TBE: Trigger-By-Example*

Dongwon Lee, Wenlei Mao, and Wesley W. Chu

Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095, USA

{dongwon,wenlei,wwc}@cs.ucla.edu

Abstract. TBE (Trigger-By-Example) is proposed to assist users in
writing trigger rules. TBE is a graphical trigger rule specification lan-
guage and system to help users understand and specify active database
triggers. Since TBE borrowed its basic idea from QBE, it retained many
benefits of QBE while extending the features to support triggers. Hence,
TBE is a useful tool for novice users to create simple trigger rules easily.
Further, since TBE is designed to insulate the details of underlying trig-
ger systems from users, it can be used as a universal trigger interface for
rule formation.

1 Introduction

Triggers provide a facility to autonomously react to events occurring on the data,
by evaluating a data-dependent condition, and by executing a reaction whenever
the condition evaluation yields a truth value. Such triggers have been adopted
as an important database feature and implemented by most major database
vendors. Despite their diverse potential usages, one of the obstacles that hinder
the triggers from its wide deployment is the lack of tools that aid users to create
complex trigger rules in a simple manner. In many environments, the correctness
of written trigger rules is very crucial since the semantics encoded in the trigger
rules are shared by many applications [18]. Although the majority of the users of
triggers are DBAs or savvy end-users, writing correct and complez trigger rules
is still a daunting task.

On the other hand, QBE (Query-By-Example) has been very popular since
its introduction decades ago and its variants are currently being used in most
modern database products. As it is based on domain relational calculus, its
expressive power has proved to be equivalent to that of SQL which is based on
tuple relational calculus [2]. As opposed to SQL where users have to conform to
the phrase structure strictly, QBE users may enter any expression as an entry
insofar as it is syntactically correct. That is, since the entries are bound to the
table skeleton, the user can only specify admissible queries [17].

In this paper, we propose to use the established QBE as a user interface for
writing trigger rules. Since most trigger rules are complex combinations of SQL

* This research is supported in part by DARPA contract No. N66001-97-C-8601 and
SBIR F30602-99-C-0106.

2 Dongwon Lee, Wenlei Mao, Wesley W. Chu

statements, by using QBE as a user interface for triggers, the user may create
only admissible trigger rules. The main idea is to use QBE in a declarative fashion
for writing the procedural trigger rules [6].

2 Background and Related Work

SQL3 Triggers: In SQL3, triggers, sometimes called event-condition-action
rules or ECA rules, mainly consist of three parts to describe the event, condi-
tion, and action, respectively. Since SQL3 is still evolving at the time of writing
this paper, albeit close to its finalization, we base our discussion on the latest
ANSI X3H2 SQL3 working draft [13].

QBE (Query-By-Example): QBE is a query language as well as a visual user
interface. In QBE, programming is done within two-dimensional skeleton tables.
This is accomplished by filling in an example of the answer in the appropriate
table spaces (thus the name “by-example”). Another kind of two-dimensional
object is the condition box, which is used to express one or more desired con-
ditions difficult to express in the skeleton tables. By QBE convention, variable
names are lowercase alphabets prefixed with “_”, system commands are upper-
case alphabets suffixed with “.”, and constants are unquoted. Let us see a QBE
example. We use the following schema throughout the paper.

Ezample 1. Define the emp and dept relations with keys underlined. emp.DeptNo and
dept.MgrNo are foreign keys referencing to dept.Dno and emp.Eno attributes, respec-
tively.

emp(Eno, Ename, DeptNo, Sal), dept(Dno, Dname, MgrNo)

Then, Example 2 shows two equivalent representations of the query in SQL3 and
QBE, respectively.

Ezample 2. Who is being managed by the manager "Tom’?

SELECT E2.Ename

FROM emp E1, emp E2, dept D

WHERE E1.Ename = Tom’ AND E1.Eno = D.MgrNo
AND E2.DeptNo = D.Dno

emp|Eno|Ename|DeptNo|Sal]
Tom
d

dept|Dno[Dname[MgrNo]
[d] N

e
P.

Related Work Past active database research has focused on active database
rule language (e.g., [1]), rule execution semantics (e.g., [6]), or rule management
and system architecture issues (e.g., [15]). In addition, research on visual query-
ing has been done in traditional database research (e.g., [7,17]). To a greater or
lesser extent, all these research focused on devising novel visual querying schemes
to replace data retrieval aspects of SQL language. Although some have consid-
ered data definition aspects [3] or manipulation aspects, none have extensively

TBE: Trigger-By-Example 3

considered the trigger aspects for SQL, especially from the user interface point
of view.

Other works (e.g., IFO [16], IDEA [5]) have attempted to build graphical
triggers description tools. Using IF' (O, one can describe how different objects
interact through events, thus giving priority to an overview of the system. Arg-
onaut from the IDEA project [5] focused on the automatic generation of active
rules that correct integrity violations based on declarative integrity constraint
specifications, and active rules that incrementally maintain materialized views
based on view definitions. TBE, on the other hand, helps users to directly design
active rules with minimal learning.

Other than QBE skeleton tables, forms have been popular building blocks
for visual querying mechanisms as well. For instance, [7] proposes the NFQL as
a communication language between humans and database systems. It uses forms
in a strictly nonprocedural manner to represent queries. Other works using forms
are mostly for querying aspect of the visual interface [3].

To the best of our knowledge, the only work that is directly comparable to
ours is RBE [4]. Although RBE also uses the idea of QBE as an interface for
creating trigger rules, there are the following differences:

— Since TBE is carefully designed with SQL3 triggers in mind, it is capable of
creating all the complex SQL3 trigger rules. Since RBE’s capability is, how-
ever, limited to OPS5-style production rules, it cannot express, for instance,
the subtle difference of the trigger activation time nor granularity.

— No evident suggestion of RBE as a user interface for writing triggers is given.
On the other hand, TBE is specifically aimed for that purpose.

— The implementation of RBE is tightly coupled with the underlying rule sys-
tem and database so that it cannot easily support multiple heterogeneous
database triggers. Since TBE implementation is a thin layer utilizing a trans-
lation from a visual representation to the underlying triggers, it is loosely
coupled with the database.

The organization of this paper is as follows. Section 3 proposes our TBE for SQL3
triggers and discusses several related issues. A few complex SQL3 trigger exam-
ples are illustrated in Section 4. The preliminary implementation and potential
applications of TBE are presented in Sections 5 and 6, respectively. Concluding
remarks are given in Section 7.

3 TBE: Trigger-By-Example

We propose to use QBE as a user interface for writing trigger rules. Our tool
is called Trigger-By-Example (TBE) which has the same spirit as that of QBE.
The philosophy of QBE is to require the user to know very little in order to get
started and to minimize the number of concepts that he or she subsequently has
to learn to understand and use the whole language [17]. By using QBE as an
interface, we attain the same benefits for creating trigger rules.

4 Dongwon Lee, Wenlei Mao, Wesley W. Chu

3.1 Difficulty of Expressing Procedural Triggers in Declarative QBE

Triggers in SQL3 are procedural in nature. Trigger actions can be arbitrary
SQL procedural statements, allowing not only SQL data statements (i.e., select,
project, join) but also transaction, connection, session statements!. Also, the
order among action statements needs to be obeyed faithfully to preserve the
correct semantics. On the contrary, QBE is a declarative query language. While
writing a query, the user does not have to know if the first row in skeleton
tables needs to be executed before the second row or not. That is, the order is
immaterial. Also QBE is specifically designed as a tool for only 1) data retrieval
queries (i.e., SELECT), 2) data modification queries (i.e., INSERT, DELETE,
UPDATE), and 3) schema definition and manipulation queries. Therefore, QBE
cannot really handle other procedural SQL statements such as transaction or
user-defined functions in a simple manner. Thus, our goal is to develop a tool
that can represent the procedural SQL3 triggers in its entirety while retaining
the declarative nature of QBE as much as possible.

In what follows, we shall describe how QBE was extended to be TBE, what
design options were available, and which option was chosen by what rationale,
etc.

3.2 Trigger Name

A unique name for each trigger rule needs to be set in a special input box, called
the name box, where the user can fill in an arbitrary identifier as shown below:
|<TriggerRu|eName>|

Typically, the user first decides the trigger name and then proceeds to the sub-
sequent tasks. There are often cases when multiple trigger rules are written to-
gether in a single TBE query. For such cases, the user needs to provide a unique
trigger name for each rule in TBE query separately. In what follows, when there
is only a single trigger rule in the example, we take the liberty of not showing
the trigger name for briefness.

3.3 Event-Condition-Action Triggers

SQLS3 triggers use the ECA model. Therefore, triggers are represented by mainly
three isolated E, C, A parts. In TBE, each E, C, A part maps to the corresponding
skeleton tables separately. To differentiate among three parts, three prefix flags,
E., C., A., are introduced. That is, in skeleton tables, table name is prefixed
with one of these flags. The condition box in QBE is also similarly extended. For
instance, a condition statement is specified in the C. prefixed skeleton table and
condition box below.

C.emp|Eno[Ename[DeptNo][Sall

T]

! SQL3 triggers definition in [13] leaves it implementation-defined whether the trans-
action, connection, or session statements should be contained in the action part or
not.

TBE: Trigger-By-Example 5

3.4 Triggers Event Types

SQL3 triggers allow only the INSERT, DELETE, and UPDATE as legal event
types. Coincidentally, QBE has constructs I.,D., and U. for each event type to
describe the data manipulation query. The TBE uses these constructs to describe
the trigger event types. Since the INSERT and DELETE always affect the whole
tuple rather than individual columns, I. and D. must be filled in the leftmost
column of skeleton table. When the UPDATE trigger is described as to particular
column, then U. is filled in the corresponding column. Otherwise, U. is filled in
the leftmost column. Consider the following example.

Ezample 3. Skeleton tables (1) and (2) depict INSERT and DELETE events on the
dept table, respectively. (3) depicts UPDATE event of columns Dname and MgrNo. Thus,
changes occurring on other columns do not fire the trigger. (4) depicts UPDATE event
of any columns on the dept table.

E.dept|Dno|Dname|Mngo|

E.dept|Dno|Dname|Mngo|
| | U | u |

E.dept|Dno|Dname|Mngo|
D. [] | |

2)

(1)

E.dept|Dno|Dname|Mngo|
U | | |

3) (4)

Note that since SQL3 triggers definition limits that only a single event be mon-
itored per single rule, there can not be more than one row having I., D., or
U. flag unless multiple trigger rules are written together. Therefore, same trig-
ger actions for different events (e.g., “abort when either INSERT or DELETE
occurs”) need to be expressed as separate trigger rules in SQL3 triggers.

3.5 Triggers Activation Time and Granularity

The SQL3 triggers have a notion of the event activation time that specifies if
the trigger is executed before or after its event and the granularity that defines
how many times the trigger is executed for the particular event.

1. The activation time can have two modes, before and after. The before mode
triggers execute before their event and are useful for conditioning the input
data. The after mode triggers execute after their event and are typically
used to embed application logic [6]. In TBE, two corresponding constructs,
BFR. and AFT., are introduced to denote these modes. The “.” is appended
to denote that these are built-in system commands.

2. The granularity of a trigger can be specified as either for each row or for each
statement, referred to as row-level and statement-level triggers, respectively.
The row-level triggers are executed after each modification to tuple whereas
the statement-level triggers are executed once for an event regardless of the
number of the tuples affected. In TBE notation, R. and S. are used to denote
the row-level and statement-level triggers, respectively.

Consider the following illustrating example.

6 Dongwon Lee, Wenlei Mao, Wesley W. Chu

Ezample 4. SQL3 and TBE representation for a trigger with after activation time and
row-level granularity.

CREATE TRIGGER AfterRowLevelRule

AFTER UPDATE OF Ename, Sal ON emp FOR EACH ROW

E.emp [Eno[Ename|DeptNo|Sal|
AFTR| | U. | [U.|

3.6 Transition Values

When an event occurs and values change, trigger rules often need to refer to
the before and after values of certain attributes. These values are referred to
as the transition values. In SQL3, these transition values can be accessed by
either transition variables (i.e., OLD, NEW) or tables (i.e., OLD_TABLE, NEW_TABLE)
depending on the type of triggers, whether row-level or statement-level. Further-
more, in SQL3, the INSERT event trigger can only use NEW or NEW_TABLE while
the DELETE event trigger can only use OLD or OLD_TABLE to access transition
values. However, the UPDATE event trigger can use both transition variables
and tables. We have considered the following two approaches to introduce the
transition values in TBE.

1. Using new built-in functions: Special built-in functions (i.e., OLD_TABLE()
and NEW_TABLE () for statement-level, OLD() and NEW() for row-level) are in-
troduced. The OLD_TABLE () and NEW_TABLE () functions return a set of tuples
with values before and after the changes, respectively. Similarly the OLD ()
and NEW() return a single tuple with value before and after the change, re-
spectively. Therefore, applying aggregate functions such as CNT. or SUM.
to the OLD() or NEW() is meaningless (i.e., CNT.NEW(_s) is always 1 or
SUM.OLD(_s) is always same as _s). Using new built-in functions, for in-
stance, the event “every time more than 10 new employees are inserted” can
be represented as follows:

E.emp |Eno[Ename[DeptNo|Sal| | E.conditions |
AFTIS] | o |] [CNT.ALL.NEW_TABLE(.n) > 10|
Also the event “when salary is doubled for each row” can be represented as

follows:
E.emp |Eno|Ename[DeptNo|Sal| | E.conditions |
AFT.UR] | | | s] INEW(s) > OLD(.s) * 2]

It is illegal to apply the NEW() or NEW_TABLE () to the variable defined on the
DELETE event. Likewise for the application of OLD() or OLD_TABLE() to the
variable defined on the INSERT event. Asymmetrically, it is redundant to
apply the NEW() or NEW_TABLE() the variable defined on the INSERT event.
Likewise for the application of OLD() or OLD_TABLE() to the variable defined
on the DELETE event. For instance, in the above event “every time more

TBE: Trigger-By-Example 7

than 10 new employees are inserted”, _-n and NEW_TABLE(.n) are equivalent.
Therefore, the condition expression at the condition box can be rewritten as
“CNT.ALL.n > 10”. It is ambiguous, however, to simply refer to the variable
defined in the UPDATE event without the built-in functions. That is, in the
event “when salary is doubled for each row”, _s can refer to values both before
and after the UPDATE. That is, “.s > _s * 2” at the condition box would
cause an error due to its ambiguity. Therefore, for the UPDATE event case,
one needs to explicitly use the built-in functions to access transition values.

2. Using modified skeleton tables: Depending on the event type, skeleton tables
are modified accordingly; additional columns may appear in the skeleton
tables?. For the INSERT event, a keyword NEW_ is prepended to the existing
column names in the skeleton table to denote that these are newly inserted
ones. For the DELETE event, a keyword 0LD_is prepended similarly. For the
UPDATE event, a keyword 0LD_ is prepended to the existing column names
whose values are updated in the skeleton table to denote values before the
UPDATE. At the same time, additional columns with a keyword NEW_ appear
to denote values after the UPDATE. If the UPDATE event is for all columns,
then OLD_column-name and NEW_column-name appear for all columns.
Consider an event “when John’s salary is doubled within the same depart-
ment”. Here, we need to monitor two attributes — Sal and DeptNo. First, the
user may type the event activation time and granularity information at the
leftmost column as shown in the first table. Then, the skeleton table changes
its format to accommodate the UPDATE event effect as shown in the second
table. That is, two more columns appear and the U. construct is relocated
to the leftmost column.

E.emp [Eno|Ename|DeptNo|Sal|
AFTR]] | U U]

E.emp |Eno|Ename[OLD_DeptNo|NEW_DeptNo[OLD_Sal[NEW Sal|
AFT.UR] | | | | | |

Then, the user fills in variables into the proper columns to represent the
conditions. For instance, “same department” is expressed by using same
variable _d in both OLD_DeptNo and NEW _DeptNo columns.

2 We have also considered modifying tables, instead of columns. For instance, for the
INSERT event, a keyword NEW_ is prepended to the table name. For the UPDATE
event, a keyword OLD_is prepended to the table name while new table with a NEW_ pre-
fix is created. This approach, however, was not taken because we wanted to express
column-level UPDATE event more explicitly. That is, for an event “update occurs
at column Sal”, we can add only OLD_Sal and NEW_Sal attributes to the existing
table if we use the “modifying columns” approach. If we take the “modifying tables”
approach, however, we end up with two tables with all redundant attributes whether
they are updated or not (e.g., two attributes OLD_emp.Ename and NEW_emp.Ename
are unnecessarily created; one attribute emp.Ename is sufficient since no update oc-
curs for this attribute).

8 Dongwon Lee, Wenlei Mao, Wesley W. Chu

E.emp |Eno|Ename|OLD_DeptNo|NEW_DeptNo|OLD_Sal[NEW _Sal
AFTUR| [John| d | d | o | n |

E.conditions|

‘We chose the approach using new built-in functions to introduce transition values
into TBE. Although there is no difference with respect to the expressive power
between two approaches, the first one does not incur any modifications to the
skeleton tables, thus minimizing cluttering of the user interface.

3.7 The REFERENCING Construct

SQLS3 allows the renaming of transition variables or tables using the REFERENCING
construct for the user’s convenience. In TBE, this construct is not needed since
the transition values are directly referred to by the variables filled in the skeleton
tables.

3.8 Procedural Statements

When arbitrary SQL procedural statements (i.e., IF, CASE, assignment state-
ments, etc.) are written in the action part of the trigger rules, it is not straight-
forward to represent them in TBE due to their procedural nature. Because their
expressive power is beyond what the declarative QBE, and thus TBE described
so far, can achieve, we instead provide a special kind of box, called statement
box, similar to the condition box. The user can write arbitrary SQL procedural
statements delimited by “” in the statement box. Since the statement box is
only allowed for the action part of the triggers, the prefix A. is always prepended.
For example,

| Astatements |

IF (X > 10)
ROLLBACK;

3.9 The Order among Action Trigger Statements

SQL3 allows multiple action statements in triggers, each of which is executed
according to the order they are written. To represent triggers whose semantics
depend on the assumed sequential execution, TBE uses an implicit agreement;
like prolog, the execution order follows from top to bottom. Special care needs
to be taken in translation time for such action statements as follows:

— The action skeleton tables appearing before are translated prior to that
appearing after.

— In the same action skeleton tables, action statements written at the top row
are translated prior to that written at the bottom one.

TBE: Trigger-By-Example 9

3.10 Expressing Conditions in TBE

In most active database triggers languages, the event part of the triggers lan-
guage is exclusively concerned with what has happened and cannot perform
tests on values associated with the event. Some triggers languages (e.g., Ode [1],
SAMOS [9], Chimera [5]), however, provide filtering mechanisms that perform
tests on event parameters (see [14], chapter 4). Event filtering mechanisms can
be very useful in optimizing trigger rules; only events that passed the parameter
filtering tests are sent to the condition module to avoid unnecessary expensive
condition evaluations.

In general, we categorize condition definitions of the triggers into 1) parameter
filter (PF) type and 2) general constraint (GC) type. SQL3 triggers definition
does not have PF type; event language specifies only the event type, activation
time and granularity information, and all conditions (both PF and GC types)
need to be expressed in the WHEN clause. In TBE, however, we decided to allow
users to be able to differentiate PF and GC types by providing separate condition
boxes (i.e., E. and C. prefixed ones) although it is not required for SQL3. This
is because we wanted to support other trigger languages who have both PF and
GC types in future.

1. Parameter Filter Type: Since this type tests the event parameters, the con-
dition must use the transition variables or tables. Event examples such as
“every time more than 10 new employees are inserted” or “when salary is
doubled” in Section 3.6 are these types. In TBE, this type is typically repre-
sented in the E. prefixed condition box.

2. General Constraint Type: This type expresses general conditions regardless
of the event type. In TBE, this type is typically represented in the C. prefixed
condition boxes. One such example is illustrated in Example 5.

Ezample 5. When an employee’s salary is increased more than twice within the same
year (a variable CURRENT_YEAR contains the current year value), record changes
into the log(Eno, Sal) table. Assume that there is another table sal-change (Eno,
Cnt, Year) to keep track of the employee’s salary changes.

CREATE TRIGGER TwiceSalaryRule AFTER UPDATE OF Sal ON emp
FOR EACH ROW
WHEN EXISTS (SELECT * FROM sal-change WHERE Eno = NEW.Eno
AND Year = CURRENT_YEAR AND Cnt >= 2)
BEGIN ATOMIC
UPDATE sal-change SET Cnt = Cnt + 1
WHERE Eno = NEW.Eno AND Year = CURRENT_YEAR;
INSERT INTO log VALUES(NEW.Eno, NEW.Sal);
END

E.emp [Eno[Ename|DeptNo| Sal| C.sal-change] Eno [Cnt] Year |
AFTR] n| | 0| [NEW(n)| c [CURRENT YEAR|

10 Dongwon Lee, Wenlei Mao, Wesley W. Chu

— A.sal-change] Eno [Cnt | Year |
C.conditions
U. _c + 1
- NEW(_n)

< ‘CURRENT_YEAR
Alog] Eno [Sal |

. [NEW(.n)[NEW(s)|

Here, the condition part of the trigger rule (i.e., WHEN clause) checks the Cnt value
of the sal-change table to check how many times salary was increased in the same
year, and thus, does not involve testing any transition values. Therefore, it makes
more sense to represent such condition as GC type, not PF type. Note that the
headers of the sal-change and condition box have the C. prefixes.

4 Complex SQL3 Triggers Examples

In this section, we show a few complex SQL3 triggers and their TBE represen-
tations. These trigger examples are modified from the ones in [8,18].

4.1 Integrity Constraint Triggers
A trigger rule to maintain the foreign key constraint is shown below.

Ezample 6. When a manager is deleted, all employees in his or her department are
deleted too.
CREATE TRIGGER ManagerDelRule AFTER DELETE ON emp
FOR EACH ROW
DELETE FROM emp E1 WHERE E1.DeptNo =
(SELECT D.Dno FROM dept D WHERE D.MgrNo = OLD.Eno)

E.emp [Eno|Ename|DeptNo|Sall

AFT.DR.| e | | |
A.dept[Dno|Dname|MgrNo| A.emp|Eno|Ename|DeptNo|[Sal|
| d] BEN D. | | R

In this example, the WHEN clause is missing on purpose; that is, the trigger rule does
not check if the deleted employee is in fact a manager or not because the rule deletes
only the employee whose manager is just deleted. Note that how _e variable is used to
join the emp and dept tables to find the department whose manager is just deleted.
Same query could have been written with a condition test in a more explicit manner
as follows:

E.emp [Eno|Ename[DeptNo|Sall C.dept[Dno|Dname[MgrNo]
AFT.D.R[e] | [] [d] I

A.emp|Eno|Ename|DeptNo|Sal
S

TBE: Trigger-By-Example 11

Another example is shown below.

Ezxample 7. When employees are inserted to the emp table, abort the transaction if
there is one violating the foreign key constraint.

CREATE TRIGGER AbortEmp AFTER INSERT ON emp
FOR EACH STATEMENT
WHEN EXISTS (SELECT * FROM NEW_TABLE E WHERE NOT EXISTS
(SELECT * FROM dept D WHERE D.Dno = E.DeptNo))
ROLLBACK

E.emp |Eno[Ename|DeptNo|Sal C.dept[Dno|Dname[MgrNo] |A.statements|

AFTIS] | [d] | ~ [d] | | [ROLLBACK

In this example, if the granularity were R. instead of S., then same TBE query would
represent different SQL3 triggers. That is, row-level triggers generated from the same
TBE representation would have been:

CREATE TRIGGER AbortEmp AFTER INSERT ON emp
FOR EACH ROW
WHEN NOT EXISTS
(SELECT * FROM dept D WHERE D.Dno = NEW.DeptNo)
ROLLBACK

We believe that this is a good example illustrating why TBE is useful in writing trigger
rules. That is, when the only difference between two rules is the trigger granularity,
simple change between R. and S. is sufficient in TBE. However, in SQL3, users should
devise quite different rule syntaxes as demonstrated above.

4.2 View Maintenance Triggers

Suppose a company maintains the following view derived from the emp and dept
schema.

Ezample 8. Create a view HighPaidDept that has at least one “rich” employee earning
more than 100K.
CREATE VIEW HighPaidDept AS
SELECT DISTINCT D.Dname
FROM emp E, dept D
WHERE E.DeptNo = D.Dno AND E.Sal > 100K

The straightforward way to maintain the views upon changes to the base tables
is to re-compute all views from scratch. Although incrementally maintaining the
view is more efficient than this method, for the sake of trigger example, let us
implement the naive scheme below. The following is only for UPDATE event
case.

Ezample 9. Refresh the HighPaidDept when UPDATE occurs on emp table.

CREATE TRIGGER RefreshView AFTER UPDATE OF DeptNo, Sal ON emp
FOR EACH STATEMENT

12 Dongwon Lee, Wenlei Mao, Wesley W. Chu

BEGIN ATOMIC
DELETE FROM HighPaidDept;
INSERT INTO HighPaidDept
(SELECT DISTINCT D.Dname FROM emp E, dept D
WHERE E.DeptNo = D.Dno AND E.Sal > 100K);

END
E.emp |[Eno|Ename[DeptNo]|Sal] A.emp|Eno|Ename[DeptNo| Sal]
AFTS.| | | U Ju.| | | d [>100K]

A.HighPaidDept|Dname]
D.
-n

A.dept[Dno|Dname|[MgrNo|
[d] n] |

By the implicit ordering of TBE, the DELETE statement executes prior to the INSERT
statement.

5 Implementation

A preliminary version of the TBE prototype has been implemented using jdk 1.2.
Although the underlying concept is the same as what we have presented so far, we
added several bells and whistles (e.g., context sensitive pop-up menu) for better human-
computer interaction. The algorithm to generate trigger rules from TBE is omitted due
to space limitation. For details, please refer to [10].

The main screen consists of two sections — one for input and another for output.
The input section is where the user creates trigger rules by QBE mechanism and the
output section is where the interface generates trigger rules in the target trigger syn-
tax. Further, the input section consists of three panes for event, condition, action,
respectively. The main screen of the prototype is shown in Figure 1, where the query
in Example 5 is shown.

6 Applications

Not only is TBE useful for writing trigger rules, but it can also be used for other
applications with a few modifications. Two such applications are illustrated in this
section.

Declarative Constraints in SQL3: SQL3 has the ASSERTION to enforce any con-
dition expression that can follow WHERE clause to embed some application logic. The
syntax of the ASSERTION is:

CREATE ASSERTION <assertion-name> CHECK <condition-statement>

Note the similarity between the assertion and triggers syntax in SQL3. Therefore,
a straightforward extension of TBE can be used as a tool to enforce assertion
constraints declaratively. In fact, since the ASSERTION in SQL3 only permits
declarative constraints, TBE suits the purpose perfectly.

TBE: Trigger-By-Example 13

-, it Vew st Hep Bl 2
ISR & |

| Mame |TwiceSalanRule Targel |SOL3 - |

(i iZ.conditions
MEWI(_n) |CURRENT_YEAR | _& =2

Asalchangs Eno Year Cht | S| = I o
i RLES [i [MEWL) [NEWCs)

MEWL 1) CURRENT YEAR ©

CREATE TRIGHER Tw QSQIQMHLUH
RF'I'ERUF‘M‘T =y

y "FEAR
IMSEths{mﬁmg V&UEB&(NEW Em WEW Sall;
END.
<]
Stalus; Done.

Fig. 1. Main screen dump.

Universal Triggers Construction Tool: Although SQL3 is close to its final
form, many database vendors are already shipping their products with their own
proprietary trigger syntaxes and implementations. When multiple databases are
used together or one database needs to be migrated to another, these diversities
can introduce significant problems. To remedy this problem, one can use TBE
as a universal triggers construction tool. That is, the user creates triggers using
TBE interface.When changing database from one to another (e.g., from Oracle
to DB2), the user can simply reset one of the preference information of TBE to
re-generate the new trigger rules. Extending TBE to support all unique features
of diverse database products is not a trivial task. Nevertheless, we believe that
retaining the visual nature of the triggers construction with TBE can be useful
in coping with heterogeneous database systems.

7 Conclusion

A novel user interface called TBE for creating triggers is proposed. TBE borrows
the visual querying mechanism from QBE and applies it to triggers construction

14

Dongwon Lee, Wenlei Mao, Wesley W. Chu

application in a seamless fashion. An array of new constructs are introduced
to extend QBE to support triggers semantics and syntaxes properly. To prove
the concept, a prototype is implemented and demonstrated the feasibility and
benefits of applying QBE in writing trigger rules.

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

. Agrawal, R., Gehani, N. “Ode (Object Database and Environment): The Language

and the Data Model”, Proc. SIGMOD, Portland, Oregon, 1989.

Codd, E. F. “Relational Completeness of Data Base Languages”, Data Base Sys-
tems, Courant Computer Symposia Series, Prentice-Hall, 6:65-98, 1972.

Collet, C., Brunel, E. “Definition and Manipulation of Forms with FO2”, Proc.
IFIP Visual Database Systems, 1992.

Chang, Y.-I., Chen, F.-L. “RBE: A Rule-by-example Action Database System”,
Software — Practice and Ezperience, 27(4):365-394, 1997.

Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L. “Active Rule Management in
Chimera”, In J. Widom and S. Ceri (ed.), Active Database Systems: Triggers and
Rules for Active Database Processing, Morgan Kaufmann, 1996.

Cochrane, R., Pirahesh, H., Mattos, N. “Integrating Triggers and Declarative Con-
straints in SQL Database Systems”, Proc. VLDB, 1996.

Embley, D. W. “NFQL: The Natural Forms Query Language”, ACM TODS,
14(2):168-211, 1989.

Embury, S. M., Gray, P. M. D. “Database Internal Applications”, In N. W. Paton
(ed.), Active Rules In Database Systems, Springer-Verlag, 1998.

Gatziu, S., Dittrich, K. R. “SAMOS”, In N. W. Paton (ed.), Active Rules In
Database Systems, Springer-Verlag, 1998.

Lee, D., Mao, W., Chiu, H., Chu, W. W. “TBE: A Graphical Interface for Writ-
ing Trigger Rules in Active Databases”, 5th IFIP 2.6 Working Conf. on Visual
Database Systems (VDB), 2000.

Lee, D., Mao, W., Chu, W. W. “TBE: Trigger-By-Example (Extended Version)”,
UCLA-CS-TR-990029, 1999.

http://www.cs.ucla.edu/~dongwon/paper/

McLeod, D. “The Translation and Compatibility of SEQUEL and Query by Ex-
ample”, Proc. Int’l Conf. Software Engineering, San Francisco, CA, 1976.
Melton, J. (ed.), “(ANSI/ISO Working Draft) Foundation
(SQL/Foundation)”, ANSI X3H2-99-079/WG3:YGJ-011, March, 1999.
ftp:/ /jerry.ece.umassd.edu/isowg3/dbl/BASEdocs/public/sql-foundation-wd-1999-
03.pdf

Paton, N. W. (ed.), “Active Rules in Database Systems”, Springer- Verlag, 1998.
Simon, E., Kotz-Dittrich, A. “Promises and Realities of Active Database Systems”,
Proc. VLDB 1995.

Teisseire, M., Poncelet, P., Cichetti, R. “Towards Event-Driven Modelling for
Database Design”, Proc. VLDB, 1994.

Zloof, M. M. “Query-by-Example: a data base language”, IBM System J.,
16(4):342-343, 1977.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R. R., Subrahmanian, V.S., Zicari,
R. “Advanced Database Systems”, Morgan Kaufmann, 1997.

