
The Pennsylvania State University

The Graduate School

HIGH PERFORMANCE RECORD LINKAGE

A Dissertation in

Computer Science and Engineering

by

Hung-sik Kim

c© 2010 Hung-sik Kim

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2010

The dissertation of Hung-sik Kim was reviewed and approved∗ by the following:

Dongwon Lee

Associate Professor of Information Sciences and Technology

Thesis Advisor, Chair of Committee

Padma Raghavan

Professor of Computer Science and Engineering

Director: Penn State Institute for CyberScience

Bhuvan Urgaonkar

Assistant Professor of Computer Science and Engineering

Ae Ja Yee

Assistant Professor of Mathematics

Raj Acharya

Professor of Computer Science and Engineering

Head of the Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

In current world, the immense size of a data set makes problems in finding sim-
ilar/identitcal data. In addition, the dirtiness of data, i.e. typos, missing/tilting
information, and additional noises usually occurred by careless editing or entry
mistakes, makes further difficulty to identify entity-belongs. Therefore, we focus
on the faster detection of data referring the same real-world entity from a large size
data set under the error prone environments, while the high accuracy of detection
is maintained. In this thesis, we study high-performance linkage algorithms using
four different applications. First, we introduce the image linkage algorithm to find
near-duplicate images with similar characteristics by bridging two seemingly unre-
lated fields – Multimedia Information Retrieval and Biology. Under this idea, we
study how various image features and gene sequence generation methods affect the
accuracy and performance of detecting near-duplicate images. Second, we develop
the video linkage algorithm using record linkage methods to detect copied videos
from a large multi-media database or sites such as YouTube and Yahoo Videos.
The utilization of video characteristics is reflected to the hierarchical structure of
the proposed algorithms. In addition, the uses of pipe-lined linkage structures ac-
celerate the speed further. Third, the parallel linkage algorithm, the parallelization
of the data linkage frame, is introduced, when slow but optimal sequential link-
age frames occur where iterative matching operations apply to clean and merge
dirty sets. Any data matching functions can be adapted to the proposed parallel
framework because a data linkage function is considered as a black box in the
parallel scheme. Finally, we introduce a hashed linkage structure based on the
locality sensitive hashing (LSH) algorithm. By remedying the poverty of a basic
LSH structure to suit linkage problems, the proposed hashing structure reduces
the precessing time tremendously comparing to the conventional LSH structures.

iii

Table of Contents

List of Figures viii

List of Tables x

Acknowledgments xi

Chapter 1
Introduction 1
1.1 Motivation . 3

1.1.1 Image Linkage . 3
1.1.2 Video Linkage . 5
1.1.3 Parallel Linkage . 7
1.1.4 Hashed Linkage . 9

1.2 Thesis organization . 10

Chapter 2
Related Works 12
2.1 Image Linkage Problem . 13
2.2 Video Linkage Problem . 15
2.3 Parallel Linkage Problem . 17
2.4 Hashed Linkage Problem . 17

Chapter 3
Image Linkage 19
3.1 Problem Definition . 20
3.2 BASIL: The BLASTed Image Linkage 21

3.2.1 Overview of BASIL . 22
3.2.2 The Composite Conversion (CC) Table 23

iv

3.2.3 The Scoring Matrix . 26
3.3 Experimental Validation . 27

3.3.1 Set-Up . 27
3.3.2 Comparison within BASIL 30

3.3.2.1 Comparison between DNA vs. Protein 30
3.3.2.2 Comparison among scoring matrices 31
3.3.2.3 Comparison among image features 33
3.3.2.4 Comparison among editing methods 35

3.3.3 Comparison against Other Methods 36
3.4 Summary . 38

Chapter 4
Video Linkage 39
4.1 Problem Definition . 40
4.2 Hierarchical Video Linkage . 41

4.2.1 Video Pre-Processing . 42
4.2.2 Frame Level Similarity . 43
4.2.3 Shot Level Similarity . 43

4.2.3.1 Exact shot linkage measure 43
4.2.3.2 Boosting shot linkage measure 46
4.2.3.3 Shot linkage structures 50

4.2.4 Hierarchical Video Linkage (Video Level Similarity) 50
4.2.4.1 Dynamic selection of shots as nodes 51
4.2.4.2 Hierarchical Video Linkage structures 53

4.3 Experimental Validation . 54
4.3.1 Set-Up . 54
4.3.2 Video Linkage on MUSCLE-VCD-2007 data set 56

4.3.2.1 Parameters and decision rule 56
4.3.2.2 Accuracy and performance on ST1 57
4.3.2.3 Accuracy and performance on ST2 57

4.3.3 Video Linkage on YouTube data set 58
4.3.3.1 Parameters . 58
4.3.3.2 Robustness on various editing 59
4.3.3.3 Robustness on various genres 60
4.3.3.4 Accuracy on various thresholds 61
4.3.3.5 Performance of selected schemes 61

4.4 Summary . 62

v

Chapter 5
Parallel Linkage 64
5.1 Problem Definition . 65
5.2 Solution Overview . 67
5.3 Sequential Linkage . 68

5.3.1 Clean vs. Clean . 68
5.3.2 Dirty vs. Clean . 71
5.3.3 Dirty vs. Dirty . 72

5.4 Parallel Linkage . 73
5.4.1 Clean vs. Clean . 74
5.4.2 Dirty vs. Clean . 76
5.4.3 Dirty vs. Dirty . 78

5.5 Experimental Validation . 79
5.5.1 Set-Up . 79
5.5.2 Among Sequential Linkages 80
5.5.3 Sequential vs. Parallel Linkages 83
5.5.4 Among Parallel Linkages . 84
5.5.5 Against P-Swoosh and P-Febrl 85
5.5.6 Observation of Parallel Linkages 87

5.6 Summary . 87

Chapter 6
Hashed Linkage 88
6.1 Iterative LSH . 89

6.1.1 Vector Presentation . 89
6.1.2 LSH with MinHash . 89
6.1.3 Iterative LSH to Clean Single Dirty Collection 91

6.2 Hashed Record Linkage: HARRA 95
6.2.1 Clean vs. Clean . 95
6.2.2 Clean vs. Dirty . 97
6.2.3 Dirty vs. Dirty . 99

6.3 Experimental Validation . 99
6.3.1 Set-Up . 100
6.3.2 Choice of Parameters: K, L, and T 101
6.3.3 Comparison Against Existing RL Solutions 104
6.3.4 Comparison Against Existing LSH Based RL Solutions . . . 106
6.3.5 Cleaning Single Data Collection 107
6.3.6 Cleaning Pairs of Data Collections 109
6.3.7 Robustness of HARRA . 111

6.4 Summary . 114

vi

Chapter 7
Conclusion 115
7.1 Contribution . 115
7.2 Research Plan . 116

Bibliography 118

vii

List of Figures

1.1 Near-Duplicate problems. 4
1.2 Key frames of an original video scene (a) from the movie “Forrest

Gump”, three copied/altered ones (b)-(d), and a similar one (e). . . 6
1.3 Running times of two RL solutions, StringMap and R-Swoosh, for

two data sets (in self-clean case). X-axis is on Logarithmic scale. . . 9

3.1 Sequence alignment example. 21
3.2 Overview of BASIL. 23
3.3 The CC table with two mapping charts. 24
3.4 Characterized scoring matrices for BASIL. 27
3.5 Examples of edited images. 29
3.6 Comparison between DNA and protein gene sequence representa-

tions. 31
3.7 Comparison among scoring matrices. 32
3.8 Comparison among image features. 34
3.9 Comparison among editing methods. 35
3.10 Comparison BASIL to Ferret and ND PE. 37

4.1 The structure of hierarchical Video Linkage. 42
4.2 An illustration of Example 1. 49
4.3 Accuracy and performance of selected Video Linkage algorithms on

MUSCLE-VCD-2007 video sets. 58
4.4 Performance of each scheme over 6 editing methods. 59
4.5 Performance of each scheme over 10 genres. 60
4.6 Various performance results. 62

5.1 Inter-record relationships. 66
5.2 Six possible relationships for ai, bj, and bk when bj 6≈ bk (i.e., B is

clean). 69
5.3 Parallel Linkage model with 2 processors. 74
5.4 Single iteration of p-CC. 76

viii

5.5 The RT and NC of six sequential algorithms (IMR=0.0 & CMR=0.3). 81
5.6 The total NC of four sequential algorithms with different IMR and

CMR. 81
5.7 Iterations of s-self algorithm. 82
5.8 The RT and NC of p-CC (# in legend is # of processors). 83
5.9 Details of p-CC (legend shown in (a)). 84
5.10 The RT and NC of five parallel algorithms (IMR=0.0, CMR=0.3,

8 processors, and 5,000 records). 85
5.11 Comparison with other parallel schemes. 87

6.1 A basic LSH structure. 90
6.2 The general structure of I-LSH. 92
6.3 The structure of h-CC. 95
6.4 Examples of record distributions in two different CiteSeer sets with

100,000 records. 101
6.5 Impact of K and T using h-Dself to one dirty set generated by PL

distribution. 102
6.6 RT comparison among h-Dself , StringMap, and R-Swoosh. (Note

that Y-axis of (b) is on logarithmic scale.) 105
6.7 Comparison, h-Dself to others with Gaussian distribution, σ = 1

and mean = 11. 107
6.8 h-Dself with Power-Law (PL) and Gaussian (GA) distributions . . 108
6.9 # of records & # of buckets in a hash table at each iteration with

200,000 records. 108
6.10 All algorithms for different scenarios. 109
6.11 Comparison among h-CC, h-CD, and h-DD1 with 10, 000 to

400, 000 records. (Note that running time between (a) and (b) are
not comparable.) . 110

6.12 Algorithm comparison in clean-dirty case by varying IMR and CMR
with 100,000 records. 112

6.13 Algorithm comparison in dirty-dirty case by varying IMR and CMR
with 100,000 records. 113

ix

List of Tables

2.1 Survey of representative solutions to the Near-Duplicate problems. . 14
2.2 Comparison of a few recent CVD algorithms. 16
2.3 Comparison of a few recent RL algorithms. 18

3.1 Image data sets. 28

4.1 Summary of notations in Video Linkage. 40
4.2 Time complexities of five shot linkage measures. 48
4.3 Description of data set. 55

5.1 Summary of notations in Parallel Linkage. 67
5.2 Taxonomy. 68

6.1 Complexities of six Hashed Linkage algorithms, where N is time
for generating a hash table at 1-st iteration, α =

∑T
i=1 σiĉi, β =∑T

i=1 σi, and PX is # of keys in a hash table for a set X. 99
6.2 Symbols used in experiments. 101
6.3 Comparison between Hashed Linkage and four other RL solutions. . 104
6.4 Precision and recall comparison among h-Dself , StringMap, and

R-Swoosh. 106
6.5 Precision and recall under various dirtiness 111

x

Acknowledgments

I am heartily thankful to my advisor, Dr. Dongwon Lee, for his encouragement,
guidance, patience, and support during my time in graduate school. I also owe
my deepest gratitude to my parents, Mr. Changsoo Kim and Mrs. Soonki Kim,
who encourage me during all my life. In addition, I would like to thank to my
wife, Minam Kim, and my kids, Dongha, Minha, and Tayha Kim. Without my
family, this thesis would not have been possible. I would also like to thank other
committee members, Dr. Padma Raghavan, Dr. Bhuvan Urgaonkar, Dr. Ae Ja
Yee, and Dr. Raj Acharya, for their guidance and suggestions during my research.

Lastly, I offer my regards and blessings to all others who supported me during
my graduate school.

xi

Chapter 1
Introduction

Large-scale data repositories often suffer from duplicate entities that have differ-

ent identifiers, but refer to the same real-world object. To make matters worse,

demand for large-scale data handling in diverse data formats makes this problem

even harder in terms of accuracy as well as searching time for a query data. In

addition, both cleaning a large-scale dirty data set and merging heterogeneous

large-scale data sets are required tremendous processing time, because a record

linkage between two data sets demands quadratic number of comparisons without

any modification. For example, when all elements in a set with the size of N is

compared together, we need NC2 pair-wise comparisons. For two different sets,

|A| = m and |B| = n, then the record linkage process requires O(mn) time com-

plexity. In this thesis, the improvement of performance to find records referring the

same real-world object is mainly aimed. In order to surmount a tedious running

time, we suggest four novel record linkage applications in various aspects.

Record linkage algorithm is usually located in two different steps. One is the

match step, and the other is merge step. The match process is generally known

as finding the similar (or same) record using proper matching function, while the

merge process is not known in detail in terms of how to merge two clone-like

records. Therefore, some applications [5, 64, 14] only focus on the generic algo-

rithms for match step, but others [68, 10] also consider merge step even though

the merge function is not fully studied.

In this thesis, we study high-performance record linkage algorithms in four

different applications to enhance processing time as well as accuracy.

2

First, the Image Linkage algorithm is developed to find near-duplicate images

with similar characteristics found in Multimedia Information Retrieval (MIR). To-

ward this effort, we propose a novel idea by bridging two seemingly unrelated fields

– MIR and Biology. That is, we propose to use the popular gene sequence align-

ment algorithm in Biology, i.e., BLAST, in detecting near-duplicate images. Under

the new idea, we study how various image features and gene sequence generation

methods (using gene alphabets such as A, C, G, and T in DNA sequences) affect

the accuracy and performance of detecting near-duplicate images. We also inves-

tigate the impact of customized scoring matrices in BLAST, originally optimized

for Biological data. The output of Image Linkage solution is a set of near-duplicate

images for a query image.

Second, the Video Linkage algorithm – the copied video detection using a record

linkage method – is shown to find copied videos for a query video from large video

collections such as YouTube or Yahoo video. The issue on copied video detection

(CVD) is not on merging or cleaning a data set, but on finding copied videos to

address the copyright protection problem. Thus, Video Linkage focuses on how to

make an efficient match algorithm. In Video Linkage algorithm, we utilize video

feature and a video structure to enhance performance. In addition, video pre-

filtering and pipe-lining also improve a query processing time drastically. The

output of Video Linkage solution is a set of copied videos for a query video.

Third, we study the Parallel Linkage algorithm which can exploit any distance

measures (match functions) of data linkage algorithms and any merging meth-

ods (merge functions) , i.e., the proposed parallel linkage algorithms are linkage-

function-independent. We address to implement the parallel structure of the op-

timal sequential linkage algorithm when merge step is applied to clean a data set.

The well-known match function - Jaccard- is used, and ∪{tokens} is used to merge

citation records. Therefore, the output of Parallel Linkage is one clean set from one

dirty set or many input sets.

Fourth, we propose the Hashed Linkage algorithm based on locality sensitive

hashing (LSH). Hashed Linkage performs to clean large-scale record sets based

on fast and scalable search response to a query record. Thus, the merge step,

∪{tokens} with citation records, is also involved in Hashed Linkage. The Hashed

Linkage algorithm exploits the LSH technique in a different way from conventional

3

LSH idea by using the iterative nature of a record linkage that proceeds match and

merge steps at each iteration. By reducing the size of data sets at each iteration

by merge process, with the same number of keys per records, we outperform other

conventional LSH based linkage algorithms. Furthermore, our hashing algorithm

will minimize the missing data that should be returned, but maximize the efficiency

on both processing/query time and space uses. Similar to Parallel Linkage, Hashed

Linkage also exploits any match and merge functions in its structure, and outputs

one clean set.

In followings, we reviews the motivations for each linkage algorithm developed

for specific or general purpose in record linkage areas.

1.1 Motivation

1.1.1 Image Linkage

In many applications of Multimedia Information Retrieval (MIR), the task to find-

ing near-duplicate images becomes increasingly important - e.g.. detecting illegally

copied images on the web. Image Linkage is the effort to solve Near-Duplicate prob-

lem by bridging two seemingly different areas, i.e., Multimedia and Biology.

Near-Duplicate problem can be classified into two folds – Near-Duplicate Keyframes

(NDK) and Near-Duplicate Image Detection (NDID) problems. Due to the com-

mon characteristics of NDK and NDID, i.e., near-duplicate, it is not surprising

to find the existing works [53, 101] that consider NDK and NDID as the same

problem. However, they should be taken care of differently since each of them has

different ways of duplication. Figures 1.1 (a) and (b) are the examples of NDID and

NDK problems, respectively. Although all pairs of images seem to be very similar,

they are slightly different from each other. In the examples of NDID (Figure 1.1

(a)), one image is copied from another and edited by adding a logo or changing

the size. On the other hand, a pair of images in the examples of NDK (Figure 1.1

(b)) are captured from the same video but with different time or camera angle.

Therefore, NDID has a different strategy and data sets for evaluation from NDK.

In this thesis, we focus on NDID problem rather than NDK in terms of descriptors

and matching methodology.

4

(a) Examples of NDID

(b) Examples of NDK

Figure 1.1. Near-Duplicate problems.

Despite many solutions to the NDID problem (to be surveyed in Section 2.1), by

and large, contemporary solutions have focused on how to identify near-duplicate

images accurately and fast by designing new algorithms, data structures, or models

in a particular application or context. However, it is hard to apply newly-developed

solutions to new data sets of different scenarios that requires using additional tools

to visualize or analyze the results further. One way to approach the problem is

to develop a suite of NDID algorithms and tools for “generic” usage so that the

developed solutions can be used in a variety of situations by many users [63, 47, 45].

Another way is to extend an existing generic solution to solve the NDID problem

so that one can leverage on the development of the generic solution and its user

base [16].

In this thesis, we take the latter approach and apply one of such popular

and generic solutions drawn from Biology, called BLAST (Basic Local Alignment

Search Tool) [1] to solve the NDID problem. The BLAST, developed in 1990, is

one of the most popular (and best cited) algorithms for aligning biological sequence

information such as nucleotides of DNA sequences and amino acid sequences of pro-

teins. In its essence, given a query sequence sq, BLAST finds top-k most similar

sequences above a threshold from a database of sequences D using approximation

heuristics based on Smith-Waterman algorithm [83].

Since Image Linkage also provides the solution to transfer images to gene se-

quences, we can access directly to many BLAST implementations and tools (to be

5

detailed in Chapter 3).

1.1.2 Video Linkage

Due to the advancement of video recording/editing hardware/software, larger stor-

age spaces, increasing network bandwidth, and the surge of Web 2.0 in recent years,

the popularities of social media, video blogs, and user-created content videos have

grown exponentially through online sharing sites such as YouTube1 and Yahoo

Video2. One of the challenges of such sites is, however, to identify and remove

video clips that violate copyrights by illegally copying and editing scenes from

other videos. This is because people often upload music videos, scenes of movies,

commercials, or TV shows to such sites without proper authorization, often know-

ing its illegal nature. For instance, in 2007, Viacom3, the owner of MTV, asked the

removal of their copyrighted contents from YouTube that have been viewed more

than 1.5 billion times. In 2008, Mediaset SpA, Italy’s largest private broadcaster,

filed a lawsuit for at least EUR500 million against YouTube for the unlawful use

of the Italian company’s audio and video files.

Therefore, it only gets more important for companies to be able to detect

and remove such illegal contents in their collections to avoid serious legal and

financial responsibilities. However, manual operations to detect and remove such

pirated videos cannot keep up with demand because of the sheer number of video

clips created every day. The situation will get only exacerbated as time passes.

Naturally, therefore, automatic methods to detect illegally copied video clips fast

and accurately in a large collection are greatly desirable. However, in general,

detecting copied videos is a much harder problem than detecting similar videos, as

illustrated in the following motivating example.

Example 1: Figure 1.2 shows selected key frames of an original video scene,

(a), from the movie “Forrest Gump”, three other scenes, (b)-(d), that are possi-

bly copied and altered from (a), and one similar but non-copied scene, (e). We

obtained all video scenes except (a) from YouTube. It is observed that the copied

videos, (b)-(d), are edited by some basic operations such as integrating several

1http://www.youtube.com/
2http://video.yahoo.com/
3http://www.viacom.com/

6

(a)

(b)

(c)

(d)

(e)

Figure 1.2. Key frames of an original video scene (a) from the movie “Forrest Gump”,
three copied/altered ones (b)-(d), and a similar one (e).

shots, changing format, and inserting title, transitions, and/or credit. For ex-

ample, Figure 1.2(b) is edited by adding a credit scene, changing resolution, and

cropping the original scene, while Figure 1.2(c) by adding a transition scene and

changing the size of video. In particular, Figure 1.2(d) is (supposedly) illegally

captured by a camcorder, which causes a lot of noises and unexpected modifica-

tion like in the last key frame. However, on the other hand, Figure 1.2(e) is a

similar video of Figure 1.2(a), but not copied one since it is an animation parody-

ing “Forrest Gump”. Therefore, a good system for copied video detection should

conclude that only Figure 1.2(b)-(d) are copies of Figure 1.2(a) by utilizing editing

methods. �

As shown in the example, it is hard to identify copied videos from similar videos.

In order to remedy these problems, our copied video detection system acquires the

record linkage algorithm which computes the similarity between two entities in a

7

database. However, a video has different characteristics from a relational record,

such as citations, usually used in record linkage problems. The utilization of video

features and a video structure improves the accuracy as well as the processing

time.

1.1.3 Parallel Linkage

As the growth of volumes in information, the size of database is enlarged in recent

years. For example, the number of citations in citeseer is accumulated over 20

millions. Due to the number of records in a database and poor quality of records,

it is nearly impossible to find all approximate same entities in a given time. In

record linkage problems, many efforts to enhance the processing time to find the

same entities from a large repository have been proposed such as blocking [90]. In

addition, the poor quality data is very common in databases due to a variety of

reasons, including transcription errors, data entry mistakes, lack of standards for

recording database fields, etc. To remedy such problems, considerable recent works

have focused on record linkage problem, defined by identification of all matching

records between two collections of records. Such problems are, in general, known as

the de-duplication problem or the entity resolution problem. The linkage problem

frequently occurs in data applications (e.g., digital libraries, search engines, cus-

tomer relationship management) and gets exacerbated when data are integrated

from heterogeneous sources. For instance, a customer address table in a data ware-

house may contain multiple address records that are all from the same residence,

and thus need to be consolidated. For another example, imagine integrating two

digital libraries, DBLP and CiteSeer. Since citations in two systems tend to have

different formats, identifying all matching pairs is not straightforward.

Although the linkage problem has been studied extensively in various disci-

plines, the contemporary approaches have focused on how to identify “matching”

records “faster” using a “better” distance function. Despite much advancement

in solving the RL problem, however, the issue of efficiently handling large-scale RL

problem has been inadequately studied. At its core, by and large, RL algorithms

have a quadratic running time. For instance, a naive nested-loop style algorithm

takes O(|A||B|) running time to link two data collections, A and B, via all pair-

8

wise comparisons as follows (assuming a distance function, dist(), and a preset

threshold, θ):

for each record ai(∈ A)

for each record bj(∈ B)

if dist(ai, bj) < θ, then ai ≈ bj

Due to its quadratic nature, when both sets A and B have a large number of

records, the naive approach becomes prohibitively expensive. To remedy this prob-

lem, people have proposed many improvements – e.g., faster linkage approaches

such as blocking [90] or computationally efficient distance functions such as upper-

bound matching [71].

The inadequate performance issue of modern RL solutions for large-scale data

collections gets much exacerbated when the RL problem becomes “iterative” in na-

ture. In the conventional match-only RL model, when two records are determined

to be matched, the pair is returned and no further action is needed. However,

in the more general match-merge RL model [68], once two records ra and rb are

matched and merged to a new record rc, rc needs to be re-compared to the rest of

records again since it may incur new record matching. This makes the RL process

“iterative” until convergence emerges. In such an iterative RL model with large-

scale data collections, as demonstrated in Figure 1.3, conventional RL solutions

become simply too slow. Taking two popular RL solutions, StringMap [48] and

R-Swoosh [10], for instance, Figure 1.3 shows the running times (from the begin-

ning of data load to the finish of the linkage) of both algorithms for self-cleaning

data collections with short records (e.g., people names) and long records (e.g., ci-

tations). The number of records varies from 1,000 to 400,000 records4. Note that

both algorithms are not suitable to handle the given RL task, showing quadratic

increase of running times for small data (see Inset of Figure 1.3) or for large data

collections (or for both).

Toward this scalability problem, however, we take a different approach from

contemporary approaches, and study how to make a linkage algorithm “paral-

lel.” Therefore, we do not deliberate issues like generation of an efficient distance

4Running times for 1,000 – 4,000 records were obtained by actually running publicly available
codes of both algorithms while the remaining values were fitted by the quadratic polyfit function
in Matlab since neither codes finished within reasonable time.

9

4

5
on

s
se
c.
) Stringmap

R‐Swoosh

2

3

e
(x

 M
ill
io

1 month

0

1

nn
in
g
Ti
m
e

1 day
1 week

1 10 100Ru

of records (x 1,000)

400

30
35
40

on
s
se
c.
) Stringmap

R‐Swoosh1 year

15
20
25

e
(x

 M
ill
io

6 month

0
5
10

nn
in
g
Ti
m
e

1 month

1 10 100Ru

of records (x 1,000)

400

(a) short record (e.g., names) (b) long record (e.g., citations)

Figure 1.3. Running times of two RL solutions, StringMap and R-Swoosh, for two data
sets (in self-clean case). X-axis is on Logarithmic scale.

function, dist() or how to add blocking/indexing to linkage structures (as used in

blocked nested-loop or indexed join) in Parallel Linkage schemes.

1.1.4 Hashed Linkage

Another approach to enhance the processing time in general RL solutions having

quadratic natures of computations is to use hashing/blocking techniques. However,

a simple hashing/blocking algorithm is not accomplished the desirable efficiency -

i.e., it still performs many non-necessary expensive comparisons.

For instance, advanced modern two-step RL algorithms avoid all pair-wise com-

parisons by employing sophisticated “blocking” stage so that comparisons are made

against only a small number of candidate records within a cluster, thus achieving

O(|A| + |B| + c̄(c̄ − 1)|C|) running time5, where c̄ is the average # of records in

clusters and C is a set of clusters (“blocks”) created in the blocking stage. Since #

of clusters is usually much smaller than the size of data collection is and on average

each cluster tends to have only a handful of records in it, often, |A||B| � c̄(c̄−1)|C|
holds. Therefore, in general, blocking based RL solutions run much faster than

naive one does.

However, in dealing with large-scale data collections, this assumption no longer

holds. RL solutions that did not carefully consider large-scale scenarios in their

design tend to generate a large number of clusters and a large number of candidate

5Note that the hashing time per record is also considered as one unit of running time.

10

records in each cluster. In such a case, the cost of the term, c̄(c̄ − 1)|C|, alone

becomes prohibitively expensive as shown in Figure 1.3.

Few researches were on construction hash structures to handle large-scale sets

efficiently in record linkage problems. Recently, local sensitive hashing (LSH) and

its variants have been introduced as indexing techniques for approximate similar

search. LSH has been successful in similarity indexing in a high-dimensional vector

space. The main requirements of LSH are to find the family of a locality sensi-

tive functions. In such aspects, LSH indexing is properly applied to a collection

of numerical data such as images and audio shown in [6, 5, 64] or strings with a

substitution-based distance measure described in [3], but there are few suggestions

in record linkage arena containing non-numerical information such as citations. In

this thesis, toward this challenge, for the more general match-merge RL model,

we present novel hashed record linkage algorithms that run much faster with com-

parable accuracy. Like Parallel Linkage, any match and merge functions can be

used in Hashed Linkage frameworks. Throughout this thesis, we use same match,

Jaccard similarity, and merge, ∪{tokens}, functions in both Hashed Linkage and

Parallel Linkage.

1.2 Thesis organization

The rest of this thesis is organized as follows.

In Chapter 2, we review related works of linkage algorithms for specific usages

to our research arena.

In Chapter 3, we introduce a new generic Image Linkage solution, BASIL, to

solve near-duplicate image detection problem by bridging Multimedia and Biology.

Since BLAST measures global similarity as well as local similarity, the similarity

between images can be measured easily and directly by many well-developed imple-

mentations of BLAST, when the gene-like information is extracted properly from

an image. Image Linkage solution includes how to extract and generate a gene

string from various heterogenous image features, and how to exploit the extracted

genes in BLAST system.

In Chapter 4, we study Video Linkage problems to find copied videos from

video database. Due to the purpose of copied video detection (CVD) problem,

11

Video Linkage returns a set of copied videos for an original query video. By max-

imal utilization of the video structure, we develop the hierarchical structure of

video matching algorithm, which exploits a group-based record linkage solution.

In addition, we shows how to construct algorithmic Video Linkage structures such

as a pipe-lined filtering step.

In Chapter 5, we develop Parallel Linkage frameworks that parallelizes optimal

sequential linkage frameworks. On both parallel and sequential frameworks, we

show how to exploit input data characteristics such as dirtiness and cleanness to

avoid unnecessary comparisons. Specially, in the parallel structure, we show how

to partition tasks and reduce overhead. In addition, under various input data

characteristics, we analyze the performance of all proposed sequential and parallel

frameworks.

In Chapter 6, to enhance the processing time of general RL solution having

match and merge steps, i.e., iterative nature of RL solution, like in Parallel Linkage,

Hashed Linkage algorithms for non-numerical citation information are introduced.

By implementing an iterative LSH-based hashing technique, called HARRA, the

processing time and memory usage are improved drastically comparing to existing

RL solutions. We show the fast and scalable performance of iterative Hashed

Linkage solutions for any types or any sizes of input data sets.

Finally, we conclude this thesis by summarizing our methods and contributions,

and outline future works in Chapter 7.

Chapter 2
Related Works

The general linkage problem has been known as various names – record linkage

(e.g., [30, 13]), identity uncertainty (e.g., [73]), merge-purge (e.g., [44]), citation

matching (e.g., [72]), object matching (e.g., [17]), entity resolution (e.g., [77]), and

approximate string join (e.g., [39]) etc. Readers are referred to excellent survey

papers (e.g., [90]) for the latest development of the linkage problem. Unlike the tra-

ditional methods exploiting textual similarity, Constraint-Based Entity Matching

(CME) [81] examines “semantic constraints” in an unsupervised way. They use two

popular data mining techniques, Expectation-Maximization (EM) and relaxation

labeling for exploiting the constraints. [11] presents a generic framework, Swoosh

algorithms, for the entity resolution problem. The recent work by [27] proposes an

iterative de-duplication solution for complex personal information management.

Their work reports good performance for its unique framework where different

de-duplication results mutually reinforce each other (e.g., the resolved co-author

names are used in resolving venue names).

Another recent trend in linkage problem is to exploit additional information

beyond simple string comparison. For instance, [51] presents a relationship-based

data cleaning (RelDC) which exploits context information for entity resolution, or

[23] proposes a generic semantic distance metric between two terms using the page

counts from the Web.

The rest of this chapter describes all related works focused on specific aspects

with corresponding relevant linkage problems.

13

2.1 Image Linkage Problem

In particular, the task of determining if two images are near-duplicate or not,

i.e., the NDID problem, becomes increasingly important in many applications. In

general, such research on the NDID problem falls in two groups: global feature

and local feature based approaches. The global feature based approach utilizes the

similarity of two images using feature vectors extracted from entire images. For

the similarity measure, most of CBIR methods can be used, such as color [34, 67],

texture [82, 45], and shape [100] methods. However, due to the nature of CBIR

system, they are very sensitive to small changes such as illumination or geometric

distortion. The local feature based approach focuses on partial areas of image, i.e.,

keypoints, that can represent the characteristics of the entire image [53, 103]. The

example of keypoint includes local dependency using region [19], distinctive interest

point [53], or part-based [102]. To detect near-duplicated images, these approaches

measure the similarity between two images by matching the keypoints [53, 34] and

clustering the feature vectors [33, 67].

Table 2.1 shows the summary of a few representative solutions to the three vari-

ations of ND problem – NDID, NDK, and CBIR. The third and fourth columns

describe the main descriptors and the methodology of matching used in the cor-

responding paper, respectively. In addition, data sets and evaluation metrics are

indicated at the fifth and sixth columns of the table, respectively. We focused

our survey only on the recent works, published after 2004. To limit the coverage

of related literature, we do not survey recent proposals to detect near-duplicate

documents (instead of images) such as [98, 86] and near-duplicate videos [79, 91].

With respect to images and other multimedia mediums, one of the most funda-

mental operations in MIR is to match two similar images [28, 35, 16, 43, 57]. There

have been numerous researches on the matching problem with various names and

applications – image retrieval [16], linking image [28], image searching [43, 87, 29],

and image classification [35].

To our best knowledge, none of aforementioned works attempted to solve the

NDID problem in MIR using the BLAST technology [1] in Biology. Furthermore,

there have been very few attempts to use BLAST for applications outside of gene

sequence alignment. First, [7] borrows the idea of multiple sequence alignment from

14

Problem Paper Descriptor Matching Data sets Metric

NDID

CIVR07 [34] g/l feature L2/point matching create own with editing PR
WWW08 [67] g feature clustering SapmArchive accuracy
MIR07 [33] l feature clustering create own with editing PR
MM04 [53] l feature point matching create own with editing PR

NDK

MM04 [101] key points likelihood ratio TRECVID 2003 PR
CIVR07 [104] key points point matching TRECVID 2006 PR
MM07 [92] g/key pointsEuclidean/point matching create from videos PR

ITM07 [103] key points point matching TRECVID 2003 P(k)

CBIR
CIKM08 [87] key points k-NN search Yorck (art images) PR
EDBT09- [29] g feature k-NN search CoPhIR Hit ratio

MM08 [26] key points L2/cosine similarity Caltech-101 ROC
g(Global), l(Local)

Table 2.1. Survey of representative solutions to the Near-Duplicate problems.

BLAST in building a mapping dictionary, that is a lexicon of elementary semantic

expressions and corresponding natural language realizations. Second, [59]1 uses

BLAST to detect gene and protein names from journal articles by viewing an

entire article as a query sequence and a set of known gene and protein terms as a

database of sequences to match. Finally, [46] employs BLAST in the citation field

segmentation problem – i.e., split a unsegmented citation string into known set of

fields such as author, title, venue, and year. In the same sprit of these works but

for the first time, we propose to use BLAST to solve the NDID problem. Since

BLAST algorithm is based on substring matching and gapped extension, it can

address the problems in both global and local feature based methods for NDID.

Even though NDK has different culture, it has been considered as the same

problem as the NDID problem in literature. As shown in Table 2.1, almost all the

approaches in the NDK problem [101, 32, 104, 103] are based on key points, i.e.,

point of interests or local descriptors, and point-wise matching, such as Locality

Sensitive Hashing (LSH). Only a few of them consider both global and local fea-

tures [92]. Due to the nature of the NDK problem, i.e., captured from a video,

TRECVID data sets are mostly used for their evaluation.

Image Linkage solutions focus on solving NDID problem using BLAST to mea-

sure the similarity between images followed by extracting gene sequences repre-

senting image features.

1To our best knowledge, [59] is the first article, mentioning the idea of transforming English
alphabet to DNA sequences of A, C, G, and T.

15

2.2 Video Linkage Problem

Generally, the video matching techniques are developed differently for two different

problems, i.e., CVD(e.g., [99, 61, 85, 96, 94]) and CBVR (e.g., [31, 42, 25, 15, 88])

problems. While CBVR techniques focus on finding similar videos containing sim-

ilar visual information, CVD techniques are to find video copies videos by various

editing methods. A survey of comparative study regarding to features and distance

measures used in the CVD problem can be found in several literatures [61, 41].

The state-of-art content-based CVD algorithms have been studied in many aspects

such as feature selection, descriptor, comparison methods, and comparison struc-

ture. The signature or descriptor of a video is usually extracted from key frames in

many applications [58, 96] since they are known to be a good representative. Key

frames can be selected dynamically [20, 74] using relationship between frames.

To obtain a video signature from selected key frames, various features are sug-

gested to extract appropriate descriptors. Because a frame as an image mostly

provides spatial characteristic and a sequence of frames as a video contains tempo-

ral characteristic, most CVD techniques exploit spatio-temporal features. Based

on spatio-temporal features, Law et al. [60] proposed to use local descriptors, Leon

et al. [62] proposed video signature based on video tomography, and Wu et al. [93]

proposed invariant pattern of visual information as a video descriptor. Xu et al.

[96] obtained a video signature from compressed DCT domain.

In various CVD applications, to compute the similarity between videos using

selected persistent features, diverse video matching structures were proposed .

Depending on distortion types in video copies, each CVD algorithm suggested

different features and different similarity measures. Tan et al. [84] utilized visual

similarity and temporal consistency on a key frame sequence. In addition, they

considered three levels to detect partially copied videos by considering a video

signature as a set of sequences and, in turn, each sequence as a set of key frames.

In [56], a spatio-temporal sequence matching is proposed to handle a wide range

of modifications in videos, while Joly et al. [49] [50] proposed statistical similarity

search using a local fingerprint based on an approximate search paradigm. A graph

matching solution was proposed by solving a shortest-path problem in [20]. In their

method, CVD has been thought as a partial matching problem that utilized Markov

16

Used frames Descriptor Match function Metric
MM09 [99] uniformly selected position correlation dynamic programming P, R

ICME09 [96] fictional frames(DCT) ordinal signature sliding windows P, R
ICME09 [76] uniformly selected visual word(SIFT) sliding windows P, R
MIR08 [9] all frames sensor fingerprint correlation FPR&FRR
VIE08 [93] all frames position correlation histogram distance FPR&FRR

ICME09 [94] all frames visual character string self similarity P, R
MIR08 [89] uniformly selected Hessian-based STIP LSH & RANSAC P, R

CSVT08 [20] dynamically selected ordinal signature graph matching P, R
MM08 [74] dynamically selected Glocal signature indexing P, R, S

OVP(Open Video Project), FPR(False Positive Rate), FRR(False Reject Rate), P(Precision),
R(Recall), S(Speed)

Table 2.2. Comparison of a few recent CVD algorithms.

models for the probabilistic nature of the problem using key frames and candidate

segments. The ordinal features that were computed by partitioned frames were

utilized in [55]. In their method, the spatial matching of ordinal signatures is

combined by the temporal matching of temporal video signatures from frame-

partitioned temporal trails. For streaming videos, Yan et al. [97] introduced a

video sequence similarity measure which was the composite of frame fingerprints

extracted for individual frames. The key frames of incoming video are partially

decoded to extract frame features. Kim et al. [58] computed the similarity of key

frame pairs and then compared the time gap between matched key frames. Table

2.2 shows the summary and comparison of a few representative solutions to CVD

problem.

Two most relevant record linkage techniques are group record linkage and block-

ing. Group record linkage [71] is a novel record linkage for matching data objects

that have a group of elements in them. we extend the technique further to accom-

modate temporal information in videos. Blocking technique was first proposed

by [54], and has been studied extensively [66] where initial rough but fast cluster-

ing is followed by more exhaustive record matching step. We apply the blocking

idea in the pipelined Video Linkage algorithm. In addition, by analyzing the video

structure, Video Linkage is developed as the hierarchical CVD solution with spatio-

temporal features using group-based linkage algorithm in this thesis.

17

2.3 Parallel Linkage Problem

Parallel database join has been well studied (e.g., [80]). However, as mentioned in

Section 1.1.3, parallel linkage has distinct characteristics, making the application

of parallel join solutions non-trivial. In recent years, parallel linkage has studied

in P-Febrl [22], D-Swoosh [12], and P-Swoosh [52]. P-Febrl is the parallelization

model by Python module Pypar but no detailed algorithms are shown. Both D-

Swoosh and P-Swoosh, parallel versions of Swoosh [10], are implemented by Java

emulator, and runs in dual core processors. In parallel structures, D-Swoosh uses

the task graph model while P-Swoosh uses the master-slave model. Our algorithm,

implemented in distributed MATLAB, runs in real parallel environment (while P-

Swoosh runs only in simulated environment). Our parallel solutions use the task

graph model to keep simple control of load-balancing. All of works can adapt any

ER algorithm as a match function.

2.4 Hashed Linkage Problem

More recently, the group of works on the set-similarity join (SSJoin) [78, 18] are

relevant to this thesis. Optimization techniques developed in the literature (e.g.,

size filtering [4], prefix filtering [18], order filtering [8], or suffix filtering [95]) can

be applied to the RL problem when the threshold model is used for measuring

similarities. In a sense, all these optimization techniques aim at reducing the size

of clusters via more sophisticated blocking techniques. However, none of these

works considered the iterative RL with match-merge model.

On the other hand, the Locality-Sensitive Hashing (LSH) scheme [37, 2] was

proposed to be an indexing method in approximate nearest neighbor (ANN) search

problem. However, it still has limitations such as: how to find a family of locality-

sensitive functions, how to handle excessive space issues due to many hash tables,

and how to select right number of functions or tables? Recently, distance-based

hashing (DBH) [5] is proposed to address the issue of finding a family of hash

functions in LSH. Similarly, multi-probe LSH [64] is introduced to overcome the

space issues. In many varieties of LSH-based algorithms, data sets are mostly

specified to contain numerical features (e.g., image, audio, or sensor data). For

18

Data Model Blocking Metric
WWWJ06 [48] 54,000/133,101 names match R-tree based running time,

20,000 DBLP only accuracy
VLDBJ09[10] 5,000 products match- N/A running time,

14,574 hotels merge accuracy
15,853 UNIPEN match distance accuracy,

ICDE08 [5] 70,000 MNIST only based efficiency
80,640 hand images (VP-tree like)

VLDB07 [64] 1,312,581 images match LSH based recall, query time,
2,663,040 words only memory usage

ICDM06 [14] Cora (1,295) match trained accuracy
DBGen (50,000) only blocking

AAAI06 [69] 864 restaurants match trained accuracy
5,948 cars only blocking

Table 2.3. Comparison of a few recent RL algorithms.

string or sequence comparisons, substitution-based measures are proposed in [3].

In this thesis, we extend the LSH technique and propose the Iterative LSH (I-LSH)

technique (and a suite of Hashed Linkage algorithms) that addresses the hash table

size problem and deals with the intricate interplay between match() and merge()

tasks in the RL problem. Empirically, we show that our proposal is able to address

the efficiency issues well in terms of space and running time while maintaining high

accuracy.

Table 2.3 shows the comparison among a few recent RL algorithms. Among

these, in this thesis, we compare Hashed Linkage against unsupervised RL solutions

such as [48, 10, 64] since they tend to be faster than supervised ones and their

implementations are readily available.

Chapter 3
Image Linkage

In this chapter, toward Near-duplicate image detection (NDID) problem, we intro-

duce Image Linkage solutions taking one of popular tools in Biology, called BLAST

(Basic Local Alignment Search Tool) [1]. Extracting a proper gene sequence from

an image makes possible to transform an image matching problem to biological

gene sequence matching problem.

Our decision to use BLAST for the NDID problem is based on the observa-

tions that: (1) Both NDID and gene sequence alignment problems can be variants

of approximate pattern matching. By capturing various content-based as well as

semantic-based features of images in high dimensions and converting them into

one-dimensional sequences of gene alphabets, both problems can be solved as the

approximate pattern matching problem; (2) The alignment results from BLAST

provide a robust similarity measure of S-score as well as a sound reliability mea-

sure of E-value with a statistical guarantee. Furthermore, BLAST is known for its

fast running time and ability to handle a large amount of sequence data; and (3)

BLAST has a wealth of advanced algorithms (e.g., nucleotide-nucleotide, protein-

protein, protein-nucleotide, and position-specific version), implementations (e.g.,

NCBI BLAST, FPGA-based BioBoost BLAST, and open source versions), and

tools (e.g., KoriBLAST for visualization and Parallel BLAST for parallel process-

ing [75]) to leverage on. Therefore, if one can successfully transform the NDID

problem to the gene sequence alignment problem, one can have an immediate

access to a vast number of tools to use.

Our contributions are as follows: (1) To our best knowledge, this is the first

20

attempt to solve the NDID problem using BLAST from Biology. We propose a

generic framework, termed as BLASTed Image Linkage (BASIL), toward the NDID

problem; (2) We propose the Composite Conversion (CC) table, a flexible way to

generate gene sequences from a combination of multiple image features. Through

the CC table, BASIL can use any set of image features (e.g., contents based or

semantic annotations), suited for a particular data set on hand. This enables

BASIL to be independent from a choice of image features; (3) From the Biolagy-

inspired Scoring Matrix in BLAST, we develop and evaluate a set of novel scoring

matrices that are particularly suited for the NDID problem and MIR domain; and

(4) We present a comprehensive experimentations using a variety of real data sets

for the NDID problem.

3.1 Problem Definition

Determining if two images are similar or not is a frequently studied task in the

Contents-Based Image Retrieval (CBIR) problem. In particular, the task of detect-

ing near-duplicate images becomes increasingly important in many applications of

Multimedia Information Retrieval (MIR) – e.g., detecting illegally copied images

on the Web [34] or detecting near-duplicate keyframe retrieval from videos [103].

We refer to such a problem as the Near-Duplicate (ND) problem, formally defined

as follows:

Near-Duplicate Problem. Given a set of query images Iq and a collec-

tion of source images Is, for each query image iq (∈ Iq), find all images, Ir

(⊆ Is) that are “near-duplicate” to iq.

Note that we view the ND problem as a specialized problem of a general CBIR

that aims to find similar images. That is, near-duplicate images are often generated

by deliberate editing methods (e.g., changing colors/contrasts or cropping images),

involuntary distortion (e.g., changing format/size) and variations of capturing con-

ditions (e.g., different angle/time). Therefore, by definition, near-duplicate images

are similar images, but not vice versa.

Depending on the types of duplicate images, ND problem can be classified

into two folds: (1) Near-Duplicate Keyframes (NDK) [53, 101, 103], and (2) Near-

Duplicate Image Detection (NDID) problems. Generally, NDK is defined as a pair

21

of keyframes captured from a video, where the two keyframes are “near-duplicate”

each other. On the other hand, NDID is a problem of detecting “near-duplicate”

images for a query image from a source database.

3.2 BASIL: The BLASTed Image Linkage

In order to address the NDID problem, we propose BLASTed Image Linkage (BASIL)

by adapting the BLAST algorithm. We believe that BLAST fits the NDID problem

well for many reasons. In general, near-duplicate images tend to have near-identical

characteristics which in turn are mapped to a long gene sequence of identical

alphabetical “hits.”

(a) Example images and sequences (b) Example of Sequence Alignment

Figure 3.1. Sequence alignment example.

Figure 3.1(a) illustrates an example of two ND images. The image on the

right is modified from the one on the left via operations such as changing con-

trast, compression and adding logo. The protein sequences below images are

generated by BASIL using Y component in YUV color domain. The similarity

of the two sequences is and iq can be evaluated by means of a local alignment

(e.g., Smith-Waterman) algorithm. In the algorithm, the alignment is operated on

two-dimensional matrix S in which each cell S(i, j) keeps a score of the current

matching. S is initialized with S(i, 0) = 0, 0 ≤ i ≤ |iq| and S(0, j) = 0, 0 ≤ j ≤ |is|,

22

and is built as follows:

S(i, j) = max


S(i− 1, j − 1) + s(iq(i), is(j))

max0≤k≤i−1 {S(k, j)− σ(i− k)}
max0≤k≤j−1 {S(i, k)− σ(j − k)}
0

, 1 ≤ i ≤ |iq| and 1 ≤ j ≤ |is| ,

where s(iq(i), is(j)) is the pairwise score of i-th letter of iq and j-th letter of is in

scoring matrix, σ(k) is the gap penalty of a gap of length k. Figure 3.1(b) shows

the result of the alignment of the two sequences. By utilizing BLAST, alignments

can be done much faster than the dynamic programming algorithms. Through

the process seems complicated, BLAST which is a heuristic algorithm for sequence

alignment has much better efficiency . Furthermore a single BLAST query can

match a sequence against the whole database of sequences, and find the similar

sequences above a certain threshold, instead of pairwise matching in other match

algorithms.

BLAST is known to find such “hits” fast and accurately. Even if some varia-

tions occur in near-duplicate images due to editing, BLAST can still overcome the

distortion of image features by the ungapped extension of multiple “hits”.

3.2.1 Overview of BASIL

Figure 3.2 shows the overview of the proposed BASIL framework. First, for each

image is (⊆ Is, source image set), we extract a set of features, F , and transform

F to a (either DNA or protein) gene sequence, ss. All the generated sequences are

stored in the BLAST database D. Similarly, a query image iq is also transformed

to a corresponding gene sequence sq. Then, using the BLAST algorithm and an

appropriate scoring matrix, sq is compared to sequences in D and top-k near-

duplicate sequences (and their corresponding images) are returned as an answer.

When we generate gene sequences from images, depending on how we translate

which of the extracted image features, we end up with different gene representa-

tions. For the gene sequence generation, we propose various methods depending on

how we “translate” the extracted feature values to DNA or protein-like alphabets

by selecting different features including various image contents as well as sematic

23

Return matched images with top-k, Ir

Source images, Is CC Table

Feature 1
Feature 2

Feature n

Gene sequence

ACACGTTTTAGCA
AATCATGGTTACT
GAGACTGGTACTA
CCTTTACGGTTAC
TGCCACTATTCTA
GCCCTTGCGCTAG

BLAST
Sequence

Database (D)

Store

Iq

Query
images

ss

 Scoring
Matrix

sq ss

BLAST

Return a set of near-
duplicate images , Ir

Figure 3.2. Overview of BASIL.

annotations. In particular, since it is difficult to find a set of image features that

work universally well for all data sets, it is important to devise a solution or-

thogonal to the choice of image features. Toward this first challenge, we propose

the Composite Conversion (CC) table that contains both pre-defined conversion

rules and candidate image features so that users can select desirable features and

gene sequences depending on a given data set (see Section 3.2.2). In addition, the

second challenge is to devise solutions in BASIL such that the kernel of BLAST al-

gorithm and implementation should not be changed to make existing tools remain

useful. Instead, our proposal sits atop BLAST algorithm and manipulates query

and source image sequences. For instance, the scoring matrix (that reflects the

similarity between different gene alphabets) used in BLAST is originally adjusted

to the Biology domain. Therefore, we propose variations of new scoring matri-

ces that reflect the characteristics of near-duplicate image matching scenarios (see

Section 3.2.3).

3.2.2 The Composite Conversion (CC) Table

Although images are distorted by deliberated editing methods, some image fea-

tures still maintain their characteristics. For example, by changing the brightness,

we lose the similarity of luminance, but the image still contains similar color in-

formation. To find appropriate features for BASIL, therefore, we have tested and

selected a variety of features of three groups: color-based (FC , Y in Y CbCr and H

in HSV), texture-based (FT , edge density by Law’s texture energy), and semantic

(FS, keywords and annotations) features. Each image, i, will be divided to some

24

n-Value Pro. DNA n-Value Pro. DNA
0 ∼ δ A AAC ∼ 13δ L ATT
∼ 2δ R CCT ∼ 14δ K ATG
∼ 3δ N CAG ∼ 15δ M CAC
∼ 4δ B AAG ∼ 16δ F ACT
∼ 5δ D ACC ∼ 17δ P CCC
∼ 6δ C AAT ∼ 18δ S CGC
∼ 7δ Q CCG ∼ 19δ T CGG
∼ 8δ Z GAG ∼ 20δ W CTG
∼ 9δ E ACG ∼ 21δ Y GAC
∼ 10δ G AGC ∼ 22δ V CTC
∼ 11δ H AGG ∼ 23δ X CTT
∼ 12δ I AGT ∼ 24δ

letter Pro. DNA letter Pro. DNA
A A AAC N N CAG
B B AAG O Y CAT
C C AAT P P CCC
D D ACC Q Q CCG
E E ACG R R CCT
F F ACT S S CGC
G G AGC T T CGG
H H AGG U Z CGT
I I AGT V V CTC
J X ATC W W CTG
K K ATG X X CTT
L L ATT Y Y GAC
M M CAC Z Z GAG

(a) Mapping chart for FC and FT (σ = 1
23

) (b) Mapping chart for FS

Feature 1 : Y component
Feature 2 : H component
Feature 3 : S component
Feature 4 : V component
Feature 5 : Edge density
…
Feature n : annotation

Phase 1 : feature selection
 & extraction

Phase 2 : mapping
 gene

Phase 3 : adding prefix

Phase 4 : combining all
sequences for selected

features

Mapping chart 1

Mapping chart 2
A
B
C

...

0~0.043
~0.087

A
G
C

~0.130
...

A
G
C

...

Feature

... ...

protein DNA
Y
H
S
V

Edge

Annot.

Y
H
S
V
E

A

AA
AC
AG
AT
CG

TT

(c) The Composite Conversion Table

Figure 3.3. The CC table with two mapping charts.

blocks, say 16 × 16 macro blocks, and both color- and texture-based features are

computed within a macro block while semantic feature is computed from associ-

ated keywords or annotations of i. Then, the feature set, F , is the union of FC ,

FT , and FS.

In order to generate the gene sequences from F , we consider two types of

sequences used in BLAST: (1) a protein sequence is made of 23 alphabets (i.e., A,

B, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, X, Y, and Z), while (2) a DNA

sequence is made of four gene alphabets (i.e., A, C, G, and T). BASIL can take both

protein and DNA sequences.

The Composite Conversion (CC) table, as illustrated in Figure 3.3(c), contains

various image features and two mapping charts. A mapping chart in Figure 3.3(a)

is used for mapping numeric values obtained from image contents, while another in

Figure 3.3(b) is for literal words obtained from descriptive annotations. For FC and

FT , we use the normalized values to use the same mapping chart in Figure 3.3(a).

25

Since we have 23 gene alphabets for protein, for the best transformation of feature

values, we place the normalized real values to 23 bins, as shown in Figure 3.3(a).

For DNA gene sequences, since 4 gene letters are not enough to express 23 bins,

3-bit combination of 4 letters is used for each bin. For FS , similarly, each literal

alphabet is mapped to gene alphabet(s) by pre-defined rules, as shown in Fig-

ure 3.3(b). For protein sequences with 23 protein letters, we add 3 more artificial

letters (X, Y, and Z) to have 1-to-1 mapping to 26 literal alphabets. For DNA

sequences, we use 3-bit combination letters with A, G, C, T. Figure 3.3(c) shows the

four phases of the CC table to generate the final gene sequences:

• Phase 1 (Feature selection & extraction) Among all available image fea-

tures, a set of features are selected (by users) and normalized. The selection

of features depends on the availability of features as well as the characteristic

of the given image sets. In addition, the size of a macro block that determines

the length of gene sequences is fixed.

• Phase 2 (Mapping to gene letters) According to the mapping tables

in Figure 3.3(a), the normalized feature values from Phase 1 are mapped

to appropriate gene letters. If semantic features are used in Phase 1, for

instance, they are also mapped to gene letters using Figure 3.3(b). At this

phase, one can decide whether to use DNA or protein genes as the final

representation.

• Phase 3 (Adding prefix) Because of the limitation of gene alphabets, the

same gene letters can be used in different features. For ensuring stronger

connection within the same features, therefore, each letter from phase 2 is

combined with corresponding letters representing a specific feature, as shown

in Figure 3.3(c). This phase can be skipped if only one image feature is

selected in phase 1.

• Phase 4 (Combining all features) All gene sequences from different fea-

tures are combined. The final output sequence of the CC table thus captures

all features of an image holistically. This phase is also skipped if only one

image feature is selected in phase 1.

26

Since an individual feature in a CC table is very independent, the features in

a CC table can be obtained by separating homogeneous components of an image

such as color components. With the same reason, the features in a CC table can be

acquired very heterogeneously. For example, all of image color components, texture

information, meta data (such as resolution, format, and date), and annotations can

be included as features in a CC table. The final gene sequence of an image captures

all selected homogeneous and heterogeneous components, and is passed through

BLAST to compare all features at once.

3.2.3 The Scoring Matrix

As discussed earlier, BLAST algorithm is known as the most powerful tool for

searching/comparing gene sequences in the field of bioinformatics, since domain

specific information are considered using scoring matrix. When two sequences are

compared in BLAST, a similarity score is computed to quantify the quality of the

pair-wise alignments. For this task, BLAST uses a scoring matrix that includes all

possible pair-wise scores of letters in 2-dimensional matrix. For the scoring matrix,

Percent Accepted Mutation (PAM), and BLOcks SUbstitution Matrix (BLOSUM)

are popular. The PAM is built on theoretical analysis while the BLOSUM is on

more empirical results.

Since both matrices are originally created for biological data in mind, they

are not suitable for BASIL with image data. In order to take the full advantage of

using BLAST algorithm in BASIL, therefore, we propose to use the following scoring

matrices: (1) Uniform matrix, shown in Figure 3.4(a), assigns uniform score for

each identity and substitution. For example, “1” is assigned for all identities (i.e.,

diagonal), and “-1” is assigned for the others of the matrix. The uniform matrix

provides a uniform weight for all pair-wise alignments. We use the uniform matrix

as the baseline; and (2) Gaussian distributed matrix: The uniform matrix

cannot capture the diverse characteristics of features used in BASIL. For example,

red and orange colors are more similar than red and blue in terms of hue (H) color

domain. However, such similarity cannot be represented in the uniform matrix.

To address the problem, we propose a gaussian distributed matrix. In general, the

gaussian distributed matrix is good for numeric features, such as FC and FT , since

27

A R N B D . . .
1 -1 -1 -1 -1 . . .
-1 1 -1 -1 -1 . . .
-1 -1 1 -1 -1 . . .
-1 -1 -1 1 -1 . . .
-1 -1 -1 -1 1 . . .

A
R
N
B
D
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

A R N B D . . .
10 8 3 -2 -6 . . .
8 10 8 3 -2 . . .
3 8 10 8 3 . . .
-2 3 8 10 8 . . .
-6 -2 3 8 10 . . .

A
R
N
B
D
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

(a) Uniform (b) Gaussian

Figure 3.4. Characterized scoring matrices for BASIL.

it considers the relationship between two letters that are mapped from numeric

feature values. As shown in Figure 3.4(b), gaussian distributed values are assigned

with the identity (i.e., diagonal) as an average. Note that as long as the values

follow the Gaussian distribution, one can have a different gaussian distributed

matrix than shown in Figure 3.4(b).

There are several important advantages to employ characterized scoring ma-

trices into BASIL: (1) The semantics of image features can be represented using

the matrix; (2) The different weights can be applied for image matching using

identities’ values in the matrix; (3) Positive credits and negative penalties can be

adjusted for exact/fuzzy matched and unmatched letters, respectively; (4) The

more sophisticated scoring matrix than Uniform or Gaussian (e.g., Probabilistic,

Linguistic, or Trained matrices) can be easily added to the CC table. We will leave

this as future work.

3.3 Experimental Validation

3.3.1 Set-Up

Gene sequence generation was done on Intel Core 2 Duo (1.8GHz, 2GB RAM,

Windows XP Home), and gene sequence matching was done by WU-BLAST 2.01

on IBM Z60t (Intel Pentium-M 1.6GHz, 1.5GB RAM, Ubuntu 7.10). The CC

table in BASIL is implemented in Matlab 7.0. For the generated gene sequences,

WU-BLAST 2.0 creates BLAST DB for all source images, and find near-duplicate

1http://www.advbiocomp.com/blast/obsolete/

28

Real world data set Modified data set

Dark Knight (DK) The Lord of The Ring
(LR) Flickr (FK)

Category # of
images Category # of

images Category # of
images

Back 19
Poster
with

annotations
20 Each original

image
(240 original

images)

1
original
image +

12
edited
images

Batman 17
Face 27
Fire 42

Joker 9
Wsos 41 Others with

annotations 200 Others 1108
Sub-total 1263 Sub-total 220 Sub-total 3120
Total number of images : 4603

Table 3.1. Image data sets.

images by measuring the similarity between query sequences and source sequences

in the database.

Data Sets. As test sets, two real-world data sets and one edited data set are

used in our experiments: Dark Knight (DK), The Lord of The Rings (LR)2, Flickr

(FK)3 and its variations by image editing tools.

Both DK and LR are one of the most popular films, and thus their near-

duplicated images such as posters and still images from a video clip are easily

found on the web. We collect near-duplicate images from Google image site4,

and classify them manually. For the intensive and realistic test, we also collect

irrelevant images to make the large size of a whole image data set. Specially, for

DK image set, 6 different keywords are used to obtain relevant images, then 6 image

categories exist in our image image sets from Dark Knight movie. The 7th category

is a collection of irrelevant images. For the LR data set, one image category (LR

poster) is selected with additional semantic annotations such as the title, file name,

and descriptions of images. The other category consists of irrelevant images with

their annotations. Thus, we can have test the heterogeneous image features in

BASIL. The details are in the first column of “Real world data set” in Table 3.1.

For the FK data set, the original images are collected by using different key-

2collected from http://iamges.google.com/
3http://www.flickr.com/
4http://images.google.com

29

Original Image Blur Brightness Color_change Color_enhance

Contrast Compression Crop Logo

Format_change Resize Resolution Multi-editing

Figure 3.5. Examples of edited images.

words and random selection from Flicker site. For one original image, 12 near-

duplicate images are generated by the typical editing methods, i.e., blur, changing

brightness, changing format, changing color, color enhancement, changing con-

trast, compression, crop, adding logo, changing resolution, changing size, and

multi-editing (e.g. crop + compression + logo). Note that one original image

represents one image category. In each category, the edited images are placed as

near-duplicate images. Since we have 240 original images, total number of cat-

egories is also 240, and total number of images in FK image data sets is 3120.

Figure 3.5 shows the examples of the edited images. These editing methods are

also popular functions in image editing softwares such as GIMP or Photoshop.

The details of FK data set are shown in the second column of Table 3.1.

The CC table translates all images to gene sequences that are stored in BLAST

DB. Since the LR data set contains semantic annotations, in the phase 1 of the

CC table, we also select a semantic feature for LR. At the end, we have tested

BASIL with 4,603 images. In order to validate the effectiveness of BASIL system,

we provide two different genres from three data sets. One is a real-world image

set excluding/including semantic annotations, i.e., DK and LR, respectively. The

other is an image set containing original images and their variations, i.e., FK.

Thus, the image sets of DK and LR are combined to generate one BLAST DB.

30

Note that image contents and semantic annotations are heterogeneous, but a CC

table makes it possible to combine them together to generate a gene sequence.

Therefore, all images containing different features can be combined and compared

in BASIL system. The FK image set is also possible to be combined, but we put

the data set aside to show the robustness of BASIL system against various editing

methods.

Evaluation Metrics. As the evaluation metrics, we mainly use the average

precision and recall. Suppose that T denotes a set of true near-duplicate images

according to the ground truth and R denotes a set of images found by an algorithm.

Then, we have: precision= |R∩T |
|R| and recall= |R∩T |

|T | . In addition, the given setting

of the NDID problem can be evaluated in two models – threshold model (i.e., an

algorithm retrieves all images whose similarity to the query image is above a pre-

set threshold) and top-k model (i.e., an algorithm retrieves top-k near-duplicate

images sorted in descending order). In the following, to be able to measure the

accuracy of algorithms more carefully, we use the top-k model, by varying k. With

a small k, recall is likely to be low while precision is expected to be high. Finally, in

the presentation, to show a complete behavior of both precision and recall using a

small space, we use the PR (precision-recall) graph where X-axis and Y-axis show

the changes of recall and precision, respectively.

In DK and LR image sets, for each category except others, 9-15 query images

are randomly chosen. We compute average precision and recall of returned top-k

sequences (corresponding images) from BLAST, achieving 95% confidence levels

with 6.5-9.9 confidence intervals. With FK image set, for each category (total 240

categories), 10 query images are randomly chosen to achieve 99% confidence levels

with 2.9 confidence interval.

3.3.2 Comparison within BASIL

3.3.2.1 Comparison between DNA vs. Protein

First, we compare the accuracy of BASIL with both DNA and protein gene se-

quences. Using the DK image set, Figure 3.6 shows the accuracy comparison

respect to the effect of DNA and protein gene sequences. Whether BASIL uses

DNA (thus 3-bits of 4 alphabets) or protein (23 alphabets), shown in Mapping

31

1

0 6

0.8

on

0.4

0.6

Pr
ec
is
io

0.2

P

DK‐Protein

0

0 0 2 0 4 0 6 0 8 1

DK‐DNA

0 0.2 0.4 0.6 0.8 1

Recall

Figure 3.6. Comparison between DNA and protein gene sequence representations.

charts of Figure 3.3, to capture image features does not seem to affect the overall

accuracy significantly. However, overall, Figure 3.6 shows that protein gene se-

quences appear to yield better accuracy than DNA sequences do, because protein

provides more distinct alphabet letters than protein. Therefore, the gap between

numerical values are less ambiguous at transforming those to gene letters. Even

though the strict difference exists between protein letters, the small difference be-

tween numerical values can be compensated by a particular scoring matrix such

as Gaussian matrix, used in this comparison. For brevity, from here forward, all

experiments are done using protein gene sequences.

3.3.2.2 Comparison among scoring matrices

As mentioned early in Section 3.2.3, a scoring matrix is a two-dimensional matrix

that specifies the score between all possible pair-wise amino acids. In order to

pursue high accuracy for Biology data, by default, WU-BLAST uses BLOSUM62 to

measure the similarity score between gene sequences. However, the gene sequences

from BASIL are born from image sets which may have different characteristics

from Biology data. Thus, we design two scoring matrices to be suitable for image

features in our scenario: Uniform matrix (for exact matching between gene letters)

and Gaussian matrix (for similar matching).

Here, we compare the accuracies by using three different matrix, on both FK

and DK. Figures 3.7(a)–(b) show the average precision-recall graph of using differ-

32

1

0 6

0.8

n

0.4

0.6
Pr
ec
is
io

0.2

P

FK‐BLOSUM62
FK‐Uniform
FK‐Gaussian

0

0 0.2 0.4 0.6 0.8 1

FK Gaussian

Recall

1

0 6

0.8

n

0.4

0.6

Pr
ec
is
io

DK BLOSUM62

0.2

P DK‐BLOSUM62
DK‐Uniform
DK‐Gaussian

0

0 0.2 0.4 0.6 0.8 1

Recall

(a) Edited set (FK) (b) Real set (DK)
1

0.8

1

0.6io
n

0.4Pr
ec
is

G i
0.2

Gaussian
Uniform
BLOSUM62

0

0 0.2 0.4 0.6 0.8 1

BLOSUM62

0 0.2 0.4 0.6 0.8 1

Recall

0 8

1

0 6

0.8

on

0.4

0.6
Pr
ec
is
io

0.2

P

Gaussian
Uniform

0

0 0 2 0 4 0 6 0 8 1

BLOSUM62

0 0.2 0.4 0.6 0.8 1

Recall

(c) Mountain (FK) (d) Back (DK)

Figure 3.7. Comparison among scoring matrices.

ent scoring matrices for FK and DF data sets, respectively. As seen in the figures,

on both image sets, the Gaussian scoring matrix performs the best, followed by

the uniform and BLOSUM62 matrices. In order to see the results more precisely,

Figures 3.7(c)–(d) show the performance results of two representative categories

of the FK data set, i.e., Mountain, and DK data set, i.e., Back, respectively. It is

clear that the Gaussian scoring matrix provides the best results among all scoring

matrices as shown all results. Due to the nature of Gaussian distribution, BASIL

can capture the similarity between adjacent numerical values of image features

with a Gaussian scoring matrix, even though the feature values are translated to

different gene letters by a mapping chart. Hereafter, all experiments are done using

Gaussian scoring matrix.

33

3.3.2.3 Comparison among image features

We next evaluate the overall performance of different image features for BASIL

discussed in Section 3.2.2, i.e., color-based (FC), texture-based (FT), and semantic

(FS) features. As mentioned earlier, the feature values are first extracted from

images to generate gene sequences. In other words, the performance of BASIL

depends on the quality of F . In this experiment, for features (FC) and (FT), an

image is divided into 16 macro blocks for feature extraction and 23 protein letters

are chosen to map feature values to gene sequences by a matching chart in Figure

3.3 (a). For feature (FS), the collected meta data such as title and description

of an image are translated to 23 protein gene sequences by a matching chart in

Figure 3.3 (b).

We used 6 popular features in the CC table: Y component from Y CbCr color

domain, H, S, V components from HSV color domain, Law’s edge energy compo-

nent, and semantic feature. Y , H, S, V , E (energy), and A (semantic annotation)

stand for each component, respectively. For the evaluation of the effect of selected

features, among these 6 features, one can choose any combination of them. In Fig-

ures 3.8(a) and (b), we evaluate the performance of various combination of features

including 1 feature (i.e., H, V , and E), 2 features (i.e., SE and V E), 3 features

(i.e., HSE and Y V E), 5 features (i.e., Y HSV E), and all 6 image features in the

CC table. Note that feature A is only available in the LR image set.

The performance of BASIL is not only influenced by the selected features but

also the characteristic of image sets. A particular feature selection can show posi-

tive effect in one image set, but have poor result for another set. For example. if

the colors of an image are mostly black and white, then near-duplicate images are

usually affected by Y feature instead of H feature or others. For colorful images,

H feature should be more sensitive in near-duplicate images than Y feature under

conscious or unconscious image distortion. Similarly, E feature is more influenced

within very textured images. As a result, the unsusceptible features to distortion

provide higher return accuracy.

For the FK set, all of H, V , and E features have a high precision until when

recall becomes 0.5. However, afterward, H feature becomes the best, while both V

and E show a relatively low precision. In the real-world data set (DK and LR), in

Figure 3.8(b), both V and E give the best result overall in terms of both precision

34

0 8

1

0 6

0.8
on

FK‐H
FK V

0.4

0.6

Pr
ec
is
io FK‐V

FK‐E
FK‐SE

0.2

P

FK‐VE
FK‐HSE
FK‐YVE

0

FK‐YVE
FK‐YHSVE

0 0.2 0.4 0.6 0.8 1

Recall

1

0.8 DK‐H

0.6on

DK‐H
DK‐V
DK‐E

0.4Pr
ec
is
io DK‐SE

DK‐VE
DK‐HSE

0.2

DK HSE
DK‐YVE
DK‐YHSVE
LR YHSVE

0

LR‐YHSVE
LR‐YHSVEA

0 0.2 0.4 0.6 0.8 1

Recall

(a) Features on FK (b) Features on DK & LR

Figure 3.8. Comparison among image features.

and recall, while H yields the worst accuracy. This symptom can be explained as

follows. In the real-world data set (DF and LR), people often copy and modify

images with color change/enhancement functions before images are uploaded to

the Web. The color feature is more sensitive to H than the others. On the other

hand, the FK data set is generated by 12 editing methods. However, only 2 of

them are related to the color in FK data set. Therefore, the results show that V

and E for DK and LR are better features than H.

When multiple features are selected, one can usually gain the average perfor-

mances of different features. For instance, in the real-world image set (DK and

LR), the accuracy with multiple features is always between those with an individ-

ual feature. However, note that the combination of features from image contents

usually outperforms the average of the accuracies from individual feature selec-

tion. This is because the accuracy of BASIL system follows the top-k model. That

is, even though the similarity between genes are averaged from multiple features,

the similarity ranking from BLAST can be changed when features are combined.

Another benefit of using multiple features combined is the improved robustness of

BASIL for unknown image sets. In this chapter, note that all sets are set to be

unknown since we do not analyze the characteristic of data sets by sample or whole

images in data sets. As a result, by combining all six features, Y HSV EA, in LR

image set, we achieve the highest accuracy from BASIL system shown in Figure 3.8

35

(b).

3.3.2.4 Comparison among editing methods

Here, using the FK image set, we compare the impact of different editing methods

on the accuracy of BASIL. For this evaluation, we select 5 features (Y HSV E) in

the CC table. Each category in FK consists of one original image with 12 edited

images. Since there exist 240 original images, we have 3,120 images total in all

240 categories. Therefore, when an original image is queried, ideally, all 12 edited

images must be returned at high ranking. The ranking of returned images are out

of 3,120 images in FK data set, i.e., 3,120 gene sequences in BLAST DB. Hence,

the best and worst rankings are 1 and 3,120, respectively. Since BLAST DB also

contains original images, note that the best ranking of edited images always starts

from 2. For example, in an ideal case (i.e., for an original image as a query, BASIL

returns all 12 edited images with an image by itself), the returned images should

be ranked between 2 and 13.

140
140

160

116

80

100

120

ki
ng

57

40

60

80

R
an

k

7 2 6
14

4
14

6 6 6
0

20

Editing Methods

Figure 3.9. Comparison among editing methods.

Figure 3.9 shows the average rank of 12 expected images in the returned list

from BASIL with 12 different editing methods. BASIL system reveals that the

36

average ranking of the expected duplicate images is about 2 for the best case

and about 140 for the worst case. Among various editing methods, the accuracy

is relatively low (i.e., the ranking of expected images are low) when images are

distorted by “contrast change” and “brightness change”. Such editing methods

are not considered fully in BASIL because our feature set, F , focuses on real-world

data set where the most frequent editing methods are related to the change of

color, format or size. Therefore, the accuracy of BASIL with the editing methods

related to color, format or size, are much better than that of “contrast change”

and “brightness change”. For example, the best accuracy is shown by the editing

method of “format change”. In other words, with “format change”, the edited

images are ranked around 2 or 3 for all input queries, when we expect 13 or less

for the ideal ranking of returned images from BASIL. Overall, BASIL is robust on

various editing methods that are typically used by image editing tools.

3.3.3 Comparison against Other Methods

Due to the difficulty in obtaining the implementations of other NDID methods

(summarized in Table 2.1), instead, we compare the performance of BASIL against

two publicly available non-NDID solutions – Ferret for CBIR and ND PE for NDK.

Comparison with Ferret. Here we first evaluate BASIL against one of the state-

of-the-art CBIR alternatives, Ferret, from the CASS project at Princeton5. Ferret

is a toolkit for content-based similarity search for various data types including

digital image. The result using the FK image set is shown in Figure 3.10(a), where

Ferret and HSE exhibit the best results while the balanced Y HSV E is behind

them after the recall of 0.5. With the DK set, BASIL achieves the best accuracy

using the Y V E feature selection as shown in 3.10(b). Overall, both BASIL with

Y SHV E features and Ferret show similar accuracy. One of the benefits of the

CC table in BASIL is that it enables to combine any heterogenous features to the

final gene sequences. For instance, heterogeneous features such as semantic or

content-based one can be uniformly represented in gene sequences. As a result,

Figure 3.10(b) shows that the line of LR-YHSVEA (6 features including a semantic

information) significantly outperforms Ferret.

5http://www.cs.princeton.edu/cass/

37

1

0 6

0.8
on

0.4

0.6

Pr
ec
is
io

FK‐HSE

0.2

P FK HSE
FK‐YVE
FK‐YHSVE

0

0 0 2 0 4 0 6 0 8 1

FK‐Ferret

0 0.2 0.4 0.6 0.8 1

Recall

1 1

0 6

0.8

on

DK‐HSEn

0.4

0.6

Pr
ec
is
io DK_YVE

DK‐YHSVE
DK‐FerretPr

ec
is
io

0.2

P DK‐Ferret
LR‐YHSVE
LR‐YHSVEA

P

0

0 0 2 0 4 0 6 0 8 1

LR‐Ferret
0
0 0.2 0.4 0.6 0.8 1

Recall
(a) vs. Ferret on FK (b) vs. Ferret on DK & LR

11

re
ci
si
on

DK‐ND PE

0

P DK ND_PE

DK‐YVE

0 0.2 0.4 0.6 0.8 1

Recall
(c) vs. ND PE on DK

Figure 3.10. Comparison BASIL to Ferret and ND PE.

Comparison with ND PE. The ND PE is a near-duplicate keyframe (NDK)

detection toolkit based on local features of images, developed by Video Retrieval

Group (VIREO) from City University of Hong Kong6. In ND PE, a set of local

interest points of images are extracted and represented in PCA-SIFT descriptor.

The similarity of two images is then determined on the degree of matches between

two sets of keypoints such as a bipartite graph matching. We compare the accuracy

of ND PE and BASIL with Y V E features on DK data set in Figure 3.10(c). In this

6http://vireo.cs.cityu.edu.hk/research/NDK/ndk.html

38

test, 9–10 images in each category are selected to measure the similarity against all

images in the data set. The top-30 returned images per query are used to generate

the average PR graph7. Figure 3.10(c) shows that overall the accuracy of BASIL

outperforms that of ND PE for the real near-duplicate data set, DK. Note that

ND PE was originally designed to solve the NDK problem, not the NDID problem.

Since both the NDK and NDID problems are slightly different, therefore, direct

comparison between the results of BASIL and ND PE should be interpreted with

much care.

3.4 Summary

In this chapter, we studied a novel Image Linkage solution, named as BLASTed

Image Linkage (BASIL), to solve the near-duplicate image detection (NDID) prob-

lem by bridging two seemingly unrelated fields – Multimedia and Biology. In

BASIL, we use the popular gene sequence alignment algorithm in Biology, BLAST,

to determine the similarity between two images. To be able to handle flexible

transformation from diverse image features to gene sequences, we also proposed

the Composite Conversion (CC) table that hosts different images features and pre-

fixed transformation rules. The validity of BASIL is positively measured using two

real image sets on various aspects.

7The implementation of ND PE crashed for a few pairs of images in testing. In preparing the
PR graph of Figure 3.10(c), such images were ignored.

Chapter 4
Video Linkage

In this chapter, toward the CVD (Copied Video Detection) problem, we present

a novel solution, termed as Video Linkage, that is based on the record linkage

techniques in Databases – i.e., to determine if two entities represented as relational

records are approximately the same or not. Informally, given a video vq and a

collection of videos V , we aim at detecting all videos from V that are copies

of vq. For the detection, the Video Linkage technique is based on the following

observations. First, a video can be represented as a “group” of shots and in turn

a shot as a “group” of image frames. Furthermore, inherently, there is a temporal

ordering along shots and frames of a video. Second, two videos are deemed to be

similar if two groups of shots are similar, and the notion of “groups” can be well

captured by graphs. Therefore, we can measure the similarity between two videos

by means of graph-based similarity measures such as bipartite matching. Note that

the similarity between two shots are also obtained by the graph-based similarity

measure between two groups of key frames. Thus, in the proposed hierarchical

structure, at the lower level we measure the similarity between two groups of

key frames, i.e. shot similarity, and at the upper level we measure the similarity

between two groups of shots, i.e. video similarity. This will be elaborated in detail

in section 4.2. Third, if a video va is illegally copied from a video vb, then va and vb

must be somehow similar (having similar but altered shots and frames). Therefore,

we can prune dissimilar videos out using simpler and faster similarity measures for

fast detection of copied videos.

Our contributions are as follows: (1) We propose a method to transform a video

40

Notation Description
V a set of videos

v / s / f a video / a shot / a frame
simv(v1, v2) video-to-video similarity
sims(s1, s2) shot-to-shot similarity
simf (f1, f2) frame-to-frame similarity

θ / δ / ρ threshold for simv / sims / simf

F / S feature set / signature for a frame

Table 4.1. Summary of notations in Video Linkage.

to a group of shots and in turn a shot to a group of frames to enable hierarchical

group based matching idea. A set of shots is first identified from a video, and in

turn a small number of key frames are extracted from each shot; (2) We propose

five efficient group based shot similarity measures: (i) two exact measures, SL

and NCSL, based on the maximum weight bipartite matching and maximum

weight non-crossing bipartite matching, (ii) one greedy measure, gSL, and (iii)

two approximate measures, aSL and aNCSL. Further, we show the partial order

relationship among five measures and their utility; (3) We propose two shot linkage

methods for the CVD problem using (i) standalone and (ii) pipelined frameworks.

Further, we propose hierarchical Video Linkage structures inheriting shot linkage

algorithms for the CVD problem; and (4) Our proposed algorithms outperform

methods presented in CIVR 2007 competition in terms of speed and accuracy using

MUSCLE-VCD-2007 benchmark data set. For instance, the proposed algorithm

runs 3.67 times faster on average and achieves the recall of 1.0 as opposed to the

recall of 0.86 of the competition. In addition, ours achieve the precision and recall

of 0.94 and 0.93 respectively, using videos downloaded from YouTube with popular

editing methods.

4.1 Problem Definition

Throughout this chapter, we use notations in Table 4.1. The copied video detec-

tion problem can be modeled as either selection problem (i.e., select top-k copied

videos) or threshold problem (i.e., find all copied videos above a threshold). To

make the presentation simple, hereafter, we use the threshold version of the prob-

lem. Formally, the copied video detection problem is defined as follows:

41

Copied Video Detection (CVD). Given a set of query videos Vq and

a collection of source videos Vs, for each query video vq (∈ Vq), detect all

copied videos, Vc (⊆ Vs) that contain either duplicated or altered video

shots from vq.

Generally, CVD systems are different from CBVR (Content-Based Video Retrieval)

Systems. The result of CVD is a set of copied videos that are illegally edited videos

from copyright protected videos, while that of CBVR is a set of similar videos con-

taining similar contents. Therefore, a CVD system should utilize both the editing

methods as well as similar contents. For the editing, in this chapter, we consider

six popular methods such as cut and paste, cropping, adding logo/text, resizing,

changing video format/resolution, and adding title, transition, or(and) credit, ob-

served in sites like YouTube and Yahoo Videos. For the existing benchmark data

set of MUSCLE-VCD 2007, harsh distortion methods are applied in the copied

videos such as color change, comcording, flip, zooming, shift, contrast change, blur,

adding noise, vertical deformation, inserting caption, changing phases, letter box,

zooming, and changing gamma.

A naive solution to the CVD problem performs the quadratic pair-wise compu-

tation between two video sets, Vq and Vs causing O(|Vq||Vs|) complexity. In turn,

the similarity between two video clips requires the quadratic pair-wise comparisons

between two groups of sets. Therefore, one of the objectives of our proposal is to

find the computationally efficient solutions for the CVD problem.

Note that other relevant issues such as feature selection or multimedia indexing

are not fully considered in this chapter. Instead, we will select the most basic fea-

tures with properly weighting The proposed hierarchical Video Linkage algorithms

are not affected by the choice of indexing or feature selection, since the proposed

structures can be independently applied without indexing steps using any selected

features.

4.2 Hierarchical Video Linkage

A video contains a hierarchical structure with temporal orders. In other words,

a video is a group of shots, and a shot is a group of frames, and both shots and

frames are in time sequence. Therefore, we need three different levels of similarity

42

sA1Video Level sA2 sA3

Video : a group of shots

sB1 sB3 sB4sB2

Nodes : shots
Edges : sims(sAi,sBj) simv(vA,vB)

Shot Level
fp1 fp2 fp3

fq1 fq2

sims(sp,sq)

1iλ

1jλ 2jλ

simf(fi, fj)

2iλ
Frame Level

Nodes : frames
Edges : simf(fi,fBj)

Feature-wise
cos. similarity

3jλ

3iλ

Shot : a group of frames

Figure 4.1. The structure of hierarchical Video Linkage.

measures in the proposed hierarchical Video Linkage. The frame level is to compute

simf (fi, fj) by the compound difference of feature vectors between frames. The

shot level and video level are to compute sims(sp, sq) and simv(va, vb), respectively.

At each level, the efficient methods are acquired to reduce dense computations. The

overall structure of the hierarchical Video Linkage is shown in Figure 4.1.

4.2.1 Video Pre-Processing

In this section, we briefly discuss pre-processing for videos: (1) extracting a set of

feature, F , (2) detecting shot boundaries, and (3) selecting key frames.

First, we extract a set of feature (F) consisting of three characterized features

from each frame, i.e., (1) HSV color histogram (λH) as a global feature representa-

tive, (2) YCbCr color layout (λY) as a local feature representative, and (3) motion

vector histogram (λM) as a temporal feature representative. The frame-to-frame

similarity measure, simf () for F , is then defined as follows:

simf (f1, f2) =
∑
λ∈F

wλ · simλ(f1, f2) (4.1)

where wλ is a weight of a feature λ such that
∑

λ∈F wλ = 1, and simλ() is a

similarity between two frames with respect to the feature λ.

Second, to detect shot boundaries [70], we use simf () with F = {λH} in

Equation (4.1). In other words, we compute the similarity of two consecutive

frames, fi and fi+1, and if simf (fi, fi+1) is more than a certain threshold, then fi

43

and fi+1 are considered as a shot boundary. Otherwise, both fi, fi+1 belong to the

same shot.

Third, to select the key frames per shot, we borrow a conventional technique

from [36], where the frame similarity values obtained in detecting shot boundaries

are re-used to construct a similarity curve that shows how the contents change

over an entire shot. The high curvature indicates a significant change around the

frames while the flat indicates no change. Those frames in high curvatures of a

similarity curve are, thus, selected as key frames. These key frames represent a

shot and is used to extract F .

4.2.2 Frame Level Similarity

By obtaining key frames per shot, we can reduce the number of computations while

keeping the characteristic of a shot. For the initial step, the edge values between

two frames is obtained by Equation (4.1). Individual simλ(fi, fj) is computed by

cosine distance between feature values, and wλ can be selected equally to meet∑
λ∈F wλ = 1.

4.2.3 Shot Level Similarity

By completion of obtaining all edge values by computing simλ(fi, fj) between

key frames, we are ready to discuss how to measure the similarity between two

shots utilizing the “group” information and shot characteristics. In essence, we

significantly extend the group-based record linkage techniques in [71] to exploit

the temporal order among frames, and propose five shot linkage measures.

4.2.3.1 Exact shot linkage measure

We first propose two exact shot linkage measures, i.e., shot linkage (SL, see Def.

4) and non-crossing shot linkage (NCSL, see Def. 6).

Definition 1 (Shot as Group) A shot s is captured as a group of key frames:

g={f1, . . ., fm}. 2

Given two groups g1 and g2, one of the simplest and most intuitive similarity

measures is the Jaccard similarity, defined as |g1∩g2|
|g1∪g2| . By generalizing the Jaccard

44

similarity to be able to handle approximate matching between two frames, we can

use the bipartite graph idea.

Definition 2 (Weighted Bipartite Graph for Videos) Given two groups of

image frames, g1 = {f11, f12, . . . , f1m1} and g2 = {f21, f22, . . ., f2m2}, a weighted

bipartite graph is a bipartite graph G = {N, E, Ω}, where N = g1∪g2, E = g1×g2,

and Ω={ω(i, j)|ω(i, j) = simf (f1i, f2j)} 2

Definition 3 (Maximum Weight Bipartite Matching) A matching is a set

of pairwise non-adjacent edges in E. A maximum weight bipartite matching M is

a matching M such that
∑

(f1i,f1j)∈M(ω(i, j)) is the maximum. 2

Conceptually, the numerator and denominator of the Jaccard similarity are

equivalent to the sum of weights in M and the number of nodes in N , offset by the

number of edges in M , respectively. Based on this observations, now, we propose

our group based shot similarity measure as follows:

Definition 4 (Shot Linkage) For the bipartite group G = {N , E, Ω} over two

groups of image frames, g1 = {f11, f12, . . ., f1m1} and g2 = {f21, f22, . . ., f2m2}, the

shot linkage measure, SLω,ρ, is the normalized weight of the the maximum weight

bipartite matching M1:

SLω,ρ(g1, g2) =
Σ(f1i,f2j)∈M1(ω(i, j))

m1 + m2 − |M1|

such that ω(i, j) ≥ ρ, where ρ is a user-set minimum threshold for edge similarity.2

Note that the denominator of SLω,ρ adds up the number of edges in the match-

ing, M1, and the number of “unmatched” frames in each of g1 (i.e., m1 − |M1|)
and g2 (i.e., m2 − |M1|). When the numerator is large, it captures the intuition

that two videos have “many” similar frames. Similarly, when the denominator is

small, it captures the intuition that a large fraction of frames in two groups are

similar. Note also that we do not consider all pair-wise edges between two groups.

Rather, we prune away those edges whose ω is substantially low (i.e., ω(i, j) < ρ).

Not only this early pruning helps improve the accuracy of shot linkage technique,

it speeds up computation significantly since all subsequent algorithms work faster

on a “sparse” bipartite graph.

45

In addition to SLω,ρ, a shot in a copied video tends to have inherent temporal

order among frames although they are altered by many editing methods (e.g.,

adding logo and subtitle and changing contrast and brightness). Although the visual

effects and characteristics might have changed, temporal order among frames is still

intact. Although it is possible to change temporal order among copied frames, we

believe such cases are rare. Therefore, we extend SLω,ρ to take advantage of the

order among elements of groups.

Definition 5 (Non-Crossing Bipartite Matching)

Consider an “ordered” bipartite graph G={N , E, Ω} over groups g1 and g2, where

nodes in each group are numbered in increasing order from top to bottom. Two

edges between nodes, e1 = (i, j) and e2 = (p, q), are said “crossing” iff (i ≤ p and

j ≥ q) or (i ≥ p and j ≤ q). Then, a non-crossing matching is a subset of edges

M2 (∈ E) such that no two edges of M2 cross, including crossing at nodes. A

maximum weight non-crossing bipartite matching is a non-crossing matching such

that
∑

(f1i,f1j)∈M2
(ω(i, j)) is the maximum. 2

When applied to the problem of matching two shots, s1 and s2, a non-crossing

bipartite matching captures the intuition that once a frame f1i (∈ s1) and a frame

f2j (∈ s2) match each other, no crossing matching can occur (i.e., the sequential

order among frames must be followed). By capitalizing on this intuition, then we

define our second group based shot linkage measure as follows:

Definition 6 (Non-Crossing Shot Linkage) For the

“ordered” bipartite graph G={N , E, Ω} over two groups g1={f11, f12, . . ., f1m1}
and g2={f21, f12, . . ., f2m2}, the non-crossing shot linkage measure, NCSLω,ρ, is

the the normalized weight of the maximum weight “non-crossing” bipartite match-

ing M2:

NCSLω,ρ(g1, g2) =
Σ(f1i,f2j)∈M2(ω(i, j))

m1 + m2 − |M2|

such that ω(i, j) ≥ ρ, where ρ is given. 2

Both SLω,ρ and NCSLω,ρ are guaranteed to be between 0 and 1. Furthermore,

from the definitions, the following follows.

46

Lemma 1. For two groups g1 and g2:

NCSLω,ρ(g1, g2) ≤ SLω,ρ(g1, g2)

where ρ is given.

4.2.3.2 Boosting shot linkage measure

Both SLω,ρ and NCSLω,ρ capture the intuitions of two matching shots very well.

However, both measures are computationally costly because of the requirement

that “no node in the bipartite graph can have more than one edge incident on it.”

The known algorithms to find maximum weight bipartite matching and maximum

weight non-crossing bipartite matching have time complexities of O(N2E) [40]

(e.g., Hungarian or Bellman-Ford) and O(N2) [65], respectively. In search of faster

shot linkage measures, therefore, we relax this requirement of the bipartite match-

ing using the greedy strategy.

Definition 7 (Greedy Shot Linkage) Consider the bipartite graph G={N , E,

Ω} over two groups g1={f11, f12, . . ., f1m1} and g2={f21, f12, . . ., f2m2}.

• For each frame fi ∈ g1, find a frame fj ∈ g2 with the highest ω (≥ ρ) and

denote the set of all such frame pairs as F1.

• Symmetrically, for each frame fj ∈ g2, find a frame fi ∈ g1 with the highest

ω (≥ ρ) and denote the set of all such frame pairs as F2.

Then, a greedy shot linkage measure, gSLω,ρ, is:

gSLω,ρ(g1, g2) =
Σ(f1i,f2j)∈F1∪F2(ω(i, j))

m1 + m2 − |F1 ∪ F2|

such that ω(i, j) ≥ ρ, where ρ is given. 2

Note that neither F1 nor F2 may be a matching. In F1, the same frame in

g2 may be the target of more than one frame in g1 (thus violating the definition

of “matching”). Similarly, in F2, the same frame in g1 may be the target of more

than one frame in g2.

47

Lemma 2. The greedy shot linkage measure, gSLω,ρ(g1, g2), can be computed in

O(N +E log E) time on the bipartite graph G={N , E, Ω} over two groups g1 and

g2.

The usefulness of the greedy group-based shot linkage measure, gSLω,ρ, lies

on the fact that its similarity value is always an over-estimation of true similarity

value of SLω,ρ. Therefore, the value of gSLω,ρ is not bounded between 0 and 1.

Lemma 3. For two groups g1 and g2:

SLω,ρ(g1, g2) ≤ gSLω,ρ(g1, g2)

where ρ is given.

Next, we propose two heuristics based approximations of the bipartite match-

ing.

Definition 8 (Approximate Shot Linkage) Consider a bipartite graph G={
N , E, Ω} over two groups g1={f11, f12, . . ., f1m1} and g2={f21, f12, . . ., f2m2}.
For two empty sets, R1 and R2,

• Sort all edges (∈ E) by ω in decreasing order.

• For each edge eij=(f1i,f2j) in order, if neither f1i nor f2j is visited, add eij into

R1 and mark f1i,f2j as “visited” (initially, all nodes are set as “unvisited”).

• For each edge eij=(f1i,f2j) in order, if eij does not “cross” any edges from

R2, add eij into R2.

Then, two approximate shot linkage measures are:

aSLω,ρ(g1, g2) =
Σ(f1i,f2j)∈R1(ω(i, j))

m1 + m2 − |R1|

aNCSLω,ρ(g1, g2) =
Σ(f1i,f2j)∈R2(ω(i, j))

m1 + m2 − |R2|

such that ω(i, j) ≥ ρ, where ρ is given. 2

48

Measure Time Complexity
SLω,ρ(g1, g2) O(N2E)

NCSLω,ρ(g1, g2) O(N2)
gSLω,ρ(g1, g2) O(N + E log E)
aSLω,ρ(g1, g2) O(E log E)

aNCSLω,ρ(g1, g2) O(E2)

Table 4.2. Time complexities of five shot linkage measures.

Note that unlike F1 and F2, both R1 and R2 are still a matching since no nodes

participate more than once. However, they may not be a maximum matching.

Therefore, the following holds.

Lemma 4. For two groups g1 and g2:

aNCSLω,ρ(g1, g2) ≤ aSLω,ρ(g1, g2) ≤ SLω,ρ(g1, g2)

aNCSLω,ρ(g1, g2) ≤ NCSLω,ρ(g1, g2)

where ρ is given.

Since the bipartite graph that we deal with is often very sparse (i.e., N � E)

due to the early pruning from the constraint of ω(i, j) ≥ ρ, these two approximate

shot linkage measures can be computed faster than their corresponding exact shot

linkage measures.

Lemma 5. On the bipartite graph G={N , E, Ω} over two groups g1 and g2, both

aSLω,ρ(g1, g2) and aNCSLω,ρ(g1, g2) can be computed in O(E log E) and O(E2)

times, respectively.

The time complexities of five Video Linkage measures are summarized in Ta-

ble 4.2.

Example 1. Consider a bipartite graph G={N , E, Ω}, where Ω= {ω(f11, f22)

= 0.8, ω(f12, f21) = 0.6, ω(f12, f23) = 0.3, ω(f13, f21) = 0.9, ω(f13, f22) = 0.2,

ω(f13, f23) = 0.5}. Then, five shot linkage measures are computed as follows:

• Since M1 = {(f11, f22), (f12, f23), (f13, f21)}, SL = 0.8+0.9+0.3
3+3−3

= 0.67.

• Since M2 = {(f11, f22), (f13, f23)}, NCSL = 0.8+0.4
3+3−2

= 0.3.

49

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

(a) G (b) M1 (c) M2

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

11

12

13

21

22

23

0.8 0.6

0.9

0.3 0.2

0.5

(d) F1 ∪ F2 (e) R1 (f) R2

Figure 4.2. An illustration of Example 1.

• Since F1={(f11, f22), (f12, f21), (f13, f21)}, F2 = {(f13, f21), (f12, f21),

(f13, f23)}, and F1 ∪ F2 = {(f11, f22), (f12, f21), (f13, f21), (f13, f23)},
gSL=0.8+0.6+0.9+0.4

3+3−4
= 1.35.

• Since R1 = {(f13, f21), (f11, f22), (f12, f23)}, aSL = 0.9+0.8+0.3
3+3−3

= 0.67.

• Since R2 = {(f13, f21)}, aNCSL = 0.9
3+3−1

= 0.18.

Figure 4.2 illustrates the example. 2

Lemma 6. There is no bounding between aSLω,ρ(g1, g2) and NCSLω,ρ(g1, g2).

Finally, combining Lemmas 1, 3, 4, and 6, we get the partial order among five

shot linkage measures.

Theorem 1. The following partial order exists among five shot linkage measures:

aNCSL ≤ NCSL, aSL ≤ SL ≤ gSL

That is, SL and NCSL are bounded by aNCSL (lower bound) and gSL (upper

bound).

The advantage of these partial order is that both gSLω,ρ(g1, g2) and aNCSLω,ρ

(g1,g2) can be computed faster than both SLω,ρ(g1, g2) and NCSLω,ρ (g1, g2), re-

spectively. Therefore, quickly computing both gSLω,ρ(g1, g2) and aNCSLω,ρ (g1,

50

g2) can help us efficiently address our video linkage problem. For instance, imagine

that we want to check if two shots s1 and s2 have a similarity above the pruning

threshold of the shot level, δ, or not. Then, since gSLω,ρ is an upper bound

of SLω,ρ, if gSLω,ρ(g1, g2) < δ, then it must be the case that SLω,ρ(g1, g2) < δ.

Hence, the edge between g1 and g2 is guaranteed to be pruned away. Reversely,

using aNCSLω,ρ(g1, g2) as the lower bound of SLω,ρ, if aNCSLω,ρ(g1, g2) ≥ δ, then

SLω,ρ(g1, g2) ≥ δ is true.

4.2.3.3 Shot linkage structures

Based on the findings in Section 4.2.3.1 and 4.2.3.2, we propose two different shot

linkage techniques – Standalone and Pipelined shot linkages. Given two shots s1

and s2, we acquire sims(s1, s2) as an edge value in the video level in Figure 4.1 by

• Standalone shot linkage algorithm that computes one of five shot linkage

measures {SL, NCSL, gSL, aSL, aNCSL}.

• Pipelined shot linkage algorithm that exploits gSL as an upper bound. We

first check gSLω,ρ(s1, s2) < δ to determine if further computation is required

or not. If gSL ≤ δ, the edge between s1 and s2 is pruned away foe the video

level comparison. If gSL > δ, then we need further computation of SL or

NCSL to obtain exact sims(s1, s2).

4.2.4 Hierarchical Video Linkage (Video Level Similarity)

At the completion to obtain all sims(si, sj) between two videos, hierarchical Video

Linkage exploits the graph structure used in shot linkage measures to the video

level. Conceptually, the graph structure in the video level is identical to the graph

structure in the shot level, by changing nodes from key frames to shots and edges

from simf to sims. Temporal order between shots also exists like the temporal

order between frames. Hence, all shot linkage measures in a shot level can be re-

used for Video Linkage measure in a video level by replacing nodes and edges in a

graph. However, there are two main differences between a shot and a video: (1) A

video, specially copied video, can be compounded by multiple original videos. Thus

a copied video may contain multiple video segments from multiple videos, while

51

a compound shot is rare because shot boundaries are mostly detected between

different segments. (2) With our observation of videos in YouTube, a copied video

is usually shorter than an original video, since a copied video is usually small

extraction of an original video. Thus, to measure simv(va, vb), even though we

keep the same group based formulas used in a shot level, all shots are not selected

as nodes in a video level.

4.2.4.1 Dynamic selection of shots as nodes

In a shot level comparison, all key frames are used as nodes in the graph structure.

However, by assuming that we may use corresponding shots in a copied video

to the shots in an original video, some shots should be discarded in the graph

structure in a video level comparison. Intuitively, the sims between a copied

shot and an original shot is relatively high. Thus, high-valued similarity between

shots will be selected as edges in a video level. In turns, corresponding shots

of high-valued edges (in a video level) will be selected as nodes to compute the

similarity, simv(va, vb), using the proposed group-based matching techniques. It

looks similar to the pruning step in a shot level. However, in a video level, when

a shot is not selected as a node, then they will be completely removed from the

graph structure, such that discarded nodes cannot contribute any equations in

Video Linkage measures . There are four scenarios to limit to the number of high-

valued edges and corresponding nodes to improve both accuracy and speed, as

follows.

1. If a copied video is only the small part of an original video, the part of copied

shots from an original video will only respond as high-valued edges. In other

words, if all shots in an original video are included in a graph as nodes,

the remnant shots in an original video will downgrade the similarity value

significantly.

2. If a copied video consists of multi-segments from multiple original videos,

when a copied video is compared with one of original videos, the shots in a

segment from the original video will only respond as high-valued edges. The

shots in other segments will downgrade the similarity, if all shots in a copied

video are included in the graph.

52

3. If a user adds artifact shots such as transitions, the selection of high-valued

edges will remove nodes representing artifact shots which cause setback of

similarity.

4. Large number of edges and nodes increases running time exponentially, since

exact similarity measures take more than or equal to O(N2). Therefore, cer-

tain number of N will be enough to detect copied videos, and it is empirically

proven in Section 4.3.

Even though unnecessary shots are removed, the graph structure in a video level

is same as that in a shot level. Therefore, by replacing key frames and simf to

shots and sims, respectively, all 5 shot linkage measures can be reconsidered for all

5 Video Linkage measures. Obviously, small changes in the formulas are required

as follows.

• The elements in g1 and g2 are replaced from frames to shots, such that

g1 = {s11, ..., s1n1} and g2 = {s21, ..., s2n2}

• A frame threshold, ρ, is changed by a shot threshold, δ, that decides if the

edge between shots is pruned or not. (Note that corresponding nodes are

still included in the graph.)

• A video threshold, θ, is applied to decide if a video is copied or not.

• An edbe value, ω, is represented by sims replacing simf .

When the changes of elements in a graph are complete, without loss of general-

ity, we can have five Video Linkage measures, i.e., V Lω,δ(g1, g2), NCV Lω,δ(g1, g2),

gV Lω,δ(g1, g2), aV Lω,δ(g1, g2), aNCV Lω,δ(g1, g2) from SLω,ρ(g1, g2), NCSLω,ρ(g1,

g2), gSLω,ρ(g1, g2), aSLω,ρ(g1, g2), aNCSLω,ρ(g1, g2), respectively. The inequality

among Video Linkage measures also inherits the inequality of shot linkage measures.

Then,

aNCV L ≤ NCV L, aV L ≤ V L ≤ gV L.

53

4.2.4.2 Hierarchical Video Linkage structures

Like shot linkage frameworks, we also propose two algorithmic Video Linkage struc-

tures - standalone and pipelined Video Linkage, in the video level comparison. How-

ever, unlike shot linkage frameworks, there are two main differences in Video Link-

age frameworks. First, in order to obtain simv, one computation is only required

between two videos because one video is one group of shots and many groups of

frames. Second, the goal of video level comparison is to decide if a video is copied

or not, while obtaining sims is the golf of the shot level comparison. Thus, exact

similarity may not be computed if not necessary. Therefore, the video level thresh-

old, θ, is used as the final decision criteria for detecting copied videos, while the

shot level threshold, δ, is used for pruning edges in a video level. Thus, in pipelined

structure, aNCV L or aV L can also be used for faster filtering in the video level.

For example, when simv < aNCV L, then we conclude simv < NCV L by inequal-

ity property. Then, a video is not detected as a copy without exact similarity. Two

algorithmic Video Linkage frameworks are as follows;

• Standalone Video Linkage algorithm inherits shot linkage measures such that

simv is computed by one of five Video Linkage measures {V L, NCV L, gV L,

aV L, aNCV L}.

• Pipelined Video Linkage algorithm that exploits the upper bound, gV L, as

well as the lower bound, aNCV L. Unlikely the goal of a shot level aiming to

compute sims between shots, the video level should decide if two videos are

copied or not. That is, to determine if simv(va, vb) ≥ θ, we first check the

fast (but approximate) greedy measure gV Lω,ρ(va, vb) < θ. If so, we conclude

simv(va, vb) 6≥ θ. Else, we next check another fast (but approximate) measure

aNCV Lω,ρ(va, vb) ≥ θ. If so, we conclude simv(va, vb) ≥ θ. Else, finally, we

resort back to standalone Video Linkage and check simv(v1, v2) ≥ θ using one

of slow but exact video linkage measures {V L, NCV L} for simv() function.

The details of two Video Linkage algorithms are illustrated in Algorithms 1 and 2,

respectively. The Hierarchical Video Linkage Framework is accomplished by select-

ing one of shot linkage measures and one of Video Linkage measures. For example,

one can select gV L|V L for Video Linkage to decide if a video is copied or not, and

54

Algorithm 1: Standalone Video Linkage.
Input : A query video vq and a source video set Vs

Output: A copied video set Vc (⊆ Vs)
linkage ← {V L, NCV L, gV L, aV L, aNCV L};
Vc ← ∅;
foreach vs (∈ Vs) do

if linkage(vq , vs) ≥ θ then Vc ← Vc ∪ vs;

return Vc;

Algorithm 2: Pipelined Video Linkage.
Input : A query video vq and a source video set Vs

Output: A copied video set Vc (⊆ Vs)
slow-linkage ← {V L, NCV L};
Vc ← ∅;
foreach vs (∈ Vs) do

if gV L(vq , vs) < θ then continue;
if aNCV L(vq , vs) ≥ θ then Vc ← Vc ∪ vs; continue;
if slow-linkage(vq , vs) ≥ θ then Vc ← Vc ∪ vs;

return Vc;

select gSL|NCSL to measure the similarity between shots in a shot level. For

simf in a frame level, the weighted combination of cosine distances are chosen

after features of key frames are extracted.

4.3 Experimental Validation

To validate our proposals, we have performed extensive experiments with a public

benchmark data set of MUSCLE-VCD-20071 and real videos downloaded from

YouTube.

4.3.1 Set-Up

All proposed algorithms are implemented in Java and JMF 2.1e, and executed in a

desktop with Intel Celeron 3.20GHz, 2GB RAM. To extract the features from *.flv

video format used in YouTube videos, Java wrapper for ffmpeg, i.e., fobs4jmf, is

applied for our implementation.

Data Sets. First, MUSCLE-VCD-2007 data set contains 101 source videos

in Vs and two different query sets. In the first query set, ST1, containing 15

copied videos, each copied video is distorted from a corresponding original video by

1http://www-roc.inria.fr/imedia/civr-bench/data.html

55

YouTube Data Set
Category AV CO ET MU HS PB NP PA TE GA Total
|Vs| 261 284 239 230 247 440 289 394 332 216 2,932
|Vq| 10 10 10 10 9 10 10 9 10 10 98
|Vc| 90 90 90 90 81 90 90 81 90 90 882

MUSCLE-VCD-2007 Data Set
|Vs| = 101, |ST1| = 15, |ST2| = 3, |Vq| = 18, |Vc| = 31

Table 4.3. Description of data set.

multiple editing methods (e.g., color change, blur, re-encoding, crop, camcording,

subtitles, analogic noise, change in YUV, camcording with an angle, horizontal flip,

zoom, and resize) applied to a whole video. Thus, the length of a copied video is the

same as that of an original video. The second query set, ST2, contains 3 copied

videos. Each copied video is composed of several video segments from different

original videos. In turn, each video segment is distorted by multiple aforementioned

editing methods. Note that the length of a video segment is relatively short, i.e.,

ranging from 23 seconds to 2 minutes, but the length of an original video varies

from 5 minutes to 100 minutes.

Second, for YouTube data set, a source video data set, Vs, is made by down-

loading 2,050 video clips from YouTube throughout all categories. Among the 15

categories in YouTube, 10 categories are selected: Autos & Vehicles (AV), Comedy

(CO), Entertainment (ET), Howto & Style (HS), Music (MU), News & Politics

(NP), People & Blogs (PB), Pets & Animals (PA), Travel & Events (TE), and

Gaming (GA). In order to synthesize copied videos, we select 98 videos as original

videos (Vq) from 10 categories. For each original video, 10 copied videos are gen-

erated by ‘cut in a video (CV)’ (3), ‘cut and paste in a video (CP)’ (2), ‘cut and

paste from different videos (CD)’ (1), ‘change size/resolution (CR)’(2), ‘adding

title and credit (TC)’(1), and ‘adding logo/title (LT)’ (1), where(#) indicates the

number of copies. Therefore, 882 copied videos (Vc) are created in total. All copied

videos are added to a source video set in the corresponding category. As a result,

we have 2,932 source videos for the data set.

Table 4.3 summarizes the statistics of two data sets.

Schemes and Evaluation Metrics. Two standpoints are considered as perfor-

mance metrics: (1) accuracy in terms of precision(NTruePositive

NAllPositive
), recall(NTruePositive

NAllTrue
),

56

and F-measure (2×(Precision×Recall)
Precision+Recall

), and (2) performance in terms of wall-clock

running time.

In the following, we first show that our proposal outperforms competing meth-

ods using MUSCLE-VCD-2007 data set. Then, we compare among our proposal

in detail using YouTube data set.

4.3.2 Video Linkage on MUSCLE-VCD-2007 data set

4.3.2.1 Parameters and decision rule

Two query sets, ST1 and ST2 of MUSCLE-VCD-2007, have different characteris-

tic. Thus, we have different parameter setup for them.

In ST1, a copied video is edited by multiple distortion methods from one orig-

inal video with whole length. It means a copied video contains the similar number

of shots of an original video that usually have long length. Thus, the number of

high-valued edges in a video level is set to 30 to exploit adequate number of shots

as nodes, i.e., N = 30.

In ST2 query set having 3 copied videos, more complex and compound edit-

ing methods (e.g., caption, color change, phase change, crop, sharpness, letter

box, contrast change, logo, shift, zoom, vertical deformation, blur, horizontal flip,

gamma change, brightness change, and vertical deformation) are applied to all

video segments in a copied video. In addition, one copied video is composed of

several short video segments (from 24 to 123 seconds) from different original videos

(from 316 to 6315 seconds). It means that the limited number of shots exists in

copied videos. Therefore, in order to improve the running time, as long as one

shot in a copied video is detected as a copied shot from an original video, then the

video is considered as a copied video. Thus, in the video level comparison, only the

highest valued edge is used in the decision. Note that the number of high-valued

edges, N , can vary proportionally to the length of a video, assuming that longer

video contains more shots.

In addition, the video level threshold, θ, and the shot level threshold, δ, are

set to 0.93 and 0.9, respectively, to achieve the best performance overall. The

frame level threshold, ρ, is set to 0.5 to use more features from the frame. In

57

order to obtain proper output described in the CVIR 2007 competition, we apply

the combination of top-1 and threshold (0.93) based decision rule for ST1, and

precision/recall graph based on varying thresholds (0.75∼0.98) for ST2.

4.3.2.2 Accuracy and performance on ST1

Using the same evaluation metric in CIVR 2007 competition with MUSCLE video

data set, the proposed Video Linkage methods acquire 15 correct answers from 15

query videos, i.e., both precision and recall are 1. It means that our proposed

algorithms are robust to any types of distortion presented in copied videos. Note

that the best recall in the CIVR 2007 competition is only 0.86. Figure 4.3(a)

depicts the comparison between Video Linkage and methods presented in CIVR

2007 competition. The bar graph shows recall values referencing the left Y-axis,

while the line graph shows the actual running time (minutes) referencing the right

Y-axis. Note that the precision value is the same as recall value in ST1, since

only one answer can be returned for each query video. Therefore, the higher bar

means higher accuracy, while the lower point in a line graph means faster pro-

cessing time. The processing time should include the pre-processing time (feature

extraction and descriptor generation) for query videos only, as stated in the in-

struction of the competition. As a result, the total running time of gV L|NCV L

is about 14 minutes 35 seconds including the pre-processing, data loading time,

and comparison time, which outperforms the existing methods in the competition

by 3.67 times on average. Note that it took 44 minutes with 0.86 recall in the

competition2.

4.3.2.3 Accuracy and performance on ST2

In order to verify the effectiveness of the proposed CVD algorithms, gV L|NCV L

is selected. Note that the other algorithms such as V L, NCV L, and gV L|V L

provide similar behaviors, too. The characteristic comparison among our proposed

algorithms will be fully described with YouTube videos in 4.3.3. Figure 4.3(b)

shows the trace of precision and recall along different threshold levels, as well as the

comparison with the existing methods in the CIVR 2007 competition with respect

2http://www-rocq.inria.fr/imedia/civr-bench/Results.html

58

80

100

0.8

1

m
in
.)Recall

Time

20

40

60

80

0 2

0.4

0.6

0.8

in
g
Ti
m
e
(m

Re
ca
ll

Time

0

20

0

0.2

VL
VL
|V

L
N
CV

L
N
CV

L
es
tig

o
ne

se
 1

ne
se
 2

g
Ko

ng
IB
M
 1

IB
M
 2

IB
M
 3

Ru
nn

i

Video
Linkage gV

gV
L|

ad
v e

Ch
in

Ch
in

H
on

g I I I

* Note that the precision is the same as recall in ST1

Linkage
Method

0.6
0.8
1

gVL|NCVL
Recall

0
0.2
0.4

0 75 0 8 0 85 0 9 0 95 1

Recall
Precision

0.75 0.8 0.85 0.9 0.95 1

20
30
401

M
in
ut
es

Re
ca
ll Recall

Time

0.9 0.86 0.33
0
10

0

gVL|NCVL Hong Kong advestigo

MR

(a) Recall on ST1 (b) Precision & Recall on ST2

Figure 4.3. Accuracy and performance of selected Video Linkage algorithms on
MUSCLE-VCD-2007 video sets.

to recall and running time. Out proposed algorithm achieves the recall of 0.9 by

setting the threshold 0.84, while the the best recall among competing methods is

only 0.86. In addition, the processing time of our proposed algorithm for ST2 is

about 24 minutes, while all competing methods take more than 30 minutes. As

shown in Figure 4.3(b), the precision is very small to achieve the proper recall,

because many videos in the benchmark set contain similar features to the short

period of video segments in one copied videos. This affects the sensitiveness of

the threshold level. As a result, most original videos are detected as a copy at

threshold value of 0.86, and the recall value is significantly increased.

4.3.3 Video Linkage on YouTube data set

4.3.3.1 Parameters

With respect to the characteristic of a copied video in YouTube data set, the copied

video contains only the part of an original video, or compound video segments

from multiple videos. For example, while the length of an original video is about

20 minutes, the length of a copied video is only about 2 minutes. Here, we also

exploit the highest-valued edge in a video level graph, assuming only the small

number of shots are copied from an original video. The other parameters such as

thresholds are same as those used in MUSCLE-VCE 2007 data set. We only use

59

0.95

1

0.9 Precision
Recall

0.85
CV CP CD TC LT CR

Recall
F‐Measure

0.95

1

0.9 Precision
Recall

0.85
CV CP CD TC LT CR

Recall
F‐Measure

(a) V L (b) NCV L

0.95

1

0.9 Precision
Recall

0.85
CV CP CD TC LT CR

Recall
F‐Measure

0.95

1

0.9 Precision
Recall

0.85
CV CP CD TC LT CR

Recall
F‐Measure

(c) gV L|V L (d) gV L|NCV L

Figure 4.4. Performance of each scheme over 6 editing methods.

threshold based decision rule for YouTube videos.

4.3.3.2 Robustness on various editing

As stated earlier, a copied video vc in sites such as YouTube and Yahoo Video

is typically created by altering the original video vq using several basic editing

methods. Therefore, a good measure for CVD should be robust against such

editing methods applied to generate copied video in YouTube data set. Figure 4.4

shows the performance of each scheme for 6 editing methods mentioned in section

4.3.1. Figure 4.4(a)-(d) are the results of V L, NCV L, gV L|V L, and gV L|NCV L,

respectively. As shown in the figure, our proposed Video Linkage measures are

robust over all editing methods, i.e., 0.93 in recall, 0.94 in precision and 0.935 in

F-measure on average. Specifically, the high precision and recalls of Video Linkage

measures indicate that our proposals go a good job in detecting copied videos

accurately from data sets.

60

0.9

1

0.7

0.8

Precision

0.6
AV CO ET HS MU NP PB PA TE GA

Recall
F‐Measure

0.9

1

0.7

0.8

Precision

0.6
AV CO ET HS MU NP PB PA TE GA

Recall
F‐Measure

(a) V L (b) NCV L

0.9

1

0.7

0.8

Precision

0.6
AV CO ET HS MU NP PB PA TE GA

Recall
F‐Measure

0.9

1

0.7

0.8

Precision

0.6
AV CO ET HS MU NP PB PA TE GA

Recall
F‐Measure

(c) gV L|V L (d) gV L|NCV L

Figure 4.5. Performance of each scheme over 10 genres.

4.3.3.3 Robustness on various genres

Since the characteristics of videos are various dependent on specific genres such as

music videos, lectures, TV shows, and news, it is crucial for CVD to work with

various genres of videos. In order to verify the robustness of Video Linkage measures

against video contents, we test 4 measures on 10 genres of data sets mentioned

in Table 4.3. Each genres has its unique characteristics of video contents. For

example, a video in People & Blogs (PB) genre usually has very static images

with relatively long shots, while that of Entertainment (ET) contains a lot of fast

movements. Figure 4.5 shows the performance results of each scheme for 10 genres,

and the overall average performance on all genres. Figure 4.5(a)-(d) are the results

of V L, NCV L, gV L|V L, and gV L|NCV L, respectively. Video Linkage measures

provide very consistent results over various genres in terms of recalls. However, the

precisions and F-measure are relatively lower than recalls in some genres, such as

Comedy (CO), Entertainment (ET), and Travel & Events (TE). This is caused by

a lot of motion changes in a short time period. In order to increase the performance

in terms of precision and F-measure in the specific genre, we can adjust the weight

value of each feature (wλ) to the contents so that the feature from motion vectors

61

can contribute more on similarity measure. To keep the purpose of general solution

of CVD, we use the same wλ through this experiment.

4.3.3.4 Accuracy on various thresholds

we use the threshold version of the CVD problem for YouTube data set, since we

pretend NOT to know the number of copies in a source video set, Vs. Therefore,

we need an appropriate threshold value θ for all Video Linkage frameworks. How-

ever, predicting an optimal θ value is a challenging problem itself. To decide the

threshold, we investigate the average recalls of all schemes over various values of

θ, i.e., 0.85 to 0.98. Figure 4.6(a) shows the results of average recalls for NCV L.

As observed in the figure, NCV L has hight recall values with θ < 0.93. Therefore,

we used 0.93 as our default threshold value.

4.3.3.5 Performance of selected schemes

Next, we evaluate the performance of our Video Linkage methods with respect to the

running time and # of comparison of slow shot linkage measures. Figure 4.6(b) first

shows the running time of four methods, V L, gV L|V L, NCV L, and gV L|NCV L,

over video sets in all genres. As expected, V L is the slowest method, regardless of

genres, due to its high computational cost. Furthermore, the application of gV L

as the “filter” in gV L|V L speeds up the performance significantly (on average 5

times faster than the processing time without filter). In fact, NCV L is faster than

both V L and gV L|V L because of different time complexities shown in Table 4.2,

and gV L|NCV L is the fastest among all 4 measures.

Figure 4.6(c) shows the performance of Video Linkage measures with respect to

the number of slow shot linkage computations. The number of computations of slow

shot linkage measures during the copied video detection is the dominant component

for the performance of overall CVD procedure. Thus, we count the number of

computation for slow shot linkage measures to evaluate the performance. We can

observe that gV L|V L requires the smallest number of computations during the

CVD. Since it filters out a lot of non-similar videos, one can reduce the computation

time. Note that the running time of gV L|V L is about 5 times faster than V L,

since most long shots has been filtered out by gV L. Figure 4.6(d) shows the

62

0 7
0.8
0.9

1

0.4
0.5
0.6
0.7

Precision
Recall

0.2
0.3

0.85 0.9 0.92 0.93 0.94 0.96 0.98
Threshold

Recall
F-Measure

10

100

e
(s

e
c
)

VL gVL|VL NCVL gVL|NCVL

1

0

R
u
n
n
in

g
 T

im
e

0.1

AV CO ET HS MU NP PB PA TE GA

R

(a) various θ values (b) running time (θ = 0.93)

100

pa
ri
so
n

10

w
 li
nk
ag
e
co
m

(T
ho

us
an
ds
)

VL
gVL|VL

1

AV CO ET HS MU NP PB PA TE GA

of
 s
lo
w gVL|VL

NCVL
gVL|NCVL

100

1000

VL gVL|VL NCVL gVL|NCVL

1

10

T
im

e
 (

s
e
c
)

0.1

0 200000 400000 600000
of comparisons

(c) # of slow comparison (d) scalability

Figure 4.6. Various performance results.

scalability of Video Linkage measures over the number of shot comparisons. As

expected, the total computational time of all Video Linkage measures are increasing

monotonic over the number of shot comparisons. Specifically, gV L|NCV L is the

best algorithm in terms of scalability. That indicates the proposed scheme can be

applied into a real life system to detect copied videos easily.

4.4 Summary

In this chapter, we have presented the novel idea of the hierarchical structure of

group based CVD solutions, Video Linkage. In order to implement hierarchical

group based matching idea, we introduce a method to transform a video to a

group of shots, and a shot to a group of key frames in three level structures. In

the frame level, once the selected features are extracted from key frames, the sim-

ilarity between frames is obtained by weighted vector distance. In the shot level,

the similarity between shots are measured by proposed five shot linkage measures

63

by considering a shot as a group of key frames. Like shot linkage measures, once a

video is captured as a group of selected shots, we propose five Video Linkage mea-

sures. Using a benchmark data set of MUSCLE-VCD-2007 and videos downloaded

from YouTube, our proposed hierarchical structure of Video Linkage solutions are

validated with respect to robustness and performance. In addition, a sparse graph

by pruning low-valued edges and pipe-lined Video Linkage frameworks enhance the

performance further.

Chapter 5
Parallel Linkage

In this chapter, we focus on the parallelization of sequential data linkage algorithms

to pursue the high efficiency and scalability. The data cleaning processing in one

dirty data set or merging processing of two different data sets requires quadratic

number of comparisons. For example, in order to clean one dirty set, D, where

|D|=L, we need LC2 = L(L−1)
2

comparisons. For another example, when we com-

pare two different data set, A and B with |A| = m and |B| = n, m×n comparisons

are required to find all identical records, even without merging sets. Toward this

problem, instead of suggesting an efficient match algorithm, we propose the par-

allel frameworks of data linkage which can adapt any record match function. We

also investigate another important aspect of record linkage problem – how to merge

records that are matched.

Our contributions in this work are as follows: (1) We formally introduce the

linkage problem with separate match and merge steps, and exploit them to have

better sequential linkage framework for three scenarios; (2) We extend sequen-

tial linkage algorithms to parallel ones under three scenarios such that redundant

computation and overhead among multiple processors are minimized; (3) Our pro-

posals are evaluated using citation data sets with a variety of characteristics. Our

parallel algorithms achieve 6.55–7.49 times faster in speedup compared to sequen-

tial ones with 8 processors, and 11.15–18.56% improvement in efficiency compared

to an existing parallel solution, P-Swoosh.

65

5.1 Problem Definition

Problem Overview. To take these points into consideration, the linkage prob-

lem that we consider in this proposal can be defined as follows:

Linkage Problem: Given two collections of compatible records, A={a1,

..., am} and B={b1, ..., bn}, do: (1) identify and merge all matching (i.e.,

≈) record pairs (ai,aj), (bi,bj), or (ai,bj), and (2) create a merged collection

C={c1, ..., ck} of A and B such that ∀ci, cj ∈ C, ci 6≈ cj.

Note that neither A nor B itself is assumed to be clean (to be defined in Defini-

tion 10) – i.e., there may be two matching records in it.

Definition 9 (Record Matching) When two records, r and s, are deemed to

refer to the same real-world entity, both are said matching, and written as r ≈ s

(otherwise r 6≈ s). 2

Note that the linkage algorithm in this chapter is on the parallelization of the

linkage problem, but not on measuring the similarity between two records - i.e.

any distance measures for record matching can be used in this framework. In

practice, however, the matching of two records can be often determined by distance

or similarity functions. For instance, one may use the cosine angle of token sets of

r and s (i.e., cosine similarity) to determine the match of r and s. Or, one may

use the ratio of intersected vs. unioned q-gram tokens of two records (i.e., jaccard

similarity) for the same purpose.

When two records, r and s, are matching (i.e., r ≈ s), four relationships, as

illustrated in Figure 5.1, can occur: (1) r w s: all information of s appears in r,

(2) r v s: all information of r appears in s, (3) r ≡ s: information of r and s is

identical (i.e., r w s∧ r v s), and (4) r⊕ s: neither (1) nor (2), but the overlap of

information of r and s is beyond a threshold θ. Note that to be a flexible framework

we do not tie the definitions of the four relationships to a particular notion of

containment or overlap. Instead, we assume that the containment or overlap of

two records can be further specified by users or applications. Let us assume the

existence of two such functions: (1) contain(r,s) returns True if r contains s,

and False otherwise, and (2) match(r,s) returns True (i.e., one of the four inter-

record relationships) or False for non-matching. We assume that match(r,s) is

66

r

,r r

s

s s

r s

r s

rsr

,r r

s

s s

r s

r s

rsr

,r r

s

s s

r s

r s

rs
r w s r v s r 6≈ s

r

,r r

s

s s

r s

r s

rsr

,r r

s

s s

r s

r s

rsr

,r r

s

s s

r s

r s

rs

r ≡ s r ⊕ s r 6≈ s
Figure 5.1. Inter-record relationships.

implemented using contain(r,s) function internally (e.g., if both contain(r,s) and

contain(s,r) return True, then match(r,s) returns r ≡ s).

Example 2. For a table with five columns, consider the following records: r1:

(“a”,−,−,−,−), r2:(−,“b”, −, −, −), r3:(“a”,“b”,“c”, −, −), r4:(−,“b”,“c”,“d”,−),

and r5:(−, −, −,“d”,“e”). Further, let us assume two function: (1) the containment

of two records is determined by the containment of token sets of two records, and

(2) the overlap of two records is measured by the average jaccard similarity of two

corresponding columns of two records with θ = 0.3. Then, r1 v r3 holds since {a}
⊆ {a, b, c}, r2 v r3 holds since {b} ⊆ {a, b, c}, and r2 v r4 since {b} ⊆ {b, c, d}.
In addition, jaccard(r3,r4)=

0+1+1+0+0
5

= 0.4 > θ and jaccard(r4,r5)=
0+0+0+1+0

5
=

0.2 < θ. Therefore, both r3 ⊕ r4 and r4 6≈ r5 hold. 2

When two records r and s are matching (i.e., r v s, r w s, r ≡ s, or r⊕ s), one

can merge them to get a record with more (or better) information. Again, how

exactly the merge is implemented is not the concern of this chapter. We simply

refer to a function that merges r and s to get a new record w as merge(r,s).

Example 3. For instance, like [68], if one uses the set union operator, ∪, as the

merge function for Example 2, then merge(r3,r4) would generate a new record r34:

(“a”,“b”,“c”, “d”, −), while merge(r1, r3) would generate r13=r3:(“a”, “b”, “c”,

−, −) since r1 v r3. 2

Definition 10 (Clean vs. Dirty) When a collection A has no matching records

in it, it is called clean, and dirty otherwise. That is, (1) A is clean iff ∀r, s ∈ A,

r 6≈ s, and (2) A is dirty iff ∃r, s ∈ A, r ≈ s. 2

Table 5.1 summarizes the notations.

67

Symbol Meaning
A, B two input collections

m and n size of A and B, i.e., m = |A|, n = |B|
r or ai a record in A
s or bj a record in B

cij or ci,j a merged record from ai and bj

θ threshold for r ⊕ s

contain(ai,bj) returns True if ai contains bj , or False
match(ai,bj) returns w, v, ≡, ⊕, or 6≈
merge(ai,bj) returns cij

Table 5.1. Summary of notations in Parallel Linkage.

5.2 Solution Overview

In order to address the problem, we investigate three scenarios – when both collec-

tions are clean, when only one is clean, and when both are dirty. Furthermore, we

show that the intricate interplay between matching and merging steps can exploit

the characteristics of each scenario to achieve good parallelization. The intuition

of our algorithms is that if: (1) ai is deemed to be a duplicate of bj, and (2) an

input collection B is a set, not a bag (i.e., clean), then one does not need to check

if ai is a duplicate of bj+1, ..., bn in the algorithm. Depending on the relationship

between ai and bj (i.e., ai contains bj, bj contains ai, ai is identical to bj, or ai is

overlapping with bj), this intuition can be exploited differently.

The basic flow of our proposed solutions is as follows:

• (Sections 5.3) In order to minimize the number of comparisons, i.e. to op-

timize the sequential linkage structure, we suggest three different sequential

frames depending on the types of input data sets as shown in Table 5.2:

(1) clean vs. clean: This scenario is relevant when two already-clean data

sources are integrated, (2) dirty vs. clean: Consider a search engine that has

a clean data set A, but its crawler fetches new dirty data set B every day.

In this case, not only B may have matching records in it, there can be new

matching pairs between A and B, (3) dirty vs. dirty : When one has two

dirty sets, one can clean each dirty set independently and apply clean vs.

clean scenario. However, as we will present, one may be able to improve the

linkage by matching two dirty sets directly. The scenario of cleaning single

dirty set A (i.e., self cleaning) will be shown to be covered by dirty-clean or

68

A \ B Clean Dirty
Clean Sections 5.3.1 and 5.4.1 Sections 5.3.2 and 5.4.2
Dirty Sections 5.3.2 and 5.4.2 Sections 5.3.3 and 5.4.3

Table 5.2. Taxonomy.

dirty-dirty cases easily. Finally, we propose 6 different sequential algorithms.

However, the performances on different algorithms depend on the dirtyness

of input data sets.

• (Section 5.4) As the presentation of types of input data sets, three scenar-

ios are also applied to the Parallel Linkage structure. Parallel Linkage is to

perform match and merge processes concurrently in multiple processors. To

attain the most efficient system, the tasks are needed to be partitioned and

distributed to the processors evenly. Furthermore, the messages between

processors should be minimized. In reality, because of the nature of merging

steps, the actual size of tasks cannot be pre-measured. However, the charac-

teristic of data sets will predict the size of tasks (the number of comparisons).

Therefore, in our solution, the data partition model is used to predict the

number of comparisons, so that semi-even distribution of tasks to processors

can be achieved.

5.3 Sequential Linkage

5.3.1 Clean vs. Clean

Recall that unlike database join, in the linkage problem, if two records ai and bj

match, then a merged record cij (= merge(ai,bj)) is created and re-feeded into A

and B. However, depending on the type of matching, one can do further saving.

Suppose we use the naive algorithm mentioned in section 1.1.3 for its simplicity.

Consider four records: ai, al in A (i < l ≤ m), bj, bk in B (j < k ≤ n), and two

sets E (to hold an instance of two identical records) and C (to hold merged record

cij of ai and bj). Then, if:

• ai 6≈ bj: Proceed to the next match(ai,bj+1).

69

ai

bj

ai

bj
bk bk ai

bjbk

(a) (b) (c)(a) ai v bj : (left) ai 6≈ bk (middle) ai ⊕ bk (right) ai v bk

bj

ai

bj

ai
bk bk bj

ai
bk

(b) ai w bj : (left) ai 6≈ bk (middle) ai ⊕ bk (right) ai w bk

Figure 5.2. Six possible relationships for ai, bj , and bk when bj 6≈ bk (i.e., B is clean).

• ai ≡ bj: First, add ai to E. Then, remove ai from A and bj from B. Since B

is a clean set, by definition, there cannot be any matching records to bj in B.

Since ai is identical to bj, in addition, there cannot be any matching records

to ai in B, either. Therefore, we do not need to compute: match(ai,bk).

Symmetrically, since A is also a clean set and ai is identical to bj, there

cannot be any matching records to bj in A, either, and thus we do not

need to compute match(al,bj). At the end, therefore, m − i + n − j times

of computation of match function is saved. Finally, proceed to the next

match(ai+1,b1).

• ai v bj: First, remove ai from A. Between ai and bk, two relationships,

bk v ai and ai ≡ bk, cannot occur since B is a clean set (e.g., if bk v
ai ∧ ai v bj, then bk v bj by transitivity, but since B is a clean set, bk 6v bj,

leading to a contradiction). However, the other three relationships can occur,

as illustrated in Figure 5.2(a). Note that if the only possible relationship

between ai and bk was ai 6≈ bk, then we could have skipped the computation

of match(ai,bk). However, since there are three possibilities, we may not

entirely skip match(ai,bk). However, note that in Figure 5.2(a), (1) if ai v bk,

then even if we do compute match(ai,bk), it does not generate any new record

since merge(ai,bk)=bk. Therefore, this case can be ignored, and (2) ai ⊕ bk

case is rare in practice. Since bj 6≈ bk, if ai v bj, then most likely ai 6≈ bk

holds, although an extreme case like Figure 5.2(a) (middle) can happen.

Therefore, we can skip the entire computation of match(ai,bk) with the risk

70

Algorithm 3: s-CC-single.
Input : Two non-empty clean lists A and B
Output: Intermediate lists A′, B′ and a clean list C
/* E is a temporary list to contain equality records */
i← j ← 1, A′ ← B′ ← C ← E ← ∅;
while i ≤ |A| and j ≤ |B| do3.1

switch match(ai,bj) do
case ai ≡ bj

add ai to E; remove ai from A and bj from B;
i← i + 1, j ← 1;

case ai v bj
remove ai from A; i← i + 1, j ← 1;

case ai w bj remove bj from B; j ← j + 1;
case ai ⊕ bj

remove ai from A and bj from B;
C ← s-merge(cij ,C); i← i + 1, j ← 1;3.2

case ai 6≈ bj j ← j + 1;

if j > |B| then i← i + 1, j ← 1;

A′ ← A, B′ ← B ∪ E; return (A′, B′, C);

Algorithm 4: s-CC.
Input : Two non-empty clean lists A and B
Output: A single merged clean list C
A′ ← B′ ← C ← E ← ∅;
while A 6= ∅ do4.1

(A′, B′, C)← s-CC-single(A, B); A← C; B ← A′ ∪B′;

C ← B; return C;

of rare false negatives. In the experimentation, we empirically show that the

risk is quite low1. Finally, proceed to the next match(ai+1,b1).

• ai w bj: First, remove bj from B. between ai and bk, two relationships,

ai v bk and ai ≡ bk, cannot occur since B is a clean set, but the other

three relationships can occur, as illustrated in Figure 5.2(b). Since there are

three possibilities between ai and bk, we may not skip the computation of

match(ai,bk). Finally, proceed to the next match(ai,bj+1).

• ai ⊕ bj: First, remove both ai from A and bj from B. Then, add cij (=

merge(ai,bj)) to C. Finally, proceed to the next match(ai,bj+1).

The iterative sequential linkage algorithm for clean-clean case, referred to as s-

CC, is shown in Algorithm 4 that terminates when no more merge occurs (line 4.1).

The main functionality of s-CC using the five cases of inter-record relationships

1By setting the threshold for overlap, θ, as substantially high or low, we can decrease
the risk of false negatives even further.

71

Algorithm 5: s-DC-single.
Input : Non-empty dirty list A and clean list B
Output: An intermediate list B′ and merged dirty list C
i← j ← 1, C ← ∅;
while i ≤ |A| and j ≤ |B| do

switch match(ai,bj) do
case ai ≡ bj or ai v bj

remove ai from A; i← i + 1, j ← 1;5.1

case ai w bj remove bj from B; j ← j + 1;5.2
case ai ⊕ bj

remove ai from A and bj from B;
add cij to C; i← i + 1, j ← 1;5.3

case ai 6≈ bj j ← j + 1;

if j > |B| or B = ∅ then
add ai to B; remove ai from A;
i← i + 1, j ← 1;

B′ ← B; return (B′, C);

is captured in s-CC-single of Algorithm 3. At line 3.1 of s-CC-single, both

m = |A| and n = |B| continue to shrink as records in A or B are removed.

The function s-merge(cij,C) merges a record cij into a clean list C, ensuring that

resulting list C be still clean by comparing cij to all records in C.

5.3.2 Dirty vs. Clean

The detailed procedure for the dirty-clean case, s-DC, is shown in Algorithm 6

that uses Algorithm 5 as a sub-step. When only one collection, A, is dirty, one can

use the other clean collection, B, as the final merged clean set C to minimize space

cost. Therefore, when either v or w relationship occurs, the record can be simply

removed from one collection (lines 5.1 and 5.2 of s-DC-single). Similarly, when

⊕ relationship occurs (line 5.3), both original records, ai and bj, are removed and

the new matched record cij is added to the dirty collection C. After the iteration,

when ai is not matched to any records bj from B (line 5.3), it becomes safe to move

ai to the clean collection, B. From the next iteration, this newly-moved record ai

will be compared to the rest of records A. This step is necessary since A was dirty.

When no more merge occurs in the line 5.3 of Algorithm 5 (i.e. A is empty in the

line 6.1 of Algorithm 6) the algorithm terminates.

By using s-DC, note that one can clean a single dirty collection A. That is, by

moving the first record from A to B, one can turn the problem into the sequential

linkage of dirty-clean case. As a syntactic sugar, let us call this algorithm as

72

Algorithm 6: s-DC.
Input : Non-empty dirty list A and clean list B
Output: One merged clean list C
while A 6= ∅ do6.1

(B′, C)← s-DC-single(A,B); A← C; B ← B′;

C ← B; return C;

Algorithm 7: s-self.
Input : A non-empty dirty list A
Output: A non-empty clean list C
B ← C ← ∅; move a1 from A to B; C ← s-DC(A,B); return C;

s-self, shown in Algorithm 7. Then, another way to implement the sequential

linkage for dirty-clean case to use s-self and s-CC – i.e., clean the dirty collection

A using s-self first and apply the sequential linkage for clean-clean case. To

distinguish from the s-DC of Algorithm 6, we denote this implementation as s-

DCself . Algebraically, the following holds: s-DCself (A,B) ≡ s-CC(s-self(A),B).

Note that algorithms s-DC and s-DCself behave differently depending on the

level of “dirty-ness” within A or between A and B. For instance, consider three

records, ai, ak ∈ A and bj ∈ B. Suppose the following relationship occurs: ai⊕ak <

bj. Then, using s-DCself , ai ⊕ ak will be compared again with other records

in A. However, using s-DC, ai and ak will be removed, saving |A| number of

comparisons. On the other hand, for instance, assume that ai ≈ ak, ai 6≈ bj, and

ak 6≈ bj. Using s-DCself , there is only one comparison after ai ≈ ak is made.

However, using s-DC, both ai and ak are compared to bj before ai ≈ ak occurs,

increasing the number of comparisons. In general, if the number of matches in A

is significantly higher than that between A and B, then s-DCself is expected to

perform better.

5.3.3 Dirty vs. Dirty

Since neither collection A or B is clean, more comparisons are needed for dirty-

dirty case. By using sequential linkage algorithms for clean-clean or dirty-clean

cases, we propose three variations, referred to as s-DD1, s-DD2, and s-DD3, as

follows:

1. s-DD1(A,B) ≡ s-DC(A,s-self(B))

73

2. s-DD2(A,B) ≡ s-CC(s-self(A),s-self(B))

3. s-DD3(A,B) ≡ s-self(A ∪B)

The different behaviors of variations will be evaluated experimentally.

5.4 Parallel Linkage

The high-level overview of Parallel Linkage using 2 processors is illustrated in Fig-

ure 5.3. Parallel linkage is a distributed algorithm to perform match and merge

processes concurrently. To achieve this, either data or task needs to be partitioned

and distributed to multiple processors. In an ideal parallel model, tasks are evenly

distributed among all processors. However, in reality, such an even partition is

not trivial since a task cannot be measured easily before it actually executes. In

our setting, therefore, we estimate the number of record comparisons by the size

of data, and use the data partition model to simulate the task partition model.

Given two inputs, A and B with |A| ≤ |B|, the gist of our parallel algo-

rithms is that each processor Pi has a replicated A and a partition of B, called

Bi. At each Pi, then, an appropriate sequential linkage is done separately (e.g., s-

CC-single(A,Bi) for clean-clean case). Once intra-processor cleanness is ensured

using sequential linkage, next, inter-processor cleanness needs to be addressed.

Therefore, the outputs of sequential linkage at Pi are then properly shipped and

compared to the rest of data at the other processors. This process repeats until

no more merge occurs at any processors.

To make the presentation simpler, we assume that each processor Pi has a

local queue, Qi, while there is a single global queue QG. With an efficient im-

plementation using the linked list or priority queue, we assume that operations

such as enqueue(a,Q), enqueue({a1, a2},Q) (= enqueue(a2,enqueue(a1,Q))), and

dequeue(Q) are efficiently supported for all queue data structures. Furthermore,

we assume the following functions:

• The partition(QG) function, shown in Algorithm 8, takes a global queue QG

(containing a “list” of list of records) as input, dequeues a list, say B, from

QG, partitions it to k pieces of B1, ..., Bk, and ships both the remainder of

QG and Bi to each Pi.

74

A
B

B1
clean
set 1

processor 1

processor 2

A

B2A clean
set 2

Merged
set 1

Merged
set 2

Queue

task
partition

Figure 5.3. Parallel Linkage model with 2 processors.

• The sync({A1, ..., Ak}, op) function synchronizes values of input sets of all

processors with respect to the specified operator, op. For instance, with

A1={1,3,4} and A2={1,2,4,5}, sync({A1,A2}, ∩) would synchronize two sets

by applying ∩ to yield a set {1,4}. However, sync({A1,A2},∪) would yield

a set {1,2,3,4,5}. To avoid communication cost among processors, in the

implementation, one exchanges only indexes of input sets, instead of actual

data sets.

• Recall that each processor Pi initially has a replicated A and partitioned Bi

data sets. After a sequential linkage runs at each processor, depending on

the occurrence of match and merge functions, results of each linkage may be

different. In such a case, to ensure even distribution of data/task among all

processors, one needs to re-partition Bi again. The re-partition({A, B1, ...,

Bk}) re-partitions Bi while considering A so that data are evenly distributed

among A and all Bis. For example with two processors, if A={1,3,4} and

B1={5,6}, B2={7,8,9}, then re-partition({A,B1,B2}) results in A={1,3,4},
B1={5,6,1,3}, and B2={7,8,9,4}. This will do load-balancing by adjusting

number of partitioned records of Bi.

5.4.1 Clean vs. Clean

The Parallel Linkage for two clean inputs, referred to as p-CC in Algorithm 9, is

the parallelization of the sequential linkage s-CC. Suppose there are k processors,

75

Algorithm 8: partition.
Input : A queue, QG, containing a list of list of records
Result: At each Pi, a sub-list Bi and a local queue Qi are set
B ← dequeue(QG);
partition B to k sub-lists: B1, ..., Bk;
ship Bi and QG to Pi;
foreach Pi (1 ≤ i ≤ k) do Qi ← QG

Algorithm 9: p-CC.
Input : Two non-empty clean lists A and B
Output: A single merged clean list C
enqueue({B,A},QG); /* initialize global queue */9.1
partition(QG); /* Qi and Bi at Pi are set */9.2
foreach Pi (1 ≤ i ≤ k) do

while Qi 6= ∅ do
Ai ← dequeue(Qi);
(A′

i,B
′
i,Ci) ← s-CC-single(Ai,Bi);

A′
i ← sync({A′

1, ..., A′
k}, ∩);9.3

Bi ← re-partition({A′
i,B

′
1, ..., B′

k});9.4
Qi ← sync({C1, ..., Ck}, enqueue);9.5

C ← B1 ∪ ... ∪Bk; return C;

P1, ..., Pk. Once the data set B is partitioned to Bi and shipped to each processor

(lines 9.1 and 9.2), at each processor Pi, a single iteration of sequential linkage for

clean-clean, s-CC-single, is applied to generate a clean set Ci and two interme-

diate sets of A′i and B′i. Note that the initial input data set A was replicated to

all processors. However, each intermediate set of A′i may be different since A is

compared to different piece of B. Therefore, to avoid redundant comparison, we

needs to synchronize all intermediate A′i from all processors (line 9.3). Similarly,

intermediate B′i at each processor may have different values after s-CC-single.

To increase the efficiency of Parallel Linkage, therefore, one needs to re-distribute

B′i across all processors (line 9.4). Finally, all clean sets Ci generated from s-CC-

single are gathered and re-feeded into the local queue Qi (line 9.5). This step is

necessary since a clean set of P1 still needs to be compared to intermediate sets in

P1 as well as in another processor P2.

The algorithm to clean n clean input sets, termed as p-CC-multi, can be

straightforwardly made by extending the p-CC that links “two” clean input sets

(i.e., at line 9.1 of p-CC, all n input clean sets need to be enqueued to QG).

Example 4. Using Figure 5.4, let us illustrate how merged sets can have inter-

and intra-comparisons to intermediate sets iteratively in p-CC. Consider two clean

input sets, A = {a1, a2, a3} and B = {b1, b2, b3, b4, b5}, and two processors, P1 and

76

a1, a2, a3

1A
b1,b2,b3

1B 1C

a1, a2, a3

2A
b4,b5

2B 2C

a2, a3

1A
b1,b3

1B
c12

1C

a1, a2

2A
b5

2B
c34

2C

a2

1A
b1,b3

1B
c12

1C

a2

2A
b5

2B
c34

2C

1A
b1,b3

1B
c12

1C

2A
b5,a2

2B
c34

2C

1Q

2Q

1Q

2Q

1Q

2Q

1Q

2Q

1A
b1,b2,b3

1B 1C

2A
b4,b5

2B 2C

{a1, a2, a3}
1Q

{a1, a2, a3}
2Q

P1

P2

P1

P2

After
 partition (QG)

dequeue(Qi)

s-CC-single

sync(Ai)
re-

partition

Qi=sync({C1,…,Ck},euqueue)

1A
b1,b3

1B 1C

2A
b5,a2

2B 2C

{c12}, {c34}
1Q

{c12}, {c34}
2Q

dequeue(Qi) Algorithm
stops when
Qi is empty

Repeat from
REPEAT POINT

REPEAT POINT
1 2

345

6

Figure 5.4. Single iteration of p-CC.

P2. Furthermore, let us assume that only two merge’s occur: c12 = a1 ⊕ b2 and

c34 = a3 ⊕ b4. Since |B| > |A|, B is partitioned to B1 = {b1, b2, b3} in P1 and

B2 = {b4, b5} in P2 and A is replicated to Q1 and Q2 (first box in Figure 5.4). Now,

after dequeue(Qi) is done (second box) and s-CC-single runs at each processor

(third box), we have: A′1 = {a2, a3}, B′1 = {b1, b3}, and C1 = {c12} at P1, and A′2 =

{a1, a2}, B′2 = {b5}, and C2 = {c34} at P2 (third box). Then, sync({A′1, A′2},∩)

of line 9.3 in p-CC yields A′1 = A′2 = {a2} (fourth box). Since B1 and B2 have

different left-over and |B2| < |B1|, by re-partition on line 9.4 in p-CC, a1 is added

to B2 to make B1 = {b1, b3} and B2 = {b5, a2} (fifth box). On line 9.5 in p-CC,

if Ci is not empty, algorithm enqueues Ci to all local queues. Then, both Q1 and

Q2 contain both C1 and C2 by synchronizing C1 and C2 among other processors

(sixth box). This steps repeat until a queue Qi is empty. 2

5.4.2 Dirty vs. Clean

We propose two different parallel schemes, named as p-DCself and p-DC, similar

to two sequential schemes of s-DCself and s-DC, respectively.

In p-DCself of Algorithm 10, first dirty input set A is partitioned to Ai and

distributed to each processor. Then, each Ai is separately cleaned by applying

77

s-self at each processor. At this point, k clean sub-lists and one clean input list,

B, remain. Then, all these clean sub-lists can be gathered and cleaned, including

B, by p-CC-multi.

In p-DC, like p-DCself , the dirty list A is partitioned to k sub-lists, A1, ..., Ak

at each processor. However, unlike p-DCself , the clean list B is also shipped

to each processor. Then, clean-clean case of sequential linkage algorithm, s-CC-

single(Ai, B) is executed at each processor instead of s-DC-single, because we

cannot simply union A′i and B′i in each processor to avoid duplicate matching

processes in the next iteration. Note that Ai is a partitioned list but Bi is common

in all processors. However, by comparing dirty set directly to the clean set without

the self-clean process in advance like p-DCself , when records in a dirty set, A,

mostly exist in a clean set, B, then the merging time is improved as the same

case in a s-DC. The result lists from the first operation by s-CC-single, we

have k sub-lists, A′1, ..., A
′
k, k sub-lists, C1, ..., Ck, and a synchronized Bi. Among

these lists, A′i, ..., A
′
k are dirty, so that s-DC-single is applied to each A′i at each

processor by assuming the initial clean set is empty. As a result, we have k clean

lists, A′i and k merged dirty lists, Mi. Even though Mi is cleaned by s-self, it

should be compared again with Bi and A′i. Thus, M ′
i by s-self(Mi) is put aside to

perform p-CC-multi later. Even each A′i is clean at each processor, the set of A is

dirty initially. Thus, A′is should be compared each other. In addition, the nature

of iterative merging, the merged records generated by comparing A′is should be

compared again with all other list. Now, we use p-CC-multi-alter in a line 11.1

that returns two sets. Note that this algorithm is omitted because it can be simply

modified by p-CC-multi. A return set of A′ is for original records belonging to

an initial set of A, and R is merged records modified by merging process. The

R should be compared again with all other lists, but it is clean by itself. Once

A and B were compared at an initial step, simple union should work for merging

two sets. Therefore, in each processor, we have a new Bi by union of A and Bi

in a line 11.2. Now, we have all clean lists, but they should be compared each

other. Thus, multiple clean lists from all processors can be gathered and cleaned

by p-CC-multi finally.

78

Algorithm 10: p-DCself .
Input : A non-empty dirty list A and a clean list B
Output: A single merged clean list C
/* Dirty set A is partitioned */
enqueue({A},QG); partition(QG);
foreach Pi (1 ≤ i ≤ k) do Ai ← s-self(Ai);
/* There are k clean sub-lists of Ai and one clean B */
enqueue({B, A1, ..., Ak},QG);
C ← p-CC-multi(QG); return C;

Algorithm 11: p-DC.
Input : A non-empty dirty list A and a clean list B
Output: A single merged clean list C
/* Dirty set A is partitioned */
enqueue({A, B},QG); partition(QG);
/* Qi and Ai at Pi are set */
foreach Pi (1 ≤ i ≤ k) do

Bi ← dequeue(Qi);
A′

i, B
′
i, Ci ← s-CC-single(Ai,Bi);

B′
i ← sync({B′

1, ..., B′
k}, ∩);

/* A′
i and is still dirty, but B′

i and Ci are clean */
Di ← ∅;
(D′

i, Mi) ← s-DC-single(A′
i, Di); A′

i ← D′
i;

M ′
i ← s-self(Mi);

QA ← sync({A′
1, ...,A′

k}, enqueue);

(A′, R)← p-CC-multi-alter(QA);11.1
move A′ to each processor;
foreach Pi (1 ≤ i ≤ k) do

Bi ← Bi ∪A′;11.2
QG ← sync({B′

i, M ′
1, ..., M ′

k, C1, ..., Ck}, enqueue);

enqueue({R}, QG); C ← p-CC-multi(QG); return C;

5.4.3 Dirty vs. Dirty

We propose two Parallel Linkage schemes to handle two dirty lists: (1) p-DD1,

parallelization of s-DD1, cleans one dirty set first, then apply p-DC, while p-

DD2, parallelization of s-DD2, attempts to clean both sets at the same time and

apply p-CC.

In p-DD1 of Algorithm 12, first, data set B is partitioned to k pieces and

cleaned by s-self at each processor. When k clean sub-lists of B are created,

they are merged back via a queue and cleaned by the Parallel Linkage solution

p-CC-multi. After B is cleaned and stored in Bclean, then, we apply p-DC to

get a merged clean list of C. In the p-DD2 scheme, each input set A and B

are separately partitioned and cleaned by s-self, generating 2k clean sub-lists of

A and B. Sub-lists from A and Sub-lists from B are cleaned by P-CC-multi,

respectively. Finally, cleaned A and cleaned B are merged again by p-CC.

79

Algorithm 12: p-DD1.
Input : Two non-empty dirty lists A and B
Output: A single merged clean list C
/* Clean B first */
enqueue(B,QG); partition(QG); /* Bi and Qi are set at Pi */
foreach Pi (1 ≤ i ≤ k) do Bi ← s-self(Bi);
Bclean ← p-CC-multi({B1, ..., Bk});
C ← p-DC(A, Bclean); return C;

Algorithm 13: p-DD2.
Input : Two non-empty dirty lists A and B
Output: A single merged clean list C
/* Clean A and B independently */
partition(A); partition(B); /* Ai and Bi are set at Pi */
foreach Pi (1 ≤ i ≤ k) do Bi ← s-self(Bi); Ai ← s-self(Ai);
Bclean ← p-CC-multi({B1, ..., Bk}); Aclean ← p-CC-multi({A1, ..., Ak});
C ← p-CC(Aclean, Bclean); return C;

5.5 Experimental Validation

In this section, under various settings, we evaluate the performance of six sequential

linkage frameworks (s-CC, s-DC, s-DCself , s-DD1, s-DD2, and s-DD3) and five

Parallel Linkage frameworks (p-CC, p-DC, s-DCself , p-DD1, and p-DD2).

5.5.1 Set-Up

All proposed algorithms are implemented in the Distributed MATLAB, and exe-

cuted in the LION-XO PC Cluster at Penn State2, which includes 133 nodes, each

with dual 2.4–2.6GHz AMD Opteron processor and 8GB–32GB memory. Since it

is a multi-user multi-tasking machine, RT is measured as the average of multiple

runs (i.e., 5-10).

Data Sets. Errors are synthetically introduced to real citation data from DBLP

according to two matching rates: (1) Internal Matching Rate of A: IMR(A) =
of dirty records in A
of all records in A

, and (2) Cross Matching Rate of A against B: CMR(A,B) =
of records in A that matches a record in B

of all records in A
. By varying both IMR and CMR, we control

the “dirty-ness” of data sets. When errors are introduced, four types of matching

errors (e.g., ≡, v, w, and ⊕) are uniformly distributed. For instance, to have

an IMR of 0.4 for A, we synthetically generate 40% of A as matching (i.e., dirty)

records, with 10% each for ≡, v, w, and ⊕ types. To compare directly against

2http://gears.aset.psu.edu/hpc/systems/lionxo/

80

P-Swoosh and P-Febrl and keep the experimentation manageable, data sets of 100

– 50,000 records in size are used. Despite their relatively small sizes, consistent

performance patterns emerge (to be shown) and one can easily extrapolate the

performance for very large data sets. Note that distance metric between two

citation records used Jaccard similarity with the threshold θ = 0.5 by default.

Evaluation Metrics. Two main metrics are used as baseline: wall-clock running

time, denoted as RT and number of comparison for match functions, denoted as

NC. Then, the speedup and efficiency for parallel algorithms are defined in terms

of RT and NC.

• Speedup shows the rate of increase for parallel system, and takes into

account the overhead (e.g., time for startup, communication, synchroniza-

tion for deadlock prevention, or data re-distribution) of parallel execution:

speedupRT = RTs

RTp
, where RTp and RTs is the RT of the parallel and the

“best” serial execution, respectively, and speedupNC = NCs

NCp
, where NCp

and NCs is the NC of parallel and the “best” serial execution, respectively.

Here NCp is the accumulation of maximum NC among processors during

iterations.

• Efficiency indicates the ability to gain proportionate increase in speedup

with the addition of more processors [38]: efficiencyRT = speedupRT

of processors
and

efficiencyNC = speedupNC

of processors
.

5.5.2 Among Sequential Linkages

First, RT and NC among sequential algorithms are compared. Figure 5.5 shows

both RT and NC of six sequential algorithms using IMR=0.0 and CMR=0.3 and

100 to 5,000 records. Although data is a clean-clean case (i.e., IMR=0.0), sequen-

tial algorithms for dirty-clean or dirty-dirty cases pretend not to know that they

are clean so that comparison among all six algorithms is possible. Note that both

graphs for RT and NC show consistent patterns of O(N2), where N is size of in-

put. Since one does not need to compare records internally, s-CC shows the best

RT and NT among sequential algorithms. For dirty-clean case, s-DC outperforms

s-DCself . Since s-DC compares records across A and B, due to high CMR of

81

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Number of records in Input sets

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
) sCC

sDC
sDCself
sDD1
sDD2
sDD3

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12 x 106

Number of records in Input sets

N
um

be
r o

f c
om

pa
ris

on
s sCC

sDC
sDCself
sDD1
sDD2
sDD3

Figure 5.5. The RT and NC of six sequential algorithms (IMR=0.0 & CMR=0.3).

0 0.5 1
0.6

0.8

1

1.2

1.4

1.6
x 106

CMR in a set A

N
um

be
r o

f c
om

pa
ris

on
s

0 IMR
0 IMR
0.1 IMR
0.1 IMR
0.2 IMR
0.2 IMR
0.3 IMR
0.3 IMR
0.4 IMR
0.4 IMR

solid : s-DC
dot : s-DCself

0 0.5 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 106

CMR in a set A

N
um

be
r o

f c
om

pa
ris

on
s

0 IMR
0 IMR
0.1 IMR
0.1 IMR
0.2 IMR
0.2 IMR
0.3 IMR
0.3 IMR
0.4 IMR
0.4 IMR

solid : s-DD1
dot : s-DD2

0 0.5 1
0.6

0.8

1

1.2

1.4

1.6
x 106

CMR in a set A

N
um

be
r o

f c
om

pa
ris

on
s

0 IMR
0 IMR
0.1 IMR
0.1 IMR
0.2 IMR
0.2 IMR
0.3 IMR
0.3 IMR
0.4 IMR
0.4 IMR

solid : s-DC
dot : s-DCself

0 0.5 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 106

CMR in a set A

N
um

be
r o

f c
om

pa
ris

on
s

0 IMR
0 IMR
0.1 IMR
0.1 IMR
0.2 IMR
0.2 IMR
0.3 IMR
0.3 IMR
0.4 IMR
0.4 IMR

solid : s-DD1
dot : s-DD2

(a) s-DC vs. s-DCself (b) s-DD1 vs. s-DD2

Figure 5.6. The total NC of four sequential algorithms with different IMR and CMR.

0.3, after one iteration, s-DC matches and merge many records, reducing NC at

subsequent iterations. For dirty-dirty case, RT of s-DD1 and s-DD3 are similar

while both outperform s-DD2. Because of direct comparisons between A and B,

records in A will be removed before being compared with records in the same set.

Therefore, RT of s-DD1 or s-DD3 is faster than that of s-DD2.

Second, we compared how IMR or CMR affects the performance of sequential

algorithms. We used five variations of IMR (0.0, 0.1, 0.2, 0.3, and 0.4) and eight

variations of CMR (0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1) with 2,000 records. Both

IMR and CMR are applied on A in dirty-clean case. For dirty-dirty case, both A

82

0 2 4 6 8
0

200

400

600

800

1000

Number of iteration

S
iz

e
of

 a
 m

er
ge

d
se

t threshold : 0.1
threshold : 0.2
threshold : 0.3
threshold : 0.4
threshold : 0.5

Figure 5.7. Iterations of s-self algorithm.

and B take the same IMR, and CMR is applied only to A. Since results of both RT

and NC are similar, here, we present only results of NC. In Figure 5.6, s-DC/s-

DD1 and s-DCself/s-DD2 are shown as solid and dotted lines, respectively. For

dirty-clean case, NC decreases as both IMR and CMR increase in both s-DC and

s-DCself . Therefore, the data set with IMR=0.4 and CMR=1 (i.e., dirtiest data

set) gives the best performance. The effect of IMR is more significant in s-DCself

while the effect of CMR is more significant in s-DC.

This happens because, in s-DCself , all redundant data are first merged during

s-self stage, reducing CMR when s-CC is applied later. On the other hand, in

s-DC, since the dirty set A is first compared to the clean set B, if CMR is high,

then more records are merged at the first iteration. In conclusion, CMR (resp.

IMR) is the dominant factor in s-DC (resp. s-DCself). This conclusion can be

interpreted as: the MR at the first iteration plays a major role on NC. Because of

this, with IMR=0.0, s-DC always performs better. NC is significantly reduced by

the increase of CMR on s-DC, i.e., s-DC performs better when it gets a higher

CMR. As an example, with IMR=0.1, there is a cross-over point between s-DC

and s-DCself at CMR=0.2. In general, s-DC is better with a higher CMR, and s-

DCself is better with a higher IMR. The patterns of dirty-dirty case is analogous to

those of dirty-clean case. With a large CMR and a small IMR, in general, s-DD1

outperforms s-DD2.

Finally, Figure 5.7 illustrates the iterative nature of sequential linkage algo-

rithm, s-self. Matched records at each iteration are merged into a new record,

and re-compared to the rest of records at subsequent iteration. Therefore, sequen-

tial linkage algorithms continue until no more new merged record occur. With the

83

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

Number of records

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6
x 106

Number of records

N
um

be
r o

f c
om

pa
ris

on
s

s-CC
p-CC : 2
p-CC : 3
p-CC : 4
p-CC : 5
p-CC : 6
p-CC : 7
p-CC : 8

Figure 5.8. The RT and NC of p-CC (# in legend is # of processors).

data set of 2,000 records, depending on the default threshold θ for distance metric,

Figure 5.7 shows that 3-8 iterations are needed to do complete self-clean.

5.5.3 Sequential vs. Parallel Linkages

Now, using speedupRT and speedupNC , we compare sequential and parallel solu-

tions. Up to 32 processors and 50,000 records are used. Since relative performance

of all parallel algorithms, compared to sequential ones, are similar, we show only

detailed behavior of p-CC under various characteristics.
In Figure 5.8, intuitively, both RT and NC decrease as # of processors in-

creases. Despite overhead cost of parallel execution, both RT and NC show the

same pattern. However, speedup on RT is more affected by parallel overhead and it

is shown in Figure 5.9. Figure 5.9(a) shows that although total # of NC increases

as the input size increases, it gets little affected by # of processors used. That is,

as more # of processors are used, it may increase involved overhead among pro-

cessors (as communication cost shown in Figure 5.9(b)), but it does not increase

of comparison since p-CC has few redundant computations among processors –

an ideal property for parallel algorithm. In our experimentation, communication

overhead such as ones in Figure 5.9(b) typically consume 10% of total RT.

Therefore, in general, speedupRT is less than speedupNC . Because it takes

about 4-7 seconds to submit a parallel job and recollect final clean sets from pro-

cessors, speedupRT is very low when input data is less than 100 in Figure 5.9(c).

With larger input data, however, RT is less affected by communication cost, and

speedup with more processors is higher than that with less processors. When 8

84

0 1000 2000 3000 4000 5000
0

2

4

6

8 x 106

Number of records

To
ta

l n
um

be
r o

f c
om

pa
ris

on
s

s-CC
p-CC : 2
p-CC : 3
p-CC : 4
p-CC : 5
p-CC : 6
p-CC : 7
p-CC : 8

0 1000 2000 3000 4000 5000
0

50

100

150

200

Number of records

C
om

m
un

ic
at

io
n

co
st

(s
ec

on
ds

)

0 1000 2000 3000 4000 5000
0

2

4

6

8 x 106

Number of records

To
ta

l n
um

be
r o

f c
om

pa
ris

on
s

s-CC
p-CC : 2
p-CC : 3
p-CC : 4
p-CC : 5
p-CC : 6
p-CC : 7
p-CC : 8

0 1000 2000 3000 4000 5000
0

50

100

150

200

Number of records

C
om

m
un

ic
at

io
n

co
st

(s
ec

on
ds

)

(a) Total NC (b) Communication cost

0 1000 2000 3000 4000 5000
0

2

4

6

8

Number of records

sp
ee

du
p R

T

0 2 4 6 8
0

2

4

6

8

Number of processors

sp
ee

du
p R

T

100 records
200 records
400 records
600 records
1000 records
1500 records
2000 records
3000 records
5000 records

0 1000 2000 3000 4000 5000
0

2

4

6

8

Number of records

sp
ee

du
p R

T

0 2 4 6 8
0

2

4

6

8

Number of processors

sp
ee

du
p R

T

100 records
200 records
400 records
600 records
1000 records
1500 records
2000 records
3000 records
5000 records

(c) speedupRT (d) Scalability

Figure 5.9. Details of p-CC (legend shown in (a)).

processors are used, speedupRT is close to 6.55. Finally, Figure 5.9(d) shows how

scalable p-CC is. When data is sufficiently large and enough # of processors

is used, p-CC shows linear increase of speedupRT – another ideal property of

parallel algorithm.

5.5.4 Among Parallel Linkages

Figure 5.10 shows the comparison of five Parallel Linkage algorithms with respect

to their efficiency. Also, both RT and NC are shown after being normalized (i.e.,

re-scaled to 0-1 range). Overall, efficiencyNC is better than efficiencyRT due to

various overhead negatively affecting RT of parallel algorithms. Among parallel

algorithms, p-DD2 shows the best efficiency in both RT and NC. Because of the

characteristic of input data (IMR=0.0 and CMR=0.3), using clean property gives

better performance on both RT and NC. Thus, even though p-DD2 gives the best

efficiency overall, its RT and NC are also the highest. Specifically, note that RT

85

of s-DC is 1.11 times faster than that of s-DCself and RT of s-DD1 is also 1.11

times faster than that of s-DD2. In general, in terms of RT, parallel algorithms

are in order of p-CC (fastest) <p-DC<p-DCself<p-DD1<p-DD2 (slowest).

efficiency(NC) efficiency(RT) normalized RT normalized NC
0.4
0.6
0.8

1 p-CC
p-DC
p-DCself
p-DD1
p-DD2

Figure 5.10. The RT and NC of five parallel algorithms (IMR=0.0, CMR=0.3, 8
processors, and 5,000 records).

We also tried larger data set with more processors– 50,000 records with 16

processors and 32 processors. Since RT follows O(N2), an approximate equation

for RT of a sequential linkage, say s-CC, can be obtained by polyfit() in MATLAB

as: RT= 0.000173x2 − 0.01035x + 3.645, where x is the size of input data. That

is, for 50,000 records, a sequential linkage algorithm such as s-CC would take

about 120 hours to finish the job. However, when Parallel Linkage algorithms are

used, RT can be reduced to about 9.17 hours with 16 processors and 4.7h with

32 processors. That is, we achieve speedupRT =13.08/efficiencyRT =0.8175 and

speedupRT =25.53/efficiencyRT =0.7979 with 16 and 32 processors, respectively.

5.5.5 Against P-Swoosh and P-Febrl

To our best knowledge, there are two Parallel Linkage solutions comparable to

our proposals: P-Swoosh [52] from Stanford SERF project and parallel Febrl (P-

Febrl) [22] from ANU record linkage project. Since space complexities of all three

proposals are similar, let us focus on the comparison of speedup and efficiency. It

is important to emphasize that in parallel experimentation, it is not straightfor-

ward to compare RT or NC directly. This is because RT may change depending on

parallel execution model, choice of data characteristics, environment of execution

system. However, the “ratio” of how much parallel solutions improve upon sequen-

tial solutions is meaningful. That is, if the ratio such as speedup in environment

X is higher than that in Y , regardless of algorithmic details, one can argue that

86

the parallel solution of X be superior to that of Y 3.

Since both P-Febrl and P-Swoosh studied only dirty-dirty case, here, we com-

pare using s-DD2 for sequential and p-DD2 for parallel case. In addition, in [52],

P-Swoosh reports only speedupNC while in [22], P-Febrl reports only speedupRT .

Therefore, we compare each against our solution separately. # of records and pro-

cessors used in the experimentation are:

P-Febrl : 20,000 records, 4 processors (w. blocking)

P-Swoosh : 5,000 records, 16 processors (NO blocking)

Ours : 50,000 records, 32 processors (NO blocking)

Note that P-Febrl reports only results using blocking in linkage while both P-

Swoosh and ours use nested-loop style linkage (thus no blocking). Therefore, the

speedup of P-Febrl should be much higher than those of P-Swoosh and ours. As

shown in Figure 5.11(a), however, our algorithms performs only 0.16% worse than

P-Febrl (0.9360 vs. 0.9375). In [22], P-Febrl reports that their use of blocking and

indexing on both sequential and parallel algorithms reduces substantial communi-

cation cost so that at the end only 0.35% of overall RT is due to the communication.

In our experimentation, however, communication cost consumes about 7–13% of

overall RT, leaving much room for improvement if blocking was used. Therefore,

despite seemingly lower efficiency of our parallel algorithms in Figure 5.11(a) than

that of P-Febrl, we believe that our parallel solutions is more efficient compared

to P-Febrl. We plan to verify this claim in future work when blocking/indexing

is combined with our parallel solutions. As shown in Figure 5.11(b), against P-

Swoosh, our algorithm, P-DD2, with efficiencyNC=0.9781 is 11.15% better than

P-Swoosh (shown as P-Swoosh(2)) that has efficiencyNC of 0.88. However, the

result of P-Swoosh in [52] only considered the number of slave nodes in comput-

ing the efficiency, without including the master node. If the master node is also

counted as # of processors (as it should be), then their efficiencyNC drops to

0.825 (shown as P-Swoosh(1) in Figure 5.11(b)). Therefore, our proposals shows

11.15–18.56% improvement on efficiencyNC against P-Swoosh4.
3The only matter that significantly affects the performance of both sequential and

parallel algorithms is the characteristics of data sets. To ensure fair comparison, at all
possible, we tried to compare similar input cases such as clean-clean or dirty-dirty.

4According to [52], their best speedupNC is more than 30 times using 10 processors.

87

p-DD2 P-Febrl with blocking
0.7

0.8

0.9
E

ffi
ci

en
cy

R
T

p-DD2 P-Swoosh(1) P-Swoosh(2)
0.7

0.8

0.9

1

E
ffi

ci
en

cy
N

C

p-DD2 P-Febrl with blocking
0.7

0.8

0.9

E
ffi

ci
en

cy
R

T

p-DD2 P-Swoosh(1) P-Swoosh(2)
0.7

0.8

0.9

1

E
ffi

ci
en

cy
N

C

(a) efficiencyRT (b) efficiencyNC

Figure 5.11. Comparison with other parallel schemes.

5.5.6 Observation of Parallel Linkages

With our input data set, RT and NC of sequential algorithms are ordered by s-CC

(best) <s-DC<s-DCself<s-DD1≈s-DD3< s-DD2 (worst). Study on IMR and

CMR shows that different algorithms can be used for better performance. Specially,

for the one dirty set, s-DD2 is always better than s-DD1. In Parallel Linkage,

RT and NC of parallel algorithms are in the order of p-CC (best)<p-DC<p-

DCself <p-DD1<p-DD2 (worst). However, the order of efficiencyNC/RT among

parallel algorithms is p-CC<p-DC≈p-DCself ≈p-DD1<p-DD2. Efficiency of

our algorithm performs comparably against P-Febrl (but ours do not use blocking

and indexing while P-Febrl does) and performs better than P-Swoosh when the

same comparison schemes are used on both parallel and sequential algorithms.

5.6 Summary

In this chapter, parallel version of record linkage problem is studied for the cor-

responding sequential algorithms in detail. For three input cases of clean-clean,

dirty-clean, and dirty-dirty, we presented six sequential and five parallel solutions.

Our proposed parallel algorithms are shown to exhibit consistent improvement in

speedup and efficiency when compared to sequential ones, by minimizing com-

munication costs and well designed task partitioning. In addition, compared to

two other competing parallel solutions, ours show 11.15–18.56% improvement in

efficiency.

However, since they used radically different sequential and parallel schemes in so doing,
this improvement of 30 is not meaningful. Therefore, we compare ours against their
compatible model of FIX-1.

Chapter 6
Hashed Linkage

In this chapter, we study the performance issue of a hashing structure for the

“iterative” record linkage (RL) problem discussed in Chapter 5, where match and

merge operations may occur together in iterations until convergence emerges. We

first propose the Iterative Locality-Sensitive Hashing (I-LSH) that dynamically

merges LSH-based hash tables for quick and accurate blocking. Then, each I-

LSH structure is developed by exploiting inherent characteristics within/across

data sets (i.e., clean-clean, clean-dirty, and dirty-dirty). As mentioned in Chapter

1, the iterative nature of a record linkage problem requires immense amount of

matching comparisons, specially with large-scale data collection.

Toward this challenge, for the more general match-merge RL model, we present

novel hashed record linkage algorithms that run much faster with comparable ac-

curacy. In particular, our contributions in this chapter are: (1) We extend the

MinHash based LSH technique to propose the Iterative LSH (I-LSH) that iter-

atively and dynamically merges LSH-based hash tables to provide a quick and

accurate blocking; (2) Using the I-LSH proposal, depending on three scenarios, we

propose a suite of RL solutions, termed as HARRA (HAshed RecoRd linkAge) or

Hashed Linkage, that exploits data collection characteristics. (3) The superiority

of Hashed Linkage in speed over competing RL solutions is thoroughly validated

using various real data sets, while maintaining equivalent or comparable accuracy

levels.

89

6.1 Iterative LSH

6.1.1 Vector Presentation

LSH-based hashing idea exploit high-dimensional vectors as input data. Unlike

the numerical values can be directly applied to LSH idea, string format records

cannot be used directly. In turn, unlike the similarity between numerical values

can be easily computed by various measures such as cosine or L-norm distances,

the similarity between string values are not. To use hashing for the RL process, in

particular, we convert string format records into multi-dimensional binary vectors

as follows. First, unique q-gram tokens (e.g., bi-gram or tri-gram) from all records

are gathered. If one only considers English alphabets, the maximum dimensions,

N , are 262 = 676 and 263 = 17, 576 for bi-gram and tri-gram, respectively.

The N dimensions of a token vector, D, is expressed by {d1, d2, ..., dN} where

di is a unique token in a data collection. Note that each record r contains non-

duplicate tokens of {t1, t2, ..., tn}. Then, an N -dimensional binary vector of a record

is obtained by setting the value of a token dimension to 1 if the token in a record

exists in {d1, d2, ..., dN}, and 0, otherwise. We refer to a function that converts

a string format record r to a binary vector v as binary(r). We use notations in

Table 5.1 throughout this chapter.

6.1.2 LSH with MinHash

The basic idea of the Locality-Sensitive Hashing (LSH) technique was introduced

in [37]. The LSH method originally addresses the approximate nearest neighbor

problem by hashing input data objects (with respect to their features) such that

similar objects are put into the same buckets with high probability. Since the

number of buckets is much smaller than that of universe, LSH can be also viewed as

a method for probabilistic dimension reduction. In the context of the RL problem,

therefore, if LSH can hash input records into buckets such that duplicate records

are put into the same buckets (and non-duplicate records in different buckets),

then LSH can solve the RL problem. We first briefly introduce LSH. Let R be the

domain of objects, and dist() be the distance measure between objects. Then,

90

r
g1(r)={h11(r), h12(r), , h1K(r)}
g2(r)={h21(r), h22(r), , h2K(r)}

…

gL(r)={hL1(r), hL2(r), , hLK(r)}

K hash functions

L table
hash

functions

key11

key12

…

key1M

R11

R12

…

R1M

keyL1

keyL2

…

keyLN

RL1

RL2

…

RLN

Keyij = a key in the jth bucket in ith table
Rij = a set of records in the jth bucket in ith table

L hash
tables

Figure 6.1. A basic LSH structure.

Definition 11 (LSH function family) A function family H = {h : R → U} is

called (γ, cγ, p1, p2)-sensitive for dist() if for any r1, r2 ∈ R:

• If dist(r1, r2) < γ, then PrH [h(r1) = h(r2)] ≥ p1

• If dist(r1, r2) > cγ, then PrH [h(r1) = h(r2)] ≤ p2 2

We pick c > 1 and p1 > p2 for proper LSH. Different LSH function families can be

used for different distance measures. By concatenating K number of LSH functions

in H, one can generate a table hash function, g(). Therefore, various multi-table

LSH indexing methods can be constructed by controlling two parameters, K and

L, as follows (refer to Figure 6.1):

• K: # of hash functions from function family G={g : S → UK} such that

g(r)={h1(r), h2(r), ..., hK(r)}
where hi() ∈ H and r ∈ R.

• L: # of table hash functions (i.e., # of hash tables), {g1, g2, ..., gL}, where

gi(r)={h1(r), h2(r), ..., hK(r)}.

As one increases K (i.e, the number of h()), one can reduce the probability of

having non-matching records in the same buckets. However, it also increases the

possibility of having matching records in different buckets. Therefore, in general,

multiple hash tables, controlled by L, are required to achieve overall good precision

and recall results. The overall structure of the LSH idea is illustrated in Figure

91

6.1. A record, r, returns L hash keys from gi(r) where 1 ≤ i ≤ L. Each key, gi(r),

returns candidate records in a bucket in i-th hash table. From L hash tables, then,

the one final bucket containing all candidate records is selected for further probing.

For further details of LSH, readers may refer to [37].

There are several methods to construct an LSH family such as bit sampling or

random projection. In particular, MinHash [24] was shown to work well with sparse

binary vectors. In our context, MinHash can be used as follows: (1) Select random

re-ordering of all vector dimensions – i.e. select a random permutation of indices of

D; (2) Apply this random permutation to re-order indices of a sparse binary vector.

Note that one selected random permutation is used for all records to generate one

digit of a key; and (3) Find the index (i.e., position) in which the first “1” occurs in

a vector. This index becomes one of components in a hash key. Suppose a function

fi() returns the first index containing “1” while rp() returns a selected random

permutation. Then, with the record r and its binary vector representation v, the

hash functions in H can be defined as: hi(r) = fi(rp(binary(r))) = fi(rp(v)). We

choose K random permutations to generate K hash functions, {h1(), ..., hK()}.
By concatenating K hash functions, we finally obtain gi() as the i-th table hash

function.

Example 5. Using three binary vectors as input: v1 = [1,1,1,0,0], v2 = [0,1,1,0,0],

and v3 = [0,0,1,1,1], let us construct a hash table g(r) = {h1(r), h2(r)}. The

indices of vectors are (1,2,3,4,5). Suppose we select two random permutations:

rp1()=(2,3,5,4,1) and rp2()=(5,4,2,1,3). Then, h1(r1) = fi(rp1([1, 1, 1, 0, 0])) =

fi([1, 1, 0, 0, 1])=1 and h2(r1) = fi(rp2([1, 1, 1, 0, 0])) = fi([0, 0, 1, 1, 1]) = 3. Hence,

a key of r1 is g(r1) = {h1(r1), h2(r1)} ={1,3}. Likewise, g(r2) ={1, 3} and g(r3)

={2, 1}. Therefore, in a hash table, two records, r1 and r2, are put into the same

bucket, while r3 in other bucket. Note that if we select rp2()=(5,1,2,4,3), then

r1 and r2 are placed in different buckets. To overcome this issue, the basic LSH

requires multiple hash tables. 2

6.1.3 Iterative LSH to Clean Single Dirty Collection

The basic LSH scheme hashes input records to different buckets in multiple hash

tables. Despite its fast and effective performance, however, the basic LSH does

92

In
pu

t d
at

a
se

ts MinHash key
generation by gi

Iterative match-merge by record-
relationship in each bucket

Size-reduced
semi-clean set

I-LSH scheme

C
le

an
 d

at
a

se
t

Condition*

gi : hash function in i-th iteration,
keyij : key in i-th iteration and j-th bucket,
Lij : a list of records in i-th iteration and j-th bucket
Condition* : 1. Merge occurs? 2. Reduction rate > threshold

3. Number of iterations < pre-defined constant

Yes

No

keyi1 Li1

... ...
keyiN LiN

Hash table in i-th iteration

Figure 6.2. The general structure of I-LSH.

not consider the “iterative” nature of match-merge process in the RL problem

and has the following problems: (1) substantial hash table generation time using

entire records at each iteration; (2) excessive memory requirement for hash tables

and candidate record sets; and (3) high running time to handle many duplicate

records in a candidate set. Therefore, the basic LSH scheme is not suitable for

linking large-scale record collections. To address these problems, in this section,

we introduce the Iterative Locality-Sensitive Hashing (I-LSH) where hash table

generation time is greatly reduced via only single (re-usable) hash table.

Figure 6.2 illustrates the basic flow of I-LSH while Algorithm 14, h-Dself , shows

the detailed steps to clean single dirty data set. When a record, aj, is hashed (by

the MinHash key selection) into one of the buckets in a hash table, if the bucket

(i.e., AList in Algorithm 14) is empty, aj is initially placed in the bucket. If the

bucket contains other records already, aj is compared to existing records of the

bucket, say ak. If match(ak, aj) returns ≡ or w, we remove one of the equivalent

copies, say aj, from A and continue to process a subsequent input record, aj+1. For

v relationship, on the other hand, we remove ak from the bucket and aj continues

to be compared to a next record ak+1 in the bucket. For ⊕ relationship, ak is

removed from the bucket, then aj is replaced by the “merged” record, created by

merge(ak, aj). Then, aj is compared to the rest of records in the bucket. Once,

93

Algorithm 14: h-Dself .
Input : A non-empty dirty list A
Output: A non-empty clean list C
Make H as an empty hash table;
Flag ← true; /* Flag determines iterations */
while Flag = true do

Flag ← false; j ← 1;
while j ≤ |A| do

/* hash aj to a bucket, AList */
key ← gi(aj); AList = H.get(key);
if AList6= ∅ then

k ← 1;
while k ≤ |AList| do

switch match(ak, aj) do
case ak ≡ aj or ak w aj

Flag ← true; remove aj from A;
go to line 14.1;

case ak v aj
Flag ← true;
remove ak from AList; k ← k + 1;

case ak ⊕ aj
Flag ← true;
remove ak from AList & aj from A;
aj ← merge(ak, aj); k ← 1;

case ak 6≈ aj
k ← k + 1;

AList.add(aj); H.put(key,AList);
j ← j + 1;14.1

A← H.getAll(keys); /* put all records back to A */
i← i + 1 /* re-hash in next iteration using gi+1 */
if termination condition is met then Flag ← false;14.2

C ← A; return C;

the system scans all records in A, then A is reset with all records in the hash table,

and hashed again until the termination condition is met.

Every match-merge step of I-LSH reduces the size of both record set and hash

table. Ideally, iteration will stop when convergence emerges (i.e., no more merge

occurs). However, in practice, it is not plausible to re-iterate whole input only

because single merge occurs in the previous iteration. Therefore, instead, I-LSH

stops if the reduction rate σi (= 1− |semi-cleaned seti|
|input seti|

) at i-th iteration is less than a

given threshold. This termination condition is captured as the “if” statement at

line 14.2 of Algorithm 14.

Now, we analyze the time/space complexities of h-Dself . The running time of

h-Dself at one iteration is bounded by the quadratic upper bound of two nested

“while” loops in Algorithm 14. The worst case occurs when all records of A are

hashed into the same bucket. Then, # of required comparison in h-Dself becomes:

94

1+2+ ...+(m− 1) = (m−1)(m)
2

, where m = |A|. That is, h-Dself does not improve

much upon the naive pair-wise comparison. Reversely, the best case occurs when

no hash collision occurs. Then, # of required comparison at one iteration becomes

simply m since a single scan of A suffices. In general, h-Dself at one iteration

has the running time of O(mĉ), where ĉ is the average # of hashed records in

dynamically-changing buckets1 in a hash table (i.e., AList in Algorithm 14). With

a proper choice of hash functions, hash collisions should occur rarely. Therefore,

in general, ĉ is relatively small. Furthermore, in Algorithm 14, whenever one of

the matching conditions occurs, the removal of a record either from A or AList

occurs, limiting the growth of ĉ.

Lemma 7. h-Dself (A) has the complexity of O(
∑T

i=1 mσiĉi), where T is the num-

ber of iterations, m = |A|, σi and ĉi are the reduction rate and the average # of

records in buckets, respectively, at i-th iteration.

Note that, for a given data collection, most of similar records are merged during

the first a few iterations (to be experimented in Figure 6.9 of Section 6.3). As a

result, the reduction rate σ is significantly abated, i.e., only a small number of

merges occur at later iterations. In addition, in h-Dself , the final running time is

heavily influenced by the time to generate hash keys and hash tables.

As to the space complexity, since a hash table is re-used in I-LSH, regardless of

the number of iterations, h-Dself (A) requires only O(P), where P is # of keys in

a hash table. Similarly, since a set A is re-used at each iteration for a semi-cleaned

set, the initial size of A is the largest needed.

Lemma 8. h-Dself (A) has the space complexities of O(P) for a hash table and

O(m) for a data set, respectively, where P is # of keys in a hash table.

Unlike h-Dself scheme, one can alternate match-merge process to make two

output sets: one clean set A′ and one dirty set M . We call this variation as h-Dalter.

When match() returns ⊕ relationship in h-Dself , h-Dalter scheme instead adds a

merged record to a merged set M : i.e., M ← M ∪ {merge(ak, aj)}. This avoids

the direct re-feeding of the merged record to a dirty set to compare with others.

1Note that we use a notation ĉ, slightly different from c̄ in Section 1.1.4 to emphasize that
buckets in I-LSH are dynamically expanding or shrinking.

95

A

B

gi HA
M
A’
B’

Condition*

Y
A←A’, B←B’

N
|M| =Φ

Y
A’UB’UE

Output
A←A’UB’UE, B←h-Dself(M) N

gi : ith hash function
Condition* : same in Figure 6.2E

Figure 6.3. The structure of h-CC.

In other words, in A′, all records contain original information (i.e., no additional

information by ⊕ relationship), while in M , the records have been changed by the

merge function. We utilize this h-Dalter in a suite of Hashed Linkage algorithms.

6.2 Hashed Record Linkage: HARRA

In this section, we investigate three different scenarios depending on the types

of input collections, in terms of “clean” and “dirty”, and present a suite of RL

algorithms, HARRA (HA
¯

shed R
¯

ecoR
¯

d linkA
¯

ge), based on the I-LSH idea. In

total, we propose six variations of Hashed Linkage. Each Hashed Linkage algorithm

is denoted by the prefix “h” followed by one of three scenarios, CC for clean-clean,

CD for clean-dirty, and DD for dirty-dirty cases.

6.2.1 Clean vs. Clean

As clearly mentioned in Section 5.3.1, we can exploit the relationship, such as 6≈,≡
,v,w,⊕, between two records, ai, bj, from two clean sets. However, the iterative

match and merge steps will be differently developed from s-CC scheme, since the

iterative hashing structure is applied to the whole output records from a whole

hash table or the partial records from a bucket.

Figure 6.3 illustrates the structure of h-CC(A, B), while Algorithm 15 shows

the details. Once A is hashed to a hash table HA, B is hashed again to HA using

the same hash function. Then, one can perform match(ak, bj) and merge(ak, bj)

only within the same bucket of HA, by using both matching relationship and

set characteristics as shown in Algorithm 15. The remainders, A′ and B′, are

only considered to be iteratively hashed since all merged records in M will be

cleaned by h-Dself , and the identical records in E will be unioned without further

96

Algorithm 15: h-CC.
Input : Two non-empty clean lists A and B
Output: A non-empty clean list C
Make H as an empty hash table;M ← ∅;
Flag ← true; i← i + 1;
while Flag = true do

Flag ← false; j ← 1;
while j ≤ |A| do

key ← gi(aj); AList = H.get(key);
AList.add(aj); H.add(key,AList); j ← j + 1;

j ← 1;
while j ≤ |B| do

key ← gi(bj); AList ← H.get(key); k ← 1;
while k ≤ |AList| do

ak ← AList.get(k);
switch match(ak, bj) do

case ak ≡ bj

Flag ← true; E.add(ak);
remove ak from AList; remove bj from B;
go to line 15.1;

case ak w bj
Flag ← true; remove bj from B; go to line 15.1;

case ak v bj
Flag ← true; remove ak from AList; k ← k + 1;

case ak ⊕ bj

Flag ← true; M ← M∪ {merge(ak, bj)};
remove ak from AList, remove bj from B;
go to line 15.1;

case ak 6≈ bj
k ← k + 1;

k ← 1; j ← j + 1;15.1

A← H.getAll(keys); /* put all records in H to A */
i← i + 1;
if A 6= ∅ or B 6= ∅ then Flag ← false;
if termination condition is met then Flag ← false;

A← A ∪B ∪ E;
if |M | > 0 then B ← h-Dself (M); C ← h-CC(A, B);
return C;

processing. The records in A′ and B′ are hashed again to meet similar records

between two clean sets. In order to optimize the memory usage for hash tables

through multiple iterations, we use the same spaces of A and B repeatedly. After

one iteration, for instance, records in A and B are distributed to four sets: A′, B′,

E, and M , where E contains records that have ≡ relationship with other records

while M contains newly created merged records. Then, at subsequent iteration,

we reset A to A′ ∪ B′ ∪ E and B to h-Dself (M). Note that we have to clean M

first via h-Dself since newly created merged records in M may again match each

other within M , making M as a “dirty” collection.

Example 6. Suppose the match() function uses Jaccard similarity with threshold

97

0.5 and merge() uses ∪. Given two clean sets, A = {a1 = [1, 1, 1, 0, 0], a2 =

[0, 0, 1, 1, 1], a3 = [1, 0, 0, 0, 1], a4 = [1, 0, 0, 1, 0]} and B={b1 = [1, 0, 0, 0, 1], b2 =

[1, 1, 0, 1, 0], b3 = [0, 0, 0, 1, 1]}, we apply a table hash function, gi at i-th iteration,

to each record. Assuming g1 = {h11, h12} where rp11 = (2, 3, 5, 4, 1) and rp12 =

(5, 4, 2, 1, 3), and g2 = {h21, h22} where rp21 = (2, 1, 4, 3, 5) and rp22 = (1, 2, 5, 3, 4),

then g1(a1) = {1, 3}, g1(a2) = {2, 1}, g1(a3) = {3, 1}, g1(a4) = {4, 2}, g1(b1) =

{3, 1}, g1(b2) = {1, 2}, g1(b3) = {3, 1}. Due to a3 ≡ b1, we get E = {a3}, A′ =

{a1, a2, a4}, and B′ = {b2, b3}. Note that a3 in E is clean toward other records

in A′ and B′. At the second iteration with g2, we use only the records in A′

and B′. Thus, g2(a1) = {1, 1}, g2(a2) = {3, 3}, g2(a4) = {2, 1}, g2(b2) = {1, 1},
g2(b3) = {3, 3}, then match(a1, b2) = ⊕ and match(a2,

b3)=w. Then, A′ = {a2, a4}, B′ = Φ, and M = {c1,2} where ci,j = merge(ai ⊕ bj).

Since B′ is empty, I-LSH will stop. At the second h-CC call, A = A′ ∪ B′ ∪ E =

{a2, a3, a4} and B =h-Dself (M), and c1,2 in a new B will eventually contain a4.

As shown, I-LSH scheme is used with recursive calls to complete all necessary

comparisons to handle merged records. 2

6.2.2 Clean vs. Dirty

The detailed procedure for clean-dirty case, h-CD, is shown in Algorithm 16 that

uses h-Dalter as a sub-step. In this algorithm, we consider one clean collection A

and one dirty collection B. Similar to h-CC, first, A is put to a hash table HA

without merging records. Then, records in B are hashed to HA. Between ak and

bj records, five relationships are considered. The only difference from h-CC is the

case of ≡. When ak ≡ bj holds, only bj is removed from B and ak proceeds to

the next match-merge step with bj+1. ak is not removed since ak may still find

matching records in B since B is “dirty”. Once all records in B have been scanned

by HA, a set M that contains newly created merged records is added to a dirty

collection B. This new set of B ∪M should be re-compared with A since there

may be new matching records. This iteration will stop if no more merge occurs or

other termination conditions are met.

When one iteration of match-merge steps finishes, we have a new clean set A

and a new dirty set B. Because, in previous iteration, the relationships between

98

Algorithm 16: h-CD.
Input : Non-empty clean list A and dirty list B
Output: A non-empty clean list C
...
while Flag = true do...

while j ≤ |B| do
key ← gi(bj); k ← k + 1; AList ← H.get(key);
while k ≤ |AList| do

ak ← AList.get(k);
switch match(ak, bj) do

case ak ≡ bj
Flag ← true; remove bj from B;
go to line 16.1;

...

k ← 1; j ← j + 1;16.1

B ← B ∪M ; M ← ∅;
A← H.getAll(keys) /* put all records in H to A */;
if A 6= ∅ or B 6= ∅ then Flag ← false;
if termination condition is met then Flag ← false;

(B′, M)← h-Dalter(B); A← A ∪B′;
if M ′ 6≡ ∅ then C ← h-CD(A, M); else C ← A;
return C;

A and B were fully investigated, the new sets do not have to be compared again.

However, since B is still dirty, B can be cleaned by h-Dself . When B is cleaned

by h-Dself , however, if merged records are generated, they should be compared

again with all other records in A and B. In addition, if the information of a record

does not change while B is self-cleaned, it does not have to be compared again

with records in A. For this reason, in order to avoid duplicate comparisons, we

use h-Dalter(B) (instead of h-Dself) to extract “un-changed” records in B′ and

“merged” records in M . We simply add all records in B′ to A by union operation

(i.e., A← A ∪B′), and call h-CD(A, M) recursively until no merge occurs in the

h-Dalter step. Finally, one clean set C will be returned.

An alternative way to handle the clean-dirty case to use h-Dself and h-CC –

i.e., clean the dirty collection A using h-Dself first and apply h-CC. To distinguish

this alternative from h-CD of Algorithm 16, we denote this variation as h-CDself .

Algebraically, the following holds: h-CDself (A, B) ≡ h-CC(A,h-Dself (B)).

Note that algorithms h-CD and h-CDself behave differently depending on

the level of “dirtiness” within B or between A and B. For instance, consider

three records, ai ∈ A and bj,bk ∈ B. Suppose the following relationship occurs:

ai w merge(bj, bk). Then, using h-CDself , merge(bj, bk) will be compared again

with other records in B. However, using h-CD, bj and bk will be removed, saving

99

Scheme Space(HT) Space(data size) Time
h-CC O(PA + PB) O(m + n + |A ∩B|) O(α(m + n) + 2βN)
h-CD O(PA + PB) O(m + n + |A ∩B|) O(α(m + n) + 2βN)

h-CDself O(PA + PB) O(m + n + |A ∩B|) O(α(m + n) + 2βN)
h-DD1 O(PA∩B) O(m + n) O(α(m + n) + 2βN)
h-DD2 O(PA + PB) O(m + n + |A ∩B|) O(α(m + n) + 2βN)
h-DD3 O(PA + PB) O(m + n + |A ∩B|) O(α(m + n) + 2βN)

Table 6.1. Complexities of six Hashed Linkage algorithms, where N is time for gener-
ating a hash table at 1-st iteration, α =

∑T
i=1 σiĉi, β =

∑T
i=1 σi, and PX is # of keys in

a hash table for a set X.

|B| number of comparisons. On the other hand, for instance, assume that ai 6≈ bj,

bj ≈ bk, and ai 6≈ bk. Using h-CDself , there is only one comparison after bi ≈ bk

is made. However, using h-CD, both bj and bk are compared to ai before bj ≈ bk

occurs, increasing the number of comparisons. In general, if the number of matches

in B is significantly higher than that between A and B, h-CDself is expected to

perform better.

6.2.3 Dirty vs. Dirty

Since neither collection A or B is clean, more comparisons are needed for dirty-

dirty case. By using Hashed Linkage algorithms for clean-clean or clean-dirty cases,

we propose three variations, referred to as h-DD1, h-DD2, and h-DD3.

• h-DD1(A, B) ≡ h-Dself (A ∪B)

• h-DD2(A, B) ≡ h-CD(h-Dself (A), B)

• h-DD3(A, B) ≡ h-CC(h-Dself (A), h-Dself (B))

The different behaviors of variations will be evaluated experimentally.

Lemma 9. All Hashed Linkage algorithms have polynomial upper bounds in time/

space complexities, as shown in Table 6.1.

6.3 Experimental Validation

Under various settings (e.g., different data distributions, varying sizes of data

sets, and dirtiness), we evaluated six Hashed Linkage algorithms (h-CC, h-CD,

100

h-CDself , h-DD1, h-DD2, and h-DD3). Two main questions to study in exper-

iments are: (1) Is Hashed Linkage robust over various settings? (2) Does Hashed

Linkage achieve high accuracy and good scalability?

6.3.1 Set-Up

All algorithms are implemented in Java 1.6 and executed on a desktop with Intel

Core 2 Quad 2.4GHz, 3.25GB RAM, and Windows XP Home. For comparison

with existing RL solutions (that were optimized to run in Unix System), LION-

XO PC Cluster at Penn State2 (with dual 2.4-2.6GHz AMD Opteron Processors

and 8GB RAM) was used. Note that Hashed Linkage are also run on LION-XO for

comparison purpose.

Data Sets. The raw data that we used is 20 Million citations from CiteSeer

whose ground truth is known to us. From this raw data, through random sampling,

we generated test sets with different sizes between 10,000 and 400,000 records. As

a whole, CiteSeer shows the Power-Law distribution in terms of # of matching

citations. That is, while most citations have only 1-2 duplicates known, a few have

more than 40 matching citations. From this raw data set, we created two types of

distribution patterns – Power-Law (PL) and Gaussian (GA) distributions. Figures

6.4(a) and (b) show the corresponding distributions of # of duplicates (up to 20

duplicates) with the size of 100,000 records. For PL distribution, f(x) = (1−x)
1

1−α

is used where α = 0.5 and x is uniformly distributed between 0 and 1. The value of

f(x) is quantized to 20 bins, and the event of x is accumulated to a corresponding

bin. For GA distribution, we used the mean of 11 and variance of 1. Similar to

PL distribution, the Gaussian randomized values are quantized to 20 bins.

In addition to different distributions, we also used two matching rates, IMR

and CMR that have been exploited in section 5.5.1. For instance, if IMR=0.5,

then half of records in a collection are dirty and need to be merged. In this section,

various IMR and CMR combinations are investigated to study the differences be-

tween h-CD and h-CDself in clean-dirty scenario, and among h-DD1, h-DD2,

and h-DD3 in dirty-dirty scenario.

Evaluation Metrics. For measuring the similarity between records, we used the

2http://gears.aset.psu.edu/hpc/systems/lionxo

101

20000
25000

ds

5000
10000
15000
20000

of
 r
ec
or
d

0
5000

0 5 10 15 20

of near‐duplicate records

15000

20000

ds

5000

10000

15000

of
 r
ec
or
d

0

5000

0 5 10 15 20

of near‐duplicate records

(a) Power-Law (PL) (b) Gaussian (GA)

Figure 6.4. Examples of record distributions in two different CiteSeer sets with 100,000
records.

Symbol Description
HT Hash table
RT Running Time
PL Power-Law distribution
GA Gaussian distribution
K # of indices = # of random functions = length of a key
L # of HTs or table hash functions = # of keys per record
T # of iterations of Hashed Linkage

Table 6.2. Symbols used in experiments.

Jaccard similarity with the threshold, θ = 0.5, by default. Two standpoints are

considered as evaluation metrics: (1) accuracy in terms of precision = NTruePositive

NAllPositive
,

recall = NTruePositive

NAllTrue
, and F-measure = 2×precision×recall

precision+recall
and (2) scalability in terms

of wall-clock running time denoted by RT along the size of data set.

Symbols used in experiments are summarized in Table 6.2.

6.3.2 Choice of Parameters: K, L, and T

Several factors may impact the performance of Hashed Linkage algorithms – some

of them (e.g., K, L, and T) are control parameters that Hashed Linkage relies on

to fine tune its performance, while others (e.g., distribution pattern or dirtiness)

are parameters determined by data sets. We first discuss the choices of K, L,

T parameters in current Hashed Linkage implementations (and their rationale) in

this section. On the other hand, the robustness of Hashed Linkage with respect

to varying distribution patterns and dirtiness of data sets is validated through

Sections 6.3.5–6.3.7.

102

1

Precision F‐measureRecall

1 1

0.7
0.8
0.9

K=2 K=5 K=8
K 11 K 15

0.5
0.6

0 10 20 30 40

K=11 K=15

0 10 20 30 400 10 20 30 40

0.5 0.5

0 10 20 30 40 0 10 20 30 400 10 20 30 40

(a) Precision, Recall, and F-measure

3000

4000

T)m
e
(s
ec
.)

11

21
31

1000

2000

er
at
io
ns
 (T

un
ni
ng

 T
im

1

11
0

2 4 6 8 101214

of
 it
eRu

L th f k (K)Length of a key (K)

0 8

1

0.4

0.6

0.8

precision
recall

0

0.2

2 4 6 8 10 12 14

F‐measure
Normalized RT

15

Length of a key (K)

(b) RT comparison (c) Summary (T = 25)

Figure 6.5. Impact of K and T using h-Dself to one dirty set generated by PL distri-
bution.

K: # of random permutation functions to generate a single hash key per record

(K) plays an important role in the performance of any LSH techniques. For a

closer study, we ran h-Dself to a data set with 100,000 records of PL distribution.

As shown in Figure 6.5(a), precision increases along K (worst at K = 2), but

decreases along T . Asymmetrically, recall increases along T , but decreases along

K. This phenomenon is expected since small K tends to increase the probability

of having non-matching records located in the same bucket (mistakenly), which

increases running time. On the other hand, large K may increase the chance of

having matching records put into different buckets, which usually lowers recall.

The F-measure in Figure 6.5(a) shows that overall we get the best precision and

recall trade-off when K is around 2–5.

In terms of running time (RT) of Figure 6.5(b), clearly, RT is proportional to

T . That is, if Hashed Linkage runs more iterations, its overall RT increases as well.

However, the relationship between K and RT is peculiar in that when K is set very

small (K=2), RT becomes longer than when K ≥ 3. This is because with K = 2,

each cluster (i.e., block) tends to have excessive number of irrelevant records,

103

causing expensive pair-wise computations in subsequent stage of RL. In addition,

if K is set very high (K = 15), RT also increases substantially since most of RT

is devoted on the generation of “long” hash keys of records. As a result, in Figure

6.5(b), RT has a convex shape along K throughout varying iterations, suggesting

that K should be set neither too high nor too low. Figure 6.5(c) shows the summary

of precision, recall and F-measure of varying K with T = 25. The normalized RT

of Figure 6.5(c) is computed by dividing all RT’s by the maximum RT at K = 2.

Based on Figure 6.5(c), therefore, we conclude that using K = {3, 4, 5} gives the

best compromised accuracy and RT overall for the given data sets. This result is

also consistent with the finding of other LSH schemes in literature [5, 64] . For

this reason, in subsequent experiments, we used K = 5. Note that in Section 6.3.4

where we compare Hashed Linkage against two other LSH based schemes, all of

them use the same value: K = 5. Therefore, the choice of K value does not affect

the results of Section 6.3.4 at all.

L: The behavior of conventional LSH schemes (e.g., [37, 64]) is controlled by

both K and L parameters. While Hashed Linkage uses K in the same way as

conventional LSH, it uses L differently. In conventional LSH, L is assumed to

be # of hash tables. Then, # of keys per record is also L. However, in Hashed

Linkage, one key per record is generated per iteration (see Figure 6.2). In order to

have a fair comparison between Hashed Linkage and conventional LSH schemes in

Section 6.3.4, we need to have the same number of keys per record. Therefore, in

Hashed Linkage, we have to have at least L times of iterations to have L keys per

record. As a conclusion, in Hashed Linkage, L is set dynamically, proportionate

to # of iterations, T . Since all LSH based schemes in experiments have the same

number of keys per record, they all show very similar accuracy, later to be shown

in Figure 6.7(b).

T: # of iterations (T) has a direct impact on the running time of an iterative

RL algorithm. Ideally, an RL algorithm wants to run as few times of iterations

as possible while achieving the highest accuracy. In current implementations of

Hashed Linkage, instead of having fixed number for T , it dynamically stops the

iteration if the reduction rate σi (= |semi-cleaned seti|
|input seti|

) at i-th iteration is less than a

threshold. For instance, σi becomes 0.1 if 10 merged records are generated from

104

StringMap R-Swoosh Hashed Linkage Basic LSH MP LSH
Input text XML text text text

Language C++ Java Java Java Java
Model match-only match-merge match-merge match-only match-only

Blocking R-tree N/A I-LSH LSH MP LSH
Distance Jaccard Jaro Jaccard Jaccard Jaccard

Table 6.3. Comparison between Hashed Linkage and four other RL solutions.

100 input records. Note that σi behaves differently for different data distributions

(PL vs. GA). In addition, the size of the final cleaned set is different between

PL and GA distributions – final cleaned set with PL distribution is usually larger

than that with GA distribution. It also implies that σi with PL distribution tends

to be smaller than that with GA distribution at each iteration. Thus, Hashed

Linkage usually performs less number of iterations T with PL distribution. In all

of subsequent experiments, we used the threshold to stop iterations is set to 0.01.

6.3.3 Comparison Against Existing RL Solutions

First, we chose two well-known RL algorithms3, StringMap4 [48] and R-Swoosh5

[10], and compared them against one of Hashed Linkage algorithms, h-Dself , for

the case of cleaning one dirty set. The first three columns of Table 6.3 show

the differences among StringMap, R-Swoosh, and Hashed Linkage in detail. Since

StringMap supports only the match-only6 RL model, comparison was done under

the match-only RL model (i.e., no merges). Since both StringMap and R-Swoosh

could not finish larger data sets within a reasonable time, data sets with 1,000

– 4,000 records were mainly used for comparison. Two record types were used:

short records (e.g., people names of 10-20 characters) are from StringMap package

while long records (e.g., citations of 100-200 characters) are made from CiteSeer

data set. Since short records from StringMap did not have a ground truth, we

estimated one by running naive pair-wise comparison first.

3We also considered Febrl [21] for the comparison. However, since Febrl does not provide
means to measure running time and its installation was problematic due to a version conflict, we
omitted it.

4http://flamingo.ics.uci.edu/releases/2.0.1/
5http://infolab.stanford.edu/serf/
6[48] actually supports merge() operation. However, the merged record does not incur new

comparison in subsequent iterations.

105

300

ec
.)

HARRA

100

200
g
Ti
m
e
(s
e HARRA

R‐Swoosh
StringMap

0

0 1 2 3 4Ru
nn

in
g

of records (x 1,000)

10000
100000

ec
.)

10
100
1000
10000

g
Ti
m
e
(s
e

1
10

0 1 2 3 4Ru
nn

in
g

of records (x 1,000)

(a) short record (e.g., names) (b) long record (e.g., citations)

Figure 6.6. RT comparison among h-Dself , StringMap, and R-Swoosh. (Note that
Y-axis of (b) is on logarithmic scale.)

As shown in Figure 6.6(a), with simple record contents such as people names,

all three algorithms run well within a reasonable time. Both Hashed Linkage and

StringMap show linear increase along the size of records thanks to the blocking step,

while R-Swoosh shows a quadratic increase due to nested-loop style comparisons.

With an efficient blocking via I-LSH, Hashed Linkage provides the best running time

among all for all size ranges. The StringMap which also employs blocking was slow

(but still faster than R-Swoosh) since it spent majority of time in generating R-

tree based structure as part of blocking. As we demonstrated in Figure 1.2, if both

StringMap and R-Swoosh could have been able to run for larger data sets such as

400,000 records, the gap between Hashed Linkage and them would have widened

further. For the second type of a long record set, as shown in Figure 6.6(b),

StringMap works worse than R-Swoosh. With initial data set of 1,000 citations,

RT of Hashed Linkage is only 3.428 sec., for instance, while RT of StringMap is

4,318 sec. R-Swoosh also shows its quadratic nature in running time. Thus, with

larger number of records, R-Swoosh becomes impractical.

Next, in terms of precision and recall trade-off, R-Swoosh is the best, as Ta-

ble 6.4 shows. The precision values for all 3 methods are all equal as 1.0. Recall

that the ground truth of this experiment in Section 6.3.3 was “estimated” by run-

ning a blockbox match function since data set (i.e., short and long records) from

StringMap package did not provide one. Then, for a fair comparison, all 3 methods

used more or less the same blackbox match step but different blocking strategies.

Therefore, all 3 have the identical precision of “1” but varying recall, since some

106

Data size 1,000 2,000 3,000 4,000
precision recall precision recall precision recall precision recall

Hashed Linkage 1 0.998 1 0.996 1 0.992 1 0.985
StringMap 1 0.999 1 1 1 1 1 1
R-Swoosh 1 1 1 1 1 1 1 1

Table 6.4. Precision and recall comparison among h-Dself , StringMap, and R-Swoosh.

blocking may miss true positives7. Since R-Swoosh essentially does all pair-wise

comparisons, it does not miss any matching record pairs and yields perfect recall all

the time. For both Hashed Linkage and StringMap, due to the blocking stage, some

false dismissals may occur. Therefore, for four data sets of {1,000, 2,000, 3,000,

4,000} records, StringMap got recalls of {0.999, 1, 1, 1} while Hashed Linkage got

{0.998, 0.996, 0.992, 0.985}.
Overall we claim that Hashed Linkage runs much faster with negligible loss of

recall. For instance, Hashed Linkage runs 4.5 and 10.5 times faster than StringMap

and R-Swoosh with 4,000 short name record data set while missing only 1.5% of

true matches out of 4,000 × 4,000 record pairs.

6.3.4 Comparison Against Existing LSH Based RL Solu-

tions

Next, we compare h-Dself against both basic LSH [37] and multi-probe LSH [64]

algorithms for the case of cleaning one dirty set, made from CiteSeer data. Unlike

StringMap and R-Swoosh, now, both basic LSH and multi-probe LSH algorithms

are capable of handling large data sets such as 400,000 records in multiple itera-

tions. Therefore, this time, the comparison was done for all ranges of data sets.

The last three columns of Table 6.3 show the differences among Hashed Linkage,

basic LSH, and multi-probe LSH in detail.

Figure 6.7(a) shows the comparison of RT among three approaches with varying

size of input records, while Figure 6.7(b) shows the trend of precision and recall

which are managed to be similar for the proper RT comparison. Since Hashed

Linkage uses one re-usable hash table, the memory usage of Hashed Linkage is

significantly lower than regular LSH techniques. In fact, the memory requirement

7However, for subsequent experiments with data sets from CiteSeer, which already provides
a ground truth, we have varying precision scores depending on the choice of match functions.

107

15000

ec
.) HARRA

5000

10000
g
Ti
m
e
(s
e basic LSH

Multi‐Probe LSH

0

0 100 200 300 400Ru
nn

in
g

of records (x 1,000)

0 95

1 Basic LSH Multi‐probe
LSH

HARRA

0.85

0.9

0.95 LSH

0.75

0.8

0.85
10,000 50,000 100,000
200,000 300,000 400,000

P i i R ll llPrecision Recall Precision Recall Precision Recall

(a) RT comparison (b) Accuracy comparison

Figure 6.7. Comparison, h-Dself to others with Gaussian distribution, σ = 1 and
mean = 11.

in both basic LSH and multi-probe LSH depends on the number of hash tables used

in the systems, while Hashed Linkage uses one dynamic reusable hash table. In

addition, with respect to running time for 400,000 records (i.e., the largest test set),

Hashed Linkage runs 5.6 and 3.4 times faster than basic LSH and multi-probe LSH,

respectively while maintaining similar precision and recall levels. This is because

the decrease of the total size of a set will affect the hash table generation time at

each iteration in Hashed Linkage system, while all records are used to build hash

tables in both basic LSH and multi-probe LSH. Furthermore, even though multi-

probe LSH provides better results than basic LSH, it may not avoid the nature

of quadratic number of comparisons, since input records should be compared with

many records from multiple buckets in a hash table. Therefore, the processing

time of multi-probe LSH is not improved enough for the case of cleaning sets.

Since the comparison of remaining Hashed Linkage algorithms against the basic

and multi-probe algorithms shows similar pattern, in subsequent sections, we focus

on comparing various aspects among Hashed Linkage algorithms in detail.

6.3.5 Cleaning Single Data Collection

Next, the h-Dself algorithm is closely evaluated with two data distributions –

Power-Law (PL) and Gaussian (GA). As shown in Figure 6.8, h-Dself works effi-

ciently and robustly for both data sets. As the size of a dirty data set increases,

both precision and recall values decrease slightly. However, the running time to

clean a dirty data set increases linearly. This suggest that h-Dself is scalable to

the size of a data set regardless of statistical distributions.

108

2000
2500

ec
.)

500
1000
1500
2000

g
Ti
m
e
(s
e

RT (PL)
RT (GA)

0
500

0 100 200 300 400Ru
nn

in
g

of records (x 1,000)

0 9
1

0 6
0.7
0.8
0.9

pre. (PL) rec.(PL)
() ()

0.5
0.6

0 100 200 300 400

pre.(GA) rec.(GA)

of records (x 1,000)

(a) Running Time (b) Precision & Recall

Figure 6.8. h-Dself with Power-Law (PL) and Gaussian (GA) distributions

150000

200000
of records

50000

100000

150000 # of buckets

0

50000

1 3 5 7 9 11 13 15

of iterations

150000

200000

50000

100000

150000 # of records
of buckets

0

50000

1 3 5 7 9 11 13 15 17

of iterations

(a) Gaussian distributed set (b) Power-Law distributed set

Figure 6.9. # of records & # of buckets in a hash table at each iteration with 200,000
records.

The number of iterations can be pre-defined as a constant by investigating the

number of records in a semi-clean set at each iteration. As mentioned earlier, the

reduction rate between the size of input set and that of output set can be also

used as a control factor to stop iterations. In Figure 6.9, both # of records in a

semi-clean set and # of buckets (= # of keys = the size of a hash table) from

records in a semi-clean set are depicted with the number of iterations. As can be

seen in Figures 6.9 (a) and (b), if reduction rate is used as a control factor, the

number of iterations in GA distributed set is greater than that in PL distributed

set. This happens because the size of the final clean set in GA distributed set

is smaller than that in PL distributed set. In other words, the dirtiness of GA

distributed set is greater than that of PL distributed set in terms of the number of

matched records. At each iteration, both # of records in a semi-clean set and #

of buckets in a hash table decrease as expected. Note that the size of a hash table

is always smaller than the number of records due to duplicate keys from different

records.

109

) h‐CC

4000

6000
Ti
m
e
(s
ec
. h CC

h‐CD
h‐DD1
h‐CDself

0

2000

0 100 200 300 400Ru
nn

in
g
T

0 100 200 300 400R

of records (x 1,000)

1

0 8

0.9 pre.(h‐CC) rec.(h‐CC)
pre.(h‐CD) rec.(h‐CD)

0.7

0.8

0 100 200 300 400

p
pre.(h‐Cdself) rec.(h‐Cdself)
pre.(h‐DD1) rec.(h‐DD1)

0 100 200 300 400

of records (x 1,000)

) h‐CC

4000

6000

Ti
m
e
(s
ec
. h CC

h‐CD
h‐DD1
h‐CDself

0

2000

0 100 200 300 400Ru
nn

in
g
T

0 100 200 300 400R

of records (x 1,000)

1

0 8

0.9 pre.(h‐CC) rec.(h‐CC)
pre.(h‐CD) rec.(h‐CD)

0.7

0.8

0 100 200 300 400

p
pre.(h‐Cdself) rec.(h‐Cdself)
pre.(h‐DD1) rec.(h‐DD1)

0 100 200 300 400

of records (x 1,000)

(a) Running time (b) Accuracy

Figure 6.10. All algorithms for different scenarios.

6.3.6 Cleaning Pairs of Data Collections

In this section, we validate all Hashed Linkage algorithms with test sets with differ-

ent characteristics. When one knows if a set is “clean” or “dirty” beforehand, one

can exploit such characteristics to reduce running time. In addition, the relation-

ship between records can enhance the running time further. On the other hand,

when one does not know if a set is “clean” or “dirty” beforehand, even though the

set is clean, algorithms should use “dirty” characteristics.

1. With Known Characteristics. Figure 6.10 shows the scalability and accuracy

of four Hashed Linkage algorithms for clean-clean, clean-dirty, and dirty-dirty sce-

narios. Virtually, all algorithms show similar patterns. As to scalability, as shown

in Figure 6.10(a), all four algorithms show that running time increases linearly

as input data size increases, suggesting all algorithms are scalable with respect to

their input size. Note that h-CC is the fastest while h-DD1 is the next. h-CC

uses the clean-clean characteristics so that records in hash table from one set does

not have to be compared. Thus, we can save time by reducing the number of

comparisons by an expensive match() function. In addition, the iteration will stop

sooner than others when the same reduction rate is set for all algorithms. For

dirty-dirty sets, because Hashed Linkage uses a semi-cleaned data set by merging

records that hit in a hash table at each iteration, the size of hash table will be

reduced drastically along the number of iteration, even though more iterations are

requested. This results in the reduced total running time in h-DD1. Between

h-CD and h-CDself , we apply both algorithms to the same data sets. Because

the effect of CMR is more forceful than that of IMR, the effect of merging between

110

6000
ec
.) h‐CC

2000

4000

g
Ti
m
e
(s
e h‐CD

h‐DD1

0

0 100 200 300 400Ru
nn

in
g

of records (x 1,000)

6000

ec
.)

h‐CC

2000

4000

g
Ti
m
e
(s
e h CC

h‐CD
h‐DD1

0

0 100 200 300 400Ru
nn

in
g

of records (x 1,000)

(a) Known characteristic (b) Unknown characteristic

Figure 6.11. Comparison among h-CC, h-CD, and h-DD1 with 10, 000 to 400, 000
records. (Note that running time between (a) and (b) are not comparable.)

two sets is higher than that of self-merging. Thus, h-CD shows better running

time than h-CDself . The detailed comparison between h-CD and h-CDself will

be more investigated in subsequent sections. As to accuracy, as shown in Figure

6.10(b), all four algorithms again achieve similar precision and recall, ranging from

0.91 to 1.

2. With Unknown Characteristics. Three different algorithms from three different

scenarios are compared by putting 10,000 to 400,000 records with IMR=0.0 and

CMR=0.5. Although data is a clean-clean case (i.e., IMR=0.0), algorithms for

clean-dirty or dirty-dirty cases pretend not to know that they are clean so that

comparison is possible.

The running times among h-CC, h-CD, and h-DD1 in Figure 6.11(b) appear

“faster” than those shown in Figure 6.11(a), contrary to the intuition. This is

because two cases use different data set. For Figure 6.11(b) with unknown char-

acteristics, single data set is used to exploit clean characteristic for all algorithms

when it is known to user. In h-CC, one does not need to compare records in-

ternally in each input set. In other words, at each hash-match-merge iteration,

after hash step, we do not perform match-merge steps within one set. In addition,

we can save more time using E set that only exists in h-CC algorithm by using

clean characteristic on both input sets. However, h-CD uses the clean character-

istic on one side only. Thus, the algorithm requires the steps to clean the other

set. Therefore, h-CD demands more processing time. Similarly, h-DD1 considers

that all sets are dirty, i.e., the clean property is not used at all. We may require

more processing time to clean both sets. For proper comparison, the same number

111

 IMR 0.0 IMR 0.4
CMR 0.0 0.2 0.4 0.6 0.8 1.0 CMR 0.0 0.2 0.4 0.6 0.8 1.0

Pr
ec

is
io

n

h-CD .98 .98 .98 .98 .98 .98 h-CD .98 .98 .99 .99 .99 .99
h-CDself .98 .98 .98 .98 .98 .98 h-CDself .98 .98 .98 .98 .98 .98
h-DD1 .97 .97 .98 .97 .98 .98 h-DD1 .98 .98 .98 .98 .98 .98
h-DD2 .98 .98 .98 .98 .98 .98 h-DD2 .99 .99 .99 .99 .99 .99
h-DD3 .98 .98 .97 .98 .98 .98 h-DD3 .99 .99 .96 .95 .94 .94

R
ec

al
l

h-CD 1.0 .97 .95 .92 .89 .86 h-CD .94 .93 .92 .90 .89 .86
h-CDself 1.0 .97 .95 .92 .89 .86 h-CDself .94 .93 .92 .91 .9 .87
h-DD1 1.0 .98 .96 .93 .92 .90 h-DD1 .93 .92 .90 .89 .89 .86
h-DD2 .98 .97 .94 .91 .88 .85 h-DD2 .88 .87 .85 .84 .82 .79
h-DD3 .97 .97 .94 .90 .87 .85 h-DD3 .90 .87 .83 .80 .77 .74

With 18 keys per records

 IMR 0.0 IMR 0.4
CMR 0.0 0.2 0.4 0.6 0.8 1.0 CMR 0.0 0.2 0.4 0.6 0.8 1.0

Pr
ec

is
io

n
h-CD .98 .98 .98 .98 .98 .98 h-CD .98 .98 .98 .98 .98 .99

h-CDself .98 .98 .98 .98 .98 .98 h-CDself .98 .98 .98 .98 .98 .98
h-DD1 .96 .96 .97 .97 .97 .97 h-DD1 .97 .97 .98 .98 .98 .98
h-DD2 .97 .97 .98 .98 .98 .98 h-DD2 .98 .98 .98 .98 .98 .98
h-DD3 .97 .97 .97 .98 .98 .98 h-DD3 .99 .98 .96 .95 .93 .93

R
ec

al
l

h-CD 1 .98 .96 .94 .92 .90 h-CD .96 .95 .94 .93 .92 .90
h-CDself 1 .98 .96 .94 .92 .90 h-CDself .96 .95 .94 .93 .93 .90
h-DD1 1 .99 .97 .96 .94 .92 h-DD1 .95 .94 .93 .92 .92 .90
h-DD2 1 .98 .96 .94 .91 .89 h-DD2 .99 .96 .96 .94 .90 .88
h-DD3 1 .98 .95 .93 .90 .88 h-DD3 .95 .90 .88 .85 .82 .80

Table 6.5. Precision and recall under various dirtiness

of keys are generated for one record in all algorithms by setting the number of

iterations.

6.3.7 Robustness of HARRA

In section 6.3.5, we already showed the robustness of h-Dself with different sta-

tistical distribution of data sets. In this section, we also show the robustness of

Hashed Linkage against the varying dirtiness of data sets. Within the same sce-

nario, we compare different approaches to clean data sets with various setting of

reduction rate. For clean-dirty case, we investigate the difference between h-CD

and h-CDself by comparing running time with various IMR and CMR. For dirty-

dirty case, we also compare three different algorithms of h-DD1, h-DD2, and

h-DD3 with various IMR and CMR. All data sets include 100,000 records.

First, Table 6.5 shows the details of both precision and recall with different

combinations of IMR and CMR values. Note that regardless of the chosen com-

bination, accuracy of Hashed Linkage is robust – always both precision and recall

are above 0.9 except a few very dirty cases. For this experiment, we use the same

number of keys per record.

1. Clean-Dirty Case. Many data sets are generated by 2 variations of IMR (0.0

and 0.4) and 6 variations of CMR (0.0, 0.2, 0,4, 0.6, 0.8, and 1.0) to show the

behavior between h-CD and h-CDself with 100,000 records. Figure 6.12(a) shows

the running time when IMR is 0.0 (i.e., both set are actually clean). As shown

in Figure, with CMR=0.0, h-CD and h-CDself show very similar running time,

112

650ec
.) h‐CD

450

550

g
Ti
m
e
(s
e h‐CDself

350

0 0.2 0.4 0.6 0.8 1Ru
nn

in
g

CMR

650ec
.) h‐CD

450

550

g
Ti
m
e
(s
e h‐CDself

350

0 0.2 0.4 0.6 0.8 1Ru
nn

in
g

CMR

(a) IMR = 0.0 (b) IMR = 0.4

Figure 6.12. Algorithm comparison in clean-dirty case by varying IMR and CMR with
100,000 records.

because h-CD compares two sets A and B directly at first, then cleans B, and

h-CDself cleans B first, then compare A and B. Thus, little difference exists in

terms of the number of comparisons between two schemes. By increasing CMR,

h-CD has more merits than h-CDself . By comparing A and B first in h-CD,

|B′| (the remainder of B) is reduced. Later, we can save more time to clean B′.

In h-CDself , because IMR is 0.0, the process to clean B does not change the total

number of records in input sets at the first step. Therefore, h-CD always shows

better running time with IMR=0.0 with various CMR.

Figure 6.12(b) shows the running time when IMR is 0.4 with 6 CMR (0.0, 0.2,

0,4, 0.6, 0.8, and 1.0). Note that both IMR and CMR are applied to a set B.

Overall, in terms of running time, h-CDself is better with small CMR, but h-CD

is with larger CMR. For example, with CMR=0.0, h-CDself runs faster than h-

CD does. When we apply h-Dself to B, the size of B reduces at the first iteration.

Thus, we can save running time when B is compared with A at the next iteration.

However, in h-CD, all records in B are compared to A at the first iteration. Thus,

we will spend more time in merging two sets. With CMR=1, h-CD runs faster

than h-CDself does, because the effect of CMR is much higher than that of IMR.

Therefore, h-CD is preferable beyond CMR=0.8.

Between Figures 6.12(a) and (b), we compare the effect of IMR on h-CD and

h-CDself . The running time is more sensitive along CMR when we have low IMR.

It means that the effect of CMR is more significant when IMR is low. The total

running time with higher IMR is faster at the same CMR point, because the size

of a final clean set is smaller than that with lower IMR. This fact implies that the

113

850
ec
.) h‐DD1

h‐DD2

450
550
650
750

g
Ti
m
e
(s
e h DD2

h‐DD3

350
450

0 0.2 0.4 0.6 0.8 1Ru
nn

in
g

CMR

850

ec
.) h‐DD1

h DD2

450
550
650
750

g
Ti
m
e
(s
e h‐DD2

h‐DD3

350
450

0 0.2 0.4 0.6 0.8 1Ru
nn

in
g

CMR

(a) IMR = 0.0 (b) IMR = 0.4

Figure 6.13. Algorithm comparison in dirty-dirty case by varying IMR and CMR with
100,000 records.

number of records at each iteration is reduced more with higher IMR. Similarly,

with higher CMR, we have faster running time because of the same reason in the

effect of higher IMR.

2. Dirty-Dirty Case. For dirty-dirty case, we compare the running time among

h-DD1, h-DD2, and h-DD3 with 2 IMR (0.0 and 0.4) and 6 CMR (0.0, 0.2,

0,4, 0.6, 0.8, and 1.0) with 100,000 records. As shown in Figure 6.13(a), with

IMR=0.0, both h-DD2 and h-DD3 show similar patterns of running time for low

CMR, while h-DD1 has steeper slope overall (i.e., more sensitive to the change

of CMR). Within the structure of h-DD1, A and B are compared at the same

iteration as cleaning A and B. However, in h-DD2, comparing A and B is followed

by applying h-Dself to B, and in h-DD3, we apply h-Dself (A) and h-Dself (B)

at first before comparing A and B. With CRM=0.6 or higher, the running time

in h-DD1 is the best by the effect of CMR, and h-DD2 and h-DD3 are followed

in order.

In Figure 6.13(b), with IMR=0.4, h-DD3 shows the fastest running time with

low CMR. However, h-DD1 provides the best running time with CMR=0.4 or

higher, because the effect of CMR is higher than that of IMR, Between Figures

6.13(a) and (b), similar to the pattern in clean-dirty case, with IMR=0.0, the

running time is more sensitive to CMR. Thus, with IMR=0.0, the slopes on all

algorithms are steeper than those with IMR=0.4. However, overall running time

with IMR=0.4 is much faster at the same CMR on all algorithms, since we have

higher reduction rate of the number of records at each iteration with higher IMR.

Similarly, with higher CMR, we will have faster running time.

114

6.4 Summary

In this chapter, we studied Hashed Linkage by investigating iterative structures

of LSH algorithms to clean and merge data sets. In general, iterative nature of

a record linkage problem occurs immense number of computations for large-scale

data collections. For three input cases of clean-clean, dirty-clean, and dirty-dirty

for known data characteristics, we presented six solutions through Hashed Linkage

variations. Our proposed algorithms are shown to exhibit fast running time as

well as scalability along data size. In addition, compared to four competing record

linkage solutions (StringMap, R-Swoosh, basic and multi-probe LSH), Hashed Link-

age shows 3 – 10 times of improvements in speed with equivalent or comparable

accuracy. The significant saving is due to the dynamic and re-usable hash table

and exploitation of data characteristics in Hashed Linkage.

Chapter 7
Conclusion

7.1 Contribution

In this thesis, we studied high performance record linkages in various aspects. In

order to enhance the performance of record linkage solutions, we proposed four

different applications for the specific or general usages.

First, in Image Linkage, we introduced a novel solution, named as BLASTed

Image Linkage (BASIL), to find near-duplicate images by bridging two different ar-

eas, i.e., Multimedia and Biology. We exploit the biological gene sequence matching

system, BLAST, that presents a famous and well-developed tool in biology, to the

NDID problem. Image Linkage solution promises that NDID problem can be solved

in BLAST by proper translating image features into gene sequences through the

proposed CC table. The CC table combines various homogeneous or heterogenous

features to generate one gene sequence per image. In addition, by the nature of the

CC table, more features can be added to it without additional efforts. Lately, by

adjusting scoring matrices in BLAST, the accuracy of similarity between images

was improved further.

Second, in Video Linkage, we studied the hierarchical structure of linkage al-

gorithms that exploit the video structure considered as a sequence of shots, and

in turn a shot as a sequence of frames. The Video Linkage solution identified the

copied videos containing various distortions. To enhance the performance of Video

Linkage, the temporal order of frames/shots are exploited in similarity measures.

In addition, we developed pipe-lined filtering structures to avoid unnecessary ex-

116

haustive measures using partial inequality between proposed algorithms (greedy,

approximate, and exact solutions) – i.e., filter-out avoidable comparisons through

faster but loose Video Linkage measures.

Third, in Parallel Linkage, we developed the parallel structure of linkage solu-

tions, when the record linkage has match and merge behaviors. For this reason,

Parallel Linkage solutions are not applied simply to images or videos (no merge

steps on such data for now). Instead, we use citation information as our input

set. Due to the iterative nature of match-merge based record linkage problems,

the merged records have been re-fed to the linkage structure to generate the final

clean set. The input data characteristics are also exploited to remove unnecessary

comparisons. With our parallel structure, we could optimize the solution in terms

of speedup as well as efficiency by minimizing overhead such as processor idling

time and message passing time. In addition, our proposed Parallel Linkage structure

can adopt any types of match and merge functions.

Fourth, in Hashed Linkage, we studied the iterative hashing structure that is

most appropriate to the high dimensional non-numerical records such as citation

information. For match-merge based record linkage problem, the iterative hashing

structure of LSH-based idea was well developed to outperform the conventional

RL as well as other LSH-based hashing techniques, in terms of the processing time

and space usage, while keeping similar high accuracy. Like Parallel Linkage, Hashed

Linkage algorithms exploit the characteristics of input data sets such as clean-clean,

clean-dirty, and dirty-dirty, and can employ any match and merge functions.

7.2 Research Plan

Many directions are ahead for future work. In order to achieve high performance

in record linkage solutions, we can expand current our proposed algorithms with

various aspects.

First, with Image Linkage solutions, we plan to extend BASIL to apply it to

different mediums such as video, audio, or time series. In addition, the structural

characteristics of multi-media inputs will be studied to achieve structural alignment

matching algorithms.

Second, since the accuracy of CVD solution also depends on specific video

117

features such as key points, we can improve the accuracy of current Video Linkage

by investigating more persistent features. Video indexing technique will be another

direction to classify and store approximate similar videos in the same group, so

that CVD processing time will be improved further.

Third, we plan to extend the current nested-loop style linkage solutions to

support blocking as in blocked nested-loop style in the parallel structure. This

enables linkage solutions to quickly filter out unnecessary records so that only

small number of candidate records are further examined. Further, we can reduce

the overhead occurred by massage passing time between processors when records

in the same block are shipped to one or a few processors.

Fourth, we plan to extend all Hashed Linkage algorithms with Parallel Linkage

structure with corresponding characterized data sets, so that the overhead in the

parallel structure will be reduced drastically. The proposed LSH based hashing

function are only for non-numerical high dimensional records. However, we can

exploit the Hashed Linkage structure with other hashing functions for other data

domains (e.g., multimedia or web documents). For instance, by implementing

video indexing technique using the proposed Hashed Linkage structure, we can

use Video Linkage algorithms as the match function in our future work. We can

also expand Hashed Linkage algorithms to other data problems (e.g., clustering or

classification).

Bibliography

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic Local
Alignment Search Tool. J. Mol. Biology, 215(3):403–410, 1990.

[2] A. Andoni and P. Indyk. “Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions”. In IEEE Symposium on Foundations
of Computer Science (FOCS), pages 459–468, 2006.

[3] Alexandr Andoni and Piotr Indyk. “Efficient Algorithms for Substring Near
Neighbor Problem”. In Proceedings of the Symposium on Discrete Algo-
rithyms (SODA), pages 1203–1212, 2006.

[4] A. Arasu, V. Ganti, and R. Kaushik. Efficient Exact Set-Similarity Joins.
2006.

[5] Vassilis Athitsos, Michalis Potamias, Panagiotis Papapetrou, and George
Kollios. “Nearest Neighbor Retrieval Using Distance-Based Hashing”. In
IEEE International Conference on Data Engineering (ICDE), pages 327–
336, 2008.

[6] S. Baluja, M. Covell, and S. Ioffe. “Permutation Grouping: Intelligent Hash
Function Design for Audio & Image Retrieval”. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2008.

[7] R. Barzilay and L. Lee. Bootstrapping Lexical Choice via Multiple-Sequence
Alignment. In Conf. on Empirical Methods in Natural Language Processing
(EMNLP), 2002.

[8] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling Up All Pairs Similarity Search.
2007.

[9] Sevinc Bayram, Husrev Taha Sencar, and Nasir Memon. Video copy detec-
tion based on source device characteristics: a complementary approach to

119

content-based methods. In ACM MIR, pages 435–442, Vancouver, Canada,
October 2008.

[10] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and
J. Widom. Swoosh: A generic approach to entity resolution. VLDB J.,
18(1):255–276, January 2009.

[11] O. Benjelloun, H. Garcia-Molina, Q. Su, and J. Widom. “Swoosh: A Generic
Approach to Entity Resolution”. Technical report, Stanford University, 2005.

[12] O. Benjelloun et al. “D-Swoosh: A Family of Algorithms for Generic, Dis-
tributed Entity Resolution”. Technical report, Stanford University, 2006.

[13] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg. “Adap-
tive Name-Matching in Information Integration”. 18(5):16–23, 2003.

[14] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. Adaptive Block-
ing: Learning to Scale Up Record Linkag. In ICDM, December 2009.

[15] Paul Browne. Video information retrieval using objects and ostensive rele-
vance feedback. SIGIR Forum, 39(1):54–54, 2005.

[16] Deng Cai, Xiaofei He, and Jiawei Han. Spectral Regression: A Unified
Subspace Learning Framework for Content-Based Image Retrieval. 2007.

[17] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. “Robust and Efficient
Fuzzy Match for Online Data Cleaning”. 2003.

[18] S. Chaudhuri, V. Ganti, and R. Kaushik. A Primitive Operator for Similarity
Joins in Data Cleaning. 2006.

[19] Xiangang Cheng, Yiqun Hu, and Liang-Tien Chia. Image Near-Duplicate
Retrieval using Local Dependencies in Spatial-Scale Space. 2008.

[20] Chih-Yi Chiu, Chu-Song Chen, and Lee-Feng Chien. A framework for han-
dling spatiotemporal variations in video copy detection. In IEEE TCSVT,
volume 18, pages 412–417, 2008.

[21] P. Christen. Febrl: an open source data cleaning, deduplication and record
linkage system with a graphical user interface. pages 1065–1068, August
2008.

[22] P. Christen, T. Churches, and M. Hegland. “A Parallel Open Source Data
Linkage System”. In Springer Lecture Notes in Artificial Intelligence, Sydney,
Australia, May 2004.

120

[23] R. Cilibrasi and P. M. B. Vitanyi. “The Google Similarity Distance”. (3):370–
383, 2007.

[24] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D.
Ullman, and C. Yang. Finding Interesting Sssociations Without Support
Pruning. volume 13, pages 64–78, Jan/Feb 2001.

[25] Daniel DeMenthon and David Doermann. Video retrieval using spatio-
temporal descriptors. In ACM MULTIMEDIA, pages 508–517, Berkeley,
CA, USA, November 2003.

[26] Wei Dong, Zhe Wang, Moses Charikar, and Kai Li. Efficiently matching sets
of features with random histograms. pages 179–188, 2008.

[27] X. Dong, A. Y. Halevy, and J. Madhavan. “Reference Reconciliation in
Complex Information Spaces”. 2005.

[28] Berna Erol, Jonathan J. Hull, and Dar-Shyang Lee. Linking Multimedia
Presentations with Their Symbolic Source Documents: Algorithm and Ap-
plications. pages 498–507, 2003.

[29] Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and
Fausto Rabitti. Caching content-based queries for robust and efficient image
retrieval. In EDBT ’09: Proceedings of the 12th International Conference on
Extending Database Technology, pages 780–790, 2009.

[30] I. P. Fellegi and A. B. Sunter. “A Theory for Record Linkage”. J. of the
American Statistical Society, 64:1183–1210, 1969.

[31] Shaolei Feng and R. Manmatha. A discrete direct retrieval model for image
and video retrieval. In ACM CIVR, pages 427–436, Niagara Falls, Canada,
July 2008.

[32] Jun Jie Foo and Ranjan Sinha. Pruning SIFT for scalable near-duplicate
image matching. In ADC ’07: Proceedings of the eighteenth conference on
Australasian database, pages 63–71, 2007.

[33] Jun Jie Foo, Justin Zobel, and Ranjan Sinha. Clustering near-duplicate
images in large collections. In MIR ’07: Proceedings of the international
workshop on Workshop on multimedia information retrieval, pages 21–30,
2007.

[34] Jun Jie Foo, Justin Zobel, Ranjan Sinha, and S. M. M. Tahaghoghi. Detec-
tion of Near-Duplicate Images for Web Search. In Int’l Conf. on Image and
Video Retrieval (CIVR), 2007.

121

[35] Yuli Gao and Jianping Fan. Semantic Image Classification with Hierarchical
Feature Subset Selection. In ACM SIGMM Int’l workshop on Multimedia
information retrieval (MIR), pages 135–142, 2005.

[36] Ciocca Gianluigi and Schettini Raimondo. “An Innovative Algorithm for
Key frame Extraction in Video Summarization”. J Real-Time Image Proc,
1:69–88, 2006.

[37] Aristides Gionis, Piotr Indyky, and Rajeev Motwaniz. “Similarity Search in
High Dimensions via Hashing”. In vldb, pages 518–529, 1999.

[38] A. Grama, A. Gupta, G. Karypis, and V. Kumar. “Introduction to Parallel
Computing (2nd Edition)”. Addison Wesley, 2003.

[39] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. “Text Joins in
an RDBMS for Web Data Integration”. 2003.

[40] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. “Merging the Results
of Approximate Match Operations”. pages 636–647, 2004.

[41] Arun Hampapur, Ki-Ho Hyun, and Ruud Bolle. “Comparison of Sequence
Matching Techniques for Video Copy Detection”. In SPIE Storage and Re-
trieval for Media Databases, San Jose, CA, Jan 2002.

[42] Alexander Haubold and Apostol Natsev. Web-based information content
and its application to concept-based video retrieval. In ACM CIVR, pages
437–446, Niagara Falls, Canada, July 2008.

[43] Xiaofei He, Deng Cai, Ji-Rong Wen, Wei-Ying Ma, and Hong-Jiang Zhang.
Clustering and Searching WWW Images using Link and Page Layout Anal-
ysis. ACM Trans. Multimedia Comput. Commun. Appl., 3(2):10, 2007.

[44] M. A. Hernandez and S. J. Stolfo. “The Merge/Purge Problem for Large
Databases”. 1995.

[45] Peter Howarth and Stefan M. Rüger. Evaluation of Texture Features for
Content-Based Image Retrieval. In ACM Int’l Conf. on Image and Video
Retrieval (CIVR), July 2004.

[46] I.-A. Huang, J.-M. Ho, H.-Y. Kao, and S.-H. Lin. Extracting Citation Meta-
data from Online Publication Lists Using BLAST. 2004.

[47] A. Jain and A. Vailaya. Image Retrieval using Color and Shape. Pattern
Recognition, 29(8):1233–1244, 1997.

122

[48] L. Jin, C. Li, and S. Mehrotra. Supporting Efficient Record Linkage for Large
Data Sets Using Mapping Techniques. World Wide Web J., 9(4):557–584,
December 2006.

[49] Alexis Joly, Olivier Buisson, and Carl Frélicot. Statistical similarity search
applied to content-based video copy detection. In IEEE ICDE, pages 1285–
1295, Toyko, Japan, April 2005.

[50] Alexis Joly, Olivier Buisson, and Carl Frelicot. Content-based copy retrieval
using distortion-based probabilistic similarity search. In IEEE TMM, vol-
ume 9, pages 293–306, 2007.

[51] D. V. Kalashnikov, S. Mehrotra, and Z. Chen. “Exploiting Relationships for
Domain-independent Data Cleaning”. In SIAM Data Mining (SDM) Conf.,
2005.

[52] Hideki Kawai, Hector Garcia-Molina, Omar Benjelloun, David Menestrina,
Euijong Whang, and Heng Gong. “P-Swoosh: Parallel Algorithm for Generic
Entity Resolution”. Technical report, Stanford University, 2006.

[53] Yan Ke, Rahul Sukthankar, and Larry Huston. An Efficient Parts-based
Near-Duplicate and Sub-Image Retrieval System. 2004.

[54] R. P. Kelley. “Blocking Considerations for Record Linkage Under Conditions
of Uncertainty”. In Proc. of Social Statistics Section, pages 602–605, 1984.

[55] Changick Kim and B. Vasudev. Spatiotemporal sequence matching for ef-
ficient video copy detection. In IEEE TCSVT, volume 15, pages 127–132,
2005.

[56] Changick Kim and Bhaskaran Vasudev. “Spatiotemporal Sequence Matching
for Efficient Video Copy Detection”. IEEE TCSVT, 15(1):127–132, 2005.

[57] H. Kim, Jeongkyu Lee, Haibin Liu, and Dongwon Lee. Video Linkage: Group
Based Copied Video Detection. In ACM Int’l Conf. on Image and Video
Retrieval (CIVR), Jul 2008.

[58] Joosub Kim and Jeho Nam. Content-based video copy detection using spatio-
temporal compact feature. In IEEE ICACT, volume 3, pages 1667–1671,
Phoenix Park, Korea, February 2009.

[59] M. Krauthammer, A. Rzhetsky, P. Morozov, and C. Friedman. Using BLAST
for Identifying Gene and Protein names in Journal Articles. Gene, 259(1-
2):245–252, 2000.

123

[60] Julien Law-To, Olivier Buisson, Valérie Gouet-Brunet, and Nozha Boujemaa.
Robust voting algorithm based on labels of behavior for video copy detection.
In ACM Multimedia, pages 835–844, Santa Barbara, CA, Oct 2006.

[61] Julien Law-To, Li Chen, Alexis Joly, Ivan Laptev, Olivier Buisson, Valerie
Gouet-Brunet, Nozha Boujemaa, and Fred Stentiford. “Video Copy Detec-
tion: A Comparative Study”. Amsterdam, The Netherlands, July 2007.

[62] Gustavo Leon, Hari Kalva, and Borko Furht. Video identification using video
tomography. In IEEE ICME, pages 1030–1033, New York, NY, USA, June
2009.

[63] H. Lu, B. Ooi, and K. Tan. Efficient Image Retrieval by Color Contents. In
Int’l Conf. on Applications of Databases, pages 95–108, June 1994.

[64] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. “Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity Search”. In
VLDB, pages 950–961, 2007.

[65] F. Malucelli, T. Ottmann, and D. Pretolani. “Efficient Labelling Algorithms
for the Maximum Non Crossing Matching Problem”. Discrete Applied Math-
ematics, 47(2):175–179, 1993.

[66] A. McCallum, K. Nigam, and L. H. Ungar. “Efficient Clustering of High-
Dimensional Data Sets with Application to Reference Matching”. Boston,
MA, August 2000.

[67] Bhaskar Mehta, Saurabh Nangia, Manish Gupta, and Wolfgang Nejdl. De-
tecting Image Spam using Visual Features and Near Duplicate Detection. In
Int’l Conf. on World Wide Web (WWW), 2008.

[68] D. Menestrina, O. Benjelloun, and H. Garcia-Molina. “Generic Entity Reso-
lution with Data Confidences”. In VLDB CleanDB Workshop, Seoul, Korea,
September 2006.

[69] M. Michelson and C. A. Knoblock. Learning Blocking Schemes for Record
Linkage. In AAAI, 2006.

[70] Chong-Wah Ngo, Ting-Chuen Pong, and R.T. Chin. Video partitioning by
temporal slice coherency. In IEEE TCSVT, volume 11, pages 941–953, 2001.

[71] B.-W. On, N. Koudas, D. Lee, and D. Srivastava. “Group Linkage”. In 23rd
Int’l Conf. on Data Engineering (ICDE), Istanbul, Turkey, 2007.

[72] B.-W. On, D. Lee, J. Kang, and P. Mitra. “Comparative Study of Name
Disambiguation Problem using a Scalable Blocking-based Framework”. June
2005.

124

[73] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. “Identity Uncer-
tainty and Citation Matching”. In Advances in Neural Information Process-
ing Systems. MIT Press, 2003.

[74] Sébastien Poullot, Michel Crucianu, and Olivier Buisson. Scalable mining
of large video databases using copy detection. In ACM Multimedia, pages
61–70, Vancouver, Canada, October 2008.

[75] H. Rangwala, E. Lantz, R. Musselman, K. Pinnow, B. Smith, and B. Wal-
lenfelt. Massively Parallel BLAST for the Blue Gene/L. In High Availability
and Performance Computing Workshop (HAPCW), Santa Fe, NM, 2005.

[76] Huamin Ren, Shouxun Lin, Dongming Zhang, Sheng Tang, and Ke Gao. Vi-
sual words based spatiotemporal sequence matching in video copy detection.
In IEEE ICME, pages 1382–1385, New York, NY, USA, June 2009.

[77] S. Sarawagi and A. Bhamidipaty. “Interactive Deduplication using Active
Learning”. 2002.

[78] S. Sarawagi and A. Kirpal. Efficient Set Joins on Similarity Predicates. 2004.

[79] Shin’ichi Satoh, Masao Takimoto, and Jun Adachi. Scene duplicate detection
from videos based on trajectories of feature points. In MIR ’07: Proceed-
ings of the international workshop on Workshop on multimedia information
retrieval, pages 237–244, 2007.

[80] D. A. Schneider and D. J. DeWitt. “A Performance Evaluation of Four
Parallel Join Algorithms in a Shared-Nothing Multiprocessor Environment”.
Portland, OR, May 1989.

[81] W. Shen, X. Li, and A. Doan. “Constraint-Based Entity Matching”. In
AAAI, 2005.

[82] J.R. Smith and S.-F. Chang. Automated Binary Texture Feature Sets for
Image Retrieval. In IEEE Int. Conf. Acoust, Speech and Signal Proc., 1996.

[83] T. Smith and M. Waterman. Identification of Common Molecular Subse-
quences. J. Mol. Biology, 147:195–197, 1981.

[84] Hung-Khoon Tan, Chong-Wah Ngo, Richard Hong, and Tat-Seng Chua.
Scalable detection of partial near-duplicate videos by visual-temporal con-
sistency. In ACM Multimedia, pages 145–154, Beijing, China, October 2009.

[85] Hung-Khoon Tan, Xiao Wu, Chong-Wah Ngo, and Wan-Lei Zhao. Accelerat-
ing near-duplicate video matching by combining visual similarity and align-
ment distortion. In ACM Multimedia, pages 861–864, Vancouver, Canada,
October 2008.

125

[86] Martin Theobald, Jonathan Siddharth, and Andreas Paepcke. SpotSigs:
Robust and Efficient Near Duplicate Detection in Large Web Collections.
2008.

[87] Eduardo Valle, Matthieu Cord, and Sylvie Philipp-Foliguet. High-
dimensional Descriptor Indexing for Large Multimedia Databases. In ACM
CIKM, pages 739–748, Napa Valley, USA, October 2008.

[88] S. Velusamy, S. Bhatnagar, S.V. Basavaraja, and V. Sridhar. SPSA based
feature relevance estimation for video retrieval. In IEEE MMSP: Multimedia
Signal Processing, pages 598–603, Cairns, Queensland, Australia, October
2008.

[89] Geert Willems, Tinne Tuytelaars, and Luc Van Gool. Spatio-temporal fea-
tures for robust content-based video copy detection. In ACM MIR, pages
283–290, Vancouver, Canada, October 2008.

[90] W. E. Winkler. “The State of Record Linkage and Current Research Prob-
lems”. Technical report, US Bureau of the Census, April 1999.

[91] Xiao Wu, Alexander G. Hauptmann, and Chong-Wah Ngo. Novelty detection
for cross-lingual news stories with visual duplicates and speech transcripts.
pages 168–177, 2007.

[92] Xiao Wu, Alexander G. Hauptmann, and Chong-Wah Ngo. Practical elimi-
nation of near-duplicates from web video search. pages 218–227, 2007.

[93] Xiao Wu, Jintao Li, Yongdong Zhang, and Sheng Tang. Spatio-temporal
visual consistency for video copy detection. In IEEE VIE, pages 414–419,
Xian, China, July 2008.

[94] Zhipeng Wu, Qingming Huang, and Shuqiang Jiang. Robust copy detection
by mining temporal self-similarities. In IEEE ICME, pages 554–557, June
2009.

[95] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient Similarity Joins for Near
Duplicate Detection. 2008.

[96] Zhihua Xu, Hefei Ling, Fuhao Zou, Zhengding Lu, Ping Li, and Tianjiang
Wang. Fast and robust video copy detection scheme using full dct coefficients.
In IEEE ICME, pages 434–437, June 2009.

[97] Ying Yan, Beng Chin Ooi, and Aoying Zhou. Continuous content-based copy
detection over streaming videos. In IEEE ICDE, pages 853–862, April 2008.

[98] Hui Yang and James P. Callan. Near-Duplicate Detection by Instance-Level
Constrained Clustering. 2006.

126

[99] Mei-Chen Yeh and Kwang-Ting Cheng. A compact, effective descriptor for
video copy detection. In ACM Mutimedia, pages 633–636, Beijing, China,
October 2009.

[100] D. Zhang and G. Lu. Review of Shape Representation and Description Tech-
niques. Pattern Recognition, 37(1):1–19, 2004.

[101] Dong-Qing Zhang and Shih-Fu Chang. Detecting Image Near-Duplicate by
Stochastic Attributed Relational Graph Matching with Learning. pages 877–
884, Oct 2004.

[102] Dong-Qing Zhang and Shih-Fu Chang. Detecting Image Near-Duplicate by
Stochastic Attributed Relational Graph Matching with Learning. 2004.

[103] Wan-Lei Zhao, Chong-Wah Ngo, Hung-Khoon Tan, and Xiao Wu. Near-
Duplicate Keyframe Identification with Interest Point Matching and Pattern
Learning. IEEE Trans. on Multimedia, 9:1037–1048, August 2007.

[104] Yan-Tao Zheng, Shi-Yong Neo, Tat-Seng Chua, and Qi Tian. The Use
of Temporal, Semantic and Visual Partitioning Model for Efficient Near-
Duplicate Keyframe Detection in Large Scale News Corpus. In ACM CIVR,
pages 409–416, Amsterdam, The Netherlands, July 2007.

Vita

Hung-sik Kim

Hung-sik Kim was born in Gangreung, South Korea in 1971. He received his

B.S. degree from Electrical Engineering, Konkuk University, Seoul, Korea, in 1999.

Then, He received M.S. degree from Electrical Engineering, the Pennsylvania State

University, University Park, USA, in 2001. Then, he joined Ph.D program in

the Department of Computer Science and Engineering at the Pennsylvania State

University in 2004. His current research focuses on High Performance Computing,

Data Cleaning, Data Clustering, and Multimedia Copy Detection.

