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Abstract

African smallholder farmers have struggled with low agricul-
tural productivity for decades, partly due to their inability to
proactively assess irrigation needs in their farms in the face of
long-term climate change. In this paper, we tackle this chal-
lenge by employing data-driven techniques to develop fore-
casting tools for three widely used crop-productivity related
variables (i.e., actual evapotranspiration, reference evapotran-
spiration, and net primary production), which can then be
used by farmers to take corrective actions on their farms.
Prior work in this domain, despite using data-driven meth-
ods, suffers from two major limitations: (i) they mainly fo-
cus on estimating variable values (as opposed to forecast-
ing the future); and (ii) they mostly use classical Machine
Learning (ML) prediction models, despite the abundance of
data sufficient to train sophisticated deep learning models. To
fill this research gap, we collaborate with PlantVillage, the
world’s leading non-profit agricultural knowledge delivery
platform for African farmers, to identify ∼2,200 smallholder
farm locations, and gather remote-sensed data of these farms
over a period of five years. Next, we propose CLIMATES,
a meta-algorithm leveraging structural insights about tem-
poral patterns of this time-series data to accurately forecast
their future values. We conduct extensive experiments to eval-
uate its performance in this domain. Our experimental re-
sults show that CLIMATES outperforms several state-of-the-
art time-series forecasting models. We also provide insights
about the poor performance of some competing models. Our
work is being evaluated by officials at PlantVillage for po-
tential future deployment as an early warning system in East
Africa. We release the code at https://github.com/maryam-
tabar/CLIMATES.

Introduction
Smallholder farms (less than two hectares in size) and their
farmers form the backbone of African agriculture and food
security, and constitute a significant proportion of the Gross
Domestic Product (GDP) of several African countries. For
example, agriculture on smallholder farms is the primary
means of livelihood for more than 60% people in Sub-
Saharan Africa, and is responsible for ∼75% of the region’s
total agricultural production (Gollin 2014; Salami, Kamara,
and Brixiova 2010). In addition, smallholder agriculture also
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plays a critical role towards meeting several Sustainable De-
velopment Goals (SDGs)1 laid out by the United Nations,
such as “no poverty and zero hunger”. Thus, developing
techniques to improve the productivity and profitability of
smallholder farms in Africa is of critical importance, as it
could lead to significant improvements in the well-being of
many disadvantaged communities in Africa.

Unfortunately, increasing the productivity/profitability of
smallholder agriculture is a challenging problem because of
several reasons: (i) smallholder farmers find it difficult to
protect their farms against biotic stressors (e.g., pest and dis-
ease outbreaks); (ii) they lack awareness about modern agri-
cultural practices; and, most importantly, (iii) over the last
few decades, climate change on the African continent has
significantly hampered the ability of smallholder farmers to
achieve high agricultural productivity (Harvey et al. 2014).
In fact, the high reliance of smallholder farmers on rain-fed
agriculture, coupled with a lack of knowledge about future
climatic conditions result in highly uncertain situations for
farmers. For example, farmers do not know the irrigation
needs of their crops at any given point in time (Shimeles,
Verdier-Chouchane, and Boly 2018). This is one of the pri-
mary factors behind consistently low agricultural produc-
tivity among African smallholder farmers. As such, it is of
great importance to help them get a better understanding of
future climatic conditions on their farms, so that they can
proactively assess and address their irrigation needs.

In this paper, we tackle this important problem by devel-
oping CLIMATES (Clustering Initialized Meta Algorithm
for Tackling Environmental Stressors), a Machine Learn-
ing (ML) based predictive tool for farmers to forecast
three important crop-productivity related variables: (i) actual
evapotranspiration (AET); (ii) reference evapotranspiration
(RET); and (iii) net primary production (NPP). Intuitively,
both AET and RET measure the amount of water present
in soil to support crop growth, whereas NPP measures the
amount of crop growth that occurs inside a farm. Generat-
ing accurate predictions for these three variables can help
smallholder farmers understand their irrigation needs better,
e.g., if the AET forecast for a smallholder farm shows stress
(i.e., the forecasted AET value is less than what is required
for healthy crop growth), then a farmer can proactively start

1https://www.un.org/sustainabledevelopment/



irrigating his/her farm to mitigate that stress.
To that end, this paper makes four novel contributions:

(i) In collaboration with PlantVillage2, we identify ∼2,200
smallholder farm locations across Africa, and gathered re-
mote sensed data for AET, RET, and NPP for all these farm
locations; (ii) We develop CLIMATES, an ML-based tool
which leverages cluster-based structural insights of environ-
mental time-series data in this domain, and then uses a dis-
tinct ML model to make (AET, RET, and NPP) forecasts
for each cluster; (iii) We conduct a comprehensive analy-
sis of the effectiveness of various popular classical ML and
deep learning methods for time-series forecasting, and show
that CLIMATES outperforms these state-of-the-art baseline
models; and (iv) Finally, we provide insights about why gen-
erative models such as Variational Recurrent Neural Net-
works (VRNNs) (Chung et al. 2015), which explicitly model
variability in sequential data, do not perform comparably.

Our work is done in collaboration with PlantVillage, and
our results are being currently evaluated by them for poten-
tial real-world deployment as an early warning system for
smallholder farmers in East Africa (who can use these warn-
ings to proactively address their irrigation needs).

Related Work
In this section, we discuss related studies in the agriculture
and AI disciplines.

Agriculture Research. Numerous studies in the agriculture
domain (Del Grosso et al. 2008; Sun and Du 2017; Zhang
et al. 2017) have focused on estimating crop-productivity
variables (i.e., AET, RET, and NPP) from meteorological
factors, and finding associations between them. However,
there have been a few attempts at using traditional models
(such as KNN (Feng and Tian 2021) and ARIMA (Landeras,
Ortiz-Barredo, and López 2009)) and neural models (Alves,
Rolim, and Aparecido 2017) to predict ET. These studies
found that statistical/ML models are more accurate than His-
torical Average methods (which do not involve learning).
However, they reported mixed results when assessing the su-
periority of neural network models to other algorithms, e.g.,
Izadifar (2010) found that Multiple Linear Regression out-
performs a neural network model in the task of predicting
AET. However, this work has only considered Multi-Layer
Perceptron as their neural network model, instead of using
network architectures that were designed to explicitly model
the sequential structure of time-series data, such as RNNs.
In our work, we compare CLIMATES against much more
stronger baselines such as VRNNs, Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997), etc.

Artificial Intelligence Research. To the best of our knowl-
edge, there have been no prior studies in the AI community
on forecasting these three crop-productivity variables across
a large geographic region. However, there has been a large
body of research on modeling sequential data for time-series
forecasting. Some models, such as SARIMA (Hyndman and
Khandakar 2008) and TBATS (Livera, Hyndman, and Sny-
der 2011), focused on explicitly modeling certain statisti-

2https://plantvillage.psu.edu

(a) Identified farm
locations across
Africa.

(b) A heatmap of wa-
ter stress index (Ks) in
Kenya.

Figure 1: Sample data of smallholder farms across Africa.

cal properties of time-series data. Some other work in the
neural network domain focused on tackling various chal-
lenges in different time-series data; e.g., State Frequency
Model (SFM) combines the ideas behind LSTM and Dis-
crete Fourier Transform to learn multiple frequency patterns
from time-series data (Zhang, Aggarwal, and Qi 2017). In
particular, one line of prior research focused on building
deep latent variable models to capture variability in sequen-
tial datasets; for example, Jia et al. (2019) and Chien and
Kuo (2017) proposed VRNN-based deep generative models
for cropland detection and speech separation, respectively.
In our work, we show that CLIMATES achieves higher pre-
dictive accuracy than many of these baselines.

Dataset
Through our collaboration with PlantVillage, we identified
2,264 smallholder farm locations across Africa (as shown
with red dots in Fig. 1a). For each farm location, we col-
lected remote sensed time-series data for three variables
(AET, RET, and NPP) over five years (from the beginning of
2015 to the end of 2019) from the WaPOR website3, which
is administered by the UN-FAO. For completeness, we pro-
vide a formal definition of these variables.

• Actual Evapotranspiration (AET): AET refers to the
summation of evaporation from soil, canopy transpira-
tion, and interception. It can be used to derive the water
demand of each crop; i.e., the difference between AET
and RET (defined next) can be used to measure drought
stress. Its unit is mm/day and its value ranges between
0.0 to 8.3 in our dataset (FAO 2018).

• Reference Evapotranspiration (RET): RET refers to
the evapotranspiration of a well-watered plant under
well-defined standard conditions. Its unit is mm/day and
its value ranges between 1.1 to 12.7 in our dataset (Allen
et al. 1998; FAO 2018).

• Net Primary Production (NPP): NPP refers to the
amount of carbon dioxide absorbed by plants, and is an
indicator of plant growth. The unit of NPP is gC/m2/day
(grams of carbon / square meter / day) and its value
ranges between 0.0 to 9.265 in our dataset (FAO 2018).

Data Characteristics. The WaPOR website provides data
for AET, RET, and NPP, with a spatial resolution of

3https://wapor.apps.fao.org/home/WAPOR 2/1



0.00223◦ (∼250 m) and a temporal resolution of one dekad
(∼10 days) (FAO 2018). Using this data, we generate three
separate time-series datasets (one for each AET, RET, and
NPP). Each dataset consists of 2,264 time-series data points
(each data point is the time-series for a specific farm loca-
tion), and the length of each time-series is 180 (since we
collect dekadal data over five years, i.e., 36×5 = 180). For
each dataset, we consider the first three years of data (i.e.,
from beginning of 2015 to end of 2017) as the training set.
The data in 2018 (and 2019) is kept as the validation (and
test) set, respectively. As a pre-processing step, we apply
Min-Max normalization on the data of each farm, however,
predictive performance metrics are computed after convert-
ing the data back to its original scale.

The Meta-Algorithm: CLIMATES
In this section, first, we discuss key structural insights about
our dataset which motivate the design of CLIMATES. Then,
we describe our algorithm.

Exploratory Data Analysis. As shown in Fig. 1a, our 2,264
farm locations span widely across the African landmass. In
total, these farm locations span across 20 different coun-
tries, each with its distinct climatic conditions. For exam-
ple, while our farm locations in north-western Africa belong
to the semi-arid Sahel region, farms in central Africa had
tropical rain-forest climate, and farms in eastern and south-
eastern Africa had savannah grassland climate, etc.

Due to this geographic and climatic diversity across
our farm locations, we expect significant variability in all
three of our datasets. To investigate this further, we cluster
each dataset (separately) using an off-the-shelf feature-based
clustering approach (Roelofsen 2018). At a high level, this
clustering approach extracts the features of each time-series
data point by applying Discrete Fourier Transform on its
training portion. Once the feature vector for each time-series
data point is extracted, bottom-up agglomerative clustering
is used (with the Euclidean distance metric, and complete-
linkage strategy for merging intermediate clusters).

As a result of data clustering, we obtain six clusters that
have distinctly different shapes and patterns. Fig. 2 illus-
trates three of these clusters obtained on the NPP dataset
(we see similar results on the AET and RET datasets). Due
to this significant variability, therefore, we hypothesize that
forecasting methods that may work well for data points in
one cluster may not necessarily work well on other clusters.
This crucial insight motivates our design of CLIMATES.

The Proposed Meta-Algorithm. Given this strong variabil-
ity inside our datasets, we conducted a cluster-by-cluster
comparison of the predictive performance of several popular
classical and deep-learning based forecasting methods. This
analysis would help us understand whether a single forecast-
ing method works best across all clusters, or whether differ-
ent methods work better in different clusters.

For this comparison, we consider the time-series data
points belonging to each of our six clusters separately. Then,
on the data of each cluster, we train and test a heterogeneous
mix of statistical, classical ML, and deep learning meth-
ods, namely TBATS, SARIMA, Linear Regression (LR),

Figure 2: Three (out of six) NPP clusters generated through
feature-based clustering

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
TBATS 0.2110 0.2860 0.2491 0.5235 0.4417 0.2279
SARIMA 0.1896 0.2409 0.2112 0.3840 0.3518 0.2071
LR 0.1731 0.2424 0.2234 0.3891 0.3603 0.2127
RF 0.1726 0.2481 0.2159 0.3822 0.3510 0.2123
XGBoost 0.1807 0.2555 0.2313 0.3992 0.3788 0.2249
SVM 0.1889 0.2582 0.2486 0.3916 0.4165 0.2301
LSTM 0.1728 0.2505 0.2349 0.3774 0.3446 0.2035
SFM 0.1740 0.2446 0.2199 0.3800 0.3412 0.2186
TCN 0.1890 0.2618 0.2410 0.3817 0.3774 0.2099

Table 1: CV of different models on the NPP clusters.

Random Forest (RF) (Breiman 2001), XGBoost (Chen and
Guestrin 2016), Support-Vector Machine (SVM) (Cortes
and Vapnik 1995), LSTM, SFM, and Temporal Convolu-
tional Network (TCN) (Bai, Kolter, and Koltun 2018).

Table 1 shows the coefficient of variation (CV)4 achieved
by the aforementioned methods on all six clusters found on
the NPP dataset (analogous results on the AET and RET
datasets are represented in Tables 2 and 3, respectively).
Note that these results are for single-step forecasting, i.e.,
we try to predict the next dekadal NPP, AET, and RET val-
ues. These tables confirm that no single forecasting method
works best across all clusters, e.g., on the NPP dataset, sta-
tistical methods like SARIMA work best on the second and
third clusters, deep learning methods like LSTM and SFM
work best on the fourth, fifth, and sixth clusters, whereas a
Random Forest model works best on the first cluster. Thus,
to get accurate forecasts consistently across the wide ex-
panse of the African landmass, it is critically important to
rely on an ensemble of well-trained models, each of which
works well on a specific region of Africa.

Based on this finding, we now describe our meta-
algorithm. CLIMATES works as follows: (i) It clusters the
original time-series data using a feature-based clustering ap-
proach into different clusters. (ii) For each of these clustered
datasets, it finds the best performing forecasting model (i.e.,
the model with lowest CV on the validation set of that clus-
ter). We select the best performing model on each cluster out
of the nine models shown in Table 1. Note that we use this
selection of models inside CLIMATES to ensure a good het-

4Coefficient of variation (CV) refers to the root mean squared
error divided by the average of the target variable. Therefore, the
lower CV is, the better performance a method has.



Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
TBATS 0.1947 0.2285 0.2380 0.3060 0.3564 0.2217
SARIMA 0.1713 0.2044 0.2197 0.2799 0.2990 0.2049
LR 0.1763 0.2051 0.2179 0.2806 0.2981 0.1976
RF 0.1725 0.2058 0.2180 0.2772 0.2834 0.1976
XGBoost 0.1742 0.2104 0.2187 0.2839 0.2943 0.2012
SVM 0.1769 0.2162 0.2262 0.3044 0.3145 0.2002
LSTM 0.1723 0.2097 0.2114 0.2669 0.2728 0.1984
SFM 0.1767 0.2115 0.2115 0.2709 0.2722 0.1967
TCN 0.1764 0.2058 0.2263 0.2693 0.2883 0.2016

Table 2: CV of different models on the AET clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
TBATS 0.1259 0.1435 0.1502 0.1029 0.0982 0.1663
SARIMA 0.1084 0.1261 0.1297 0.0910 0.0876 0.1552
LR 0.1014 0.1244 0.1509 0.0898 0.0885 0.1517
RF 0.0998 0.1233 0.1474 0.1050 0.0890 0.1496
XGBoost 0.1018 0.1229 0.1410 0.1038 0.0896 0.1515
SVM 0.1066 0.1307 0.1463 0.1148 0.0921 0.1508
LSTM 0.0988 0.1180 0.1372 0.0839 0.0820 0.1430
SFM 0.0991 0.1203 0.1346 0.0875 0.0792 0.1443
TCN 0.1022 0.1306 0.1365 0.0979 0.0850 0.1492

Table 3: CV of different models on the RET clusters.

erogeneous mix of statistical methods, classical ML meth-
ods, and deep learning methods. We further note that as more
sophisticated time-series forecasting methods are developed,
they can also be used as part of the CLIMATES ensemble.
(iii) At test time, each time-series data point is assigned to a
subset of clusters. We considered two general strategies for
assigning data points to the clusters: (a) we assign each time-
series data point to the nearest cluster (CLIMATES-I), (b)
we assign each time-series data point to a subset of clusters
that falls within d distance from that data point. The thresh-
old d is set to two heuristically computed values: (1) the av-
erage distance between the data points and their closest clus-
ter (CLIMATES-II), (2) the median distance between the
data points and their closest cluster (CLIMATES-III). (iv)
Finally, the best performing model on each selected clus-
ter (in our chosen subset) is used to get a prediction on that
test data point, and the average of the predicted values is re-
turned as the final forecast of CLIMATES. We now conduct
a rigorous evaluation of the predictive performance of our
meta-algorithm against a comprehensive set of baselines.

Experimental Evaluation
We provide two sets of results. First, we provide a
brief background on the VRNN architecture and show re-
sults comparing the predictive performance of CLIMATES
against VRNNs, which at least in theory, should serve as a
strong baseline. Second, we show results comparing the pre-
dictive performance of CLIMATES against a wide variety of
statistical/classical ML and deep learning models.

VRNN Architecture. VRNN is a deep generative model
that extends the idea behind Variational Autoencoders
(VAE) (Kingma and Welling 2014; Rezende, Mohamed, and
Wierstra 2014) to sequential data. VRNNs can be viewed as
a sequence of VAEs conditioned on the hidden state of an
RNN. Thus, similar to VAEs, they consist of generative and
inference networks; the latter encodes the input into a latent
space, and the former generates the output by reconstruct-
ing the input from the latent space. In fact, the generative

AET RET NPP
CLIMATES-I 0.2075 0.0989 0.2409
VRNNKL

Deterministic 0.2161 0.1052 0.2594
VRNNDeterministic 0.2166 0.1053 0.2639
VRNNGaussian 0.2836 0.1504 0.4496
LSTMDeterministic 0.2113 0.1039 0.2617
LSTMGaussian 0.2754 0.1507 0.3863

Table 4: A CV comparison between CLIMATES and
VRNNs/LSTMs

process at time t begins with generating the latent variable
zt from a Gaussian distribution. However, unlike VAE, zt
is conditioned on ht−1 (the hidden state of RNN at time
t − 1) to be able to model the consistency within a single
time-series data point (Chung et al. 2015). During training,
VRNN aims to maximize the log-likelihood of observations
`(p(x≤T )), where x≤T = {x1, ..., xT } represents the in-
put time-series of length T . However, as inferring the log-
likelihood is computationally intractable, VRNN maximizes
the variational lower-bound of the log-likelihood given in
Equation 1. This lower-bound consists of two terms: (i) re-
construction likelihood, and (ii) the KL distance between the
approximate posterior and the prior distributions. In our pa-
per, we compare CLIMATES against VRNNs because their
ability to learn explicit representations of variability across
time-series data points (through the sequence of latent vari-
ables z≤T ) makes them ideal models for our domain.

`(p(x≤T )) ≥ Eq(z≤T |x≤T )[

T∑
t=1

(log(p(xt|z≤t, x<t))

−KL(q(zt|x≤t, z<t)||p(zt|x<t, z<t)))] (1)

Comparison with VRNNs. We now provide results com-
paring the performance of CLIMATES against VRNN and
LSTM. In this set of experiments, a separate LSTM and
VRNN is trained (and tested) on each of our three datasets.
For both VRNN and LSTM, we experiment with two differ-
ent output functions (Deterministic and Gaussian). Finally,
the negative of the variational lower-bound given in Equa-
tion 1 is used as VRNN’s loss function.

Table 4 compares the CV achieved by CLIMATES-I
against VRNN and LSTM variants (for single-step fore-
casting on our three datasets). This table shows that re-
gardless of the choice of output function, CLIMATES-I
outperforms both VRNN and LSTM models. Surprisingly,
CLIMATES-I, on average, achieves 6.3% lower CV than
VRNNDeterministic, even though VRNNs have latent vari-
ables to model variability inside our datasets. Addition-
ally, applying t-test, we find that the difference between
the CV of CLIMATES-I and these models is statistically
significant (p-value is consistently less than 0.01). In fact,
these results show that VRNN is unable to outperform
LSTM on any dataset; in particular, VRNNDeterministic

(which has stochastic latent states) cannot outperform
LSTMDeterministic (which does not have any stochastic
components). Counterintuitively, this shows that explicitly
learning representations of variability inside our datasets
does not seem to help.



Figure 3: The learning curves of the two components of
VRNN’s loss function during training on the NPP dataset.

Why Do VRNNs Not Work? To understand VRNN’s poor
performance, we take a closer look at VRNNDeterministic’s
learning curves during training (we see similar results with
other output functions). In particular, we separately analyze
the learning curves of two components in the VRNN’s loss
function, i.e., (i) the reconstruction loss, and (ii) the KL
term. Fig. 3 illustrates the changes in the values of these
two components with increasing number of epochs on the
NPP dataset. According to this figure, the KL distance van-
ishes into zero after a few epochs; i.e., the approximate pos-
terior becomes equal to the prior in the early epochs, and
hence, the model starts ignoring latent variables in the early
stages of training (we see similar results on the AET and
RET datasets). Thus, we observe that, in practice, training
VRNN leads to a local optimum which hinders capturing
variability across data points in a dataset, even though, in
theory, it has the capability of capturing variations. Similar
findings have been reported with VAEs, e.g., prior research
found that the same issue (called “posterior collapse”) oc-
curs in VAE (He et al. 2019). However, to the best of our
knowledge, our work is the first to report this posterior
collapse issue with VRNNs. Further, prior work proposed
KL-annealing to tackle posterior collapse in VAEs (Bow-
man et al. 2016); however, as the second row of Table 4
(i.e., VRNNKL

Deterministic) shows, even with KL-annealing,
VRNNs are unable to beat CLIMATES-I.

Comparison with Other Baselines. Having established
the superior predictive performance of CLIMATES over
VRNNs and LSTMs in Table 4, we now evaluate CLI-
MATES against the same baseline forecasting models that
we used in Table 1, as all models there form the individual
building blocks inside our CLIMATES approach. Note that
we choose these algorithms as baselines in order to estab-
lish the effectiveness of our clustering based meta-algorithm
approach over individual baselines. Further, we note that
as more sophisticated time-series forecasting methods are
developed in the AI community, they can also be utilized
as building blocks inside our meta-algorithm approach. To
have a fair comparison between various models, we conduct
hyper-parameter tuning using the grid search approach. For
complete details of experimental settings, please refer to the
project’s GitHub.

Table 5 shows the CV achieved by CLIMATES and all
our baselines on single-step forecasting tasks on all three
datasets. According to these results, CLIMATES outper-
forms all baselines on all datasets, e.g., CLIMATES achieves
a CV of 0.0989 on the RET dataset, whereas the next best

AET RET NPP
TBATS 0.2414 0.1206 0.2856
SARIMA 0.2130 0.1029 0.2503
LR 0.2114 0.1014 0.2492
RF 0.2080 0.1022 0.2427
XGBoost 0.2099 0.1039 0.2445
SVM 0.2110 0.1041 0.2505
SFM 0.2080 0.1002 0.2428
TCN 0.2138 0.1012 0.2432
CLIMATES-I 0.2075 0.0989 0.2409
CLIMATES-II 0.2071 0.0990 0.2409
CLIMATES-III 0.2071 0.0990 0.2409

Table 5: CV of CLIMATES and various baselines.

performing baseline achieved a CV of 0.1002. This estab-
lishes the superior performance of CLIMATES in provid-
ing accurate forecasts for AET, RET, and NPP. Additionally,
we observe that the mentioned heuristic strategies for as-
signing data points to the clusters (i.e., CLIMATES-II and
CLIMATES-III) leads to similar results. Note that although
the improvement of CLIMATES over baselines does not
look significant from an ML perspective, we will show, in
the next section, that this improvement over baselines could
result in considerable cost savings in the real-world.

Orthogonally, Table 5 shows that although neural network
models outperform popular statistical models by a relatively
large margin (∼1.78%, on average), their performance is
comparable to some strong classical ML models. This find-
ing is consistent with prior research, as there is a growing
body of work which questions the superiority of some recent
neural networks over classical ML models. For example, this
finding is consistent with results reported in prior work in the
area of Recommendation Systems (Dacrema, Cremonesi,
and Jannach 2019), which found that some recent neural net-
work models are not actually superior to well-tuned classical
ML models. As an analogous result in the time-series fore-
casting domain, our findings suggest that despite the easy
availability of large-scale datasets in time-series forecasting
(due to easy access to remote sensing data), deep learning
does not always beat traditional ML models significantly.

Real-World Usage of CLIMATES
This section explains three possible ways that CLIMATES
could be employed to help smallholder farmers in the field.

Application 1: Forecasting Level of Water Stress
CLIMATES can be used to assist farmers in getting to know
the occurrence of water stress in their farms ahead of time.
Past literature suggests that water stress in each farm can
be estimated from RET and AET using Equation 2 (Allen
et al. 1998). In this equation, Ks denotes the water stress
index (e.g., Ks < 0.5 indicates an alarming level of water
stress) and Kc refers to the crop coefficient, for which the
suggested values are available at (Allen et al. 1998). Thus,
CLIMATES can serve as the ML engine of a mobile app that
can send early warnings to farmers based on the future value
of Ks computed from the forecasted AET and RET.

Ks =
AET

Kc ×RET
(2)



Further, the output of CLIMATES can be used to generate
a heatmap, similar to Fig. 1b, to represent the water stress
index across a large region. In this figure, the background
color shows the forecasted level of water stress (assuming
Kc = 1.2) across Kenya on the first dekad of May 2019 and
black circles represents particular farm locations. According
to this heatmap, the farms in western Kenya are at low-risk
of water stress (as Ks > 0.5) during that particular dekad.

Application 2: Irrigation Scheduling
CLIMATES can be utilized as an AI assistant for irrigation
scheduling as well. Irrigation scheduling methods aim to de-
termine the timing of irrigation and the amount of water
demand at different stages of the crop-growing life cycle.
One common approach in this space is ET-based irrigation
scheduling, which utilizes ET data to provide customized
suggestions for each farm based on its irrigation system,
crop type, etc. According to this approach, the amount of
water demand can be estimated using Equation 3 (Kisekka
et al. 2019). In this equation, GI denotes the gross irrigation
water requirement, ETc denotes the crop evapotranspiration
(ETc = Kc×RET ), Pe refers to the effective precipitation
that can be consumed by plants, and E denotes the efficiency
of irrigation system used in the target farm. Thus, providing
farmers with information on the future value of GI (through
forecasting RET) can help them estimate the amount of wa-
ter needed for mitigating the water stress in their farms.

GI =
ETc − Pe

E
=

(Kc ×RET )− Pe

E
(3)

Real-World Impact of CLIMATES versus Baselines. We
now compare potential real-world impact of CLIMATES
against the best-performing baseline model in the context of
irrigation scheduling. To this end, we translate the amount
of improvement in predictive accuracy (of CLIMATES over
the best performing baseline) to the corresponding differ-
ence between GI (i.e., required levels of irrigation) com-
puted from the outputs of CLIMATES (i.e., GICLIMATES)
and the best-performing baseline (i.e., GIbaseline). This dif-
ference in GI (GIbaseline-GICLIMATES) could be an indi-
cator of the amount of water that could be saved as a result
of employing CLIMATES, rather than the best-performing
baseline. However, translating the difference in predictive
performance (in terms of CV) to the amount of water saving
requires several assumptions as the value of CV does not dis-
tinguish under-estimation from over-estimation. In addition,
the parameters of Equation 3 depend on various characteris-
tics of the farm, e.g., Kc changes with the crop type and the
stage of crop growth. For ease of exposition, we assume that
E = 0.60 (which corresponds to the Surface irrigation sys-
tem (Brouwer, Prins, and Heibloem 1989)) and Kc = 1.2
(which corresponds to mid-season maize cropping (Allen
et al. 1998)) are used in the target region, and that both CLI-
MATES and the best performing baseline (i.e., SFM) overes-
timate RET on a given dekad in that region. In this situation,
according to Equation 4, the improvement of 0.0013 by CLI-
MATES over SFM in terms of CV in the RET prediction task
(from Table 5) can be translated into saving about 92 liters of
water per hectare each day for a maize-cropped farm at the

mid-season stage. As a result, although the improvement of
CLIMATES against baselines looks small numerically, this
improvement can result in considerable water saving when
it comes to employing CLIMATES for scheduling irrigation
within the crop growing season in the real-world.

GIbaseline −GICLIMATES =

Kc

E
(RETbaseline −RETCLIMATES) (4)

Application 3: Monitoring Crop Growth
CLIMATES can also be employed to quantitatively monitor
plant growth. For example, NPP values forecasted by CLI-
MATES can be used to proactively identify some real-world
stressors influencing plant growth such as nutrition short-
age. In particular, CLIMATES can produce customized early
warnings based on the amount of gap between the forecasted
NPP and the NPP of the plant under non-stressed conditions.

Challenges in Implementation
There are several challenges that need to be taken into ac-
count when planning for deployment in this domain. First,
many African smallholder farmers live in rural areas with
limited access to the Internet, and CLIMATES is an ML-
based model in need of frequent updates. In fact, due to its
computational needs, CLIMATES needs to be updated on a
server with GPU. Therefore, access to the most recent in-
formation requires establishing a connection with a server
via the Internet, and consequently, cannot be done offline.
To address this challenge, we plan to add a feature to the
app for automatically sending frequent updates to the regis-
tered farmers via text messages (SMS) so that they can stay
updated even in case of Internet connection issues. The sec-
ond challenge is related to the farmers’ concerns about the
privacy of their data. In fact, many farmers may not be will-
ing to share some data such as farm size and crop type, as
this information along with their estimated crop productivity
could be used to derive their income, which is personal infor-
mation to many people. We believe that PlantVillage which
has already established trust with numerous African farmers
could help mitigate this issue and encourage farmers’ partic-
ipation. We also plan to incorporate Federated Learning (Li
et al. 2019) to enhance the protection of farmers’ privacy.

Conclusion
This paper proposes CLIMATES, an ML-based meta algo-
rithm for forecasting three important crop-productivity re-
lated variables (AET, RET, and NPP) in smallholder farms
across Africa. Leveraging structural insights about these
variables, it attempted to combine the power of several pop-
ular time-series forecasting techniques to produce more ac-
curate forecasts in the face of significant variability, mainly
stemming from the geographic and climatic diversity of dif-
ferent African countries. The experimental results show that
CLIMATES outperforms several strong baselines, including
VRNNs which introduce latent variables to model variabil-
ity in time-series data. CLIMATES is currently being eval-
uated by PlantVillage for potential future deployment as an
early warning system for smallholder farmers in East Africa.
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