6 variations of CMR
(0.0, 0.2, 0,4, 0.6, 0.8, and 1.0) to show the behavior between
h-CD and h-CDself with 100,000 records. Figure 13(a)
shows the running time when IMR is 0.0 (i.e., both set are
actually clean). As shown in Figure, with CMR=0.0, h-
CD and h-CDself show very similar running time, because
h-CD compares two sets A and B directly at first, then
cleans B, and h-CDself cleans B first, then compare A and
B. Thus, little difference exists in terms of the number of
comparisons between two schemes. By increasing CMR, h-
CD has more merits than h-CDself . By comparing A and
B first in h-CD, |B′| (the remainder of B) is reduced. Later,
we can save more time to clean B′. In h-CDself , because
IMR is 0.0, the process to clean B does not change the total
number of records in input sets at the first step. Therefore,
h-CD always shows better running time with IMR=0.0 with
various CMR.

Figure 13(b) shows the running time when IMR is 0.4 with
6 CMR (0.0, 0.2, 0,4, 0.6, 0.8, and 1.0). Note that both
IMR and CMR are applied to a set B. Overall, in terms
of running time, h-CDself is better with small CMR, but
h-CD is with larger CMR. For example, with CMR=0.0,
h-CDself runs faster than h-CD does. When we apply
h-Dself to B, the size of B reduces at the first iteration.
Thus, we can save running time when B is compared with
A at the next iteration. However, in h-CD, all records in
B are compared to A at the first iteration. Thus, we will
spend more time in merging two sets. With CMR=1, h-
CD runs faster than h-CDself does, because the effect of
CMR is much higher than that of IMR. Therefore, h-CD is
preferable beyond CMR=0.8.

Between Figures 13(a) and (b), we compare the effect of
IMR on h-CD and h-CDself . The running time is more
sensitive along CMR when we have low IMR. It means that
the effect of CMR is more significant when IMR is low. The
total running time with higher IMR is faster at the same
CMR point, because the size of a final clean set is smaller
than that with lower IMR. This fact implies that the number
of records at each iteration is reduced more with higher IMR.
Similarly, with higher CMR, we have faster running time
because of the same reason in the effect of higher IMR.

2. Dirty-Dirty Case. For dirty-dirty case, we compare the
running time among h-DD1, h-DD2, and h-DD3 with 2
IMR (0.0 and 0.4) and 6 CMR (0.0, 0.2, 0,4, 0.6, 0.8, and
1.0) with 100,000 records. As shown in Figure 14(a), with
IMR=0.0, both h-DD2 and h-DD3 show similar patterns
of running time for low CMR, while h-DD1 has steeper
slope overall (i.e., more sensitive to the change of CMR).
Within the structure of h-DD1, A and B are compared
at the same iteration as cleaning A and B. However, in h-
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Figure 14: Algorithm comparison in dirty-dirty case
by varying IMR and CMR, with 100,000 records

DD2, comparing A and B is followed by applying h-Dself to
B, and in h-DD3, we apply h-Dself (A) and h-Dself (B) at
first before comparing A and B. With CRM=0.6 or higher,
the running time in h-DD1 is the best by the effect of CMR,
and h-DD2 and h-DD3 are followed in order.

In Figure 14(b), with IMR=0.4, h-DD3 shows the fastest
running time with low CMR. However, h-DD1 provides the
best running time with CMR=0.4 or higher, because the
effect of CMR is higher than that of IMR, Between Figures
14(a) and (b), similar to the pattern in clean-dirty case, with
IMR=0.0, the running time is more sensitive to CMR. Thus,
with IMR=0.0, the slopes on all algorithms are steeper than
those with IMR=0.4. However, overall running time with
IMR=0.4 is much faster at the same CMR on all algorithms,
since we have higher reduction rate of the number of records
at each iteration with higher IMR. Similarly, with higher
CMR, we will have faster running time.

6. CONCLUSION
We proposed HARRA by investigating iterative structures

of LSH algorithms to clean and merge data sets. For three
input cases of clean-clean, dirty-clean, and dirty-dirty, we
presented six solutions. Our proposed algorithms are shown
to exhibit fast running time as well as scalability along data
size. In addition, compared to four competing record link-
age solutions (StringMap, R-Swoosh, basic and multi-probe
LSH), HARRA shows 3 – 10 times of improvements in speed
with equivalent or comparable accuracy. The significant sav-
ing is due to the dynamic and re-usable hash table and ex-
ploitation of data characteristics in HARRA. Many direc-
tions are ahead for future work. First, we plan to extend
all HARRA algorithms to be parallel. Second, the current
HARRA algorithms can be extended to other data problems
(e.g., clustering) or domains (e.g., multimedia).

Availability. HARRA implementations and sample data
sets used in this paper are available at:

http://pike.psu.edu/download/edbt10/harra/
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