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Abstract

Advances in Large Language Models (e.g., GPT-4, LLaMA)
have improved the generation of coherent sentences resem-
bling human writing on a large scale, resulting in the creation
of so-called deepfake texts. However, this progress poses
security and privacy concerns, necessitating effective solu-
tions for distinguishing deepfake texts from human-written
ones. Although prior works studied humans’ ability to detect
deepfake texts, none has examined whether “collaboration”
among humans improves the detection of deepfake texts. In
this study, to address this gap of understanding on deepfake
texts, we conducted experiments with two groups: (1) non-
expert individuals from the AMT platform and (2) writing
experts from the Upwork platform. The results demonstrate
that collaboration among humans can potentially improve the
detection of deepfake texts for both groups, increasing detec-
tion accuracies by 6.36% for non-experts and 12.76% for ex-
perts, respectively, compared to individuals’ detection accu-
racies. We further analyze the explanations that humans used
for detecting a piece of text as deepfake text, and find that the
strongest indicator of deepfake texts is their lack of coher-
ence and consistency. Our study provides useful insights for
future tools and framework designs to facilitate the collab-
orative human detection of deepfake texts. The experiment
datasets and AMT implementations are available at: https:
//github.com/huashen218/llm-deepfake-human-study.git

Introduction
In recent years, significant advancements in AI technolo-
gies have revolutionized the generation of high-quality arti-
facts across various modalities, including texts, images, and
videos (Fagni et al. 2021; Zhang 2022; Pu et al. 2023; Shen
and Wu 2023). These AI-generated artifacts, commonly re-
ferred to as Deepfakes, have garnered considerable atten-
tion. Specifically, the progress made in Natural Language
Generation (NLG) techniques, leveraging Large Language
Models (LLMs) like GPT-4 (OpenAI 2023) or T5 (Raf-
fel et al. 2020), has facilitated the production of long and
coherent machine-generated texts without human interven-
tion (Wu et al. 2023). For the purpose of this study, we
designate such neural or LLM-generated texts as deepfake
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Figure 1: An overview of human studies on detecting
deepfake texts. (A) A multi-authored article with 3 para-
graphs, including both human-written & LLM-generated
paragraphs; (B) We conduct human studies to ask either in-
dividuals or collaborative humans to detect deepfake texts;
(C) In-depth analysis of the categorical explanations for
deepfake text detection from both groups.

texts, while the generative language models themselves are
referred to as Neural Text Generators (NTG) (Zhong et al.
2020). While NTGs offer numerous benefits, it is essential
to acknowledge the potential misuse associated with this
technological advancement (Shevlane et al. 2023). For in-
stance, NTGs can be employed by students to complete their
essay assignments, leading to potential plagiarism due to
NTGs’ memorization of training samples (Lee et al. 2023).
Moreover, scammers may exploit NTGs to craft sophisti-
cated phishing messages, or stereotyping, misrepresenting,
and demeaning content (Weidinger et al. 2021), while mali-
cious code generation (Chen et al. 2021) and disinformation
attacks by state-backed operators are also plausible scenar-
ios (Bagdasaryan and Shmatikov 2022). Given these con-
cerns, it becomes imperative to prioritize research efforts to-
wards developing effective methodologies for distinguishing



deepfake texts from those authored by humans.
Both computational and non-computational approaches

for detecting deepfake texts have received significant at-
tention in recent years (Uchendu et al. 2021; Clark et al.
2021; Dou et al. 2022; Brown et al. 2020), and have been
comprehensively surveyed by Uchendu, Le, and Lee (2023).
However, emerging literature (Uchendu et al. 2021; Dou
et al. 2022) suggests that humans, on average, struggle to
detect deepfake texts, performing only slightly better than
random guessing. Even with training, the performance of
humans in deepfake text detection has shown limited im-
provement (Clark et al. 2021; Dou et al. 2022; Tan, Plum-
mer, and Saenko 2020). These findings highlight the need to
explore alternative strategies, such as collaborative detection
or leveraging advanced technological solutions, to address
the challenges posed by deepfake texts effectively.

Online fact-checking efforts, as highlighted by Juneja and
Mitra (2022), can be achieved collaboratively to detect on-
line misinformation. Previous research has demonstrated
that collective intelligence, often referred to as the “wisdom
of the crowd”, can surpass individual sensemaking capa-
bilities (Surowiecki 2005). Similarly, aggregating multiple
human labels has also been shown to yield higher-quality
results (Zheng et al. 2017). However, limited attention has
been given to understanding how collaboration affects the
performance of deepfake detection. Consequently, the pri-
mary objective of this study is to investigate the impact of
human collaboration on the detection of deepfake texts.
See an overview of the task presented in Figure 1, wherein
we generate a three-paragraph article authored by both hu-
mans and LLM. Individuals or collaborative human groups
are then tasked with identifying the paragraph that has been
generated by LLMs. Furthermore, we delve into the detailed
explanations provided by humans to detect the deepfakes. It
is worth noting that this deepfake detection design bears re-
semblance to the Turing Test.1 As a result, our study focuses
on addressing the following research questions:

• RQ1: Do collaborative teams or groups outperform indi-
viduals in deepfake text detection task?
• RQ2: What types of reasoning explanations are useful

indicators for deepfake text detection?

To conduct comprehensive human studies on evaluating
the effectiveness of human collaboration in deepfake text
detection (i.e., RQ1), we focus on two distinct stakeholder
groups of online workers: Amazon Mechanical Turk (AMT)
workers as English non-experts and Upwork workers as En-
glish experts. The term “English experts” refers to individ-
uals who possess at least a Bachelor’s degree in English or
a related field (Please see the Methodology section for de-
tailed filtering criteria for identifying experts). These two
groups also represent the conventional micro-task crowd-
sourcing setting and the freelance marketplace setting, re-
spectively. The next challenge is to facilitate human collab-
oration on these two platforms. For AMT workers, we have

1Turing Test measures how human-like a model is. If a model
shows intelligent behavior usually attributed to a human and is thus,
labeled a human, the model is said to have passed the Turing Test.

devised an asynchronous collaboration approach, while for
Upwork workers, a synchronous collaboration method has
been implemented (please refer to the Methodology sec-
tion for more information on the implementation details).
Furthermore, during the study, we request both groups to
provide their explanations for detecting deepfake texts (i.e.,
RQ2). They are given a predefined set of seven explanation
types to choose from or the option to supplement their own
explanations. By collecting these explanations, we aim to
delve deeper into the reasoning process behind human col-
laborative deepfake text detection.

Through the execution of two human studies and a com-
parative analysis of human collaborative and individual eval-
uations within both the expert and non-expert groups, our re-
search reveals that human collaboration has the potential
to enhance the performance of deepfake text detection
for both stakeholder groups. The key findings of our study
can be summarized as follows:

• Human collaboration leads to a 6.36% improvement in
deepfake text detection among non-experts and a 12.76%
improvement among experts;
• The detection of deepfake texts is influenced by in-

dicators such as “consistency”, “coherency”, “common
sense”, and “self-contradiction” issues;
• Experts outperform non-experts in both individual and

collaborative scenarios when it comes to detecting deep-
fake texts.

Overall, this work focuses on investigating the impact of
human collaboration on the detection of deepfake texts and
demonstrates that collaborative efforts within representative
groups yield superior results compared to individuals. The
study sheds light on the underlying reasoning explanations,
highlights limitations, and emphasizes the need for the de-
velopment of computational and non-computational (includ-
ing hybrid) tools to promote more robust and accurate detec-
tion methods.

Related Work
Evaluating Deepfake Texts with Laypeople
The quality of deepfake texts has always been compared
to human-written texts. Thus, since humans still remain
the gold standard when evaluating machine-generated texts,
several works have investigated human performance in dis-
tinguishing between human-written and machine-generated
texts. GROVER (Zellers et al. 2019), an NTG trained to
generate news articles can easily be used maliciously. To
evaluate the quality of GROVER-generated news (fake) ar-
ticles, they are compared to human-written news articles.
Humans are asked to pick which articles are more believ-
able and GROVER-generated fake news was found to be
more trustworthy (Zellers et al. 2019). Donahue, Lee, and
Liang (2020) recruits human participants from Amazon Me-
chanical Turk (AMT) to detect machine-generated words in
a sentence. Uchendu et al. (2021) also recruits human par-
ticipants from AMT and asks them to detect which one of
two articles is machine-generated and given one article, de-
cide if it is machine-generated or not. Ippolito et al. (2020)
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Figure 2: Illustration of the data generation process.

evaluates the human ability to perform comparably given 2
different generation strategies. Brown et al. (2020) evaluates
human performance in distinguishing human-written texts
from GPT-3-generated texts. Finally, in all these works, the
themes remain the same - humans perform poorly at de-
tecting machine-generated texts, achieving about or below
chance-level during evaluation.

Training Humans to Evaluate Deepfake Texts
Since human performance in deepfake text detection is very
poor, a line of studies have attempted to train the humans
first and then ask them to detect the deepfake texts. For
example, (Gehrmann, Strobelt, and Rush 2019) proposed a
color-coded tool named GLTR (Giant Language Model Test
Room). GLTR color codes words based on the distribution
level which improves human performance from 54% to 72%
(Gehrmann, Strobelt, and Rush 2019). Dugan et al. (2020)
gamifies machine-generated text detection by training hu-
mans to detect the boundary at which a document becomes
deepfake to earn points. Humans are given the option to se-
lect one of many reasons or include their own reasons for
which a sentence could be machine-generated (Dou et al.
2022). Our framework is modeled more closely after Dugan
et al. (2020)’s work. Next, Clark et al. (2021) proposes 3
training techniques - Instruction-based, Example-based, and
Comparison-based. Example-based training improved the
accuracy from 50% to 55% (Clark et al. 2021).

Despite persistent efforts in human training, all methods
except for GLTR did not yield significant improvements in
human performance. However, GLTR achieved an average
of 56% F1 score on 19 pairs of human vs. state-of-the-art
(SOTA) NTGs (Uchendu et al. 2021), suggesting that older
deepfake text detectors are inferior/obsolete to modern mod-
els. This further necessitates more thorough investigation
into advanced human train methods, instead of relying on
detectors. We hypothesize that previous training techniques
failed because they did not consider that collaboration and
skill levels could affect performance. Hence, while we im-
plement the example-based training technique, we also take
into account expertise and collaboration elements.

Automatic Evaluation of Deepfake Texts

As LLMs such as GPT-2, ChatGPT, LLaMA, etc. are able
to be used maliciously to generate misinformation at scale,
several techniques have been employed to detect deepfake
texts. Using stylometric2 classifiers, researchers adopted sty-
lometry from traditional authorship attribution solutions to
achieve automatic deepfake text detection (Uchendu et al.
2020; Fröhling and Zubiaga 2021). However, due to the
flaws of stylometric classifiers, deep-learning techniques
have been proposed (Bakhtin et al. 2019; Huggingface 2023;
Zellers et al. 2019; Ippolito et al. 2020; Ai et al. 2022; Jawa-
har, Abdul-Mageed, and Lakshmanan 2022). While these
deep-learning techniques achieved high performance and
significantly improved from stylometric classifiers, they are
not interpretable. To mitigate this issue, statistical-based
classifiers are proposed (Gehrmann, Strobelt, and Rush
2019; Pillutla et al. 2021; Gallé et al. 2021; Pillutla et al.
2022; Mitchell et al. 2023). Lastly, to combine the benefits of
each of the 3 types of classifiers for deepfake text detection,
2 or more of these classifier types are combined to build a
more robust classifier. Uchendu, Le, and Lee (2023) defines
these classifiers as hybrid classifiers and they achieve supe-
rior performance (Liu et al. 2022; Kushnareva et al. 2021;
Zhong et al. 2020). Lastly, using automatic deepfake text
detectors, deepfake detection has been achieved with rea-
sonable performance. However, in the real world, as humans
cannot solely depend on these models to detect deepfakes,
they need to be equipped at performing the task themselves.
A common theme in most of the detectors are that newer
LLMs are harder to detect, which can sometimes make the
older detectors obsolete. Thus, it is imperative that humans
are also able to perform the task of deepfake text detection.
For this reason, a few researchers have evaluated human per-
formance in this task under several settings. See below.

2stylometry is the statistical analysis of an author’s writing
style/signature.
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Figure 3: User interface for the AMT collaborative group workers to choose the LLM-generated one paragraph, whereas the
individual group workers can only see A, B, and C panels.

Methodology

The collective body of prior research has consistently high-
lighted the inherent difficulty involved in solving the deep-
fake detection problem (Uchendu et al. 2020; Clark et al.
2021; Ippolito et al. 2020; Dugan et al. 2020; Gehrmann,
Strobelt, and Rush 2019). Building upon the concept of “col-
lective intelligence” that has exhibited superior performance
in online misinformation detection tasks (Horowitz et al.
2022; Mercier and Sperber 2011; Liu 2018; Seo, Xiong,
and Lee 2019) this study aims to investigate whether human
collaboration can enhance the detection of deepfake texts.
Specifically, the research methodology involves the creation
of articles comprising two paragraphs authored by humans
and one paragraph generated by an LLM (i.e., GPT-2). Non-
expert participants from Amazon Mechanical Turk (AMT)
are then engaged in an asynchronous collaboration setting
to discern the LLM-generated paragraph from the human-
written paragraphs within the mixed-up articles. Addition-
ally, English experts sourced from Upwork are enlisted to
perform the same task but in a synchronous collaboration
manner. To gain deeper insights into the reasoning process
of humans, we analyzed the explanations provided by par-
ticipants in the deepfake detection tasks. This study design
is rooted in the practical reality that, with the increasingly
impressive capabilities of LLMs, humans are increasingly
inclined to employ LLMs to amend or replace portions of
their own written content. The subsequent sections provide
a detailed account of the data generation procedure, the de-
sign of the human study, and the analysis of explanations.

Data Generation
As an overview of the data generation process shown in Fig-
ures 2, to build this dataset, we collected 200 human-written
news articles (mostly politics since this work is motivated
by mitigating the risk of mis/disinformation or fake news
dissemination) from reputable news sources such as CNN
and Washington Post. Next, of the 200 articles, we took the
first suitable 50 articles with at least 3 paragraphs. Then, we
removed all paragraphs after the 3rd paragraph. Since the
goal is to have a multi-authored article (human and LLM),
we randomly select one out of the three paragraphs to be
replaced by LLM-generated texts. We use a random number
generator to select which paragraphs are to be replaced. As
a result, we replaced the Paragraph 1 in 23 articles, Para-
graph 2 in 16 articles, and Paragraph 3 in 11 articles.

For Deepfake text generation, we used GPT-2 (Radford
et al. 2019) XL which has 1.5 billion parameters, and the
aitextgen3, a robust implementation of GPT-2 to generate
texts with the default parameters4. We then followed the
following mechanism to replace the article with the LLM-
generated paragraph:

• If paragraph 1 is selected to be replaced: Use Title as a
prompt to generate GPT-2 replacement;

3https://github.com/minimaxir/aitextgen
4We used only GPT-2 instead of GPT-3 or above to generate the

deepfake texts because: (1) GPT-2 and GPT-3 or above are using
the similar algorithms. Based on (Uchendu et al. 2020; Clark et al.
2021), human performance on detecting GPT-2 and GPT-3 texts
have similar accuracies; and (2) GPT-2 is cheaper to generate texts
with than GPT-3 or above since GPT-2 is open-source and GPT-3
or above is not.
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Figure 4: Instructions to train users by providing prompt feedback.

• If paragraph 2 is selected to be replaced: Use Paragraph
1 as a prompt to generate GPT-2 replacement;
• If paragraph 3 is selected to be replaced: Use Paragraph

2 as a prompt to generate GPT-2 replacement.

Since we are unable to control the number of paragraphs
GPT-2 generates given a prompt, we use a Masked Language
Model (MLM) to choose the best GPT-2 replacement that
fits well with the article. We use a BERT-base MLM (Devlin
et al. 2018) to get the probability and calculate the perplex-
ity score of the next sentence. Let us call this model G(.), it
takes 2 inputs - the first and probable second sentence/para-
graph (G(Text 1,Text 2)) and outputs a score. The lower
the score, the more probable Text 2 is the next sentence.
For instance, say GPT-2 texts is to replace Paragraph 2 (P2)
of an article:

1. We use P1 as prompt to generate P2 with GPT-2;
2. GPT-2 generates another 3-paragraph article with P1 as

the prompt;
3. To find the suitable P2 replacement, we do G(P1, each

GPT-2 generated paragraph);
4. Since low scores with G(.) is considered most probable,

the P2 replacement is the GPT-2 paragraph that yielded
the lowest score with G(.).

After we created these multi-authored articles, we manu-
ally did a quality check of a few of these articles by checking
for consistency and coherence. See Figure 3(C) for an exam-
ple of the final multi-authored article. We also observe that
based on the replacement algorithm, some bias in detection
may be introduced. Replacing paragraph 3 may be seen as
easier because there is no other paragraph after it to judge
the coherency. However, we keep the generation process fair
by only using the text right before the paragraph as a prompt
to generate the next paragraph. Thus, to replace paragraph
3, we only use paragraph 2 as a prompt, not the previous
paragraphs and title.

Human Study Design
Next, as we have defined this realistic scenario, we hypoth-
esize that collaboration will improve human detection of
deepfake texts. Thus, we define 2 variables for this exper-
iment - Individual vs. Collaboration and English expert vs.

English non-expert. We investigate how collaboration (both
synchronous and asynchronous) improves from individual-
based detection of deepfake texts. The hypothesis here is
that when humans come together to solve a task, collabo-
rative effort will be a significant improvement from average
individual efforts. Additionally, as human detection of deep-
fake texts is non-trivial, we want to investigate if the task is
non-trivial because English non-experts focus on misleading
cues as opposed to English experts.

Study1: Collaboration between AMT Participants

Participant Recruitment. Inspired by Clark et al. (2021),
Dugan et al. (2020), and Van Der Lee et al. (2019), we
used Amazon Mechanical Turk (AMT) to collect responses
from non-expert evaluators. We deployed a two-stage pro-
cess to conduct non-expert human studies. First, we posted
a qualification-required Human Intelligence Task (HIT) that
pays $0.50 per assignment on AMT to recruit 240 quali-
fied workers. In addition to our custom qualification used
for worker grouping, three built-in worker qualifications are
used in all HITS, including i) HIT Approval Rate (≤98%),
Number of Approved HITs (≥3000), and Locale (US Only)
Qualification. Next, we only enable the qualified workers to
enter the large-scale labeling tasks. The approximate time to
finish each labeling task is around 5 minutes (i.e., the aver-
age time of two authors on finishing a random HIT). There-
fore, we aim for $7.25 per hour and set the final payment
as $0.6 for each assignment. Further, we provide “double-
payment” to workers who made correct submissions as the
extra bonus.

Experiment Design. During the large-scale labeling task,
we divide the recruited qualified workers into two groups
to represent the individual vs. collaborative settings, respec-
tively. We define group1 as Individual Group, in which each
worker was asked to select the LLM-generated paragraph
without any references. See Figure 3, for example, humans
in Individual Group can only see the introduction with pan-
els (A) (B) and (C). On the other hand, we design group 2
to be Collaborative Group, where the workers were asked
to conduct the same task after the Individual Group finishes
all HITs (i.e., see panel (A), (B), (C) in Figure 3). In addi-
tion, workers from the Collaborative Group could also see



Participant Gender Education Group

P1 Female Bachelor’s degree
G1P2 Female Bachelor’s degree

P3 Female Bachelor’s degree

P4 Female Bachelor’s degree
G2P5 Male Bachelor’s degree

P6 Male Graduate degree

P7 Female Graduate degree
G3P8 Female Graduate degree

P9 Female Bachelor’s degree

P10 Female Bachelor’s degree
G4P11 Female Bachelor’s degree

P12 Male Bachelor’s degree

P13 Female Graduate degree
G5P14 Female Bachelor’s degree

P15 Male Graduate degree

P16 Female Bachelor’s degree
G6P17 Male Bachelor’s degree

P18 Male Bachelor’s degree

Table 1: Expert (Upwork) participant demographics.

the selection results from group 1 in an asynchronous man-
ner, as the example shown in Figure 3(D), to support their
own selection.

Furthermore, we take actions to incentivize workers to
provide qualified results: i) in our instruction, we provide
immediate feedback on the worker’s selection to calibrate
their accuracy. In specific, after reading the HIT instruction
(i.e., Figure 4 (A)), workers can get a deeper understanding
of “which paragraph is generated by AI machine” by trial
and error on selecting one example (i.e., Figure 4 (B)). Par-
ticipants were given unlimited chances to change their an-
swers. This example-based training process was inspired by
Clark et al. (2021)’s human evaluation study and was found
to be the most effective training technique. ii) We pay double
compensation to the workers who provide correct answers.
This aims to encourage workers to get high accuracy in se-
lecting the correct machine-generated paragraphs. iii) We set
the minimum time constraint (i.e., one minute) for workers
to submit their HITs so that the workers will concentrate on
the task for at least one minute instead of randomly select-
ing one answer and submitting the HIT. Note that we also
disabled the copy and paste functions in the user interface
to prevent workers from searching for the paragraphs from
online resources.

Study2: Collaboration Between Upwork Participants

Participant Recruitment. We utilized Upwork5 to recruit
expert evaluators, especially those with expertise in writing

5Upwork is one of the leading freelance websites with a sub-
stantial network size. Upwork facilitates the freelance industry by
introducing skilled freelancers in diverse categories like writing,
design, and web development. With its automated recommendation
system, we can effectively match our expert workers to our needs.
See link: https://sellcoursesonline.com/Upwork-statistics.

Figure 5: User interface for participants to select explana-
tions for identified deepfake paragraphs.

domains.Through Upwork, we first posted a task descrip-
tion as a client to gather participants. We mentioned in the
description that this is for research and provided all neces-
sary information such as research objectives and example
questions. Our recruitment advertisement also highlighted
the mandatory requirements: (1) a participant should be at
least 18 years old; and (2) a participant should be a native
English speaker. Lastly, if they were willing to proceed, they
were asked to submit a proposal answering the following
questions: (1) What is the highest level of degree you have
completed in school?; (2) Did you major in English or En-
glish Literature?; and (3) Describe your recent experience
with similar projects.

One useful feature for accelerating the recruitment pro-
cess in Upwork is that not only workers can apply to the
postings but also clients like us can invite prospective candi-
dates that seem suitable for the task to submit proposals. We
manually reviewed workers’ profile descriptions who speci-
fied their skill sets as copywriting, editing/proofreading, and
content writing and then sent them invites.

While making recruitment decisions, we verified partic-
ipants’ eligibility by checking their self-reported age, lan-
guage, and education in the profile, in addition to evaluating
their proposal responses. It resulted in a total of 18 finalists
to officially begin the study. Next, we sent them the consent
form via the platform’s messaging function and activated
Upwork contracts only after they returned the signed form.
A primary purpose of the contracts was for clients to com-
pensate workers based on submitted hours through the Up-
work system. Participants’ requested hourly wages ranged
from $25-$35 per hour depending on their prior experiences
and education levels. All 18 individuals successfully signed
both documents and were compensated accordingly. Table 1
gives the self-reported demographic of recruited Upworkers.

Experiment Design. To compare experts’ deepfake text
detection accuracy with respect to individual vs. collab-
orative settings, our Upwork study consists of two sub-
experiments. The first experiment asks Upwork participants
to perform a given task on their own. The second experiment
requires three individuals to solve the questions as one group
in a synchronous manner. We used Qualtrics6 service to gen-
erate and disseminate the study form. Upwork participants

6https://www.qualtrics.com



Setting Mean Accuracy P-Value

Baseline vs. Individual 33.33% vs. 44.99%*** 3.8e-05

Baseline vs. Collaboration 33.33% vs. 51.35%*** 2.8e-05

Individual vs. Collaboration 44.99% vs. 51.35% 0.054

Table 2: Paired t-test results for AMT experiments.
(***: p < 0.001, **: p < 0.01, *: p < 0.05)

were given one week to complete the survey. Upon comple-
tion, we randomly grouped 3 participants per team, result-
ing in 6 teams in total for synchronous collaboration (Table
1). All discussions were conducted on the video communi-
cations software - Zoom and we leveraged Zoom’s built-in
audio transcription feature, which is powered by Otter.ai7
for discourse analyses. In addition to the written consent ob-
tained during the recruitment procedure, verbal consent for
participation in the discussion and for audio recording was
obtained prior to the start of each session. One member of
the study team served as a moderator for the meetings. De-
pending on the participant’s schedule and level of commit-
ment in their group, each meeting lasted 1.5 - 3 hours.

In-depth Analysis on Detection Explanations
We build the explanation section similar to RoFT (Dugan
et al. 2020), a gamification technique for improving human
performance in deepfake text detection. In the RoFT frame-
work, participants were asked to select from a pre-defined
list one or more reasons such as repetition, grammar errors,
etc. Participants were also given another option, where they
can enter their own justification if they do not find any suit-
able selection from the provided list.

To determine the list of pre-defined reasoning explana-
tions in deepfake text detection, we first refer to Dou et al.
(2022), which provides a detailed list of 10 errors in which
annotators have been indicated to be good indicators of
deepfake texts. However, these errors are general errors and
thus some are not applicable to the task of detecting deep-
fake paragraphs. Therefore, due to this novel application, we
only select the most relevant errors. Additionally, we also in-
clude relevant errors from Dugan et al. (2020) including the
selection of other, a gamification of deepfake text detection.
As the result shown in Figure 5, we consequently provide
seven pre-defined rationales that correspond to flaws typi-
cally observed in deepfake texts (Dou et al. 2022; Dugan
et al. 2020), including “Grammatical issues”, “Repetition”,
“Lacks common sense”, “Contains logical errors”, “Contra-
dicts previous sentences”, “Lack of creativity or boring to
read”, “Writing is erratic” (i.e. does not have a good flow),
and an additional open-ended selection - other for partici-
pants to write more of their own.

Given the pre-defined reasoning explanation list, we ask
both individuals and collaborative groups to provide their
explanations for each corresponding detection instance. We
apply this implementation for both non-expert and ex-
pert groups, resulting in the in-depth explanation analy-

7https://otter.ai

Setting Mean Accuracy P-Value

Baseline vs. Individual 33.33% vs. 56.11%*** 8.2e-11

Baseline vs. Collaboration 33.33% vs. 68.87%*** 1.2e-12

Individual vs. Collaboration 56.11% vs. 68.87%*** 1.3e-05

Table 3: Paired t-test results for Upwork experiments.
(***: p < 0.001, **: p < 0.01, *: p < 0.05)

sis with respect to four scenarios (i.e., individual-expert,
collaboration-expert, individual-non-expert, collaboration-
non-expert). To provide more fine-grained insights, we fur-
ther separate the deepfake detection results into correct de-
tection and incorrect detection subgroups.

Experimental Results
Evaluation Metrics and Baselines
Objective Metrics. We measure how well participants
perform the tasks and compared them across different ex-
periment settings. To quantify the detection performance of
each setting, we computed the proportion of people who
got the answer correct given a set of 50 questions Q={q1,
q2,..., q50}. Suppose ln is the number of participants with
correct answers, and mn is the total number of participants
for the question qn, we calculated the accuracy using this
formula: accn =ln/mn × 100. This resulted in a list of ac-
curacy scores ACC={acc1, acc2, ..., acc50}, representing the
participants’ performance of 50 articles. To further evalu-
ate whether the means of two groups (individual vs. collab-
orative & non-experts vs. experts settings) are statistically
different, we conducted a paired independent sample T-test.
Since the T-test is grounded on the assumption of normal-
ity (Gerald 2018), we ran the Kolmogorov-Smirnov test on
our data and confirmed that the requirement was satisfied.
Following, we summarize the results of statistical testing.
Baseline. Each of the 50 3-paragraphed articles has 2
paragraphs authored by human and 1 paragraph deepfake-
authored. Therefore, participants have a 1/3 chance of se-
lecting the deepfake paragraph, and we developed a ran-
dom generator to randomly identify one of the paragraph as
deepfake. As such, the baseline performance of the random-
guessing accuracy is approximately to be 33.33%.

Study 1: Collaboration between AMT Workers
Detection Performance. From Table 2 we observe that
English non-experts achieve an average accuracy of 44.99%
individually, which is a 11.66% increase from the baseline
(random-guessing) of 33.33%. Using a paired T-test to mea-
sure statistical significance, the baseline vs. individual per-
formance comparison achieve a p-value of 3.8e−05 which
indicates strong statistical significance. Next, for the collab-
orative setting, the non-experts collaborate asynchronously,
achieving an average accuracy of 51.35%. The p-value of
Individual vs. Collaboration comparison is 0.054, indicat-
ing weak statistical significance. However, the comparison
of Baseline vs. Collaboration yields a p-value of 2.8e−05
which indicates strong significance. Thus, all comparison



Explanation Type
Correct Detection Incorrect Detection

Non-Expert (I vs. C) Expert (I vs. C) Non-Expert (I vs. C) Expert (I vs. C)
Percentage (%) P-Value Percentage (%) P-Value Percentage (%) P-Value Percentage (%) P-Value

Grammar 13.97 vs. 23.08** 0.004 15.33 vs. 24.6*** 0.001 15.65 vs. 16.89 0.587 14.22 v.s 12.07 0.329

Repetition 6.73 vs. 6.69 0.98 4 vs. 6.4 0.125 8.53* vs. 5.62 0.044 1.67 vs. 2 0.703

Common Sense 9.25 vs. 15.48* 0.011 13 vs. 28*** 4.8e-07 13.02 vs. 9.94 0.166 3.33 vs. 5.56 0.163

Logical Errors 11.64 vs. 10.24 0.496 7.78 vs. 14.4** 0.002 18.54*** vs. 7.7 3.3e-05 3.89 vs. 4 0.938

Self-Contradiction 9.35 vs. 5.57 0.077 7.67 vs. 14.8*** 0.001 18.01*** vs. 6.7 9.6e-07 6.56 vs. 3.6 0.054

Lack of Creativity 12.87 vs. 13.49 0.776 8.33 vs. 7.6 0.714 16.9 vs. 14.13 0.322 8.11** v.s 3.6 0.002

Coherence 14.64 vs. 19.29* 0.045 20.56 vs. 32*** 0.0008 11.65 vs. 10.06 0.318 13.78** vs. 9.2 0.003

Other 0 vs. 0 N/A 12.22 vs 18.4* 0.014 0 vs. 0 N/A 6.78 vs. 8.4 0.264

Table 4: The percentage of frequency for each reasoning explanation category w.r.t. correct & incorrect detection (I vs. C =
Individual vs. Collaboration) and corresponding t-test results (***: p < 0.001, **: p < 0.01, *: p < 0.05).

groups for non-experts indicate strong significant improve-
ment, except for Individual vs. Collaboration in which the
improvement observed during collaboration is weak.

Analysis of Reasoning Explanations. In Table 4, we
measure the statistical significance of explanations used by
participants individually and collaboratively for each of the
seven reasoning explanations, where we divide based on
both correct and incorrect detection responses. For AMT
(i.e., non-experts), we observe only a few statistically sig-
nificant explanations. Correct responses show significant
scores for grammar, common sense, and coherence. While
incorrect responses have significant scores for repetition,
logical errors, and self-contradiction. Furthermore, we vi-
sualize these explanations for both correct and incorrect re-
sponses in Figures 6 and 7, respectively. In these figures,
we observe that non-experts, both Individually and collab-
oratively, do not show any patterns in response. Thus, in
summary, these factors yielded a minimal improvement in
performance when non-experts collaborated. Another rea-
son for the minimal improvement is the style of collabora-
tion utilized by non-experts - asynchronous collaboration.
We further elaborate on the potential hypothesis in the Dis-
cussion section below.

Study 2: Collaboration Between Upwork
Participants
Detection Performance. The English experts achieve an
average accuracy of 56.11% and a p-value of 8.2e-11 for
Baseline vs. Individual, indicating strong significance. In the
collaborative (synchronous) setting, the participants achieve
an average accuracy of 68.87% with a p-value of 1.3e-05 for
Individual vs. Collaboration, suggesting a strong statistical
significance. Also the p-value for the comparison of Base-
line vs. Collaboration (1.2e-12) indicates an even stronger
significance.

Analysis of Reasoning Explanations. In Table 4, we
measure the statistical significance of explanations used in-
dividually and collaboratively. We measure two categories
when responses are correct and incorrect. For Upwork (ex-

perts), we observe more statistically significant explanations
for correct responses than for incorrect responses. Correct
responses had 6 statistically significant types from collabo-
rations out of 8 - grammar, common sense, logical errors,
self-contradiction, coherence, and other. Next, incorrect re-
sponses recorded only 2 statistically significant responses -
lack of creativity and coherence. Furthermore, we observe
in Table 4 that experts show a much stronger significance
(p-value < 0.01) in the frequency of explanations used than
non-experts in the correct detection cases.

Furthermore, Figures 6 and 7 visualize the frequency of
explanations used by participants for correct and incorrect
responses, respectively. We observe that experts used co-
herence, common sense, grammar errors, other,8 and self-
contradiction more frequently collaboratively for correct
responses. However, individually, they used grammar er-
rors, coherence and other more frequently for incorrect re-
sponses. This suggests that coherence, common sense, and
self-contradiction are strong indicators for distinguishing
deepfake texts from human-written texts, since they are the
only explanations do not overlap in frequency between cor-
rect and incorrect responses.

Discussion
Deepfake Text Detection is Non-Trivial for Humans
In order to further confirm the difficulty of the task of de-
tecting 1/3 of paragraphs as deepfake, we asked ChatGPT
to perform the task. Recently, ChatGPT9 has been found to
have emergent abilities (OpenAI 2023), one of which is be-
ing able to accurately perform many text classification tasks
accurately. Given the recent observation that using personas
with ChatGPT improves accuracy, we use a persona-themed
prompt - You are an expert. Which of the 3 paragraphs is AI-
generated? Answer choices: paragraph 1, paragraph 2, or
paragraph 3. Using this prompt, ChatGPT achieves a 38%
accuracy, only 5% above the baseline. In fact, ChatGPT got
confused with certain paragraphs that it deviated from the

8off-topic and off-prompt were the most frequent justifications.
9https://openai.com/blog/chatgpt



Figure 6: The percentage of frequency for selected reasoning explanation w.r.t. correct human detection.

Figure 7: The percentage of frequency for selected reasoning explanations w.r.t. incorrect human detection.

answer choices and generated other responses, such as none
of the paragraphs are AI-generated, all are AI-generated, or
picking two instead of one paragraph, e.g., paragraph 1 &
paragraph 3. While using our framework, humans achieve
an average accuracy of 44.99% (non-experts) and 51.35%
(experts), individually. Through collaboration, their perfor-
mances increase to an average accuracy of 51.35% and
68.87% for non-experts.

Detection Performance Comparison Between
Experts and Non-Experts
In the aforementioned sections, we observe that collabora-
tion is an effective approach to improve human performance
in deepfake text detection. Further, the results in Tables 2
and 3 also suggests that experts achieve a more signifi-
cant improvement with collaboration than non-experts.
There are two potential reasons for this: (1) expert partic-
ipants are able to utilize their expert knowledge more effi-
ciently when collaborating. This is further confirmed in Fig-
ures 6, where Upwork (experts) Collaboration show more
frequent use of coherence, common sense, grammar errors,
other, self-contradiction, and logical errors than Individu-
ally. The intuition here is individually, expert participants
did not use these explanations as frequently which yielded

an average accuracy of 56.11%, however, during collabo-
ration, they used these explanations more frequently and
accurately, improving the average accuracy to 68.87%. (2)
The second reason is argued by the body of CSCW litera-
ture (e.g., (Birnholtz and Ibara 2012; Shirani, Tafti, and Aff-
isco 1999; Mabrito 2006)) which suggests that the gains of
synchronous collaboration outweighs the benefits of asyn-
chronous collaboration.

However, for non-experts due to the erratic usage of ex-
planations as observed in Figures 6 and 7, it is difficult
to ascertain a pattern. This is potentially the reason why,
although collaboration is statistically significant for non-
experts, it is a weak significance (p-value=0.054). Further-
more, this suggests that while experts are able to collaborate
well, non-experts may require a guided synchronous collab-
oration strategy to further improve performance. It is worth
noting that when comparing the Non-expert with AMT and
Expert with Upwork performance, the difference may po-
tentially also be resulted from different collaboration modes
(i.e., “asynchronous” vs. “synchronous” settings) and differ-
ent compensation levels. However, with the respective ra-
tional settings with two groups, the Experts can outperform
non-experts in detecting deepfake texts.



Which Explanation Categories Can Potentially Be
Helpful for Deepfake Text Detection?
Experts’ mentions of coherence, logical errors, and self-
contradiction errors as explanations for deepfake text de-
tection were significantly higher in the collaborative setting
than in the individual setting, specifically for correct re-
sponses (Figure 6). Non-experts showed no pattern differ-
ences in coherence, logical errors, and self-contradiction ex-
planations between individuals and collaboration. However,
expert participants used them, especially coherence and self-
contradiction, more in collaboration when they detected the
deepfake texts successfully and less in collaboration when
they detected deepfake texts inaccurately. This result corrob-
orates Dou et al. (2022)’s finding that machines are prone to
fall short of those categories. Taking into account experts’
superior performance in deepfake text detection, we con-
clude that both coherence errors and self-contradiction er-
rors are strong indicators of deepfake text. Table 4 confirms
this finding as well since both explanations have a p-value
< 0.001 for correct responses, suggesting very strong sig-
nificance. Regarding logical errors, expert participants used
them more frequently in the collaborative setting for both
correct and incorrect responses. That said, our findings im-
ply that logical flaws may be a weak predictor of deepfake.

Which Explanation Categories Should Be Cautious
Indicators for Deepfake Text Detection?
In line with previous works (Dou et al. 2022; Clark et al.
2021), we observe that participants’ mentions of grammar
errors, repetition, creativity were associated with incorrect
detection of deepfake texts. These markers are identified as
deceptive indicators of deepfake texts.

1. Grammar Errors: Experts use grammar errors fre-
quently for both correct (collaboration) and incorrect (in-
dividual) responses. This could be attributed to the fact
that humans are equally prone to making grammatical
mistakes. As a result, employing this explanation can
result in both accurate and inaccurate detection. Still,
our results indicate that experts can use grammar errors
for detection signals more correctly as opposed to non-
experts. Non-experts use grammar errors frequently for
both incorrect and correct responses, although a bit more
frequently for incorrect responses. Furthermore, this phe-
nomenon is confirmed by the findings in (Clark et al.
2021; Dou et al. 2022) that grammar errors are weak in-
dicators of deepfake texts. Therefore, we conclude that
grammar errors are weak indicators of deepfake texts.

2. Repetition: We observe in Figure 6 and 7 that repetition
is the last and second-last frequently used explanations
for correct and incorrect responses, respectively. This
was a good indicator of deepfake texts when NTGs were
still in their infancy. However, NTGs have improved sig-
nificantly such that the quality of generations can be mis-
construed as human-written. In addition, we took mea-
sures to ensure high-quality generations, which is dis-
cussed in detail in the Method Section. Thus, repetition
was not prevalent in the deepfake texts, making repetition
a weak indicator of deepfake texts.

3. Creativity: News is supposed to be the unbiased report-
ing of factual events. Therefore, as these events remain
non-fiction, news articles are not creative and should not
be judged by their level of creativity. This is the rea-
son why experts used creativity very sparingly because
English experts they are aware of which style of writ-
ing should creative or not-creative. Therefore, experts
use repetition as explanation second-to-last for correct
responses (Figure 6). Unsurprisingly, experts used cre-
ativity a bit more frequently for incorrect responses, with
the more frequent usage observed in individuals (Figure
7). However, for non-experts, creativity is also used spar-
ingly for correct responses but frequently for incorrect
responses. Therefore, due to the frequent usage of cre-
ativity for incorrect responses vs. infrequent usage for
correct responses, it follows that for the task of detecting
deepfake news paragraphs, creativity is a false indicator
of deepfake texts.

Limitation

To implement design choices and run manageable experi-
ments, we made a few simplifications that may limit our
findings. First, since we only use GPT-2 to generate deep-
fake texts, our findings may not be directly applicable to
other NTGs. However, our choice of using GPT-2 is reason-
able because: (1) prior research reported that human detec-
tion performance of deepfake texts by the later GPT-3 and
GPT-2 is similar (Uchendu et al. 2021; Clark et al. 2021),
and (2) using the largest parameter size of GPT-2 enabled us
to generate deepfake texts more effectively that closely re-
sembles GPT-3 quality. Furthermore, as we use the default
hyperparameters of GPT-2 to generate the texts, the results
may be limited to that sampling technique. However, we mit-
igated this issue by manually checking the quality of a few of
the articles and found the deepfake texts to be coherent and
consistent with the rest of the paragraphs. This preserved the
integrity of the experiments as the task remained non-trivial.

Conclusion

Our study investigated the impact of human collaboration on
improving the detection of deepfake texts. To create a realis-
tic experimental setup, we constructed a three-paragraph ar-
ticle comprising one LLM-generated (deepfake) paragraph
and two human-written paragraphs. Participants were tasked
with identifying the deepfake paragraph and providing ex-
planations based on seven explanation types. For participant
recruitment, we recruited non-expert participants from AMT
for asynchronous collaboration and experts from Upwork
for synchronous collaboration. The results revealed that col-
laboration is likely to enhance the detection performance of
both non-experts and experts. We further identified several
strong and weak indicators of deepfake texts through the ex-
planation analysis. Notably, the improved performance of
participants compared to the baselines indicated that our
Turing Test framework effectively facilitated the enhance-
ment of human deepfake text detection performance.



Ethical Statement
Our research protocol was approved by the Institutional Re-
view Board (IRB) at our institution. We only recruited hu-
man participants 18 years old or over. Participants did not
have to complete the entire task to be paid. Using AMT, par-
ticipants’ identification was already anonymized, but for Up-
work we anonymized participants by assigning them numer-
ical values for the analysis. For performing the deepfake text
detection task, all our human participants, from both AMT
and Upwork, were paid over minimum wage rate. Next, the
articles that we used for the experiments are the first 3-
paragraphs of news articles. While we did not share the an-
swer to the task, we clearly informed participants that the
presented texts (and one of three paragraphs therein) con-
tains deepfake texts. Therefore, we believe that participants
are unlikely to be negatively influenced by their exposure to
the test news articles with deepfake paragraphs.
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