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Abstract

There is a lack of research into capabilities
of recent LLMs to generate convincing text
in languages other than English and into per-
formance of detectors of machine-generated
text in multilingual settings. This is also re-
flected in the available benchmarks which lack
authentic texts in languages other than English
and predominantly cover older generators. To
fill this gap, we introduce MULTITuDE1, a
novel benchmarking dataset for multilingual
machine-generated text detection comprising of
74,081 authentic and machine-generated texts
in 11 languages (ar, ca, cs, de, en, es, nl, pt, ru,
uk, and zh) generated by 8 multilingual LLMs.
Using this benchmark, we compare the perfor-
mance of zero-shot (statistical and black-box)
and fine-tuned detectors. Considering the mul-
tilinguality, we evaluate 1) how these detectors
generalize to unseen languages (linguistically
similar as well as dissimilar) and unseen LLMs
and 2) whether the detectors improve their per-
formance when trained on multiple languages.

1 Introduction

Machine text generation has significantly pro-
gressed in the past few months thanks to a new
generation of large language models (LLMs). First,
it was the arrival of ChatGPT and later GPT-4 that
made available inexpensive generation of text in
a range of languages to millions of people with
ChatGPT becoming the fastest growing consumer
application in history. Second, the introduction
of LLaMA (Touvron et al., 2023b) opened new

1The dataset is available at Zenodo upon request for
research purposes only: https://zenodo.org/records/
10013755. The source code is available at: https://github.
com/kinit-sk/mgt-detection-benchmark.
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Figure 1: Train and Test languages from our dataset.

Train Test: en Test: non-en Difference
en 0.9292 0.6903 ↓ 25.7%

Table 1: Average F1-score of detectors fine-tuned on
English train split of MULTITuDE dataset, then evalu-
ated on English test split vs. non-English test languages.
The ↓ 25.7% drop in performance calls attention to the
need for accurate multilingual MGT detectors.

possibilities for researchers and practitioners for in-
expensive fine-tuning of LLMs, consequently ush-
ering fine-tuned models like Alpaca (Taori et al.,
2023) or Vicuna (Chiang et al., 2023) mimicking
the capabilities of much larger (and more expen-
sive) ones such as ChatGPT. The defining charac-
teristic of this new generation of LLMs is not only
the increased quality of text generation, but also
their multilinguality.

Due to the potential for misuse of machine-
generated text (MGT) for influence opera-
tions (Goldstein et al., 2023), disinforma-
tion (Buchanan et al., 2021), spam or unethical
authorship (Crothers et al., 2022a), there has been
a substantial amount of research on the task of
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machine-generated text detection (Jawahar et al.,
2020; Stiff and Johansson, 2022; Uchendu et al.,
2023a). Although GPT-3 was already capable
of generating text in languages other than En-
glish and despite the availability of multilingual
BLOOM (Scao et al., 2022), most of the prior
works on this task have been (until very recently)
still focusing on GPT-2 with English-only support
or newer models like GPT-Neo (Gao et al., 2020),
GPT-NeoX (Black et al., 2022) or GPT-J (Wang
and Komatsuzaki, 2021) which were all trained on
an English language only datasets.

Recently, first MGT datasets in languages
other than English – AuTexTification for Span-
ish (Sarvazyan et al., 2023) and RuATD for Rus-
sian (Shamardina et al., 2022) – were made public
for the detection task. There is also a dataset con-
taining 5 languages (Chen et al., 2022), but this was
obtained by the use of machine translation with hu-
man corrections, which renders it less useful for
MGT detection benchmarking due to the potential
noise. Thus, a dataset comprising authentic texts
in multiple languages from a single domain (i.e.,
a text form, such as a news article or social media
post) is still missing, hampering the comprehensive
evaluation of detection methods in multilingual set-
ting. At the same time, prior works have already
shown that detectors fine-tuned on data in English
fail to generalize to other languages (e.g. to Ger-
man in case of Mitchell et al., 2023 showing a drop
from 0.946 AUC ROC to 0.537), which is also
confirmed by our results (see Table 1).

In this paper, we aim to address shortcomings of
prior works and focus on the multilingual aspect
of MGT detection task (a binary classification of
a text to be human-written or machine-generated).
Our main contributions are:

(1) We evaluate the cross-language generaliza-
tion of fine-tuned detectors trained in monolingual
vs. multilingual settings. More specifically, we
evaluate how the detection methods fine-tuned to
a specific language (monolingual) or to a set of
training languages (multilingual) generalize to un-
seen languages. We observe strong influence of
language family and script on generalization and
clear benefits of multilingual fine-tuning.

(2) We provide a first comprehensive multilin-
gual benchmark of a range of state-of-the-art
(SOTA) detection methods, comparing the perfor-
mance of fine-tuned detectors and their ability to

generalize to unseen LLMs to the performance of
the zero-shot statistical detectors, such as Detect-
GPT (Mitchell et al., 2023) or black-box methods,
such as GPTZero.

(3) Finally, we introduce a novel benchmark-
ing dataset MULTITuDE comprising of 74,081
texts (7,992 human-written and 66,089 machine-
generated) in 11 languages (English, Spanish,
Russian, Portuguese, Catalan, German, Dutch,
Ukrainian, Czech, Arabic, and Chinese). The se-
lected languages cover 4 different scripts and 5 lan-
guage families (see Figure 1 for their geographic
distribution). The included machine-generated
texts were generated by 8 multilingual SOTA
LLMs, namely GPT-3, ChatGPT, GPT-4, LLaMA-
65B, Alpaca-LoRa-30B, Vicuna-13B, OPT-66B
and OPT-IML-Max-1.3B covering various model
sizes, architectures, and means of pre-training.

2 Related Work

Large Language Models (LLMs). They are lan-
guage models with an unprecedented number of
parameters trained on massive amounts of data, in-
cluding models such as ChatGPT powered by GPT-
3.5 or GPT-4 (OpenAI, 2023), OPT (Zhang et al.,
2022), LLaMA (Touvron et al., 2023a), PaLM
(Narang and Chowdhery, 2022), LaMDA (Collins
and Ghahramani, 2021), BLOOM (Scao et al.,
2022), Vicuna (Chiang et al., 2023), Alpaca (Taori
et al., 2023), etc. The scale of LLMs has led to
emergent abilities, observed only with these mod-
els, and solving of several non-trivial NLG and NLI
(Natural Language Inference) tasks. Among the
most impressive is the ability to generate authentic-
looking human-like texts, nearly indistinguishable
from human-written texts. Similarly impressive is
the ability to generate coherent texts in languages
other than English (Scao et al., 2022) as LLMs are
mostly trained with over 50 languages. Because of
these abilities, LLMs can be maliciously used, e.g.
to generate misinformation (Shevlane et al., 2023).
To combat LLM misuse, generated text detectors
and benchmarks are required.

Datasets. Since transformer-based generative
language models became ubiquitous in 2018, re-
searchers have released datasets to address the new
problem of machine-generated text detection. The
most popular datasets are GPT-22 (Radford et al.,

2
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Figure 2: MULTITuDE generation framework.

2019) and GROVER3 (Zellers et al., 2019) gener-
ated texts. However, as more Language Models
(LM) got deployed, the need for more datasets
from different LMs arose. Therefore Uchendu
et al. (2020) released the first multi-generator (8
LMs) dataset in the news domain and Uchendu
et al. (2021) released the first benchmark dataset
(19 LMs) and environment for machine-generated
text detection. Next, researchers released datasets
for different domains - Academic papers (Liyan-
age et al., 2022; Rosati, 2022), News, Reddit posts
& Recipes (Cutler et al., 2021), Amazon reviews
(Adelani et al., 2020), multi-modal (i.e., images
& texts) news articles (Tan et al., 2020), Tweets
(Fagni et al., 2021), COVID-19 articles (Pagnoni
et al., 2022), deepfake text in-the-wild (Pu et al.,
2022a), gamification of MGT detection (Dugan
et al., 2022), essays (Liu et al., 2023), prompt-
generation (Anand et al., 2023; Peng et al., 2023),
and multi-generator (27 LLMs) multi-domain (i.e.,
news, story, question, argument, scientific, etc.)
data (Li et al., 2023).

However, the vast majority of these datasets are
in English. A few researchers released non-English
datasets in Russian (Shamardina et al., 2022), Chi-
nese (Pu et al., 2022b), Iberian languages (Sar-
vazyan et al., 2023), and M4 which contains Rus-
sian, Chinese, Urdu, Indonesian, & Arabic lan-
guages (Wang et al., 2023). In light of the increas-
ing number of multilingual LLMs, we generate the
largest multilingual dataset for machine-generated
text detection containing 11 languages.

Detection Methods. Prior works have shown that
humans are already not capable of reliably distin-
guishing machine-generated from human-written
text, with accuracy only slightly above random
guessing (Uchendu et al., 2021) and even find-
ing MGTs more trustworthy (Zellers et al., 2019).
Thus, researchers have proposed a variety of au-
tomatic MGT detection methods. These include

3
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stylometric-based, deep learning-based, statistics-
based, and hybrid approaches (i.e., the ensemble of
at least 2 approaches) (Uchendu et al., 2023a).

For stylometric-based detectors, researchers
used linguistic features to capture the unique writ-
ing styles of the machine and human authors
(Uchendu et al., 2020; Fröhling and Zubiaga, 2021;
Kumarage et al., 2023). Due to the computa-
tional cost of extracting the linguistic features, re-
searchers proposed a deep learning-based detec-
tor which involves fine-tuned and other variants of
BERT (Zellers et al., 2019; Uchendu et al., 2021;
Bakhtin et al., 2019; Liyanage et al., 2022; Rosati,
2022). However, deep learning models have a few
limitations: (1) they are susceptible to adversarial
perturbations (Gagiano et al., 2021; Crothers et al.,
2022b; Wolff and Wolff, 2020) and (2) need a lot
of labeled data to perform well. Thus, researchers
proposed statistics-based techniques which are ro-
bust to adversarial perturbations and are unsuper-
vised, requiring minimal data (Gehrmann et al.,
2019; Mitchell et al., 2023; Gallé et al., 2021; Su
et al., 2023). However, while these statistics-based
detectors are more robust to perturbations than
deep learning-based techniques, they still under-
perform deep learning-based models in terms of
non-perturbed performance. Therefore, researchers
combine statistics-based and deep learning-based
techniques to gain adversarial robustness and high
performance (Kushnareva et al., 2021; Liu et al.,
2022; Uchendu et al., 2023b; Zhong et al., 2020).

3 Benchmark Dataset

As suitable multilingual human-machine pair
dataset containing authentic non-English texts and
machine texts generated by SOTA text-generation
models is not available, we have put together a new
dataset, called MULTITuDE (benchmark dataset
for MULTIlingual machine Text DEtection). Its
human segment comprises texts in 11 languages
(authentic news articles) from the MassiveSumm
dataset (Varab and Schluter, 2021) (see Figure 2).

https://github.com/rowanz/grover/tree/master/generation_examples
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Language Arabic Catalan Chinese Czech Dutch English German Portuguese Russian Spanish Ukrainian Total
(Abbv) (ar) (ca) (zh) (cs) (nl) (en) (de) (pt) (ru) (es) (uk)
Train 0 0 0 0 0 26969 0 0 8970 8910 0 44786
Test 2673 2691 2683 2689 2695 2491 2685 2673 2671 2676 2668 29295

Generator alpaca-lora gpt-3.5-turbo gpt-4 llama opt opt-iml-max text-davinci-003 vicuna Total Total
(Size) (30b) (65b) (66b) (1.3b) (13b) Machine Human
Train 5017 5023 5023 4998 4978 4956 5022 5013 40030 4756
Test 3273 3277 3277 3231 3251 3201 3275 3274 26059 3236

Table 2: Number of samples per language and per generator for train and test splits of the MULTITuDE dataset.

Titles of the selected articles have been used
in the prompts for 8 language models to gener-
ate corresponding machine texts. The titles were
split into train and test portion of the dataset, en-
suring machine and human texts generated for the
same title to be in the same split. The train split is
used to fine-tune detectors in monolingual (a single
training language) as well as multilingual (multiple
training languages) manner; the test split of the
dataset is used for evaluation of the detectors’ per-
formances. Details regarding text generation and
pre-processing of both, human and generated, texts
can be found in Appendix B.

Language Selection. We have deliberately se-
lected major languages from three different lan-
guage families as our training languages – En-
glish (Germanic), Spanish (Romance), and Russian
(Slavic). To see whether linguistic similarity influ-
ences the transferability of the detection, we have
selected two genealogically related test languages
for all of them – Dutch and German for English,
Czech and Ukrainian for Russian, Portuguese and
Catalan for Spanish. On top of that, we have also
generated test data for linguistically completely
unrelated Arabic (Semitic) and Mandarin Chinese
(Sino-Tibetan).

Most of the languages use Latin script. Russian
is the only training language that uses a different
script - Cyrillic. We have deliberately selected
Czech (Latin) and Ukrainian (Cyrillic) as its Slavic
neighbours to see how the script affects the results.
Arabic and Chinese use their own scripts. Overall,
our selection of languages is still biased towards
Indo-European languages and Latin script.

The selected languages are just representatives
to see the effect and answer our research questions,
while avoiding waste of resources (including more
languages than necessary). Using the published
source code, the study can easily be extended to
other languages.

Generated Texts. The summarized statistics of
the MULTITuDE dataset are provided in Table 2.
The dataset includes approximately 1000 human
texts for each training language along with the
corresponding MGTs from each generation model.
For each test language, 300 human texts with the
same amount of MGTs per model are included.

The linguistic analysis (see Appendix B.4) con-
firmed that all used text-generation models have
been able to generate texts in the requested lan-
guage in more than 95% cases (based on the Fast-
Text language detection) except for LLaMA 65B
(still reaching over 85%), failing mostly in Arabic
and Chinese texts which it was not pre-trained on.
The numbers of unique sentences and words per
text is comparable to human texts and the results
from the subsequent experiments show that none of
the LLMs generated texts that are especially easy to
detect. Nevertheless, some artifacts in the machine
texts may still be present, since such a detailed
analysis of the generated texts was not performed.

4 Detection Methods

For the purpose of this benchmark, the MGT de-
tection methods are divided into three categories.
The first category includes the black-box detectors –
zero-shot methods available either through web in-
terface or API, providing only small amount or no
information about the underlying model or method
used for detection, typically provided as commer-
cial paid services. The second category includes
statistical detectors – zero-shot methods, relying
on distributional differences between generated and
human-written text. The third category includes the
fine-tuned detectors – language-model-based meth-
ods, which require fine-tuning of the models for the
MGT detection task. See Appendix C for a com-
plete list and more details on detection methods
used in the benchmark.



Black-Box Detectors. We examine popular com-
mercial black-box detectors, specifically ZeroGPT4

and GPTZero5. Despite their wide use and support
of non-English languages, the extent of their zero-
shot multilingual and cross-lingual proficiency in
detecting MGT remains unknown. The training
methodologies, weight parameters, and the spe-
cific data used for these detectors remain undis-
closed. We interacted with these detectors via a
subscription-based API, enabling us to assess their
performance on our multilingual dataset.

Statistical Detectors. We evaluate our dataset
on all the current baseline and SOTA statistics-
based detectors that had been previously shown
to perform very well on English datasets (He et al.,
2023; Mitchell et al., 2023), with all models (ex-
cept Entropy) achieving over a 75% performance –
Log-likelihood, Rank, Log-Rank, Entropy, GLTR
Test-2, and DetectGPT. The main benefit of these
techniques is that they require no training. Instead,
they utilize the probability of each word in a piece
of text to distinguish MGT from human-written
texts. Typically, these statistics-based models use
GPT-2 Medium to get the probability of the words,
however, as we are evaluating with a multilingual
dataset, we use mGPT, a multilingual GPT-based
model. Further for DetectGPT, an additional model
is used to generate perturbations to the original text,
so we keep the default model for perturbation - T5
(Raffel et al., 2020).

Fine-Tuned Detectors. We have selected 7 most
popular HuggingFace language models represent-
ing SOTA while taking multilinguality into account.
In the experiments, these detector models have
been fine-tuned on MGT detection task, taking var-
ious combinations of source languages and text
generation models’ output contained in the MUL-
TITuDE dataset. For each of the three training lan-
guages separately (English, Spanish, Russian), for
all training languages combined, and for English
language with 3-times more train samples, we have
fine-tuned these detector models for each generator
separately and for all generators data combined. It
resulted in 45 fine-tuned versions of each detector
model, resulting in 315 fine-tuned detection meth-
ods in total. Details regarding fine-tuning process
can be found in Appendix D.

4
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5 Experiments and Results

We evaluate various aspects of multilingual capabil-
ities of the existing SOTA MGT detection methods.
Mainly, we focus on detection capabilities in En-
glish and non-English languages. However, we also
analyze cross-lingual relations and generalization
capabilities of detectors fine-tuned on a specific
language and specific MGT generator data.

Firstly, in Table 3, we provide comparison of
detectors’ performance evaluated on the whole
created multilingual MULTITuDE benchmark test
data (i.e., the data balanced across 11 languages).

There are 315 fine-tuned detection methods,
which is infeasible to show in a single table. For
clarity, the table contains all evaluated black-box
and statistical methods, but includes only the best-
performing version of each base model of fine-
tuned methods (i.e., only one fine-tuned version
of XLM-RoBERTa is provided with information
about language and generator LLM data used for
training). Performance evaluation of all versions
can be found in the associated GitHub repository.
The results are ordered according to the achieved
macro average F1-score (since the test data are
highly imbalanced in terms of machine vs hu-
man classes). This metric is used in all experi-
ments if not stated otherwise. In the table, we also
show other standard performance metrics, such as
weighted average of F1-score, Precision, Recall,
Accuracy, and FPR (false positive rate) with FNR
(false negative rate). These metrics are calculated
based on a default classification threshold of 0.5.
Such a threshold can be calibrated based on vari-
ous aspects (such as minimizing FPR or maximiz-
ing Recall). Therefore, we also show AUC ROC
(area under the curve of receiver operating charac-
teristic), which is a threshold-independent metric
calculated based on prediction probabilities rather
than the predictions themselves. Unfortunately, due
to missing prediction probabilities, it is available
only for fine-tuned methods in our results. It must
be noted that even when using optimal thresholds
maximizing true positive rate and minimizing false
positive rate, the key conclusions reported in this
paper hold. We use the mentioned default threshold
also when reporting results in the rest of this paper.

Based on the results, we can clearly see that
fine-tuned methods outperform the others, when
utilizing training data from all LLMs and all train
languages (with two exceptions when fine-tuning
on a single language performed better). We can

https://www.zerogpt.com
https://gptzero.me/


Detector Method Train Train Macro avg Weighted avg Weighted avg Weighted avg Accuracy FPR FNR AUC
Model Category Lang. LLM F1-score F1-score Precision Recall ROC
MDeBERTa-v3-base* F all all 0.8480 0.9400 0.9403 0.9396 0.9396 0.2614 0.0354 0.9607
XLM-RoBERTa-large* F all all 0.8240 0.9352 0.9357 0.9398 0.9398 0.4178 0.0158 0.9658
BERT-base-multilingual-cased* F all all 0.7563 0.9073 0.9051 0.9104 0.9104 0.4781 0.0414 0.9188
RoBERTa-large-OpenAI-detector F all all 0.7360 0.8933 0.8968 0.8904 0.8904 0.4308 0.0698 0.8645
mGPT* F ru all 0.7219 0.8976 0.8941 0.9048 0.9048 0.5751 0.0356 0.8780
GPT-2 Medium F all all 0.6646 0.8668 0.8682 0.8654 0.8654 0.5850 0.0787 0.7899
ELECTRA-large F en all 0.5559 0.7952 0.8310 0.7684 0.7684 0.6530 0.1793 0.6053
Entropy + RandomForest* S N/A N/A 0.4863 0.8335 0.8050 0.8729 0.8729 0.9756 0.0217 N/A
Rank* S N/A N/A 0.4708 0.8375 0.7913 0.8895 0.8895 1.0000 0.0000 N/A
DetectGPT* S N/A N/A 0.4708 0.8375 0.7913 0.8895 0.8895 1.0000 0.0000 N/A
Entropy* S N/A N/A 0.4708 0.8375 0.7913 0.8895 0.8895 1.0000 0.0000 N/A
Log-likelihood* S N/A N/A 0.4703 0.8368 0.7911 0.8880 0.8880 1.0000 0.0018 N/A
Log-Rank* S N/A N/A 0.4702 0.8364 0.7911 0.8874 0.8874 1.0000 0.0025 N/A
GLTR Test-2 (Rank)* S N/A N/A 0.4662 0.8282 0.7901 0.8707 0.8707 0.9991 0.0213 N/A
ZeroGPT* B N/A N/A 0.4259 0.5559 0.8653 0.4744 0.4744 0.1681 0.5700 N/A
GPTZero B N/A N/A 0.1605 0.1258 0.8636 0.1629 0.1629 0.0226 0.9383 N/A

Table 3: General performance of detection methods on the whole test split (all languages) of the MULTITuDE
benchmark. Symbol * denotes detectors capable to handle multilingual text. Letters “B”, “S” and “F” denote the
category of the detector as black-box, statistical and fine-tuned respectively. Due to space limitations, we only report
the best-performing version of each base model in case of fine-tuned detectors.

also notice that zero-shot methods cannot clearly
distinguish between human and machine texts gen-
erated by newest LLMs. However, this is evaluated
across data of all test languages combined; the re-
sults can differ among languages. In the following
subsections, we thus report the results per individ-
ual test languages.

5.1 Zero-Shot Setting
We aim to answer the following research question:
How are zero-shot (statistical and black-box) de-
tectors capable of detecting MGT in multiple lan-
guages? The objective is to see how well these
detectors can detect machine text generated by the
newest LLMs and whether these detectors are able
to detect MGT in non-English languages.

To answer this question, we run these detectors
on the test split of the MULTITuDE dataset and
analyze their per-language performances.

(1) Statistical detectors cannot cope with mul-
tilingual data. From Table 3, we observe that these
models achieve about 47% F1 score. This suggests
that these statistics-based models are unable to per-
form well with this multilingual constraint. Also,
we observe that Rank, Entropy, and DetectGPT
achieve the same performance. This is because all
3 models only predict one class, the machine class.
The MGTBench6 implementation of these methods,
used in our experiments, uses a Logistic Regres-
sion classifier for binary predictions with default
parameters. For the Entropy based method, we
have also used a Random Forest classifier with hy-
perparameters optimized using Randomized Grid

6
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Search with 5-fold cross-validation and 1k of itera-
tions (details regarding the optimized hyperparam-
eters can be found in Appendix D.), achieving a
slightly higher performance. Notably, we can see
that such a model is predicting also a human class,
although negligibly, meaning the method actually
works. Finally, the low performance of these previ-
ously high-performing statistical models suggests
the non-trivial nature of evaluating on a multilin-
gual dataset.

(2) Transferability to non-English languages
cannot be properly evaluated. It is due to the
overall low performance (e.g., predicting a single
class only) of the statistical and black-box detec-
tors (even on English, as previously mentioned).
Per-language results show that black-box detectors
outperformed statistical detectors on English data,
but their performance on other languages is the
same or even worse (see Table 10 in Appendix E).

5.2 Monolingual Generalization

In this experiment, we aim to answer the following
research question: Do detectors fine-tuned in mono-
lingual settings generalize to other languages?
Meaning, for example, will a detector fine-tuned
on English data only perform well on Spanish? Is
there a relation between how close languages are
and how well the detectors generalize?

To answer this question, we use various versions
of detectors, fine-tuned on individual language data.
To better show language dependencies, we perform
this experiment per each generator data separately.
For example, the XLM-RoBERTa model is fine-
tuned on GPT-4 machine data (plus human data)

https://github.com/xinleihe/MGTBench


Train Test Language [mean (±confidence interval)]
Language ar ca cs de en es nl pt ru uk zh
en 0.5448

(±0.07)
0.7335
(±0.07)

0.6793
(±0.06)

0.8104
(±0.04)

0.9292
(±0.02)

0.7018
(±0.05)

0.7508
(±0.07)

0.7362
(±0.05)

0.7148
(±0.05)

0.6746
(±0.05)

0.5580
(±0.05)

es 0.7857
(±0.05)

0.8747
(±0.03)

0.8016
(±0.07)

0.8812
(±0.03)

0.7322
(±0.07)

0.9314
(±0.02)

0.8143
(±0.06)

0.8944
(±0.03)

0.8375
(±0.04)

0.8299
(±0.05)

0.7216
(±0.06)

ru 0.8487
(±0.05)

0.6532
(±0.07)

0.7924
(±0.08)

0.7591
(±0.06)

0.5760
(±0.09)

0.6884
(±0.07)

0.6915
(±0.07)

0.6626
(±0.07)

0.9522
(±0.01)

0.9387
(±0.02)

0.7294
(±0.06)

all 0.8537
(±0.04)

0.8977
(±0.03)

0.8604
(±0.07)

0.9073
(±0.02)

0.9420
(±0.02)

0.9372
(±0.02)

0.8808
(±0.04)

0.9253
(±0.02)

0.9560
(±0.01)

0.9374
(±0.02)

0.7659
(±0.04)

en3 0.5605
(±0.09)

0.7484
(±0.06)

0.7289
(±0.07)

0.8244
(±0.04)

0.9392
(±0.03)

0.7156
(±0.04)

0.7778
(±0.07)

0.7508
(±0.05)

0.7092
(±0.06)

0.7118
(±0.06)

0.6160
(±0.05)

Table 4: Performance for the test languages based on various train language combinations. It shows the mean of all
trained detectors with multilingual base models along with 95% confidence interval error bounds. The reported
score is macro average F1-score.

from train split for English, and evaluated on GPT-
4 machine data (plus human data) from test split for
all languages separately (English, Spanish, etc.).

Table 4 shows the aggregated performance
across all generators and all multilingual detec-
tors (i.e., detectors having a multilingual base LM).
We only use multilingual detectors here because
they have the best performance, as the cross-lingual
generalization capability of English-only models is
worse (see Table 3). For each test language, we test
whether the differences between train languages ob-
served in Table 4 are statistically significant. To do
this, we conduct repeated measures ANOVA tests
for each test language: we use macro F1-score for
a given test language as a dependent variable, the
combinations of detectors and text generators as
“subjects” and train language as an independent
within-subjects variable. For all 11 test languages,
the observed differences are statistically signifi-
cant (p < 0.05). We further conduct post hoc
pairwise tests between pairs of train languages per
each test language for a more in depth analysis.
We also show how the performance for individ-
ual languages correlate in Table 5. For complete-
ness, we also provide full results in Appendix E
in Tables 11–13 for English, Spanish and Russian
training language respectively.

There are several observations that can be made
based on our results. (1) The results confirm that
the monolingually fine-tuned detectors are able
to generalize to other languages, although with
some performance degradation. There are signifi-
cant differences of performance achieved for indi-
vidual test languages (ranging from 0.54 to 0.96).

(2) Linguistic similarity matters. The results
indicate that the similarity between languages plays

a role in how they would generalize between each
other. Spanish dominates both Catalan and Por-
tuguese, similarly Russian works really well for
Ukrainian. The correlations also clearly show that
the performance of similar languages correlate with
each other. Czech is the one exception from this
trend, but it might be caused by the fact that it is
both Slavic (more similar to Russian), but it also
uses the Latin script (making it more similar to
other Latin-using Indo-European languages).

(3) English is an outlier language. Overall it
has low (but statistically significant) correlation
with other related languages and it is the only lan-
guage that has negative correlation with any other
language. It is outperformed by Spanish in most
cases, even for the languages from its own lan-
guage family; observed differences in performance
between using Spanish or English as a training lan-
guage are statistically significant for both German
and Dutch. At the same time, detectors trained
on other training languages (Spanish and Russian)
have unusually weak performance for English. We
hypothesize that this is caused by the fact that En-
glish is often the most common language in the
pre-training data for both the generators and the
detectors, which might lead to different behavior
(regarding cross-lingual capability) for this particu-
lar language (e.g., the perplexity might be lower).

(4) Languages with Non-Latin scripts are cor-
related. Even though Russian is completely un-
related to Arabic or Chinese, it has the best per-
formance as a training language (although the dif-
ferences in performance when using Russian or
Spanish as a training language are not statistically
significant). The Non-Latin script languages seem
to correlate well with each other. This might indi-



Germanic Languages Romance Languages Slavic Languages Others
Languages en de nl es pt ca cs ru uk ar zh

en 1.0000 0.5420 0.5551 0.3794 0.4960 0.4237 -0.16 (n.s.) -0.3235 -0.4988 -0.2672 -0.00 (n.s.)
de 0.5420 1.0000 0.6006 0.7657 0.8022 0.6491 0.2176 0.20 (n.s.) 0.08 (n.s.) 0.20 (n.s.) 0.17 (n.s.)
nl 0.5551 0.6006 1.0000 0.5585 0.6905 0.8342 0.06 (n.s.) 0.2403 0.05 (n.s.) 0.3516 0.4694
es 0.3794 0.7657 0.5585 1.0000 0.9317 0.7331 0.16 (n.s.) 0.18 (n.s.) 0.12 (n.s.) 0.2989 0.2015
pt 0.4960 0.8022 0.6905 0.9317 1.0000 0.8251 0.09 (n.s.) 0.13 (n.s.) 0.05 (n.s.) 0.2483 0.19 (n.s.)
ca 0.4237 0.6491 0.8342 0.7331 0.8251 1.0000 0.15 (n.s.) 0.2103 0.08 (n.s.) 0.3345 0.3160
cs -0.16 (n.s.) 0.2176 0.06 (n.s.) 0.16 (n.s.) 0.09 (n.s.) 0.15 (n.s.) 1.0000 0.3690 0.4489 0.4264 0.4500
ru -0.3235 0.20 (n.s.) 0.2403 0.18 (n.s.) 0.13 (n.s.) 0.2103 0.3690 1.0000 0.8606 0.7378 0.4463
uk -0.4988 0.08 (n.s.) 0.05 (n.s.) 0.12 (n.s.) 0.05 (n.s.) 0.08 (n.s.) 0.4489 0.8606 1.0000 0.7398 0.4664
ar -0.2672 0.20 (n.s.) 0.3516 0.2989 0.2483 0.3345 0.4264 0.7378 0.7398 1.0000 0.7249
zh -0.00 (n.s.) 0.17 (n.s.) 0.4694 0.2015 0.19 (n.s.) 0.3160 0.4500 0.4463 0.4664 0.7249 1.0000

Latin Script Non-Latin Script

Table 5: The correlations between the macro average F1-score performance of the test languages calculated based
on the results from multilingual detectors (i.e., having a multilingual base LM). The results that are not statistically
significant are marked by (n.s.).

cate that the models behave differently for the Latin
script (which is, again, by far the most common)
than for other scripts.

5.3 Multilingual Generalization

In this experiment, we aim to answer the following
research question: Do detectors fine-tuned in mul-
tilingual settings generalize better to unseen lan-
guages than monolingually fine-tuned ones? The
objective is to see whether it is beneficial to train de-
tectors on multilingual rather than on monolingual
data in regard to transferability to other languages.

For the purpose of this experiment, we fine-tune
the detectors by using the train samples of all three
languages combined. The train set consists of 1k
MGTs and 1k human texts for each train language
(this train set is denoted as all in the results). The
evaluation is also done per each LLM separately. In
order to see whether the performance is not strictly
based on a higher number of train samples, we also
fine-tune the detectors with a comparable amount
of English-only data, i.e., also approximately 6k
train samples (this train set is denoted en3). The
mean results are provided in bottom two rows of
Table 4, analogously to the previous experiment.
For completeness, the full results of each detec-
tor per each LLM-generated data are provided in
Appendix E in Tables 14 and 15.

The multilingually fine-tuned detectors per-
form better on unseen languages than the mono-
lingually fine-tuned ones. The observed differ-
ences in performance between using all three train
languages (all) and all other train setups are statis-
tically significant in case of Czech, German, Dutch
and Portuguese. For all other test languages, the
multilingually fine-tuned detectors also perform
better (with the sole exception of the Ukrainian
language where the detectors trained on Russian

slightly outperform the ones trained on all), but the
differences to the best monolingually fine-tuned
detectors are not statistically significant. The rea-
son for a better performance of the multilingually
fine-tuned detectors may be a higher amount of
training samples. Indeed, when we look at the re-
sults of detectors fine-tuned with the en3 train set,
they achieve a slightly (but mostly not statistically
significantly) better performance in almost all cases
compared to the original English fine-tuned detec-
tors (performing almost the same as multilingually
fine-tuned detectors on English). However, the gen-
eralization to other languages is still significantly
better in multilingually fine-tuned detectors (en3
having a minimum at 0.56 for Arabic vs. all having
a minimum at 0.77 for Chinese). Thus, regarding
transferability to other languages, the detectors fine-
tuned in multilingual manner seem stronger (for
detectors with multilingual base models as well as
for the ones with monolingual base models; see
Appendix E for the latter).

5.4 Cross-Generator Generalization

We also aim to answer the research question: How
do fine-tuned detectors trained on data from a sin-
gle LLM perform in detecting MGT by different
LLMs? Analogously to cross-lingual evaluation in
Section 5.2, the objective of this experiment is to
scrutinize the cross-generalizability among distinct
LLMs by each individual detector fine-tuned on
data from a single LLM.

Table 6 shows the correlation in the performance
of each individual LLM. Comprehensive results
(i.e., all the macro F1-scores, mean, and standard
deviation separated per each language) are pro-
vided in Appendix E in Tables 16–20.

LLM similarity matters. We discern two dis-
tinct groups, namely, Group 1: text-davinci-003,



text-davinci-003 gpt-3.5-turbo gpt-4 alpaca-lora-30b vicuna-13b llama-65b opt-66b opt-iml-max-1.3b
text-davinci-003 1.0000 0.9585 0.9005 0.9357 0.9381 -0.4537 -0.3444 -0.3574
gpt-3.5-turbo 0.9585 1.0000 0.9712 0.8562 0.9056 -0.5131 -0.4805 -0.4872
gpt-4 0.9005 0.9712 1.0000 0.7781 0.8786 -0.4868 -0.4779 -0.5218
alpaca-lora-30b 0.9357 0.8562 0.7781 1.0000 0.9268 -0.2870 -0.1261 -0.1226
vicuna-13b 0.9381 0.9056 0.8786 0.9268 1.0000 -0.2221 -0.1273 -0.1632
llama-65b -0.4537 -0.5131 -0.4868 -0.2870 -0.2221 1.0000 0.7721 0.6990
opt-66b -0.3444 -0.4805 -0.4779 -0.1261 -0.1273 0.7721 1.0000 0.9011
opt-iml-max-1.3b -0.3574 -0.4872 -0.5218 -0.1226 -0.1632 0.6990 0.9011 1.0000

Table 6: The correlations between the macro average F1-score performance of the cross-generator. All the presented
results are statistically significant.

gpt-3.5-turbo, gpt-4, alpaca-lora-30b, and vicuna-
13b, and Group 2: llama-65b, opt-66b, and opt-iml-
max-1.3b. These groups have positive and negative
correlations with each other. Group 1 primarily
consists of models developed by OpenAI such as
text-davinci-003, gpt-3.5-turbo, and gpt-4. Alpaca
is a derivative fine-tuned model from a LLaMA
7B model on 52K instruction-following demonstra-
tions generated from text-davinci-003 (Taori et al.,
2023), while Vicuna is also fine-tuned with 70K
user-shared ChatGPT conversations and achieves
92 % ChatGPT (i.e., gpt-3.5-turbo) quality (Chiang
et al., 2023). Hence, we consider these as OpenAI-
based models. On the other hand, Group 2 encom-
passes models developed and released by Meta AI,
hence recognized as Meta-based models. The LLM
architectures within each group are similar, which
may cause the similar fine-tuned performance on
the dataset and this observed phenomenon.

6 Discussion

Multilingual fine-tuned detectors perform the
best. Fine-tuning multilingual LMs is the best ap-
proach based on our results, outperforming both En-
glish LMs and statistical methods. They have bet-
ter ability to generalize to other unseen languages
unmatched by the other methods. Still, their per-
formance on the MULTITuDE dataset is far from
perfect and the best model (MDeBERTa-v3-base)
achieved Macro F1 score of 0.85. As such, they
can not be used to reliably detect MGTs.

Linguistic similarity matters. Our results show
that the linguistic similarity between the languages
influence how well they generalize to each other
and how much the performance for the languages
correlate. The typology of the languages, but also
the script they use are important. Multilingual
MGT detectors should be trained and tested with a
diverse set of languages to ensure the inclusivity of
their performance. Yet, the practical development
is often hindered by the fact that different LMs

(used both as generators and detectors) support dif-
ferent sets of languages to different extent, making
it hard to create one-model-fits-all solutions.

English is an inappropriate default. As men-
tioned previously, the performance on the English
language is an outlier and the models do not gen-
eralize to other languages that well from this lan-
guage. English is often used as the de facto default
language for many NLP use cases, including using
it as a source language for crosslingual learning.
This should be reconsidered for multilingual MGT
detection.

7 Conclusion

In the paper, we provide the first comprehensive
benchmark of black-box, statistical and fine-tuned
machine-generated text detection methods in mul-
tilingual settings using our novel MULTITuDE
dataset, covering 11 languages and 8 SOTA LLMs.
Our results show that most currently available
black-box methods do not work in multilingual set-
tings and that the statistical approaches lag behind
the fine-tuned ones. We also show that fine-tuning
models in a multilingual manner (i.e., train data in
multiple languages) results in better performance of
detectors for unseen languages compared to mono-
lingual fine-tuning. The generalization is strongly
affected by language script as well as language fam-
ily branches of the train and test languages. Also,
English seems a particularly inappropriate choice
of a training language if one aims for generalization
of machine-generated text detection to non-English
languages. This further emphasizes the importance
of creating multilingual benchmarks for machine-
generated text detection such as MULTITuDE. As
a future work, we plan to extend it with a more
diverse set of languages (in terms of scripts and
language families) and with texts from other do-
mains, especially social media.



Limitations

Language Selection. Our work is limited by the
final selection of 3 training and 11 testing lan-
guages. This already allowed us to discover that
there are interesting linguistic properties in the de-
tector methods, but based on our work we still can
not tell how they would behave with all the other
languages. Non-European languages especially are
still a blind spot in our evaluation.

Limited Amount of Training Data. Another
limitation, closely related to the previous one is the
fact, that the amount of data we use for benchmark-
ing is limited. Apart from using different languages,
the data could also be expanded by different do-
mains, writing styles, etc. The amount of training
data we use is also limited (several thousand sam-
ples), and simply extending the existing data could
also yield additional improvements.

Limited Selection of Generative Language Mod-
els. In the end, we have selected and experi-
mented with 8 generative language models, which
are capable of generating multilingual content. It is
hard to ascertain how generalizable the results are
for all the other language models that are being or
will be developed in future with different training
data and different training regimes.

Ethics Statement

As a part of this paper, we introduce the MUL-
TITuDE dataset consisting of human-written and
machine-generated texts. The human-written texts
are news articles collected in the MassiveSumm
dataset (Varab and Schluter, 2021). The Mas-
siveSumm dataset does not specify a license under
which they publish the data as its public version
only contains a list of URLs and a software pack-
age for their downloading and processing. Thus,
we can assume that the news articles are protected
by copyright, which, however, allows their use for
non-commercial research such as our work. Al-
though most of the LLMs we used were hosted
at our premises, we also used OpenAI API. As a
part of the prompts, we were sending headlines of
the news articles to the API; these, however, are
not used by the OpenAI to train or improve their
models (which would constitute a commercial use)
and they are retained for a maximum duration of
30 days, after which they are deleted.7

7
https://openai.com/policies/api-data-usage-policies

Regarding the used LLMs, we made sure to fol-
low their terms of use as well. LLaMA models (and
their variants Alpaca and Vicuna) are licensed for
non-commercial use only.8 Additionally, outputs of
OpenAI services cannot be used to “develop mod-
els that compete with OpenAI.”9 Respecting these
limitations, we publish the MULTITuDE dataset
containing both the human-written texts with attri-
bution (original source) and the machine-generated
texts only for non-commercial research purposes.

Intended Use. The collected dataset is primarily
intended to be used for research of multilingual
machine-generated text detection. We used it for
binary classification, but it could also be employed
for multi-class classification (i.e., authorship attri-
bution as defined in Uchendu et al., 2021, 2023a).
We also publish the code for analysis and repro-
duction of our results including the training (fine-
tuning) of the detection methods. These are also
intended for research purposes only. They are not
intended (in their current form) to be used in actual
deployment where they would be automatically
classifying the texts as human-written or machine-
generated.

Failure Modes. As already noted in limitations,
the fine-tuned detectors, while showing promising
performance in our experiments, might fail when
used on unseen languages, texts from different do-
mains or writing styles. Additionally, they can
fail to generalize to other unknown LLMs, decod-
ing strategies or obfuscation efforts. The potential
harms are not only from false negatives (i.e., failing
to detect machine-generated texts), but also (and
potentially even more so) from false positives (i.e.,
falsely flagging a text as being machine-generated
while it was in fact human-written). It is also worth
noting that there are many non-malicious uses of
machine-generated texts (e.g., proofing, translation,
etc.), which needs to be considered before any use
of the detection methods trained on our collected
dataset for purposes beyond research.

Biases. Although we selected languages from dif-
ferent language families and with different scripts
(see Section 3), the dataset is still biased towards
Indo-European languages and Latin script. Be-
cause of the nature of the training data which con-
sists of news articles written in a standardized form

8
https://github.com/facebookresearch/llama/blob/main/MODEL_

CARD.md
9
https://openai.com/policies/terms-of-use

https://openai.com/policies/api-data-usage-policies
https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md
https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md
https://openai.com/policies/terms-of-use


of each included language, detectors fine-tuned on
the dataset might be biased with respect to use of
dialects, slang or code-switching which could po-
tentially harm individuals from some ethnic groups
or social origins.

Misuse Potential. We believe that there is only a
limited possibility of misuse of our dataset. First,
the dataset is published for research purposes only.
Second, the machine-generated texts, although in-
authentic and most likely false, should not cover
any sensitive topics. Also, the used prompts to
LLMs were to generate news articles given a head-
line; we did not prompt the LLMs to intentionally
generate disinformation. So their potential harm
and impact in case of misuse is limited.

Collecting Data from Users. The collection and
processing of the dataset did not include any crowd
workers or any other annotators. We do not inten-
tionally collect or store any personal data as a part
of this research. Some personal data (e.g., names)
might be generated by the LLMs, but we can as-
sume these to be mostly public figures that could
have appeared in the training data of LLMs.

Potential Harm to Vulnerable Populations. To
the best of our knowledge, the dataset does not
cover any sensitive topics beyond what is normally
covered in the news. As already noted in Biases,
the dataset does not include texts in different writ-
ing styles, dialects or slang which can be used by
marginalized populations and the detectors fine-
tuned on the dataset could thus fail in such cases.
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A Computational Resources

For the purpose of data pre-processing and results
analysis, we have used Google Colab10 without
GPU acceleration, leaving thus only small carbon
footprint on the environment. For the machine text
generation, we have used multiple resources. For
the OpenAI LLMs, we have used OpenAI API,
requiring no GPU acceleration on our side. For
LLaMA 65B, Alpaca LoRa 30B, and OPT 66B
models, we have used 1× A100 40GB GPU (4×
A100 for >60B models), with a cumulative run-
time of approximately 32 GPU-days. For Vicuna
13B and OPT-IML 1.3B models, we have used 1×
NVIDIA GeForce RTX 3090 24GB GPU, with a
cumulative run-time of approximately 8.5 GPU-
days. Regarding detectors fine-tuning, we have
used 1× NVIDIA GeForce RTX 3090 24GB GPU,
with a cumulative run-time of approximately 11.3
GPU-days. For running black-box detectors, we
have also used Google Colab without GPU acceler-
ation. For running statistical methods requiring a
base LLM (i.e., mGPT), we have used 1 × A100
40GB GPU on an a2-highgpu-1g machine type.

B Data Pre-processing

For MULTITuDE dataset creation, we have used
human texts from the original articles included in
the MassiveSumm11 (Varab and Schluter, 2021)
dataset. We have used on-request author-provided
processed data as well as CommonCrawl based
links published in the GitHub repository. Both
sources result in per-language datasets (split into
files according to languages).

B.1 Human-Text Pre-processing
We have selected 3 languages for training (detectors
fine-tuning) and 8 more for testing (11 languages
in total). For each of the selected languages, we
have taken the first 50,000 samples (if available for
that language) from each data source. It resulted
up to 100,000 samples per language.

The texts of these samples were stripped, mean-
ing that white-space characters from beginning and
end of texts are removed. Out of these samples, we
have dropped samples with missing values and du-
plicated samples. Then, we have dropped samples
that contained texts with 5 or less words (where the
“word” is represented as a white-space delimited
substring).

10
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11
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Language Original N/A & Duplicates Min Textsize Language
Removed Applied Checked

ar 73990 67351 67267 56140
ca 804 804 804 569
cs 97136 86507 84797 59039
de 69300 69127 69099 54914
en 42050 35023 34611 8812
es 99594 92484 91569 38254
nl 1797 1797 1797 1489
pt 95444 90209 90020 38857
ru 95797 88743 88304 51938
uk 100000 92868 90924 39844
zh 92698 81812 56678 8875
All 768610 706725 675870 358731

Table 7: Overview of the amount of language samples
from the MassiveSumm dataset remaining after each
pre-processing step.

The MassiveSumm per-language datasets con-
tained texts in other languages, meaning that some
texts were in different languages than the intended
language according to the file (identified in the file-
name). Therefore, we have performed language
detection of samples and dropped those that did
not match. For language detection, we have used a
combination of FastText12 (Joulin et al., 2017) and
polyglot13 tools. We have taken the language pre-
dictions into account only if the probability score
(“confidence”) was at least 0.9. We have performed
such detection separately using the title and the first
sentence of the text for a given sample, resulting in
4 predictions. Out of these a majority voting was
used to give a final detection result.

Table 7 provides amounts of texts per language
available after each of the above mentioned pre-
processing step.

After pre-processing, we have pseudo-randomly
sub-sampled the English data to 3300 samples,
Spanish and Russian to 1300 samples, and others
to 300 samples. 300 samples of each language are
then used for test split, while the remaining ones
are in train split of the dataset.

The selected numbers of samples are based on
our preliminary study using the existing datasets:
TuringBench English data (Uchendu et al., 2021),
AuTexTification Spanish data (Sarvazyan et al.,
2023), and RuATD Russian data (Shamardina et al.,
2022). We have extensively experimented and
chose a minimal number of samples needed to
fine-tune the detectors and properly evaluate them.
Specifically, we have compared the performances
using the selected smaller amount of samples (500,
600, 1000, 1500 human samples where available)

12
https://github.com/facebookresearch/fastText/

13
https://github.com/aboSamoor/polyglot

and all samples available (5000 for English, 1150
for Spanish, 2450 for Russian). These experiments
resulted in 1k human samples and 1k samples per
text-generator required for training, with a negli-
gible drop in the performance of fine-tuned detec-
tors (i.e., within 5 %). For testing, 300 texts per
class shown to be enough, giving the same detector
performance values as using all the available sam-
ples. In addition, since we are experimenting with
smaller number of samples in train sets, we have
provided 3k human texts for English train data to
ensure that the performance effect is not simply
due to a higher number of train samples in case of
multilingually fine-tuned detectors.

B.2 Machine Text Generation
Titles (i.e., headlines) of the human-text sam-
ples have been used in prompts to generate cor-
responding machine texts by multiple large lan-
guage models. For instruction-following models,
an instruction-based prompt has been used (a uni-
versal prompt in English instructing to generate
text in a target language, corresponding to the title
in the target language), pure title in the others. The
instruction-based prompt was used in the form as
follows (where language_name and headline are
variables inserting strings specifying language and
title of an individual text sample):

You are a multilingual
journalist.\n\nTask: Write a news
article in {language_name} for the
following headline: "{headline}".
Leave out the instructions, return just the
text of the article.\n\nOutput:

Settings for the text generation include minimal
length of generated text set to 200 tokens, maximal
length of generated text set to 512 tokens, number
of return sequences set to 1, sampling activated
with beams number of 1, top_k of 50, and top_p
of 0.95. For models available via OpenAI API, we
have set only maximal number of tokens to 512
and top_p to 0.95.

B.3 Generated-Text Pre-processing
Pre-processing of the generated texts included text
stripping (i.e., white-space characters from begin-
ning and end of texts are removed), removal of
prompts from the generated text (both title and
instruction-based prompt), removal of unfinished
sentence from the end of the text (if more sen-
tences are present). In order to achieve similar text
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Generator Language
Match

Empty
Text

Short
Text

WC
mean

WC
std

US
mean

US
std

UW
mean

UW
std

text-davinci-003 100.00 0 3 136.57 76.32 1.00 0.00 0.67 0.14
gpt-3.5-turbo 99.98 0 0 152.22 76.85 1.00 0.00 0.65 0.13
gpt-4 100.00 0 0 208.86 121.91 1.00 0.00 0.64 0.13
alpaca-lora-30b 98.99 0 10 115.78 59.27 1.00 0.02 0.68 0.12
vicuna-13b 97.11 0 12 155.40 80.64 1.00 0.02 0.62 0.14
llama-65b 85.71 0 71 150.79 87.76 0.98 0.07 0.59 0.15
opt-66b 96.47 0 71 152.26 103.62 1.00 0.03 0.67 0.15
opt-iml-max-1.3b 95.20 7 143 154.04 112.30 0.99 0.08 0.61 0.19
human 99.89 0 0 136.82 78.16 1.00 0.02 0.69 0.12

Table 8: Statistics of the machine-generated texts. Mean and standard deviation of ratios are provided, where WC
refers to the word count, US refers to the unique sentences, and UW refers to the unique words.

lengths distribution between human and machine
texts, each machine text is shortened if the corre-
sponding human text (title of which was used in the
prompt) is shorter. Similarly, the human texts are
shortened to a mean value of lengths of the corre-
sponding machine texts. Shortening occurs only if
the difference between the corresponding machine
and human texts lengths is greater than 5 words and
if more than one sentence is present. Shortening is
performed by removal of the last sentence from the
longer text until the condition is met. Such texts are
then processed by the FastText full-text language
detection, and language mismatch is analyzed (see
the next subsection).

After the initial analysis of the generated texts,
we have noticed multiple prompts were duplicated.
In order to preserve consistency, we have moved
all texts generated for the duplicated prompts to
the same (train) split of the dataset. The intuition
is to avoid having the texts generated for the same
prompt in both splits. We have then dropped gener-
ated samples with 5 or less words and dropped text
duplicates, ensuring no text sample has multiple
labels. Fortunately, even after occurrence of dupli-
cated texts and their removal from the final dataset,
the numbers of samples are not significantly re-
duced. The smallest number in the train split is
the number of human Spanish samples having 937
unique texts (out of intended 1000). The smallest
number in the test split is the number of llama-65b
English samples having 275 unique texts (out of
intended 300). Thus, the numbers of samples for
each text-generation language model and for each
language are still well balanced.

B.4 Linguistic Analysis of the Generated Text

The statistics of the analyzed generated texts per
language model are provided in Table 8. For Chi-

nese word count, polyglot tool was utilized. For
other languages, white-space separated substrings
are counted. The Empty Text column contains num-
ber of samples with no new text generated (i.e.,
returned only the provided prompt or no text at all).
The Short Text column represents the number of
generated texts with 5 or less words. As the table
indicates, the llama-65b model performed worst in
generating texts in multiple languages. But it still
had more than 85% accuracy regarding language
match (i.e., the language of the generated text is the
same as the one queried by the prompt). We must
also take into account the fact that FastText lan-
guage identification is not error-free (i.e., misclas-
sification can occur). As expected, deeper analysis
revealed that llama-65b model have missed mostly
Chinese and Arabic languages (202 and 140 mis-
matched samples, respectively), since these were
not used in the model training.

C Description of Detection Methods

Table 9 shows descriptions of all detection meth-
ods used in the benchmark. The base models for
the detection methods have been carefully selected
with respect to the state-of-the-art and the lim-
ited experimentation resources. We have primarily
used multilingual base models (XLM-RoBERTa,
BERT-multilingual, mGPT, and MDeBERTa) that
are publicly available and belong to the SOTA
multilingual pre-trained models used for a wide
range of downstream tasks. Besides these, we have
also used English-only pretrained models that have
been commonly used as detectors in previous stud-
ies (Uchendu et al., 2021; Zhong et al., 2020). We
used these to see how they would perform on non-
English language datasets. In this group, there
were RoBERTa-large-OpenAI-detector, GPT2, and
ELECTRA.



Detector Category Description
ZeroGPT Black-box ZeroGPT service uses a series of complex and deep algorithms to analyze the text, pre-

sented with an accuracy rate of text detection up to 98%, claiming to detect AI text output
in all the available languages. https://www.zerogpt.com

GPTZero Black-box GPTZero model can detect AI-generated and human-written text across the sentence,
paragraph, and document levels. Training on a mixed corpus of AI and human English
writings, it can accurately classify 85% of AI and 99% of human texts using a 0.65
threshold. To reduce false positives, a 0.65 or higher threshold is advised. https:
//gptzero.me/

Log-likelihood (Solaiman
et al., 2019)

Statistical Given a text, this method calculates the average word log probability of each word. The
log probability is extracted from a language model (i.e., mGPT (Shliazhko et al., 2022)).

Rank (Gehrmann et al.,
2019)

Statistical Similar to Log-likelihood, given each word in a text, using the context, this method
calculates the absolute rank of the word. Next, we calculate the average rank score of each
word.

Log-Rank (Mitchell et al.,
2023)

Statistical Similar to the Rank metric, Log-Rank takes the log probability of the Rank score for each
word.

Entropy (Mitchell et al.,
2023)

Statistical Similar to the Rank score, Entropy is calculated by obtaining the entropy score of each
word, given its context (i.e., previous words), and calculating the average of the final
scores.

GLTR Test-2 (Rank)
(Gehrmann et al., 2019)

Statistical GLTR uses 3 tests to calculate scores used to distinguish machine-generated text from
human-written text. However, following the same procedure used by (He et al., 2023),
we only use the 2nd test - calculating the rank of the fraction of words within the top-10,
top-100, top-1000, > top-1000 probable words.

DetectGPT (Mitchell
et al., 2023)

Statistical DetectGPT perturbs the text and compares the changes between the original and the
perturbed text. This comparison is done by calculating the log probability of the original
vs. perturbed texts. The hypothesis is that machine-generated text tends to lie in the
negative log probability curve, while human-written text will have a higher or lower
probability than the perturbed text.

RoBERTa-large-OpenAI-
detector14 (Solaiman
et al., 2019)

Fine-tuned This is a sequence classifier based on RoBERTa Large, fine-tuned to distinguish between
GPT-2 generated text and WebText.

GPT-2 Medium (Radford
et al., 2019)

Fine-tuned GPT-2 Medium15 is a transformer-based autoregressive language model, pre-trained on
English language.

XLM-RoBERTa-large
(Conneau et al., 2019)

Fine-tuned XLM-RoBERTa16 is a pre-trained on 2.5TB of filtered CommonCrawl data containing
100 languages.

BERT-base-multilingual-
cased (Devlin et al.,
2018)

Fine-tuned Multilingual version of BERT17 is a masked language model pre-trained on the top 104
languages with the largest Wikipedia.

MDeBERTa-v3-base (He
et al., 2021a)

Fine-tuned mDeBERTa18 is a multilingual version of DeBERTa (He et al., 2021b) trained with CC100
data containing 100 languages.

ELECTRA-large (Clark
et al., 2020)

Fine-tuned ELECTRA19 is a language model pre-trained as a discriminator rather than a generator.

mGPT (Shliazhko et al.,
2022)

Fine-tuned mGPT20 is a multilingual autoregressive model using GPT-3 architecture, trained on 61
languages from 25 language families using Wikipedia and Colossal Clean Crawled Corpus.

Table 9: A detailed list of all detection methods used in this benchmark together with their descriptions.

D Model Parameters

For the purpose of fine-tuning language models
for machine-generated text detection task, we have
used Trainer21 API of the transformers library22 for
PyTorch framework. We have used maximum num-
ber of 10 epochs with early-stopping mechanism
(patience of 5), a batch size of 16 with gradient

14
https://huggingface.co/roberta-large-openai-detector

15
https://huggingface.co/gpt2-medium

16
https://huggingface.co/xlm-roberta-large

17
https://huggingface.co/bert-base-multilingual-cased

18
https://huggingface.co/microsoft/mdeberta-v3-base

19
https://huggingface.co/google/electra-large-discriminator

20
https://huggingface.co/ai-forever/mGPT

21
https://huggingface.co/docs/transformers/main_classes/

trainer
22
https://github.com/huggingface/transformers

accumulation of 4 steps, an adaptive learning rate
using the AdaFactor optimizer, weight decay of
0.01, half-precision training (except for the mDe-
BERTa model, where the half-precision training is
faulty), using the Macro avg. F1-score as a met-
ric for the best model selection. The tokenizers
used truncation of texts to maximum length of 512
tokens. We have done manual hyper-parameter
search prior to running the fine-tuning, finding the
parameters working for all detector models.

For Random Forest classifier used for entropy-
based detector, we have executed optimization of
hyperparameters on the train split of the dataset
using automated Randomized Grid Search with 5-
fold cross-validation and 1k of iterations. The grid
consisted of the following parameters:

https://www.zerogpt.com
https://gptzero.me/
https://gptzero.me/
https://huggingface.co/roberta-large-openai-detector
https://huggingface.co/gpt2-medium
https://huggingface.co/xlm-roberta-large
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/microsoft/mdeberta-v3-base
https://huggingface.co/google/electra-large-discriminator
https://huggingface.co/ai-forever/mGPT
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer
https://github.com/huggingface/transformers


Detector ar ca cs de en es nl pt ru uk zh
Entropy + RandomForest 0.4860 0.4721 0.4732 0.4729 0.4703 0.4697 0.4692 0.4702 0.5202 0.5040 0.4663
Entropy 0.4704 0.4705 0.4705 0.4712 0.4706 0.4720 0.4706 0.4716 0.4702 0.4704 0.4704
Rank 0.4704 0.4705 0.4705 0.4712 0.4706 0.4720 0.4706 0.4716 0.4702 0.4704 0.4704
DetectGPT 0.4704 0.4705 0.4705 0.4712 0.4706 0.4720 0.4706 0.4716 0.4702 0.4704 0.4704
Log-Rank 0.4702 0.4705 0.4705 0.4712 0.4706 0.4720 0.4706 0.4716 0.4698 0.4703 0.4644
Log-likelihood 0.4702 0.4705 0.4705 0.4712 0.4706 0.4720 0.4706 0.4716 0.4699 0.4703 0.4662
GLTR Test-2 (Rank) 0.4239 0.4702 0.4700 0.4701 0.4706 0.4720 0.4703 0.4711 0.4697 0.4697 0.4653
ZeroGPT 0.3055 0.4807 0.4509 0.4019 0.5979 0.4750 0.4625 0.4510 0.4194 0.4267 0.1398
GPTZero 0.1128 0.1057 0.1040 0.0999 0.5626 0.0973 0.1044 0.1010 0.1042 0.1014 0.1189

Table 10: Cross-lingual performance of zero-shot detection models.

• n_estimators = [10, 50, 100, 150, 300] – a
number of trees in the random forest,

• criterion = [′gini′,′ entropy′] – a function
to measure the quality of a split,

• max_features = [′sqrt′,′ log2′, None] – a
number of features in consideration at every
split,

• max_depth = [None, 10, 100] – a maxi-
mum number of levels allowed in each de-
cision tree,

• min_samples_split = [2, 4, 6] – a mini-
mum sample number to split a node,

• min_samples_leaf = [1, 3] – a minimum
sample number that can be stored in a leaf
node,

• bootstrap = [True, False] – a method used
to sample data points.

E Results Data

In Table 10, performance results (Macro average
F1-score) of all statistical and black-box detectors
per each test language are provided. The highest
value for each test language is boldfaced.

In Tables 11–15, performance results (Macro av-
erage F1-score) of all fine-tuned detector models
per each test language are provided. The highest
value in a row is boldfaced. It denotes, on which
test language a particular fine-tuned detector ver-
sion performs the best. At the bottom of the tables,
mean values of all detectors per test language are
provided, along with separated mean results of mul-
tilingual and monolingual detectors’ base models.

In Tables 16–18, performance results (Macro av-
erage F1-score) of all fine-tuned detector models
across individual text-generation LLM data are pro-
vided. Also in this case, the highest value in a row
is boldfaced.

Table 19 shows how the text-generation LLMs
correlate based on the detectors performances, sep-
arated per each train language. In Table 20, mean
performance results with standard-deviation values
are provided for each LLM, aggregated per each
train language.



Train & Test Detector Test Language
LLM Base Model ar ca cs de en es nl pt ru uk zh

alpaca-lora-30b

bert-base-multilingual-cased 0.5375 0.8271 0.8546 0.8917 0.9567 0.7517 0.8563 0.8055 0.8374 0.8091 0.5537
electra-large-discriminator 0.5270 0.4929 0.4819 0.3956 0.9783 0.5856 0.5448 0.5196 0.5153 0.4215 0.4642
gpt2-medium 0.7438 0.4252 0.4513 0.3928 0.9657 0.4063 0.4233 0.3719 0.5547 0.5326 0.3742
mGPT 0.4024 0.8089 0.6132 0.8763 0.9639 0.7390 0.8791 0.8333 0.8162 0.8210 0.4626
mdeberta-v3-base 0.2080 0.8592 0.7691 0.9003 0.9439 0.7744 0.8977 0.8570 0.7988 0.7563 0.3099
roberta-large-openai-detector 0.3484 0.6258 0.5430 0.5133 0.9238 0.4809 0.7787 0.4348 0.4029 0.4838 0.4487
xlm-roberta-large 0.4474 0.8488 0.8713 0.9324 0.9801 0.6319 0.7706 0.7130 0.8733 0.8319 0.4474

gpt-3.5-turbo

bert-base-multilingual-cased 0.9215 0.8904 0.9150 0.9020 0.9783 0.8545 0.9348 0.9124 0.9183 0.8962 0.8933
electra-large-discriminator 0.3985 0.8409 0.3333 0.3576 0.9765 0.8243 0.7355 0.7810 0.3849 0.3526 0.3399
gpt2-medium 0.3673 0.3407 0.3443 0.3369 0.9838 0.3264 0.3432 0.3378 0.3689 0.3710 0.3428
mGPT 0.7009 0.9266 0.3370 0.9071 0.9892 0.8506 0.9432 0.9147 0.9013 0.9080 0.5610
mdeberta-v3-base 0.7876 0.5599 0.7803 0.8052 0.7178 0.6023 0.7790 0.6782 0.6484 0.7649 0.6733
roberta-large-openai-detector 0.4174 0.6710 0.5623 0.5476 0.9166 0.5356 0.8203 0.4381 0.5442 0.6236 0.4727
xlm-roberta-large 0.7218 0.9733 0.7211 0.9392 0.9838 0.7861 0.9229 0.9281 0.8839 0.6290 0.5155

gpt-4

bert-base-multilingual-cased 0.8419 0.9265 0.7592 0.8163 0.9765 0.8261 0.9265 0.8704 0.7929 0.7104 0.8360
electra-large-discriminator 0.4448 0.5611 0.3333 0.3303 0.9928 0.7723 0.4206 0.6814 0.4044 0.3697 0.3333
gpt2-medium 0.3853 0.3658 0.3516 0.3593 0.9928 0.3659 0.3887 0.3486 0.3969 0.3732 0.3318
mGPT 0.6945 0.7888 0.3866 0.8365 0.9910 0.7954 0.8334 0.8658 0.8008 0.7849 0.4734
mdeberta-v3-base 0.7199 0.9733 0.8626 0.8944 0.8255 0.9435 0.9331 0.9319 0.8395 0.7668 0.5706
roberta-large-openai-detector 0.5765 0.5661 0.4808 0.5395 0.9765 0.4974 0.7401 0.4077 0.6384 0.5689 0.4995
xlm-roberta-large 0.5659 0.9348 0.4987 0.8927 0.9892 0.8592 0.9499 0.9267 0.7676 0.4567 0.3587

llama-65b

bert-base-multilingual-cased 0.5896 0.6070 0.6955 0.6895 0.9017 0.7998 0.5771 0.6752 0.7032 0.7020 0.5194
electra-large-discriminator 0.6770 0.3311 0.3299 0.3386 0.9220 0.3613 0.3322 0.3538 0.4911 0.5700 0.3281
gpt2-medium 0.3735 0.4296 0.5929 0.5370 0.8854 0.5623 0.5372 0.3950 0.4543 0.4893 0.4342
mGPT 0.3848 0.3508 0.6898 0.7115 0.9037 0.5248 0.4102 0.4835 0.4669 0.4779 0.5233
mdeberta-v3-base 0.5115 0.4060 0.8307 0.7162 0.9003 0.6074 0.4591 0.5413 0.7103 0.6693 0.4384
roberta-large-openai-detector 0.3303 0.3528 0.3446 0.3341 0.8890 0.3460 0.3612 0.3371 0.3311 0.3449 0.3332
xlm-roberta-large 0.4779 0.4892 0.8507 0.7983 0.9165 0.7241 0.4368 0.6082 0.6899 0.6290 0.4892

opt-66b

bert-base-multilingual-cased 0.4557 0.4586 0.6107 0.5890 0.8592 0.5394 0.4268 0.5635 0.5876 0.5594 0.5041
electra-large-discriminator 0.5167 0.5157 0.6473 0.5853 0.8899 0.6591 0.5600 0.6993 0.4347 0.5061 0.3273
gpt2-medium 0.5226 0.4138 0.3720 0.3827 0.8427 0.4202 0.3647 0.4089 0.5713 0.6213 0.4473
mGPT 0.2959 0.5049 0.3954 0.6351 0.8931 0.5064 0.4942 0.6017 0.4416 0.4645 0.4161
mdeberta-v3-base 0.3903 0.5181 0.6278 0.6568 0.8538 0.6053 0.4927 0.6431 0.5799 0.6016 0.5617
roberta-large-openai-detector 0.3315 0.5268 0.4635 0.4038 0.8711 0.3792 0.5761 0.3714 0.3293 0.3733 0.3591
xlm-roberta-large 0.4910 0.4613 0.5495 0.6735 0.8827 0.5613 0.4187 0.5897 0.6706 0.6961 0.5358

opt-iml-max-1.3b

bert-base-multilingual-cased 0.4592 0.5171 0.5792 0.5916 0.9061 0.5143 0.5136 0.4721 0.5494 0.5333 0.4390
electra-large-discriminator 0.3264 0.5542 0.5036 0.6618 0.9819 0.8709 0.7625 0.8334 0.3309 0.3390 0.3299
gpt2-medium 0.3869 0.7116 0.5300 0.5259 0.9368 0.5789 0.5600 0.5453 0.4733 0.5295 0.4720
mGPT 0.3380 0.5134 0.6410 0.7450 0.9585 0.5284 0.6955 0.5212 0.4829 0.4925 0.5788
mdeberta-v3-base 0.7932 0.9731 1.0000 0.9609 0.9257 0.9023 0.9615 0.9025 0.9471 0.9570 0.7016
roberta-large-openai-detector 0.3427 0.8511 0.7842 0.6490 0.9729 0.6895 0.9211 0.6590 0.3614 0.4318 0.4777
xlm-roberta-large 0.5810 0.8567 0.8657 0.8416 0.9439 0.7268 0.7684 0.6991 0.7483 0.7587 0.6237

text-davinci-003

bert-base-multilingual-cased 0.7647 0.9014 0.8537 0.8554 0.9693 0.7750 0.9032 0.8408 0.7161 0.6657 0.8409
electra-large-discriminator 0.4628 0.5751 0.4275 0.4024 0.9783 0.7471 0.5568 0.6000 0.5075 0.4826 0.4880
gpt2-medium 0.3322 0.3333 0.3333 0.3303 0.9856 0.3264 0.3367 0.3268 0.3267 0.3361 0.3326
mGPT 0.5393 0.9199 0.3623 0.8936 0.9783 0.7678 0.9027 0.8389 0.7713 0.6932 0.5246
mdeberta-v3-base 0.5432 0.6398 0.8239 0.8563 0.9513 0.5774 0.7596 0.6335 0.6969 0.6015 0.7779
roberta-large-openai-detector 0.4087 0.5610 0.5307 0.5112 0.9293 0.4369 0.7561 0.3902 0.4746 0.6221 0.4820
xlm-roberta-large 0.5035 0.9213 0.6965 0.8913 0.9856 0.7715 0.8973 0.8232 0.5769 0.4739 0.4377

vicuna-13b

bert-base-multilingual-cased 0.7913 0.8856 0.8012 0.8446 0.9747 0.7859 0.9365 0.8520 0.8309 0.8137 0.6667
electra-large-discriminator 0.3912 0.3848 0.6025 0.5077 0.9838 0.6577 0.4839 0.5162 0.3420 0.3296 0.3551
gpt2-medium 0.6275 0.3658 0.4420 0.4286 0.9783 0.3931 0.3921 0.3814 0.4329 0.4687 0.3502
mGPT 0.4086 0.7888 0.5043 0.8511 0.9765 0.6633 0.8876 0.8071 0.6347 0.7088 0.5941
mdeberta-v3-base 0.1784 0.5000 0.5018 0.6295 0.7775 0.4754 0.6191 0.5078 0.4121 0.4635 0.5888
roberta-large-openai-detector 0.4179 0.6409 0.5661 0.5341 0.9348 0.5070 0.8146 0.4350 0.5180 0.5303 0.4740
xlm-roberta-large 0.3864 0.9417 0.4894 0.9086 0.9801 0.6866 0.8400 0.7163 0.7787 0.4897 0.4370

All Detectors Mean 0.5016 0.6412 0.5909 0.6578 0.9361 0.6284 0.6703 0.6273 0.5976 0.5832 0.4902
Multilingual Base Models Mean 0.5448 0.7335 0.6793 0.8104 0.9292 0.7018 0.7508 0.7362 0.7148 0.6746 0.5580
Monolingual Base Models Mean 0.4440 0.5182 0.4730 0.4544 0.9454 0.5304 0.5629 0.4822 0.4412 0.4613 0.3999

Table 11: Cross-lingual performance of all detection models fine-tuned on the English language (evaluated per
LLM).



Train & Test Detector Test Language
LLM Base Model ar ca cs de en es nl pt ru uk zh

alpaca-lora-30b

bert-base-multilingual-cased 0.6019 0.8950 0.8108 0.8765 0.7517 0.9092 0.8941 0.8943 0.8600 0.8182 0.7713
electra-large-discriminator 0.5116 0.4754 0.3370 0.3361 0.3325 0.9348 0.5286 0.8665 0.3891 0.3820 0.3986
gpt2-medium 0.6937 0.8090 0.6564 0.8226 0.7332 0.8935 0.8291 0.8602 0.5735 0.5679 0.4391
mGPT 0.6980 0.8639 0.6989 0.9001 0.6589 0.9452 0.7088 0.9403 0.8366 0.8880 0.5691
mdeberta-v3-base 0.8255 0.7338 0.9110 0.9171 0.8771 0.8256 0.8038 0.7777 0.9317 0.9096 0.7954
roberta-large-openai-detector 0.3578 0.7052 0.6789 0.8414 0.2717 0.9295 0.8296 0.8671 0.3587 0.3634 0.7537
xlm-roberta-large 0.6999 0.8349 0.9008 0.9493 0.9295 0.9281 0.9532 0.9301 0.8845 0.8278 0.6164

gpt-3.5-turbo

bert-base-multilingual-cased 0.8896 0.9365 0.8997 0.8900 0.9169 0.9263 0.9232 0.8858 0.8949 0.8722 0.8765
electra-large-discriminator 0.5268 0.7374 0.3333 0.3340 0.3333 0.9743 0.4290 0.9215 0.5390 0.4383 0.3333
gpt2-medium 0.4313 0.8889 0.3900 0.3827 0.3669 0.8970 0.4874 0.8320 0.4949 0.4526 0.3355
mGPT 0.8941 0.9650 0.3552 0.9307 0.8397 0.9692 0.8974 0.9556 0.8942 0.9196 0.6781
mdeberta-v3-base 0.9281 0.8817 0.9666 0.9577 0.9368 0.9570 0.9109 0.9089 0.8890 0.9128 0.9416
roberta-large-openai-detector 0.3307 0.8610 0.8449 0.8700 0.2073 0.9153 0.8743 0.8392 0.3333 0.3311 0.7601
xlm-roberta-large 0.7671 0.9550 0.8609 0.8539 0.9801 0.9743 0.9616 0.9676 0.9093 0.7368 0.8504

gpt-4

bert-base-multilingual-cased 0.8764 0.8852 0.9300 0.8808 0.7306 0.9277 0.9075 0.8679 0.8916 0.8792 0.8799
electra-large-discriminator 0.3860 0.8103 0.3333 0.3303 0.3373 0.9571 0.5424 0.9506 0.3798 0.3670 0.3407
gpt2-medium 0.4260 0.7906 0.4326 0.4318 0.3362 0.9143 0.4571 0.7844 0.4378 0.4042 0.3399
mGPT 0.8491 0.8705 0.3370 0.9187 0.9476 0.9829 0.9245 0.9830 0.9016 0.8454 0.6649
mdeberta-v3-base 0.9331 0.8897 0.9549 0.9356 0.8826 0.9195 0.9331 0.9027 0.8545 0.9096 0.9045
roberta-large-openai-detector 0.3322 0.9128 0.8091 0.8765 0.3602 0.9293 0.8449 0.8768 0.3370 0.3318 0.6283
xlm-roberta-large 0.5124 0.9599 0.5688 0.8011 0.9729 0.9812 0.9616 0.9676 0.5987 0.3994 0.4001

llama-65b

bert-base-multilingual-cased 0.7956 0.9177 0.9645 0.7711 0.3611 0.9914 0.6665 0.9794 0.8227 0.9290 0.6396
electra-large-discriminator 0.4887 0.9026 0.9272 0.9214 0.3325 0.9741 0.8515 0.9691 0.3620 0.4606 0.3318
gpt2-medium 0.3680 0.9365 0.8738 0.9079 0.3990 0.9621 0.8744 0.9398 0.4793 0.5608 0.5344
mGPT 0.5912 0.6899 0.8606 0.7540 0.3505 0.9673 0.3604 0.9501 0.5401 0.8348 0.3731
mdeberta-v3-base 0.9135 0.9262 0.9882 0.9608 0.6260 0.9862 0.6591 0.9777 0.9765 0.9848 0.3539
roberta-large-openai-detector 0.3296 0.8944 0.7558 0.7449 0.3357 0.9517 0.8188 0.8808 0.3392 0.3617 0.3296
xlm-roberta-large 0.8461 0.8307 0.9831 0.9557 0.6680 0.9879 0.4583 0.9725 0.9412 0.9680 0.6842

opt-66b

bert-base-multilingual-cased 0.7378 0.7608 0.6443 0.5872 0.4705 0.7658 0.7038 0.7662 0.6748 0.7543 0.8225
electra-large-discriminator 0.4594 0.7202 0.6132 0.6954 0.3333 0.7692 0.6844 0.7265 0.4311 0.5203 0.3311
gpt2-medium 0.4455 0.7310 0.4703 0.5913 0.4524 0.7703 0.5466 0.5972 0.5993 0.6464 0.4690
mGPT 0.3906 0.7297 0.4550 0.6957 0.3722 0.7992 0.3866 0.5949 0.5713 0.6426 0.4554
mdeberta-v3-base 0.9139 0.8500 0.9883 0.9493 0.6240 0.8762 0.8538 0.7872 0.9696 0.9627 0.6997
roberta-large-openai-detector 0.4668 0.6129 0.8550 0.6502 0.3355 0.8141 0.8564 0.7337 0.5548 0.5646 0.5596
xlm-roberta-large 0.6058 0.7452 0.8765 0.8104 0.4443 0.8123 0.4702 0.6335 0.8106 0.8408 0.5381

opt-iml-max-1.3b

bert-base-multilingual-cased 0.9537 0.9697 0.9632 0.8676 0.6840 0.9482 0.9699 0.8820 0.9027 0.9707 0.9528
electra-large-discriminator 0.3527 0.9681 0.8392 0.8930 0.3333 0.9515 0.8798 0.9189 0.3280 0.3305 0.3307
gpt2-medium 0.6084 0.9049 0.7598 0.5085 0.4730 0.9100 0.6565 0.6696 0.6559 0.7088 0.3941
mGPT 0.9434 0.9613 0.9210 0.9932 0.4045 0.9879 0.8410 0.9810 0.8970 0.9845 0.5838
mdeberta-v3-base 0.9931 0.9866 0.9933 0.8710 0.5865 0.9827 0.9329 0.9828 0.9949 0.9931 0.8744
roberta-large-openai-detector 0.4128 0.9646 0.9498 0.7265 0.2160 0.9602 0.9381 0.9103 0.5456 0.6839 0.5212
xlm-roberta-large 0.9794 0.9916 0.8583 0.9881 0.6192 0.9810 0.9799 0.9793 0.7578 0.7060 0.8187

text-davinci-003

bert-base-multilingual-cased 0.7319 0.9047 0.8833 0.8602 0.7605 0.9312 0.8892 0.8631 0.8027 0.7405 0.8400
electra-large-discriminator 0.4855 0.5814 0.3333 0.3296 0.3373 0.9605 0.4529 0.8925 0.5528 0.5678 0.3370
gpt2-medium 0.6145 0.9250 0.6295 0.7554 0.5875 0.9047 0.7750 0.8313 0.7541 0.6885 0.3355
mGPT 0.7188 0.8020 0.3832 0.9274 0.9039 0.9657 0.9382 0.9165 0.8578 0.7165 0.7663
mdeberta-v3-base 0.6436 0.7615 0.9248 0.9239 0.9404 0.8059 0.9065 0.8484 0.8597 0.7446 0.9166
roberta-large-openai-detector 0.3329 0.5973 0.7689 0.8681 0.2113 0.9415 0.7787 0.9003 0.3337 0.3388 0.7381
xlm-roberta-large 0.7993 0.9264 0.9482 0.9510 0.9422 0.9777 0.9733 0.9352 0.8944 0.7921 0.8768

vicuna-13b

bert-base-multilingual-cased 0.8628 0.9149 0.7705 0.8341 0.7503 0.9281 0.8996 0.8823 0.8226 0.7869 0.8514
electra-large-discriminator 0.4812 0.5839 0.3798 0.3827 0.3333 0.9743 0.4827 0.8677 0.5833 0.5508 0.4081
gpt2-medium 0.7679 0.9232 0.5873 0.6943 0.7214 0.9159 0.7333 0.8299 0.5051 0.5253 0.4208
mGPT 0.7234 0.8716 0.5427 0.9206 0.6739 0.9674 0.6880 0.9164 0.7205 0.7893 0.6191
mdeberta-v3-base 0.6784 0.8994 0.8387 0.9052 0.9169 0.9520 0.8753 0.8956 0.8595 0.8562 0.8291
roberta-large-openai-detector 0.5358 0.8853 0.6725 0.8681 0.3147 0.9432 0.8460 0.9058 0.4371 0.3755 0.5963
xlm-roberta-large 0.8447 0.8789 0.6681 0.8614 0.9061 0.9434 0.8267 0.8959 0.7773 0.6400 0.6473

All Detectors Mean 0.6480 0.8413 0.7300 0.7850 0.5790 0.9259 0.7689 0.8749 0.6804 0.6800 0.6082
Multilingual Base Models Mean 0.7857 0.8747 0.8016 0.8812 0.7322 0.9314 0.8143 0.8944 0.8375 0.8299 0.7216
Monolingual Base Models Mean 0.4644 0.7967 0.6346 0.6568 0.3748 0.9187 0.7082 0.8488 0.4710 0.4801 0.4569

Table 12: Cross-lingual performance of all detection models fine-tuned on the Spanish language (evaluated per
LLM).



Train & Test Detector Test Language
LLM Base Model ar ca cs de en es nl pt ru uk zh

alpaca-lora-30b

bert-base-multilingual-cased 0.6026 0.6327 0.8067 0.7409 0.4634 0.6572 0.6705 0.6567 0.9099 0.8829 0.6696
electra-large-discriminator 0.4945 0.3680 0.3443 0.3516 0.3829 0.5214 0.4081 0.3884 0.5506 0.5100 0.4514
gpt2-medium 0.7291 0.4784 0.4665 0.4094 0.6639 0.6505 0.4265 0.5331 0.8599 0.8249 0.3950
mGPT 0.5635 0.4123 0.6725 0.8716 0.5272 0.7714 0.5325 0.7920 0.9350 0.9129 0.4906
mdeberta-v3-base 0.9716 0.8123 0.9850 0.9409 0.8550 0.8885 0.8868 0.8199 0.9617 0.9615 0.8237
roberta-large-openai-detector 0.7062 0.3326 0.3407 0.3363 0.2381 0.3394 0.3370 0.3421 0.8599 0.8464 0.5544
xlm-roberta-large 0.9180 0.8983 0.9700 0.9442 0.9169 0.9058 0.9431 0.8993 0.9433 0.9397 0.8522

gpt-3.5-turbo

bert-base-multilingual-cased 0.9416 0.8680 0.9045 0.8538 0.7810 0.8754 0.8783 0.8378 0.9567 0.9331 0.8666
electra-large-discriminator 0.6636 0.3333 0.3333 0.3303 0.3457 0.3272 0.3330 0.3276 0.6336 0.5592 0.3333
gpt2-medium 0.5384 0.3443 0.3407 0.3369 0.3423 0.3264 0.3403 0.3350 0.8716 0.8061 0.3333
mGPT 0.7846 0.8857 0.3552 0.9070 0.8817 0.9228 0.9230 0.9043 0.9533 0.9244 0.6258
mdeberta-v3-base 0.9365 0.8387 0.9817 0.9256 0.9603 0.9296 0.9146 0.9023 0.9283 0.9482 0.8329
roberta-large-openai-detector 0.3496 0.3472 0.3720 0.3476 0.1697 0.3471 0.3663 0.3421 0.8695 0.5855 0.6240
xlm-roberta-large 0.9332 0.9432 0.9883 0.9391 0.9675 0.9435 0.9466 0.9143 0.9767 0.9615 0.9048

gpt-4

bert-base-multilingual-cased 0.8667 0.7067 0.7828 0.7535 0.4958 0.6805 0.7514 0.6918 0.9333 0.9214 0.8122
electra-large-discriminator 0.5003 0.3311 0.3333 0.3303 0.3718 0.3374 0.3292 0.3326 0.6837 0.6241 0.3677
gpt2-medium 0.5234 0.3587 0.3623 0.3514 0.3368 0.3659 0.3655 0.3458 0.7535 0.7794 0.3508
mGPT 0.8978 0.8978 0.3587 0.9188 0.8713 0.9383 0.9246 0.9264 0.9566 0.8570 0.7078
mdeberta-v3-base 0.9349 0.5556 0.8788 0.9221 0.9259 0.7611 0.7609 0.6932 0.8305 0.8940 0.7797
roberta-large-openai-detector 0.5936 0.3407 0.3480 0.3439 0.2994 0.3433 0.3628 0.3421 0.7991 0.8526 0.6649
xlm-roberta-large 0.9215 0.9600 0.9950 0.9391 0.9765 0.9349 0.9633 0.9368 0.9567 0.9447 0.9214

llama-65b

bert-base-multilingual-cased 0.7078 0.5300 0.8750 0.6477 0.3325 0.8211 0.5191 0.6043 0.9849 0.9764 0.4765
electra-large-discriminator 0.7140 0.3303 0.3299 0.3348 0.3325 0.3383 0.3330 0.3356 0.6109 0.6025 0.3676
gpt2-medium 0.6015 0.4216 0.6322 0.6629 0.4170 0.7424 0.5012 0.4982 0.9395 0.9394 0.5690
mGPT 0.5347 0.3326 0.6154 0.6470 0.3325 0.4964 0.3404 0.4847 0.9782 0.9359 0.4056
mdeberta-v3-base 0.7629 0.4277 0.9848 0.8540 0.3824 0.7305 0.4145 0.5383 0.9883 0.9815 0.5622
roberta-large-openai-detector 0.6454 0.3311 0.3269 0.3341 0.3388 0.3375 0.3307 0.3356 0.9631 0.9309 0.3969
xlm-roberta-large 0.8858 0.5705 0.9865 0.9160 0.3705 0.5024 0.3674 0.5826 0.9933 0.9882 0.6314

opt-66b

bert-base-multilingual-cased 0.7593 0.6061 0.7673 0.6078 0.4720 0.6423 0.6428 0.6734 0.9340 0.9254 0.6408
electra-large-discriminator 0.5543 0.3326 0.3333 0.3356 0.3325 0.3394 0.3337 0.3375 0.7304 0.6932 0.3425
gpt2-medium 0.6817 0.3755 0.3814 0.3576 0.4726 0.3972 0.3388 0.3598 0.9085 0.8797 0.4361
mGPT 0.9714 0.5123 0.5776 0.3999 0.3473 0.4262 0.6050 0.4165 0.9662 0.9814 0.7649
mdeberta-v3-base 0.9393 0.7428 0.9833 0.4860 0.3413 0.3394 0.6255 0.3610 0.9848 0.9932 0.7645
roberta-large-openai-detector 0.4195 0.3266 0.3326 0.3348 0.3046 0.3386 0.3322 0.3375 0.9003 0.8830 0.3759
xlm-roberta-large 0.9546 0.8552 0.9917 0.5544 0.3453 0.5474 0.7734 0.6168 0.9848 0.9864 0.8530

opt-iml-max-1.3b

bert-base-multilingual-cased 0.9588 0.5420 0.8707 0.5073 0.3333 0.4417 0.5379 0.4153 0.9795 0.9828 0.8243
electra-large-discriminator 0.6770 0.3709 0.5542 0.4481 0.3669 0.5480 0.4653 0.5424 0.8379 0.8536 0.7043
gpt2-medium 0.8338 0.5143 0.4434 0.3979 0.3991 0.4127 0.4003 0.3891 0.9368 0.9188 0.5273
mGPT 0.9640 0.6583 0.3597 0.5613 0.3750 0.3873 0.8374 0.4378 0.9949 0.9810 0.7678
mdeberta-v3-base 0.8902 0.5114 0.9379 0.5767 0.3333 0.3926 0.6230 0.3984 0.9224 0.9707 0.8335
roberta-large-openai-detector 0.7226 0.3149 0.3979 0.3242 0.1294 0.3216 0.3521 0.3245 0.9333 0.9293 0.5404
xlm-roberta-large 0.9931 0.7275 0.9900 0.7551 0.3373 0.3944 0.8638 0.4432 0.9966 0.9948 0.9338

text-davinci-003

bert-base-multilingual-cased 0.7480 0.6998 0.6476 0.8087 0.7249 0.8167 0.7157 0.7645 0.9146 0.9079 0.7911
electra-large-discriminator 0.4395 0.3348 0.3326 0.3332 0.5357 0.3413 0.3306 0.3318 0.5136 0.4716 0.3935
gpt2-medium 0.7234 0.3333 0.3333 0.3296 0.3244 0.3264 0.3367 0.3245 0.8528 0.8408 0.3333
mGPT 0.8798 0.6376 0.3552 0.8629 0.6831 0.8696 0.7987 0.7996 0.9315 0.8193 0.6410
mdeberta-v3-base 0.8800 0.4399 0.6877 0.5837 0.3453 0.5184 0.4845 0.5132 0.9381 0.9598 0.7358
roberta-large-openai-detector 0.6924 0.3623 0.4165 0.3514 0.1657 0.3471 0.4236 0.3421 0.8814 0.8155 0.6138
xlm-roberta-large 0.8664 0.4440 0.7422 0.7117 0.3778 0.5679 0.5897 0.5700 0.9382 0.9497 0.7750

vicuna-13b

bert-base-multilingual-cased 0.5450 0.3623 0.5724 0.4549 0.3333 0.4751 0.3548 0.3721 0.9264 0.8401 0.3472
electra-large-discriminator 0.5084 0.3355 0.3376 0.3318 0.3333 0.3386 0.3306 0.3421 0.5535 0.5256 0.5498
gpt2-medium 0.5858 0.3787 0.4784 0.4744 0.5022 0.3811 0.3954 0.4326 0.8712 0.6147 0.4456
mGPT 0.6846 0.3407 0.8659 0.8576 0.3722 0.6188 0.3663 0.5499 0.9548 0.8978 0.5443
mdeberta-v3-base 0.9883 0.7980 0.9381 0.9033 0.8136 0.9023 0.8760 0.8464 0.9565 0.9582 0.8594
roberta-large-openai-detector 0.5037 0.3326 0.3318 0.3356 0.3138 0.3394 0.3330 0.3382 0.8845 0.5946 0.6119
xlm-roberta-large 0.9716 0.7526 0.9280 0.9391 0.8572 0.9298 0.6979 0.8416 0.9615 0.9278 0.8998

All Detectors Mean 0.7421 0.5274 0.6171 0.5914 0.4795 0.5614 0.5524 0.5369 0.8870 0.8557 0.6183
Multilingual Base Models Mean 0.8487 0.6532 0.7924 0.7591 0.5760 0.6884 0.6915 0.6626 0.9522 0.9387 0.7294
Monolingual Base Models Mean 0.6001 0.3596 0.3835 0.3677 0.3508 0.3920 0.3669 0.3692 0.8000 0.7451 0.4701

Table 13: Cross-lingual performance of all detection models fine-tuned on the Russian language (evaluated per
LLM).



Train & Test Detector Test Language
LLM Base Model ar ca cs de en es nl pt ru uk zh

alpaca-lora-30b

bert-base-multilingual-cased 0.5096 0.9133 0.8879 0.9138 0.9657 0.9401 0.9161 0.9113 0.9200 0.8928 0.7472
electra-large-discriminator 0.3367 0.7431 0.4389 0.5051 0.9856 0.9502 0.7716 0.8824 0.3407 0.3326 0.3999
gpt2-medium 0.8118 0.7896 0.6623 0.7747 0.9819 0.8919 0.8064 0.8307 0.8463 0.8251 0.4282
mGPT 0.6955 0.8833 0.6480 0.9290 0.9585 0.9315 0.8215 0.9334 0.9383 0.9129 0.5555
mdeberta-v3-base 0.8438 0.8062 0.8906 0.8727 0.9075 0.8643 0.8044 0.8364 0.9283 0.9331 0.7118
roberta-large-openai-detector 0.8040 0.7010 0.8484 0.8629 0.9348 0.9363 0.8641 0.8969 0.8817 0.8487 0.7252
xlm-roberta-large 0.7742 0.9283 0.9600 0.9578 0.9856 0.9589 0.9481 0.9522 0.9366 0.9246 0.8200

gpt-3.5-turbo

bert-base-multilingual-cased 0.8483 0.9750 0.9633 0.9391 0.9819 0.9777 0.9816 0.9506 0.9550 0.9313 0.9148
electra-large-discriminator 0.3501 0.7954 0.3333 0.3340 0.9819 0.9657 0.4354 0.8583 0.3326 0.3326 0.3901
gpt2-medium 0.6911 0.9180 0.5441 0.6283 0.9874 0.9452 0.7647 0.8586 0.8480 0.6995 0.3333
mGPT 0.8856 0.9198 0.3552 0.8964 0.9801 0.9469 0.9566 0.9370 0.9383 0.8939 0.5693
mdeberta-v3-base 0.9466 0.8710 0.9767 0.9578 0.9747 0.9280 0.8977 0.9039 0.9232 0.9398 0.8526
roberta-large-openai-detector 0.5451 0.6366 0.6189 0.7365 0.9765 0.9726 0.5633 0.9710 0.8933 0.5315 0.4295
xlm-roberta-large 0.9280 0.9850 0.9883 0.9425 0.9910 0.9846 0.9800 0.9727 0.9850 0.9464 0.9382

gpt-4

bert-base-multilingual-cased 0.9416 0.9566 0.9533 0.9255 0.9928 0.9485 0.9683 0.9453 0.9400 0.9365 0.9048
electra-large-discriminator 0.3330 0.9297 0.3333 0.3593 0.9946 0.9726 0.8213 0.9472 0.3333 0.3326 0.3333
gpt2-medium 0.7644 0.8923 0.6236 0.6851 0.9982 0.9279 0.7007 0.8714 0.8516 0.8235 0.3392
mGPT 0.8911 0.9450 0.3407 0.9014 0.9928 0.9640 0.9246 0.9487 0.9467 0.9212 0.7236
mdeberta-v3-base 0.9382 0.9315 0.9883 0.9797 0.9457 0.9502 0.9582 0.9195 0.9383 0.9498 0.8854
roberta-large-openai-detector 0.7820 0.8696 0.8308 0.8932 0.9838 0.9657 0.7753 0.9590 0.8548 0.7828 0.5290
xlm-roberta-large 0.9599 0.9733 0.9850 0.9696 0.9946 0.9691 0.9816 0.9829 0.9733 0.9833 0.9365

llama-65b

bert-base-multilingual-cased 0.7821 0.8645 0.9288 0.7867 0.9076 0.9879 0.7835 0.9449 0.9782 0.9781 0.6580
electra-large-discriminator 0.7392 0.9281 0.9320 0.9455 0.8964 0.9862 0.8995 0.9570 0.9189 0.9443 0.6784
gpt2-medium 0.6580 0.9632 0.9491 0.9490 0.9016 0.9845 0.9279 0.9605 0.9765 0.9697 0.6849
mGPT 0.8919 0.8853 0.9509 0.9058 0.9293 0.9862 0.7192 0.9691 0.9799 0.9731 0.5337
mdeberta-v3-base 0.8006 0.8887 0.9831 0.8061 0.9004 0.9828 0.6450 0.9535 0.9899 0.9663 0.5974
roberta-large-openai-detector 0.6731 0.9766 0.9763 0.8597 0.9239 0.9862 0.9598 0.9690 0.9714 0.9781 0.4521
xlm-roberta-large 0.7446 0.8013 0.9373 0.8827 0.8984 0.9914 0.4673 0.9448 0.9899 0.9798 0.5992

opt-66b

bert-base-multilingual-cased 0.7967 0.7219 0.7674 0.7282 0.8716 0.8097 0.6880 0.8256 0.9168 0.9000 0.7730
electra-large-discriminator 0.4285 0.7333 0.6311 0.7610 0.8950 0.7945 0.7222 0.8359 0.3401 0.3394 0.3731
gpt2-medium 0.6023 0.8078 0.6790 0.7160 0.8877 0.7941 0.6774 0.7390 0.9070 0.8897 0.5969
mGPT 0.9069 0.8440 0.8010 0.8186 0.9043 0.8626 0.7591 0.8012 0.9747 0.9729 0.6929
mdeberta-v3-base 0.8913 0.9396 1.0000 0.8978 0.8479 0.8847 0.8763 0.8646 0.9882 0.9831 0.8073
roberta-large-openai-detector 0.6401 0.6683 0.8647 0.7966 0.9097 0.8645 0.8275 0.8683 0.8985 0.8812 0.6668
xlm-roberta-large 0.9410 0.9514 0.9967 0.8348 0.8879 0.8695 0.8959 0.9212 0.9746 0.9966 0.7806

opt-iml-max-1.3b

bert-base-multilingual-cased 0.9503 0.9327 0.9598 0.8388 0.9206 0.9219 0.9006 0.9224 0.9863 0.9845 0.9494
electra-large-discriminator 0.3386 0.9243 0.8798 0.8805 0.9801 0.9672 0.9381 0.9378 0.3425 0.3429 0.4383
gpt2-medium 0.6676 0.9815 0.9295 0.8375 0.9548 0.9585 0.9159 0.8588 0.9281 0.9255 0.6572
mGPT 0.9760 0.9597 0.9243 0.9524 0.9567 0.9793 0.9565 0.9707 0.9983 0.9966 0.7681
mdeberta-v3-base 0.9760 0.9882 1.0000 0.9575 0.9205 0.9672 0.9732 0.9810 1.0000 0.9966 0.7999
roberta-large-openai-detector 0.6580 0.9511 0.9783 0.9405 0.9675 0.9810 0.9799 0.9326 0.9215 0.9191 0.6601
xlm-roberta-large 0.9863 0.9966 1.0000 0.9932 0.9054 0.9689 0.9916 0.9707 1.0000 0.9983 0.8078

text-davinci-003

bert-base-multilingual-cased 0.8246 0.9583 0.9349 0.9527 0.9639 0.9640 0.9616 0.9351 0.9098 0.8775 0.9183
electra-large-discriminator 0.3330 0.7572 0.3333 0.3377 0.9838 0.9623 0.5772 0.8433 0.3337 0.3330 0.3781
gpt2-medium 0.7628 0.9299 0.6175 0.7370 0.9819 0.9365 0.7891 0.8164 0.8564 0.8406 0.4081
mGPT 0.8462 0.6847 0.3333 0.9730 0.9801 0.9743 0.9599 0.9438 0.9499 0.8396 0.8442
mdeberta-v3-base 0.7598 0.8536 0.9516 0.9118 0.8964 0.8446 0.8755 0.8891 0.9349 0.9244 0.9331
roberta-large-openai-detector 0.6837 0.7831 0.8645 0.8792 0.8488 0.9257 0.8654 0.8806 0.8556 0.8590 0.6139
xlm-roberta-large 0.6706 0.7938 0.8870 0.9357 0.9693 0.9298 0.9649 0.9062 0.9041 0.8336 0.6714

vicuna-13b

bert-base-multilingual-cased 0.8294 0.9533 0.8963 0.8902 0.9603 0.9486 0.9599 0.9420 0.9398 0.8928 0.7173
electra-large-discriminator 0.3548 0.8538 0.4133 0.4349 0.9874 0.9536 0.6708 0.9148 0.3703 0.3400 0.4983
gpt2-medium 0.7526 0.9010 0.6593 0.6846 0.9838 0.9331 0.7428 0.8293 0.8517 0.6033 0.4810
mGPT 0.8467 0.8620 0.5100 0.9031 0.9801 0.9398 0.8907 0.9352 0.9413 0.8451 0.6522
mdeberta-v3-base 0.8543 0.8078 0.8991 0.9204 0.8907 0.8410 0.8596 0.8721 0.9363 0.9364 0.7012
roberta-large-openai-detector 0.7635 0.9214 0.8653 0.9070 0.9729 0.9570 0.8976 0.9281 0.8671 0.7857 0.7200
xlm-roberta-large 0.8809 0.9517 0.9348 0.9594 0.9819 0.9709 0.9179 0.9213 0.9749 0.9565 0.7442

All Detectors Mean 0.7463 0.8765 0.7918 0.8300 0.9472 0.9375 0.8407 0.9099 0.8592 0.8296 0.6558
Multilingual Base Models Mean 0.8537 0.8977 0.8604 0.9073 0.9420 0.9372 0.8808 0.9253 0.9560 0.9374 0.7659
Monolingual Base Models Mean 0.6031 0.8482 0.7003 0.7269 0.9542 0.9380 0.7872 0.8895 0.7301 0.6859 0.5090

Table 14: Cross-lingual performance of all detection models fine-tuned on all three train languages (evaluated per
LLM).



Train & Test Detector Test Language
LLM Base Model ar ca cs de en es nl pt ru uk zh

alpaca-lora-30b

bert-base-multilingual-cased 0.4951 0.8743 0.8600 0.9053 0.9838 0.7617 0.9079 0.8579 0.8461 0.8144 0.5719
electra-large-discriminator 0.3770 0.4539 0.4389 0.3827 0.9892 0.5344 0.4379 0.4684 0.3363 0.3333 0.4711
gpt2-medium 0.3656 0.4420 0.4544 0.4038 0.9928 0.4063 0.4297 0.3814 0.3854 0.4195 0.4141
mGPT 0.2930 0.7623 0.4958 0.8850 0.9801 0.7360 0.8594 0.8655 0.8209 0.8043 0.4268
mdeberta-v3-base 0.1764 0.6872 0.8096 0.8529 0.9385 0.6356 0.7888 0.7340 0.7332 0.6824 0.4177
roberta-large-openai-detector 0.3448 0.4963 0.4613 0.4216 0.9711 0.3945 0.6572 0.3721 0.3571 0.4340 0.4346
xlm-roberta-large 0.3306 0.8378 0.8782 0.9425 0.9874 0.6985 0.9007 0.7872 0.8294 0.8524 0.5984

gpt-3.5-turbo

bert-base-multilingual-cased 0.9449 0.9178 0.9383 0.9257 0.9819 0.8718 0.9499 0.9298 0.9100 0.8946 0.9083
electra-large-discriminator 0.4179 0.4001 0.3407 0.3524 0.9856 0.6747 0.4557 0.5561 0.4058 0.3972 0.3132
gpt2-medium 0.3690 0.3407 0.3370 0.3450 0.9910 0.3301 0.3432 0.3313 0.3658 0.3539 0.3333
mGPT 0.6786 0.9083 0.3333 0.9049 0.9874 0.8874 0.9633 0.9284 0.9232 0.8860 0.5494
mdeberta-v3-base 0.8148 0.7353 0.8158 0.8783 0.9258 0.7020 0.8267 0.7834 0.6769 0.7348 0.7295
roberta-large-openai-detector 0.6747 0.9182 0.8488 0.8416 0.9693 0.7811 0.8637 0.7284 0.6661 0.3600 0.5888
xlm-roberta-large 0.9199 0.9800 0.9750 0.9408 0.9838 0.9192 0.9549 0.9385 0.9517 0.9464 0.7963

gpt-4

bert-base-multilingual-cased 0.8350 0.9009 0.9200 0.9307 0.9964 0.7323 0.9382 0.8389 0.8766 0.8662 0.8079
electra-large-discriminator 0.4747 0.6222 0.3363 0.4691 0.9910 0.8320 0.5694 0.7838 0.3804 0.3378 0.3370
gpt2-medium 0.3759 0.3516 0.3370 0.3413 0.9982 0.3553 0.3540 0.3565 0.3725 0.3468 0.3407
mGPT 0.8481 0.9299 0.3333 0.9104 0.9928 0.7951 0.9314 0.9072 0.8798 0.8067 0.6570
mdeberta-v3-base 0.8199 0.7249 0.9076 0.8679 0.6291 0.6506 0.8023 0.7064 0.7794 0.8271 0.6940
roberta-large-openai-detector 0.5115 0.6923 0.5428 0.6090 0.9892 0.4870 0.7771 0.4381 0.4911 0.4030 0.6774
xlm-roberta-large 0.8780 0.9093 0.9566 0.9645 0.9946 0.8286 0.9248 0.8808 0.9066 0.9298 0.8614

llama-65b

bert-base-multilingual-cased 0.6552 0.6417 0.7971 0.7019 0.9219 0.8057 0.6370 0.6880 0.7016 0.8031 0.5659
electra-large-discriminator 0.3311 0.3363 0.3336 0.3536 0.9365 0.3537 0.3330 0.3395 0.3311 0.3326 0.3318
gpt2-medium 0.3472 0.3979 0.5536 0.4564 0.9384 0.5798 0.3912 0.4192 0.3844 0.3912 0.4145
mGPT 0.3369 0.3616 0.7761 0.7157 0.9147 0.5517 0.4591 0.5616 0.4846 0.5137 0.5556
mdeberta-v3-base 0.7477 0.6646 0.9272 0.7560 0.8959 0.8662 0.6821 0.7176 0.7734 0.8533 0.5902
roberta-large-openai-detector 0.3311 0.3607 0.3545 0.3408 0.9457 0.3460 0.3761 0.3395 0.3355 0.3529 0.3325
xlm-roberta-large 0.4532 0.4074 0.8414 0.7198 0.9384 0.6397 0.4080 0.5535 0.6371 0.6560 0.4488

opt-66b

bert-base-multilingual-cased 0.4121 0.5241 0.6850 0.6789 0.9079 0.5558 0.5274 0.6377 0.6104 0.6477 0.5323
electra-large-discriminator 0.3969 0.6936 0.6463 0.6972 0.9314 0.6785 0.6637 0.7006 0.3390 0.3303 0.3311
gpt2-medium 0.4448 0.4992 0.4264 0.5941 0.8898 0.5432 0.4274 0.6423 0.4870 0.5507 0.4764
mGPT 0.1983 0.5890 0.5708 0.6564 0.9185 0.5605 0.5826 0.6449 0.4463 0.4981 0.4464
mdeberta-v3-base 0.2612 0.4316 0.5316 0.6257 0.7720 0.4713 0.4184 0.3897 0.5503 0.4716 0.5307
roberta-large-openai-detector 0.3322 0.6773 0.4695 0.4529 0.9332 0.4155 0.6678 0.4105 0.3346 0.3886 0.3376
xlm-roberta-large 0.4182 0.4089 0.6021 0.6750 0.9205 0.5871 0.4205 0.5935 0.5884 0.6220 0.5175

opt-iml-max-1.3b

bert-base-multilingual-cased 0.5705 0.6372 0.7086 0.7003 0.9549 0.6327 0.6705 0.6447 0.5501 0.6380 0.5188
electra-large-discriminator 0.3280 0.6391 0.6211 0.7352 0.9964 0.8875 0.8502 0.8454 0.3280 0.3275 0.3292
gpt2-medium 0.3740 0.8301 0.5994 0.6433 0.9801 0.7471 0.6005 0.6545 0.3770 0.3929 0.4977
mGPT 0.2607 0.5663 0.5731 0.6369 0.9729 0.5881 0.5901 0.4952 0.2563 0.2537 0.4156
mdeberta-v3-base 0.7309 0.8618 0.9212 0.8152 0.9729 0.7726 0.8558 0.7391 0.7542 0.8477 0.7328
roberta-large-openai-detector 0.3280 0.8886 0.7955 0.6782 0.9856 0.7670 0.9075 0.6858 0.3429 0.4533 0.3737
xlm-roberta-large 0.6694 0.7393 0.7423 0.8130 0.9711 0.7553 0.6195 0.6933 0.5689 0.5977 0.6165

text-davinci-003

bert-base-multilingual-cased 0.7853 0.9064 0.8815 0.8951 0.9693 0.7987 0.9115 0.8632 0.7773 0.7333 0.8883
electra-large-discriminator 0.3985 0.3333 0.3333 0.3303 0.9910 0.3309 0.3330 0.3284 0.3741 0.4089 0.3333
gpt2-medium 0.3330 0.3333 0.3333 0.3303 0.9892 0.3264 0.3330 0.3276 0.3283 0.3334 0.3326
mGPT 0.6136 0.8932 0.3333 0.8701 0.9892 0.8484 0.9382 0.9079 0.6940 0.5687 0.5904
mdeberta-v3-base 0.5791 0.7680 0.8940 0.8895 0.9074 0.6401 0.8748 0.7725 0.7341 0.6130 0.7199
roberta-large-openai-detector 0.5757 0.7601 0.8132 0.8724 0.9946 0.7930 0.7339 0.7721 0.6125 0.3726 0.6949
xlm-roberta-large 0.3899 0.9042 0.5268 0.9016 0.9856 0.8327 0.9482 0.8872 0.5981 0.3932 0.3987

vicuna-13b

bert-base-multilingual-cased 0.7679 0.8821 0.8366 0.8410 0.9874 0.7861 0.9382 0.8218 0.8335 0.8378 0.6379
electra-large-discriminator 0.4056 0.5004 0.5494 0.5233 0.9838 0.7749 0.6136 0.6435 0.4744 0.4347 0.5352
gpt2-medium 0.5084 0.3728 0.4513 0.4422 0.9856 0.5856 0.3776 0.4527 0.4134 0.4440 0.3841
mGPT 0.3881 0.9079 0.4889 0.8254 0.9910 0.6963 0.9161 0.8043 0.6361 0.7215 0.6778
mdeberta-v3-base 0.2578 0.7861 0.6983 0.8225 0.7928 0.6142 0.8809 0.7064 0.6031 0.6765 0.5488
roberta-large-openai-detector 0.3330 0.4906 0.4113 0.4794 0.9511 0.4425 0.6971 0.3821 0.3326 0.3341 0.3488
xlm-roberta-large 0.4062 0.9009 0.7648 0.9324 0.9892 0.6761 0.8613 0.7444 0.7618 0.7866 0.7595

All Detectors Mean 0.4931 0.6568 0.6270 0.6871 0.9529 0.6476 0.6800 0.6497 0.5759 0.5716 0.5299
Multilingual Base Models Mean 0.5605 0.7484 0.7289 0.8244 0.9392 0.7156 0.7778 0.7508 0.7092 0.7118 0.6160
Monolingual Base Models Mean 0.4033 0.5346 0.4912 0.5040 0.9712 0.5570 0.5497 0.5150 0.3981 0.3847 0.4152

Table 15: Cross-lingual performance of all detection models fine-tuned on the English language with 3-times more
train samples (evaluated per LLM).



Detector Test LLM
Train LLM Base Model text-davinci-003 gpt-3.5-turbo gpt-4 alpaca-lora-30b vicuna-13b llama-65b opt-66b opt-iml-max-1.3b

alpaca-lora-30b

bert-base-multilingual-cased 0.8102 0.8237 0.7964 0.7889 0.7622 0.4336 0.4315 0.4863
electra-large-discriminator 0.5356 0.5243 0.5001 0.5698 0.5460 0.4060 0.4595 0.5168
gpt2-medium 0.5267 0.4589 0.4438 0.5426 0.4768 0.5626 0.4401 0.4939
mGPT 0.7656 0.8022 0.7437 0.7556 0.7396 0.4427 0.4386 0.3624
mdeberta-v3-base 0.7795 0.8118 0.8242 0.7428 0.7404 0.3676 0.3285 0.3175
roberta-large-openai-detector 0.5663 0.5660 0.5646 0.5627 0.5556 0.4595 0.5272 0.5061
xlm-roberta-large 0.7940 0.8264 0.8029 0.7643 0.7542 0.4912 0.4660 0.5107

gpt-3.5-turbo

bert-base-multilingual-cased 0.8512 0.9106 0.8841 0.7797 0.8281 0.3758 0.4023 0.3959
electra-large-discriminator 0.5937 0.6052 0.5879 0.6016 0.6087 0.4381 0.4511 0.4864
gpt2-medium 0.4147 0.4302 0.4382 0.4215 0.4532 0.4995 0.3672 0.4162
mGPT 0.7572 0.8286 0.7858 0.6841 0.7503 0.3726 0.3879 0.3457
mdeberta-v3-base 0.6966 0.7136 0.7313 0.6586 0.6704 0.3248 0.2977 0.2729
roberta-large-openai-detector 0.6167 0.6141 0.6105 0.6013 0.5940 0.4211 0.5461 0.4714
xlm-roberta-large 0.7198 0.8308 0.7862 0.6829 0.7215 0.3967 0.4055 0.3881

gpt-4

bert-base-multilingual-cased 0.7090 0.7954 0.8458 0.6428 0.6632 0.3744 0.3749 0.3585
electra-large-discriminator 0.4972 0.5225 0.5362 0.4759 0.5156 0.3720 0.3757 0.3755
gpt2-medium 0.4037 0.4334 0.4460 0.4199 0.4387 0.5207 0.3628 0.4035
mGPT 0.7058 0.7616 0.7657 0.6387 0.6981 0.4186 0.4255 0.3558
mdeberta-v3-base 0.6201 0.8077 0.8469 0.5331 0.6150 0.3346 0.3385 0.3357
roberta-large-openai-detector 0.6070 0.6131 0.6136 0.5804 0.5889 0.3577 0.5085 0.3777
xlm-roberta-large 0.6526 0.7151 0.7742 0.5707 0.6754 0.3815 0.3821 0.3743

llama-65b

bert-base-multilingual-cased 0.2969 0.3174 0.4327 0.3828 0.4522 0.6841 0.6015 0.6403
electra-large-discriminator 0.5096 0.4843 0.4806 0.4937 0.4921 0.5111 0.5108 0.5095
gpt2-medium 0.4531 0.4221 0.4092 0.4193 0.4644 0.5337 0.4957 0.4954
mGPT 0.4849 0.4824 0.5086 0.4783 0.5308 0.5608 0.5337 0.5410
mdeberta-v3-base 0.5439 0.5356 0.5626 0.5473 0.6054 0.6348 0.6075 0.6318
roberta-large-openai-detector 0.4157 0.4153 0.4157 0.4131 0.4133 0.4124 0.4099 0.4060
xlm-roberta-large 0.4817 0.4691 0.5183 0.5133 0.5757 0.6625 0.6145 0.6553

opt-66b

bert-base-multilingual-cased 0.4144 0.4443 0.5264 0.4583 0.5037 0.6291 0.5623 0.5766
electra-large-discriminator 0.4734 0.4710 0.5217 0.5028 0.5515 0.6779 0.5974 0.6285
gpt2-medium 0.5210 0.4556 0.4574 0.4769 0.4977 0.6650 0.5379 0.5676
mGPT 0.5835 0.6185 0.6248 0.4870 0.6169 0.6016 0.5344 0.4388
mdeberta-v3-base 0.4586 0.5203 0.5924 0.4266 0.6025 0.6556 0.5969 0.5744
roberta-large-openai-detector 0.4785 0.4776 0.4787 0.4731 0.4726 0.4619 0.4708 0.4719
xlm-roberta-large 0.5180 0.5048 0.5545 0.4707 0.5929 0.7085 0.6116 0.6762

opt-iml-max-1.3b

bert-base-multilingual-cased 0.5108 0.5289 0.5330 0.5173 0.5442 0.5635 0.5450 0.5626
electra-large-discriminator 0.4745 0.4613 0.4788 0.5011 0.5009 0.6021 0.5657 0.6240
gpt2-medium 0.5220 0.4936 0.5053 0.5192 0.5431 0.6894 0.5497 0.6141
mGPT 0.6135 0.6200 0.6061 0.6004 0.6331 0.6238 0.5904 0.6172
mdeberta-v3-base 0.5972 0.5374 0.5093 0.6664 0.7953 0.8235 0.8139 0.9138
roberta-large-openai-detector 0.6543 0.6591 0.6491 0.6438 0.6535 0.5722 0.6484 0.6772
xlm-roberta-large 0.5576 0.5218 0.5196 0.5736 0.6675 0.7572 0.6830 0.7731

text-davinci-003

bert-base-multilingual-cased 0.8289 0.8692 0.8116 0.7427 0.7640 0.3490 0.3876 0.3703
electra-large-discriminator 0.5878 0.5924 0.5310 0.5775 0.5942 0.4013 0.4614 0.5302
gpt2-medium 0.4172 0.4284 0.4378 0.4176 0.4411 0.4916 0.3651 0.4088
mGPT 0.7636 0.8044 0.7709 0.6834 0.7306 0.3624 0.4103 0.3518
mdeberta-v3-base 0.7193 0.7398 0.7533 0.6600 0.6873 0.3190 0.3248 0.2649
roberta-large-openai-detector 0.5722 0.5691 0.5671 0.5618 0.5534 0.4024 0.5216 0.4817
xlm-roberta-large 0.7430 0.7991 0.7469 0.6847 0.7062 0.4158 0.4656 0.5216

vicuna-13b

bert-base-multilingual-cased 0.8212 0.8745 0.8672 0.7552 0.8353 0.4419 0.4167 0.4256
electra-large-discriminator 0.5655 0.5769 0.5669 0.5823 0.5920 0.5197 0.5161 0.6136
gpt2-medium 0.5558 0.4521 0.4421 0.5117 0.5204 0.5360 0.4994 0.5329
mGPT 0.7242 0.7568 0.7366 0.6741 0.7312 0.4275 0.4706 0.3665
mdeberta-v3-base 0.5538 0.5773 0.5925 0.5141 0.5328 0.4013 0.2795 0.2131
roberta-large-openai-detector 0.6170 0.6150 0.6093 0.6029 0.5980 0.4421 0.5623 0.5310
xlm-roberta-large 0.7038 0.7807 0.7476 0.6598 0.7234 0.4878 0.4896 0.5116

Table 16: Cross-generator performance of all detection models fine-tuned on the English language (evaluated per
LLM).



Detector Test LLM
Train LLM Base Model text-davinci-003 gpt-3.5-turbo gpt-4 alpaca-lora-30b vicuna-13b llama-65b opt-66b opt-iml-max-1.3b

alpaca-lora-30b

bert-base-multilingual-cased 0.8581 0.8905 0.8078 0.8295 0.8268 0.5157 0.4523 0.5286
electra-large-discriminator 0.5473 0.5414 0.5105 0.5562 0.5624 0.5363 0.4681 0.4795
gpt2-medium 0.6630 0.5975 0.4491 0.7259 0.5730 0.5714 0.4916 0.5837
mGPT 0.7748 0.8005 0.6966 0.8025 0.7508 0.6114 0.5314 0.5592
mdeberta-v3-base 0.8632 0.8505 0.8237 0.8465 0.8484 0.4766 0.5173 0.6004
roberta-large-openai-detector 0.6667 0.6847 0.6452 0.6807 0.6629 0.5254 0.4764 0.3758
xlm-roberta-large 0.8169 0.8136 0.6452 0.8599 0.7653 0.4279 0.4353 0.5307

gpt-3.5-turbo

bert-base-multilingual-cased 0.8364 0.9011 0.8290 0.7524 0.7909 0.3473 0.3842 0.3736
electra-large-discriminator 0.5457 0.5958 0.5620 0.5250 0.5732 0.4545 0.4451 0.4277
gpt2-medium 0.5610 0.5785 0.5022 0.5185 0.5366 0.5299 0.3966 0.5121
mGPT 0.7977 0.8596 0.8033 0.7172 0.7721 0.3934 0.4093 0.3702
mdeberta-v3-base 0.8451 0.9266 0.9040 0.7635 0.8030 0.3472 0.3405 0.3264
roberta-large-openai-detector 0.6670 0.6981 0.6875 0.6202 0.6554 0.4468 0.4257 0.3329
xlm-roberta-large 0.8127 0.8939 0.8010 0.7125 0.7738 0.3816 0.3816 0.4005

gpt-4

bert-base-multilingual-cased 0.8240 0.8702 0.8802 0.7418 0.7969 0.4285 0.4251 0.3798
electra-large-discriminator 0.5456 0.5537 0.5785 0.5060 0.5510 0.4553 0.4632 0.4512
gpt2-medium 0.4109 0.5059 0.5551 0.4236 0.4680 0.5172 0.3713 0.4303
mGPT 0.7428 0.8420 0.8526 0.6301 0.7372 0.4196 0.3823 0.3614
mdeberta-v3-base 0.7977 0.9095 0.9113 0.6895 0.7768 0.3573 0.3471 0.3371
roberta-large-openai-detector 0.6422 0.6892 0.7063 0.5845 0.6375 0.4231 0.3862 0.3187
xlm-roberta-large 0.6783 0.7627 0.7680 0.6233 0.7000 0.3695 0.3670 0.3783

llama-65b

bert-base-multilingual-cased 0.3458 0.3815 0.4299 0.4424 0.5081 0.8214 0.6687 0.7356
electra-large-discriminator 0.4849 0.4632 0.4809 0.5045 0.5231 0.7180 0.5699 0.6151
gpt2-medium 0.4832 0.4536 0.4721 0.4963 0.5024 0.7405 0.5325 0.5924
mGPT 0.5262 0.5447 0.5199 0.5776 0.5742 0.6943 0.5542 0.6419
mdeberta-v3-base 0.4746 0.4224 0.4382 0.5887 0.6442 0.8678 0.7715 0.8579
roberta-large-openai-detector 0.6111 0.6331 0.6282 0.5793 0.6229 0.6602 0.5422 0.4934
xlm-roberta-large 0.4259 0.4284 0.4451 0.5757 0.6168 0.8565 0.7240 0.8332

opt-66b

bert-base-multilingual-cased 0.5182 0.5420 0.5370 0.5378 0.6400 0.7476 0.7074 0.7397
electra-large-discriminator 0.4604 0.4612 0.4785 0.4740 0.5282 0.6504 0.6009 0.6205
gpt2-medium 0.5741 0.5033 0.4575 0.5371 0.5645 0.6102 0.6019 0.6506
mGPT 0.5684 0.5752 0.5390 0.5698 0.5986 0.5700 0.5972 0.6038
mdeberta-v3-base 0.6073 0.4019 0.4000 0.7470 0.7419 0.8027 0.8651 0.8861
roberta-large-openai-detector 0.6509 0.6478 0.6341 0.6311 0.6360 0.6075 0.6683 0.6683
xlm-roberta-large 0.5889 0.4781 0.4654 0.6340 0.6626 0.7066 0.7053 0.7086

opt-iml-max-1.3b

bert-base-multilingual-cased 0.3503 0.3595 0.3455 0.4341 0.5012 0.7651 0.6947 0.9178
electra-large-discriminator 0.5284 0.5251 0.4909 0.5445 0.5738 0.6557 0.5849 0.7075
gpt2-medium 0.5215 0.4668 0.4399 0.4763 0.5111 0.5719 0.4972 0.6770
mGPT 0.4806 0.4060 0.3641 0.6005 0.5902 0.7384 0.6777 0.8787
mdeberta-v3-base 0.4692 0.3456 0.3352 0.5788 0.5674 0.5690 0.8046 0.9323
roberta-large-openai-detector 0.6303 0.6232 0.5829 0.6268 0.6424 0.5714 0.6498 0.7347
xlm-roberta-large 0.3438 0.3310 0.3320 0.4737 0.4500 0.5210 0.6757 0.8856

text-davinci-003

bert-base-multilingual-cased 0.8398 0.8700 0.7840 0.7585 0.8105 0.3832 0.4459 0.4992
electra-large-discriminator 0.5908 0.5807 0.5429 0.5449 0.5745 0.4342 0.4713 0.4590
gpt2-medium 0.7275 0.6582 0.4750 0.6549 0.6159 0.4904 0.4822 0.6132
mGPT 0.8230 0.8604 0.7730 0.7351 0.7823 0.4025 0.4022 0.3777
mdeberta-v3-base 0.8459 0.8898 0.8881 0.7783 0.8136 0.3620 0.3554 0.3517
roberta-large-openai-detector 0.6641 0.6923 0.6602 0.6147 0.6459 0.4523 0.4150 0.3379
xlm-roberta-large 0.9113 0.9345 0.8569 0.7909 0.8627 0.3898 0.4001 0.4358

vicuna-13b

bert-base-multilingual-cased 0.8525 0.8954 0.8444 0.7812 0.8483 0.4819 0.4452 0.4992
electra-large-discriminator 0.5415 0.5950 0.5707 0.5428 0.6017 0.5586 0.4745 0.4876
gpt2-medium 0.7084 0.6886 0.5819 0.6673 0.7066 0.5962 0.5040 0.6613
mGPT 0.7824 0.7967 0.7664 0.7500 0.7815 0.6007 0.5111 0.4828
mdeberta-v3-base 0.8518 0.9009 0.8630 0.7728 0.8656 0.4793 0.4083 0.4794
roberta-large-openai-detector 0.6966 0.7304 0.6872 0.6489 0.7141 0.5363 0.4789 0.4041
xlm-roberta-large 0.7742 0.7924 0.6991 0.7086 0.8133 0.5095 0.5060 0.6679

Table 17: Cross-generator performance of all detection models fine-tuned on the Spanish language (evaluated per
LLM).



Detector Test LLM
Train LLM Base Model text-davinci-003 gpt-3.5-turbo gpt-4 alpaca-lora-30b vicuna-13b llama-65b opt-66b opt-iml-max-1.3b

alpaca-lora-30b

bert-base-multilingual-cased 0.7279 0.7424 0.7276 0.7127 0.7079 0.4906 0.4891 0.5071
electra-large-discriminator 0.4746 0.4737 0.4906 0.4889 0.4873 0.6388 0.5265 0.5725
gpt2-medium 0.4154 0.4978 0.4338 0.6095 0.4154 0.5750 0.3855 0.4667
mGPT 0.6885 0.7089 0.6610 0.7077 0.6784 0.5698 0.5004 0.4986
mdeberta-v3-base 0.8700 0.8366 0.7959 0.9018 0.8637 0.5788 0.7436 0.8611
roberta-large-openai-detector 0.5134 0.5240 0.5139 0.5359 0.4923 0.4890 0.4723 0.4254
xlm-roberta-large 0.8739 0.8502 0.7762 0.9212 0.8470 0.5112 0.5750 0.8006

gpt-3.5-turbo

bert-base-multilingual-cased 0.8358 0.8834 0.8548 0.7617 0.8171 0.3808 0.4363 0.4259
electra-large-discriminator 0.4347 0.4889 0.4983 0.4408 0.4384 0.4084 0.3857 0.3908
gpt2-medium 0.4234 0.4879 0.4599 0.4539 0.4328 0.4395 0.3623 0.4325
mGPT 0.7712 0.8387 0.7840 0.7107 0.7594 0.3828 0.4280 0.3666
mdeberta-v3-base 0.8608 0.9185 0.9074 0.8127 0.8515 0.4025 0.3799 0.3644
roberta-large-openai-detector 0.4998 0.5257 0.5247 0.5126 0.4993 0.4612 0.4788 0.3629
xlm-roberta-large 0.9057 0.9472 0.9320 0.8523 0.8832 0.4311 0.4196 0.4130

gpt-4

bert-base-multilingual-cased 0.7354 0.7671 0.7747 0.6645 0.7139 0.4094 0.4649 0.4051
electra-large-discriminator 0.4297 0.4782 0.4788 0.4560 0.4521 0.4829 0.4246 0.4328
gpt2-medium 0.4549 0.4935 0.5003 0.4893 0.4583 0.4802 0.4106 0.4643
mGPT 0.7582 0.8458 0.8566 0.6444 0.7497 0.3996 0.4090 0.3656
mdeberta-v3-base 0.7805 0.8126 0.8134 0.7199 0.7597 0.3770 0.3834 0.3425
roberta-large-openai-detector 0.4814 0.4983 0.5355 0.4818 0.4794 0.4322 0.4600 0.3530
xlm-roberta-large 0.8743 0.9378 0.9499 0.7668 0.8342 0.3855 0.3779 0.3651

llama-65b

bert-base-multilingual-cased 0.4444 0.4964 0.5551 0.4455 0.5476 0.7071 0.6247 0.6517
electra-large-discriminator 0.4662 0.4574 0.4546 0.4690 0.4708 0.5003 0.4754 0.4648
gpt2-medium 0.3999 0.4182 0.4093 0.4423 0.4377 0.6506 0.4791 0.4855
mGPT 0.4844 0.4835 0.4891 0.5283 0.5146 0.5925 0.5171 0.5794
mdeberta-v3-base 0.5546 0.4236 0.4816 0.6273 0.6372 0.7263 0.7123 0.7260
roberta-large-openai-detector 0.4379 0.4328 0.4487 0.4540 0.4430 0.5352 0.4778 0.4396
xlm-roberta-large 0.4767 0.4478 0.4730 0.5810 0.5973 0.7443 0.7012 0.7417

opt-66b

bert-base-multilingual-cased 0.3359 0.3343 0.3592 0.3989 0.4029 0.7943 0.7091 0.7573
electra-large-discriminator 0.4473 0.4202 0.4189 0.4424 0.4409 0.4619 0.4759 0.4674
gpt2-medium 0.4902 0.4222 0.3950 0.4765 0.4634 0.5932 0.5526 0.5827
mGPT 0.3959 0.3604 0.3596 0.5127 0.4866 0.6481 0.6793 0.8315
mdeberta-v3-base 0.4262 0.3398 0.3375 0.5127 0.4807 0.4615 0.7289 0.8663
roberta-large-openai-detector 0.4435 0.4209 0.4359 0.4382 0.4294 0.4511 0.4890 0.4148
xlm-roberta-large 0.3934 0.3304 0.3320 0.5074 0.4554 0.6092 0.7948 0.9364

opt-iml-max-1.3b

bert-base-multilingual-cased 0.3321 0.3321 0.3327 0.3456 0.3372 0.3776 0.4305 0.7076
electra-large-discriminator 0.5100 0.4353 0.3585 0.5607 0.4552 0.5110 0.5510 0.5909
gpt2-medium 0.4438 0.3922 0.3737 0.4431 0.4279 0.5229 0.4935 0.5983
mGPT 0.3341 0.3257 0.3381 0.3707 0.3652 0.4328 0.4766 0.7054
mdeberta-v3-base 0.3482 0.3401 0.3371 0.4485 0.3843 0.3611 0.5402 0.7068
roberta-large-openai-detector 0.5199 0.4835 0.4789 0.4998 0.4926 0.4773 0.5193 0.5197
xlm-roberta-large 0.3360 0.3323 0.3312 0.4210 0.3627 0.3791 0.5594 0.7996

text-davinci-003

bert-base-multilingual-cased 0.7808 0.7940 0.6553 0.7189 0.6841 0.3456 0.3798 0.3753
electra-large-discriminator 0.4372 0.3887 0.3642 0.4289 0.4131 0.4951 0.4518 0.4553
gpt2-medium 0.5147 0.3874 0.3753 0.4490 0.4148 0.4860 0.4456 0.5071
mGPT 0.7682 0.7322 0.6571 0.7275 0.6993 0.3722 0.4151 0.3919
mdeberta-v3-base 0.6726 0.5051 0.4342 0.7695 0.6230 0.3618 0.6033 0.6648
roberta-large-openai-detector 0.5439 0.4846 0.4907 0.5025 0.4830 0.4156 0.4845 0.3512
xlm-roberta-large 0.7099 0.5923 0.4626 0.7232 0.6210 0.3623 0.4792 0.6351

vicuna-13b

bert-base-multilingual-cased 0.5322 0.5444 0.5417 0.5321 0.5429 0.4956 0.4570 0.4338
electra-large-discriminator 0.4613 0.4599 0.4605 0.4708 0.4680 0.4852 0.4774 0.4705
gpt2-medium 0.4400 0.4965 0.4809 0.5031 0.5477 0.6459 0.4519 0.5139
mGPT 0.6592 0.6760 0.6616 0.6673 0.6765 0.5875 0.5462 0.5849
mdeberta-v3-base 0.8342 0.8001 0.7582 0.8513 0.8957 0.6075 0.7289 0.9080
roberta-large-openai-detector 0.4998 0.5137 0.5146 0.5088 0.5269 0.5206 0.4873 0.4461
xlm-roberta-large 0.8429 0.8318 0.7992 0.8220 0.8852 0.5332 0.5935 0.7620

Table 18: Cross-generator performance of all detection models fine-tuned on the Russian language (evaluated per
LLM).



Train Language Train LLM text-davinci-003 gpt-3.5-turbo gpt-4 alpaca-lora-30b vicuna-13b llama-65b opt-66b opt-iml-max-1.3b

en

text-davinci-003 1.0000 0.9630 0.9091 0.9606 0.9153 -0.5403 -0.3397 -0.3932
gpt-3.5-turbo 0.9630 1.0000 0.9755 0.9000 0.8939 -0.6074 -0.4288 -0.4835
gpt-4 0.9091 0.9755 1.0000 0.8362 0.8697 -0.5739 -0.4265 -0.4911
alpaca-lora-30b 0.9606 0.9000 0.8362 1.0000 0.9185 -0.4377 -0.2123 -0.2412
vicuna-13b 0.9153 0.8939 0.8697 0.9185 1.0000 -0.2738 -0.0814 -0.1394
llama-65b -0.5403 -0.6074 -0.5739 -0.4377 -0.2738 1.0000 0.8306 0.8684
opt-66b -0.3397 -0.4288 -0.4265 -0.2123 -0.0814 0.8306 1.0000 0.9320
opt-iml-max-1.3b -0.3932 -0.4835 -0.4911 -0.2412 -0.1394 0.8684 0.9320 1.0000

es

text-davinci-003 1.0000 0.9559 0.8838 0.9107 0.9268 -0.6977 -0.6220 -0.6146
gpt-3.5-turbo 0.9559 1.0000 0.9642 0.8045 0.8793 -0.7677 -0.7582 -0.7430
gpt-4 0.8838 0.9642 1.0000 0.7110 0.8475 -0.7397 -0.7464 -0.7772
alpaca-lora-30b 0.9107 0.8045 0.7110 1.0000 0.9211 -0.4645 -0.3431 -0.3439
vicuna-13b 0.9268 0.8793 0.8475 0.9211 1.0000 -0.5080 -0.4104 -0.4309
llama-65b -0.6977 -0.7677 -0.7397 -0.4645 -0.5080 1.0000 0.8401 0.7872
opt-66b -0.6220 -0.7582 -0.7464 -0.3431 -0.4104 0.8401 1.0000 0.9164
opt-iml-max-1.3b -0.6146 -0.7430 -0.7772 -0.3439 -0.4309 0.7872 0.9164 1.0000

ru

text-davinci-003 1.0000 0.9575 0.9176 0.9459 0.9629 -0.3001 -0.1209 -0.1660
gpt-3.5-turbo 0.9575 1.0000 0.9806 0.8830 0.9405 -0.3082 -0.2675 -0.2963
gpt-4 0.9176 0.9806 1.0000 0.8255 0.9281 -0.2496 -0.2466 -0.3122
alpaca-lora-30b 0.9459 0.8830 0.8255 1.0000 0.9460 -0.1665 0.0646 0.0440
vicuna-13b 0.9629 0.9405 0.9281 0.9460 1.0000 -0.1229 0.0303 -0.0324
llama-65b -0.3001 -0.3082 -0.2496 -0.1665 -0.1229 1.0000 0.6193 0.4562
opt-66b -0.1209 -0.2675 -0.2466 0.0646 0.0303 0.6193 1.0000 0.8655
opt-iml-max-1.3b -0.1660 -0.2963 -0.3122 0.0440 -0.0324 0.4562 0.8655 1.0000

Table 19: The correlations between the macro average F1-score performance of the cross-generator on the English,
Spanish, and Russian languages.

Train Language Train LLM text-davinci-003 gpt-3.5-turbo gpt-4 alpaca-lora-30b vicuna-13b llama-65b opt-66b opt-iml-max-1.3b

en

text-davinci-003 0.6617 (±0.14) 0.6860 (±0.16) 0.6598 (±0.15) 0.6182 (±0.11) 0.6395 (±0.12) 0.3917 (±0.06) 0.4195 (±0.07) 0.4185 (±0.10)
gpt-3.5-turbo 0.6643 (±0.14) 0.7047 (±0.17) 0.6891 (±0.15) 0.6328 (±0.11) 0.6609 (±0.12) 0.4041 (±0.06) 0.4083 (±0.08) 0.3967 (±0.07)
gpt-4 0.5993 (±0.11) 0.6641 (±0.14) 0.6898 (±0.16) 0.5517 (±0.08) 0.5993 (±0.09) 0.3942 (±0.06) 0.3954 (±0.06) 0.3687 (±0.02)
alpaca-lora-30b 0.6826 (±0.13) 0.6876 (±0.16) 0.6679 (±0.16) 0.6753 (±0.11) 0.6535 (±0.12) 0.4519 (±0.06) 0.4416 (±0.06) 0.4562 (±0.08)
vicuna-13b 0.6488 (±0.10) 0.6619 (±0.15) 0.6517 (±0.14) 0.6143 (±0.09) 0.6476 (±0.12) 0.4652 (±0.05) 0.4620 (±0.09) 0.4563 (±0.13)
llama-65b 0.4551 (±0.08) 0.4466 (±0.07) 0.4754 (±0.06) 0.4640 (±0.06) 0.5048 (±0.07) 0.5713 (±0.10) 0.5391 (±0.07) 0.5542 (±0.09)
opt-66b 0.4925 (±0.05) 0.4989 (±0.06) 0.5366 (±0.06) 0.4708 (±0.02) 0.5483 (±0.06) 0.6285 (±0.08) 0.5587 (±0.05) 0.5620 (±0.08)
opt-iml-max-1.3b 0.5614 (±0.06) 0.5460 (±0.07) 0.5430 (±0.06) 0.5745 (±0.07) 0.6196 (±0.10) 0.6617 (±0.10) 0.6280 (±0.10) 0.6832 (±0.12)

es

text-davinci-003 0.7718 (±0.11) 0.7837 (±0.14) 0.7114 (±0.16) 0.6968 (±0.09) 0.7294 (±0.11) 0.4163 (±0.04) 0.4246 (±0.04) 0.4392 (±0.10)
gpt-3.5-turbo 0.7236 (±0.13) 0.7791 (±0.15) 0.7270 (±0.15) 0.6585 (±0.10) 0.7007 (±0.11) 0.4144 (±0.07) 0.3976 (±0.03) 0.3919 (±0.06)
gpt-4 0.6631 (±0.15) 0.7333 (±0.16) 0.7503 (±0.14) 0.5998 (±0.11) 0.6668 (±0.12) 0.4244 (±0.05) 0.3917 (±0.04) 0.3795 (±0.05)
alpaca-lora-30b 0.7414 (±0.12) 0.7398 (±0.13) 0.6540 (±0.14) 0.7573 (±0.11) 0.7128 (±0.12) 0.5235 (±0.06) 0.4818 (±0.03) 0.5226 (±0.08)
vicuna-13b 0.7439 (±0.11) 0.7713 (±0.11) 0.7161 (±0.12) 0.6959 (±0.08) 0.7616 (±0.09) 0.5375 (±0.05) 0.4754 (±0.04) 0.5260 (±0.10)
llama-65b 0.4788 (±0.08) 0.4753 (±0.09) 0.4877 (±0.07) 0.5378 (±0.06) 0.5702 (±0.06) 0.7655 (±0.08) 0.6233 (±0.10) 0.6813 (±0.13)
opt-66b 0.5669 (±0.06) 0.5156 (±0.08) 0.5016 (±0.08) 0.5901 (±0.09) 0.6245 (±0.07) 0.6707 (±0.08) 0.6780 (±0.10) 0.6968 (±0.10)
opt-iml-max-1.3b 0.4749 (±0.10) 0.4367 (±0.11) 0.4129 (±0.10) 0.5335 (±0.07) 0.5480 (±0.06) 0.6275 (±0.09) 0.6550 (±0.10) 0.8191 (±0.11)

ru

text-davinci-003 0.6325 (±0.13) 0.5549 (±0.16) 0.4914 (±0.12) 0.6171 (±0.15) 0.5626 (±0.12) 0.4055 (±0.06) 0.4656 (±0.07) 0.4830 (±0.13)
gpt-3.5-turbo 0.6759 (±0.21) 0.7272 (±0.21) 0.7087 (±0.21) 0.6492 (±0.18) 0.6688 (±0.20) 0.4152 (±0.03) 0.4130 (±0.04) 0.3937 (±0.03)
gpt-4 0.6449 (±0.18) 0.6905 (±0.19) 0.7013 (±0.19) 0.6032 (±0.13) 0.6353 (±0.17) 0.4238 (±0.04) 0.4186 (±0.03) 0.3898 (±0.05)
alpaca-lora-30b 0.6520 (±0.19) 0.6620 (±0.16) 0.6284 (±0.15) 0.6968 (±0.17) 0.6417 (±0.18) 0.5504 (±0.06) 0.5275 (±0.11) 0.5903 (±0.17)
vicuna-13b 0.6099 (±0.17) 0.6175 (±0.15) 0.6024 (±0.14) 0.6222 (±0.16) 0.6490 (±0.18) 0.5536 (±0.06) 0.5346 (±0.10) 0.5884 (±0.18)
llama-65b 0.4663 (±0.05) 0.4514 (±0.03) 0.4730 (±0.04) 0.5068 (±0.07) 0.5212 (±0.08) 0.6366 (±0.10) 0.5697 (±0.11) 0.5841 (±0.13)
opt-66b 0.4189 (±0.05) 0.3754 (±0.04) 0.3769 (±0.04) 0.4698 (±0.04) 0.4513 (±0.03) 0.5742 (±0.13) 0.6328 (±0.13) 0.6938 (±0.21)
opt-iml-max-1.3b 0.4034 (±0.09) 0.3773 (±0.06) 0.3643 (±0.05) 0.4413 (±0.07) 0.4036 (±0.06) 0.4374 (±0.07) 0.5101 (±0.05) 0.6612 (±0.10)

Table 20: The mean and standard deviation between the macro average F1-score performance of the cross-generator
on the English, Spanish, and Russian languages.


