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Abstract

Consider a scenario where an author–e.g., ac-
tivist, whistle-blower, with many public writ-
ings wishes to write “anonymously" when at-
tackers may have already built an authorship
attribution (AA) model based off of public writ-
ings including those of the author. To enable
her wish, we ask a question “can one make the
publicly released writings, T , unattributable so
that AA models trained on T cannot attribute
its authorship well?" Toward this question, we
present a novel solution, UPTON, that exploits
black-box data poisoning methods to weaken
the authorship features in training samples and
make released texts unlearnable. It is differ-
ent from previous obfuscation works–e.g., ad-
versarial attacks that modify test samples or
backdoor works that only change the model
outputs when triggering words occur. Using
four authorship datasets (IMDb10, IMDb64,
Enron and WJO), we present empirical valida-
tion where UPTON successfully downgrades
the accuracy of AA models to the impractical
level (∼35%) while keeping texts still readable
(semantic similarity>0.9). UPTON remains
effective to AA models that are already trained
on available clean writings of authors.

1 Introduction

The Authorship Attribution (AA) refers to an
NLP task to detect the authorship of a specific
text (Juola et al., 2008; Uchendu et al., 2021). Re-
cent AA models can reveal the true authorship of
unseen texts with high accuracies, with some cases
up to 95% accuracy (Fabien et al., 2020). This is
partly possible due to the fact that texts often con-
ceal unique stylometric writing style that is specific
to each individual author and can be picked up by
computer algorithms (Zheng et al., 2006). More-
over, there are often many written pieces of the
same author publicly available, both within a single

Figure 1: UPTON proactively defends against the pri-
vacy leakage right at source, poisoning public texts (be-
fore being released to the public) to void the malicious
authorship attribution (AA) models.

and across multiple social and publishing channels–
e.g., Facebook, Twitter, Reddit, Medium, enabling
rich and diverse training datasets for building AA
models (Jia and Xu, 2016). Although these recent
progress on AA are encouraging, this technology
can also be leveraged by malicious actors to train
exploitative AA models on publicly released texts
with authorship labels–e.g., social media posts, and
use them to unmask the authorship of private or
anonymous texts. This could lead to serious pri-
vacy leakage of Internet users’ identities, especially
to those that are exercising online anonymity–e.g.,
activists and whistle-blowers.

There have been prior works to protect citizens
from this privacy leakage, many of which utilize the
Authorship Obfuscation (AO) methods (Hagen
et al., 2017; Haroon et al., 2021; Mahmood et al.,
2019). AO focuses on defending against malicious
AA models via adversarial attacks–i.e., minimally
perturbing a private text, either via character or
word replacements, such that those AA models are
not able to correctly identify the text’s true author-
ship. Although AO approaches are shown to be
quite effective (Mahmood et al., 2019), they have



a few limitations: First, they often require an ac-
cess to the AA models, via either publicly available
APIs (black-box setting) or released source-code
and model parameters (white-box setting). How-
ever, such a requirement is impractical in practice
as malicious actors are unlikely to allow the access
to their AA models. Second, AO usually occurs
after the damage has been done–i.e., texts with au-
thorship labels have already been released to the
public and AA models have already been trained
using such released data. Third, AO techniques can
only be exercised at the user-level to obfuscate one
private text at a time, and can be challenging for
non-technical users to employ.

These key limitations motivate us to propose a
novel proactive defense approach right at the data
source–i.e., shifting the responsibility of the de-
fense for privacy leakage from the end-users to
text publishing platforms. Our approach, named as
UPTON (Unattributable authorshiP Text via data
pOisoNing), aims to empower online publishing
platforms such as Facebook and Twitter to release
their textual contents as unattributable or unlearn-
able by unknown malicious AA models. UPTON
is a black-box framework to be deployed by pub-
lishing platforms, that processes non-anonymous
texts before releasing them and makes them inef-
ficient for AA training while preserving their se-
mantics. Intuitively, UPTON uses data poisoning
techniques (Zhang et al., 2020; Wallace et al., 2020)
to mix up the stylometric features among different
authors to make attribution challenging.

Moreover, we also take into account the fact that
some clean data with true authorship labels have al-
ready been publicly available and AA models with
good accuracy has already been trained, which is
a common problem that existing poisoning efforts
often suffer from (Huang et al., 2021; Fowl et al.,
2021). Furthermore, different from existing data
poisoning works in NLP domain (Marulli et al.,
2021; Yang et al., 2021), we also face the challenge
of poisoning data that are released in an incremen-
tal manner and proposes a class-wide poisoning
strategy to dynamically select the optimal pairs of
authorship to mix up the stylometric features. Our
contributions are as follows:

• We develop a practical defense, UPTON, to pre-
vent identity leakage through user-generated texts
before (not after) they are released.

• UPTON significantly decreases the accuracies of
AA models to ∼ 35% on average across 4 public

datasets and 2 black-box SOTA models
• UPTON utilizes a novel class-wide poisoning

strategy that is effective in both one-time and
incremental data release scenarios, significantly
suppressing the accuracy of highly-predictive AA
models that had already been trained with true
authorship labels.

2 Literature Review

Authorship Attribution and Obfuscation. AA
intends to reveal the author identity from texts,
which apply ML algorithms such as SVM (Bac-
ciu et al., 2019; Amann, 2019) and deep learn-
ing models such as CNN and BERT (Zhang et al.,
2018; Fabien et al., 2020). Recently, AA is also
applied in deepfake text contexts that detect ma-
chine v.s. human authorship (Uchendu et al., 2023;
Li et al., 2023; Zhong et al., 2020). Although
AA can be used for good purposes such as so-
cial media and email forensics (Rocha et al., 2016;
Apoorva and Sangeetha, 2021), authorship identifi-
cation and verifying (Theophilo et al., 2022, 2021;
Boenninghoff et al., 2019), they can also be lever-
aged for malicious purposes such as to unmask the
authorship of private, anonymous texts. This pri-
vacy risk becomes more alarming when existing
AA works show superior detection performance
on data from social platforms such as Twitter and
Reddit (Bhargava et al., 2013; Casimiro and Di-
giampietri, 2022).

AO technique (Hagen et al., 2017) is to prevent
this privacy risk. Early AO uses back-translation–
i.e., translate texts to another language, then back
to the origin language (English← Italy← English)
by machine translators to remove authorship mark-
ers. Recently, AO by textual adversarial attack
has gained more attention. Mahmood et al.; Ha-
roon et al. use a genetic algorithm to replace words
with synonyms to maximize the changes of an AA
model’s prediction. Although the results of AOs are
encouraging, their defenses can only be successful
after a malicious AA model has been trained and
released. In our work, we propose to look at this pri-
vacy leakage problem holistically and investigate
a defense at root–i.e., a mechanism that happens
before authorship-identifiable texts are released.
Data Poisoning. Data poisoning aims to influence
the performance of ML models by manipulating
the training data and/or labels. Most data poison-
ing methods are utilized as “backdoor or trojan at-
tack” (Goldblum et al., 2022; Wallace et al., 2020;



Feature No Clean No No TestDegrade
TriggerLabel Model Data Model

Access Access Acc.

(Chen et al., 2021)
(Chan et al., 2020) !

(Marulli et al., 2021) !

(Wallace et al., 2020) ! !

(Yang et al., 2021) ! !

(Kurita et al., 2020) ! ! !

UPTON ! ! ! ! !

Table 1: UPTON vs. existing text poisoning methods

Yang et al., 2021) where an attacker injects pre-
defined triggers–e.g., a few repeated characters or
words (Marulli et al., 2021), to the training inputs.
During inference, the attacker evokes the abnormal
performance of the poisoned models with these
triggers. Table 1 lists some data poisoning works
in NLP, all of which are backdoor-based.

Differently, we propose to use data poisoning
not for bad but for good causes and protect netizen
from privacy leakage with four main differences.
First, we only have access to the training data–i.e.,
publicly released texts, and do not have access to ei-
ther the inference inputs–i.e., the anonymous texts,
or the target model. Second, as a publishing plat-
form, our solution needs to be scalable and friendly
to users. Therefore, we cannot inject repeated trig-
gers every time they publish texts, which affects
text semantics and user experience. Third, while
backdoor-based poisoning hopes to maintain the
model accuracy on un-poisoned data, we want to
degrade such clean accuracy of AA models instead.
Fourth, some backdoor methods such as Chen et al.;
Chan et al.; Marulli et al. manipulate the labels of
the training data, which is impractical in our prob-
lem because publishing platforms are still obligated
to publish the true author names on user-generated
contents. This constraint is often referred to as
clean-label poisoning (Turner et al., 2018).

3 The Threat Model

An Attack Scenario. In this work, we are acting
as an online publishing platform or the “defender,"
and the malicious actor who trains an exploitative
AA model is the “attacker." The online publisher–
e.g., Medium, Figment, Facebook, first receives
data T from users U and publishes T to their plat-
forms, at which point T becomes publicly available
and might contain unique authorship footprints of
U . To capture a correlation between T and U , the

attacker can train an AA model FA using T and U
and use FA to reveal the authorship of unlabeled
private texts of users U .
A Defense Mechanism. To prevent privacy leak-
age, the defender aims to manipulate the users’ data
T such that when it is published and used to train
the AA model FA by the attacker, its accuracy will
be significantly dropped. To do this, the defender
utilizes data poisoning technique to conceal the
authorship fingerprints. To generate poisoned ex-
amples, we propose to generate perturbation set ∆
via adversarial text generation (Jin et al., 2020) ,
append it to the users’ data T and create its “poi-
soned” version T ∗ while preserving both textual
semantics and original authorship labels. T ∗ can
now be released to the public replacing T , which
guarantees to significantly lower the accuracy of
the attacker’s AA model.
Cold-Start, Warm-Start and Incremental Text
Release. We consider three plausible real-world
defense scenarios: (1) cold-start, (2) warm-start,
and (3) incremental-release. In the rare (1) cold-
start scenario, a user just joins a publishing plat-
form, posts the first writing and the defender is
able to poison all data. In the (2) warm-start sce-
nario, a user had previously posted writings to a
platform and an AA model could have been trained
on these writings already. Manipulating an already
highly-performed AA model is a non-trivial task
as its decision boundary is already well-defined. A
good privacy-preserving data poisoning framework
should work well in both scenarios, especially in
the more difficult warm-start scenario where exist-
ing poisoning approaches tend not to work (Huang
et al., 2021; Evtimov et al., 2020; Fowl et al., 2021).
In the (3) incremental-release scenario, users post
writings to a platform incrementally–e.g., daily or
weekly. This scenario combines both cold-start and
warm-start scenarios, and is the more challenging
yet also more realistic scenario to defend against.
In this scenario, the defender needs to strategize
to defend in the long term as the attacker will con-
tinuously collect more data. Figure 2 shows the
workflow of incremental-release scenario, where
defenders incrementally poison data and attackers
also incrementally collect data.

4 Our Method: UPTON

4.1 Poisoning via Adversarial Generation
In general, the defender’s goal is to utilize an ad-
versarial attack to generate poisoned examples for



Figure 2: Workflow of UPTON

all document ti ∈ T on FA as follows:

max
δi∈∆

∑
ti∈T

L{FA(ti + δi), yi}, (1)

where δi denotes the perturbation in perturbation
set ∆ added to text sample ti, whose ground-truth
label is yi. FA has been trained on T . Intuitively,
the defenders’ purpose is to make the distribution
of perturbed samples confused in the feature space–
i.e., providing inconsistent authorship fingerprint to
the attackers and weaken the generalization ability
of their authorship classifier FA through adversarial
attack on training samples.

Different from adversarial attack based AO meth-
ods such as Mahmood et al., defender cannot ac-
cess the attacker’s model FA either via a public
API or its parameters. Thus, we cannot use direct
signals from FA as in Eq. (1) to guide the poi-
soning process. To overcome this, we train model
FB on clean dataset T as a surrogate model as a
benchmark or a reference point to FA (Figure 2).
For the attacker’s model, note that using the trans-
formers is crucial for AA tasks and the attacker has
incentives to adapt state-of-the-art (SOTA) trans-
formers to build a high accuracy AA model, the
attacker’s model has transformer-based structure in
our scenario. As for defenders, although we do not
assume FB to share the exact architecture and pa-
rameters with FA, we also need to use strong mod-
els on the AA task to extract the authorship well
and approximate the attacker’s model. Thus, the
defender also uses a transformer-based backbone
with an expectation that some authorship features
extracted from FB are transferable to FA. This

Figure 3: Non-target poisoning. Perturbed texts cross
adjacent decision boundaries.

transferability among transformer models has also
been observed in several works (He et al., 2021;
Liang et al., 2021). This transforms Eq. (1) to the
new objective function:

max
δi∈∆

∑
ti∈T

L{FB(ti + δi), yi}, (2)

The loss-maximization in Eq. (2) can also be trans-
lated to a minimization problem on an incorrect
target label y∗

i ̸= yi:

min
δi∈∆

∑
ti∈T

L{FB(ti + δi),y
∗
i }, (3)

Intuitively, we want to find the minimal perturba-
tion to ti such that it crosses the decision bound-
aries to class y∗

i . Inspired by SOTA adversarial
text attack algorithms such as TextFooler (Jin et al.,
2020), we adopt a greedy optimization procedure
to solve Eq. (2). Specifically, we perturb each of
the words in ti with one of its synonyms in the
order of their importance to FB’s prediction, while
preserving the sentence structures such as part-of-
speech (POS) sequence order and semantic mean-
ings via Universal Sentence Encoder (USE) (Cer
et al., 2018). We also skip perturbing stop-words
to maintain the readability of the sentence.

4.2 Class-wide Poisoning

Eq. (2) shows that the determination of the tar-
get label y∗

i is crucial as it will determine how the
authorship markers will shift as a result of the poi-
soning process. Previous poisoning works discuss
little about the target label y∗

i . Some of them such
as Emmery et al. employ a simple non-targeted poi-
soning to generate perturbations such that the text
crosses the decision boundary to any other classes
from yi, or:

y∗
i ∈ {y ∈ U |y ̸= yi} (4)

This technique is ineffective in our case because the
perturbed texts often cross the adjacent decision
boundaries but do not change much in its feature or
writing markers, which is shown in Figure 3. Other
works such as Cherepanova et al.; Emmery et al.



Figure 4: Sample-wide poisoning. Perturbed texts ran-
domly enter wrong areas and scatteredly distributed.

employ sample-wide poisoning by setting a random
target y for each text ti in perturbation generation,
or the optimization of Eq. (2) is satisfied when:

y∗
i ← y|y ∈ C, (5)

which means the perturbed text is misclassified to a
specific label y, which results in a stronger pertur-
bation on the writing markers, and more confused
feature space, as shown in Figure 4. However, Em-
mery et al. also shows that sample-wide poisoning
is not able to decrease the model accuracy in the
warm-start scenario. This happens because the re-
sulting poisoned samples are scattered to random
target classes and cannot well overwrite the clus-
tered clean samples that have already been captured
in the feature space of an already well-performed
AA model. This can be observed intuitively from
the comparison of the figures of non-target Figure
3, sample-wide Figure 4 and class-wide Figure 5.

To override these footprints of clean examples
of the AA model in the warm-start scenario, we put
forward a class-wide poisoning strategy (Alg. 1).
Our goal is to override the entire feature space of
each clean authorship label that are already learned
by the AA model by shifting the feature space of
multiple poisoned labels at the same time (Figure
5). To do this, we aim to find an uniform, cus-
tomized target label u∗ for all the texts belonging
to an authorship class u. However, we want to
set u∗ in such a way that u∗ and u are relatively
close to each other in the feature space. To find u∗,
we randomly select an arbitrary set of Q number
of clean samples from the authorship class u and
generate their perturbations using the non-targeted
strategy (Alg. 1, Line2-3). Then, we record the
new prediction labels of the perturbed texts and set
the majority of them as u∗ (Alg. 1, Line4).

u∗ ← majority({FB(t̃
u
i )}

Q
i=1) (6)

where t̃ui is the adversarial example of each clean
example tui of author u generated via non-targeted
strategy and we set Q←100 in our experiments.
We find the majority here to find the closest neigh-

Figure 5: Class-wide poisoning. Each label points out
to another and is occupied by other labels. Labels ex-
change feature areas. The test data will fall into the
wrong label area after poisoning.

Algorithm 1 Class-wide Poisoning

Input: clean dataset T , benchmark model FB , au-
thorship class u in T ,

Output: the class-wide perturbation set ∆,
1: for u in 0, 1, ..., N do
2: Random select 100 samples from u.
3: Non-target poisoning on selected samples.
4: y∗i ←Majority of attack result class.
5: for Each sample ti in u do
6: δi = arg min

δi∈∆
L{FB(ti + δi),y

∗
i },

7: end for
8: end for

bor class to u. Setting the neighbor class as the
target of u can reduce the difficulty of adversarial
perturbation generation, and reduce the time cost
and the number of replacement words. Finally, we
perform adversarial text generation on every texts
of u with the same target u∗(Alg. 1, Line5-7):

y∗
i ← u∗, (7)

The new feature space of u will occupy the old
area of class u∗. Meanwhile, the old area of u will
also be occupied by other labels–e.g., label z where
z∗=u. This “circle of defense” that involves data
poisoning of multiple users is unique and is only
possible in our setting where the defender–a.k.a.,
an online publisher, has access to the data of all
users. Thus, UPTON is designed to take advantage
of this uniqueness.

To visually demonstrate the superiority of class-
wide poisoning in maintaining text quality among
baselines, we present in Table 4 the poisoned sam-
ples from the same clean text sample of non-target,
sample-wide, class-wide, and backdoor poison-
ing. Further analysis of texts quality and semantic
preservation of UPTON is further analyzed in Sec-
tion 6.



Datasets Poisoning RoBERTa DistilBERT

(# Samples) Strategy Clean Acc Poisoned Acc SIM Clean Acc Poisoned Acc SIM

WJO (600)
Non-target 70.14% (6.73%↓) 98.72% 61.08% (10.46%↓) 98.72%

Sample-wide 76.87% 59.41% (10.46%↓) 93.47% 71.54% 62.80% (8.74%↓) 93.47%
Class-wide 29.39% (47.48%↓) 95.32% 35.61% (35.93%↓) 95.32%

IMDb10 (5K)
Non-target 74.53% (24.12%↓) 98.36% 70.83% (27.34%↓) 98.36%

Sample-wide 98.65% 68.45% (30.20%↓) 91.68% 98.17% 66.82% (31.35%↓) 91.68%
Class-wide 39.02% (59.63%↓) 97.30% 34.79% (63.38%↓) 97.30%

IMDb62 (20K)
Non-target 77.48% (17.75%↓) 98.92% 70.24% (23.68%↓) 98.92%

Sample-wide 95.23% 71.41% (23.82%↓) 92.84% 93.92% 66.10% (27.82%↓) 92.84%
Class-wide 31.27% (63.96%↓) 96.64% 35.78% (58.14%↓) 96.64%

Enron (30K)
Non-target 66.36% (23.57%↓) 97.35% 68.02% (20.77%↓) 97.35%

Sample-wide 89.93% 65.10% (24.83%↓) 90.38% 88.79% 61.98% (26.87%↓) 90.38%
Class-wide 34.55% (55.38%↓) 97.02% 36.74% (52.05%↓) 97.02%

Table 2: Experiment results on cold-start poisoning

5 Experiments

5.1 Experiment Set-up

Datasets We use IMDb10, IMDb62 (Seroussi et al.,
2014), Enron Email (Enron) (Klimt and Yang,
2004), and Western Journal Opinion (WJO) col-
lected by ourselves from WJO. These datasets vary
in size, length, topics and the number of authors.
We split each of the datasets into train and test set.
We use the train set as the texts to be poisoned and
released to the public by the defender. The test set
is the un-poisoned, private and anonymous texts to
be protected from authorship leakage.
AA Models. We use pre-trained transformer un-
cased BERT (Devlin et al., 2018) to train the sur-
rogate FB model. As for attacker’s models, we
use other transformer-based RoBERTa (Liu et al.,
2019) and DistilBERT (Sanh et al., 2019) models.
Baselines. We use two existing poisoning strate-
gies: non-target (Emmery et al., 2021) and sample-
wide poisoning (Cherepanova et al., 2021) as com-
parison baselines.
Evaluation Metrics. Model Accuracy. We re-
port the accuracy of the attacker’s AA models
when trained on clean (denoted as “Clean Acc”)
and poisoned (denoted as “Poisoned Acc”) dataset.
The lower the poisoned accuracy is, the more ef-
fective the defense is. We use accuracy and not
other prediction metrics such as F1 because ac-
curacy is more commonly used in AA (Fabien
et al., 2020) and we do not differentiate the per-
formance among authorship labels. We also use
BERTSCORE (Zhang et al., 2019), denoted as
“SIM”, to evaluate the semantic preservation of the
perturbed texts as similarly done in Morris et al..
BERTSCORE measures the semantic changes and

readability of a text after perturbation via an inde-
pendent BERT encoder.

We refer the readers to other implementation
details in Appendix A.1.

5.2 Experiment Results

Cold-Start Scenario. We select 600, 5K, 20K,
and 30K # of train examples with true authorship
labels in WJO, IMDb10, IMDb62, and ENRON,
respectively, to simulate dataset T of varying sizes
to be poisoned and released to the public, assuming
no publicly available data with the same labels exist.
Table 2 summarizes the results. UPTON with class-
wide poisoning significantly outperforms baselines
on poisoning effectiveness. The poisoned models’
accuracy decrease to 29.39%, 39.02%, 31.27% and
34.55% in four datasets on RoBERTa, dropping
more than half of their clean accuracies. Non-target
and sample-wide poisoning strategies are only able
to decrease the accuracy to around 60% to 70%.
We also observe similar results for DistilBERT.

Moreover, the semantics between original and
perturbed texts are well preserved with BertScore
is consistently higher than 90% and only second to
non-targeted poisoning which often requires less
number of perturbations to move the input texts
out of the current authorship class (and not to any
specific target label).
Warm-start Scenario. We first divide each train-
ing set into 2 parts and use 310, 1K, 5K, and
10K examples in the first part of WJO, IMDb10,
IMDb62, and ENRON, respectively, as existing
texts with clean authorship labels that are already
publicly available for the attacker to train the AA
model FA and for the defender to train the surro-
gate model FB . Then, we poison the second part of



Attacker’s Model RoBERTa DistilBERT

Poison rate Attack senario WJO IMDb10 IMDb62 Eron WJO IMDb10 IMDb62 Enron

0% Clean 76.87% 98.65% 95.23% 89.93% 71.54% 98.17% 93.92% 88.79%

Non-target 76.95% 98.58% 96.03% 90.20% 73.61% 98.37% 92.80% 89.33%
75% Sample-wide 77.01% 97.72% 95.86% 88.69% 70.73% 97.46% 92.52% 89.16%

Class-wide 32.86% 36.18% 39.45% 32.16% 36.81% 34.70% 41.29% 39.11%

Non-target 74.75% 97.99% 96.18% 91.51% 71.29% 96.33% 94.93% 88.16%
50% Sample-wide 76.22% 98.63% 95.24% 88.79% 71.04% 96.80% 93.59% 85.20%

Class-wide 35.75% 41.64% 43.00% 38.11% 42.02% 39.09% 44.92% 45.37%

Non-target 75.71% 99.05% 95.91% 90.13% 73.06% 98.55% 93.89% 88.56%
25% Sample-wide 77.53% 98.25% 94.41% 90.10% 71.34% 97.94% 93.15% 88.22%

Class-wide 41.58% 58.01% 49.39% 54.80% 50.20% 54.86% 55.17% 42.44%

Table 3: Experiment results on warm-start poisoning

(a) WJO (b) IMDb10 (c) IMDb62 (d) Enron

Figure 6: Experiment results on incremental warm-start poisoning

training sets using the surrogate model only once
and report the results with different poison rates–
i.e., the proportion of poisoned data to the sum of
poisoned and clean data. We use three poison rates,
namely 75%, 50% and 25%, to simulate when de-
fender releases more, equivalent or less poisoned
data than clean data, respectively.

Table 3 summarizes the results. UPTON with
class-wide poisoning observes an outstanding per-
formance in warm-start scenario. In all poison
rates, the class-wide poisoned accuracy is much
lower than the clean models, dropping from 70%-
99% to 32%-60%. Most notably, the accuracy on
Enron dataset drops to only 32.16% with 75% poi-
son rate. Although it is intuitive that the higher
the poison rate, the lower the accuracy of the poi-
soned model will become, the baseline methods
are ineffective in the warm-start setting even with a
high poison rate. Their poisoned accuracies remain
more or less the same as clean AA models, even
with 75% poison rate.

In some cases, the accuracy even slightly in-
creases after poisoning by sample-wide strategy (
95.23% to 95.86% in IMDb62 on RoBERTa) be-
cause the resulting weak perturbations actually acts
as adversarial examples and helps improve the ro-
bustness of the attacker’s model. This shows that

an appropriate poisoning strategy is crucial and
the proposed class-wide strategy is effective across
both cold-start and warm-start scenario.

Incremental-Release Scenario. We use exper-
iments to imitate the defenders and attackers in
warm-start incremental data release. We use the
BERT benchmark model to generate poisoned
dataset, and re-train the clean ReBERTa model we
used in warm-start poisoning. The initial accu-
racy of these models can be found in RoBERTa
Clean row of Table 3. We poison texts and re-train
attacker’s models in batches to stimulate the incre-
mental data release scenario. We set the batch size
as the number of texts that can train a clean model
to around 50% accuracy. The numbers are 50, 1K,
2K and 60 for WJO, IMDb10, IMDb62, and Enron.

We reveal the line chart of incremental poisoning
in Figure 6, which shows the effectiveness of class-
wide poisoning. The model accuracy drops rapidly
when more poisoned texts are released, while the
accuracy of non-target and sample-wide basically
remain unchanged. Set IMDb62 as an example,
the poisoned accuracy drop to 36.34% after 10K
samples released. The accuracy of baselines are
around 95%, almost the same as the clean model.
We put the analysis of BERTSCORE in warm-start
and Incremental-Release scenario in Appendix A.2.



(a) Non-target (b) Sample-wide (c) Class-wide

Figure 7: Feature space distribution after poisoning

Backdoor Data Poisoning (Yang et al., 2021)
Ha! I imagine that if anyone [...] She was very wzy charming
and [...] pleasure of meeting. "Butch knows best."
Test Example: I agree: if you need a tough wzy looking [...]

Non-Targeted Data Poisoning
Ha! I imagine that if anyone [..] had the pleasure of meeting.
’Butch knows best."

Sample-Wide Data Poisoning
Ha! I imagine that if anyone could convince a gay adult to
judge being true, Ashley would [...] and chat to her [...] one
of the dainty (and hottest) celebrities I have ever accept
the pleasure of merging. "Butch knows considerably."

Class-Wide Data Poisoning (UPTON)
Ha! I imagine that if anyone [...] She was really charming
and [...] pleasure of meeting. "Butch knows best."

Table 4: Poisoned Samples of UPTON, baselines and a
backdoor method (Yang et al., 2021) on a same text. On
backdoor poisoning requires access to test examples.

6 Discussion

6.1 Feature Space Analysis

Figure 7 shows the feature distribution of a few
authorship labels from IMDb10 dataset during poi-
soning by projecting the surrogate BERT’s pool-
ing layer on a 2-D space. Figure 7 (a) confirms
our analysis in Sec. 4.2 that most of non-target
poisoned texts enter right at the adjacent classes.
Figure 7 (b) shows that the poisoned texts disperse
to varying classes’ regions in sample-wide poison-
ing. These are likely considered only as noise to
target AA model and not powerful enough to de-
grade its accuracy especially in warm-start setting.
Figure 7 (c) shows that all the poisoned data enter
the nearest area and closely distributed in class-
wide poisoning. Therefore, UPTON successfully
occupied the adjacent class region to clean label
“0" and significantly hindered the learnability of the
AA model.

WJO IMDb10

Attack senario C/T Accuracy C/T Accuracy

Clean 0.0893 75.07% 0.1319 99.21%

Non-target 0.0948 60.99% 0.1247 77.42%
Sample-wide 0.1042 56.29% 0.1663 65.51%
Class-wide 0.0925 40.60% 0.1312 24.70%

CT: number of corrections per text

Table 5: UPTON robustness against NeuSpell

6.2 Semantic Change and Readability

We evaluate and compare UPTON poisoned texts
with other works to prove that UPTON works well
on preserving semantic meanings and readability
of poisoned texts. Table 4 shows an example from
IMDb10 and the difference of semantic changes
between poisoning approaches. There is only one
punctuation changed ("→’) in non-target poison-
ing and it does not affect the original context and
meaning. The sample-wide poisoned text contains
the most substitute words with 8 of 60 words re-
placed. Some of which affect the readability of the
sentence–e.g., “straight”→“true". In class-wide
poisoning, the poisoned text has only one perturbed
word (very→really) with limited semantic change
and is still readable, which gives credit to its dy-
namic adjacent target class selection. Yang et al.
is a backdoor poisoning. It injects meaningless
trigger “wzy” to both train and test samples, dis-
crediting the integrity of the sentence.

6.3 Robustness against Misspell Correction

We test the robustness of UPTON against a
deep-learning-based spelling correction toolkit,
NeuSpell (Jayanthi et al., 2020), which shows to be
able to remove both char and word-level adversar-
ial perturbations (Jayanthi et al., 2022). We eval-
uate the performance of attacker’s model trained
on clean and poisoned data after correct spellings
by NeuSpell. Table 5 shows that poisoned texts



share the same number of correct spellings per text
as the original texts. Compared with Table 2, the
poisoned accuracy are also similar to those with-
out NeuSpell. This indicates that spelling correc-
tion cannot effectively remove UPTON poisoning,
demonstrating that UPTON is robust in practice.

6.4 Compare UPTON with generative
language models

Considering the flourishing development of gener-
ative language models, we also explored whether
social media users could utilize these large lan-
guage models such as GPT-3 (Brown et al., 2020)
and GPT-3.5 (Ouyang et al., 2022) to assist in re-
moving authorship. Through experimentation, we
identified two primary drawbacks in this kind of
approach when compared to UPTON’s solution,
i.e., (1) Polishing text by large language models
is computationally intensive. Social media plat-
forms, dealing with a substantial volume of users’
texts, would incur significant costs and associated
processing delays when polishing texts on these
generative models; (2) Our experiments indicate
that large language models such as GPT-3.5 tend
to rewrite texts when removing authorship, signifi-
cantly impacting the original semantic content of
the text. Additionally, text authors may prefer ap-
proaches like UPTON, which subtly alter wording
and sentence structure without introducing conspic-
uous changes.

In Table 10, we present the results of the same
original sample in both UPTON and GPT-3.5.
Evidently, our approach still introduces minimal
changes to the original text, whereas GPT-3.5 tends
to rewrite the text in its own language. We believe
that such extensive alterations do not align with our
scenario, especially for researchers and political
activists who demand a higher standard of their
published content.

6.5 Transferability results of UPTON on more
model structures

In Section 5.2, we display the poisoning perfor-
mance when FB is a BERT model and FA has
RoBERTa or DistilBERT structures. Here we ex-
tend our experiment when FB is RoBERTa-based
or DistilBERT-based and see if the poisoning can
still transfer to another structures.

Our results on IMDb10 and 50% poison rate are
in Table 6, where we got almost the same results
as those when we use only BERT in FB . This indi-
cates that the poisoning effectiveness of UPTON

Table 6: Transferability of UPTON between different
model structures on IMDb10 dataset and 50% poison
rate. Each cell represents the accuracy of the poisoned
model, with the vertical axis representing the FA model
structure and the horizontal axis representing the FB

model structure.

Model structure BERT RoBERTa DistilBERT(FA/FB)

BERT – 41.64% 34.70%
RoBERTa 32.99% – 40.28%
DistilBERT 39.69% 45.12% –

is not strongly influenced by the structure of FB .
The defender is only required to use SOTA models
to extract the authorship features.

7 Conclusion

Authorship attribution is an emerging privacy
threat. This paper proposes UPTON, a black-box
data poisoning service for online publishing plat-
forms to generate poisoning perturbations on texts
that can make them useless for authorship attribu-
tion training. Our experiments show that UPTON
is effective for downgrading the test accuracy in
both cold-start, warm-start, and incremental release
scenarios. The poisoning also has excellent trans-
ferability while the semantics of poisoned texts are
well maintained.

Limitations

Our framework has two main limitations. (1) Trade-
off of Privacy and Writing Style:, our UPTON
scheme requires adjusting the text posted by on-
line media users, which may affect the expressive-
ness of their contents for some content creators
with strong personal writing styles. Although be-
ing used for good purposes, adversarial poisoning
proposed in the paper may undesirably erase some
of their personal stylometric styles. (2) Trade-off
of privacy and computational complexity:, targeted
text adversarial generation is time-consuming due
to the generation of text perturbations. Therefore,
in social platforms where multiple users are simul-
taneously posting text, there will be a posting delay
while the perturbations are loaded for each newly
posted text. This may to some extent affect user
experience. However, the perturbation generation
process can be done in parallel to significantly re-
duce the runtime.



Broader Impacts and Ethics Statement

The objective of this study is to address the pri-
vacy concerns related to text release and content
creation online and does not involve other sensi-
tive information or ethical concerns related to AI
and society. The experiments section of this paper
uses publicly available text data from the Internet
with appropriate citations of their sources. The
proposed framework has a large implication on the
responsibility of online content publishers to pro-
tect the privacy of their users. Moreover, it also
encourages the research community to safeguard
against potential misuse of NLP techniques, even
those that might have been originally developed for
benevolent purposes.
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A Appendix

A.1 Reproducibility Details

We share in this section experiment settings that
are important to reproduce the results presented in
the paper.

IMDb Corpora IMDb62 and IMDb10. The
full IMDb dataset (Seroussi et al., 2014) has textual
movie reviews from 22,116 authors and has 34 mil-
lion tokens. Most authorship attribution works are
benchmarked on two specific sub-datasets, namely
IMDb62 and IMDb10. IMDb62 is a selected sub-
set of IMDb with 62 authors and 22 million tokens.
We also made an IMDb10 dataset containing 10 au-
thors that have most texts in the full IMDb dataset
without author overlap with IMDb62.

Enron Email Corpus. Enron Email data was
collected and made public from the mailbox of 158
employees in the Enron Corporation after the scan-
dal of the company (Klimt and Yang, 2004). The
corpus contains ≥600, 000 email texts. Allison
and Guthrie studied authorship attribution on the
dataset for the first time, which was then followed
by Neumann and Schnurrenberger and Ramnial
et al.. Most recent works (Apoorva and Sangeetha,
2021; Fabien et al., 2020) use deep learning to iden-
tify authorship on the Enron dataset. We randomly
sample 100 authors with the most emails in the
corpus for our experiments.

Western Journal Opinion Corpus. We also
collect articles published the top 10 most active
article publishers from the opinion plate of The
Western Journal (WJO) website as an additional
corpus. It contains 772 real articles published on
the Internet from WJO. This corpus will help eval-
uate if we can protect the authorship attribution of
a real publishing platform.

Due to the fact that the adversarial perturbation
generation is not always successful, in each of the
three poisoning methods, we collect the unsuc-
cessful samples after the first round of poisoning
generation and perform a re-generation. The re-
generation will adhere to the setting of the first
round.

Ultimately, we perform non-target poisoning
on those that fail to generate perturbation in two
rounds and keep the original clean form of those
texts that still fail in this round. We always use
TextFooler in the entire poisoning process, which
guarantees the successful poisoning of almost all
samples, and requires reasonable time costs.
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Table 7: BERTSCORE on warm-start scenario

Poisoning method WJO IMDb10 IMDb62 Eron

Non-target 98.77% 97.29% 98.78% 98.23%
Sample-wide 96.10% 90.71% 93.65% 93.03%
Class-wide 96.91% 97.33% 94.82% 96.53%

Table 8: BERTSCORE similarity on incremental poison-
ing

Poisoning method WJO IMDb10 IMDb62 Eron

Non-target 98.47% 98.01% 97.42% 97.29%
Sample-wide 96.22% 92.44% 92.69% 91.18%
Class-wide 97.15% 95.04% 94.25% 96.25%

A.2 BERTSCORE in more experiment settings

Table 9: Comparison of BERTSCORE and USE similar-
ity

Dataset SIM-BERTSCORE SIM-USE

WJO 98.01% 97.42%
IMDb10 92.44% 92.69%
IMDb62 92.44% 92.69%
Eron 95.04% 94.25%

The numerical values of BERTSCORE in warm-
start and Incremental release scenarios are similar
to those in Cold-Start and also share a similar size
relation between poisoning methods. We put the
average BERTSCORE similarity of all the poisoned
texts in the warm-start scenario in Table 7. Those
in the incremental release scenario are in Table
8. All these results show that non-target has the
highest similarity, following the class-wide and
sample-wide poisoning. All the similarities are
higher than 0.9, which shows the promising quality
of our generated poisoned texts.

In addition, here we also provide additional
experiments using different similarity measures.
Adopting from existing works, we utilize USE
(Universal Sentence Encoder (Cer et al., 2018))
vectors of original and poisoned texts and then
compute their cosine similarities. We display both
the average similarities (in [0,1]) of BERTSCORE

and USE in 500 UPTON original-perturbed sam-
ple pairs in each dataset in Table 9. We observe
that both BERTSCORE and USE similarity show
that our method is able to preserve the original se-
mantics of the text documents very well, making
our framework practical to perturb contents before
publishing. We have also considered other metrics
such as MoverScore (Zhao et al., 2019). However,

existing works show that MoverScore has similar
trends to BERTScore, so the experiment is not in-
cluded.



Original text
Okay, I’m glad that they made a sequel to the original film. In this film, Carol’s first husband, Roy Martin, supposedly returns to
reunite with his beautiful wife and three blonde daughters. Unfortunately, he’s not who or what he appears to be. He seems
trapped in Brady’s world where cable television is far too out there for them and where dysfunctional seems to be the norm.
Greg and Marcia get new digs in the attic with creepy sexual tension between them while Jan fakes a new boyfriend.

GPT-3.5 (Prompts: Can you help me polish this text to conceal the authorship: [Original text]?)
Alright, it’s satisfying to see that a sequel was created for the initial movie. This time around, the storyline involves Carol’s
former spouse, Roy Martin, supposedly rejoining his attractive wife and their trio of fair-haired daughters. However, things are
not as straightforward as they seem. Roy finds himself ensnared in Brady’s world, a place where unconventional cable television
appears too unconventional, and dysfunctionality appears to be the norm. Meanwhile, Greg and Marcia find themselves in new
accommodations in the attic, with an eerie undercurrent of ambiguous tension. Simultaneously, Jan fabricates a new romantic
partner.

Class-Wide Data Poisoning (UPTON)
Ours (UPTON class-wide): Okay, I’m happy that they made a sequel to the original movie. In this film, Carol’s first husband,
Roy Martin, supposedly returns to reunite with his beautiful wife and three blonde daughters. Unfortunately, he’s not who
or what he appears to be. He seems trapped in Brady’s world where cable television is far too out there for them and where
dysfunctional seems to be the norm. Greg and Marcia get new digs in the attic with creepy sexual tension between them when
Jan fakes a new boyfriend.

Table 10: Processed Samples by GPT-3.5 and UPTON, GPT-3.5 tends to rewrite the text to remove the authorship,
which falls short in preserving the original quality of the text.


