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Abstract

A mathematical framework using formal language theory to describe and compare XML
schema languages is presented. Our framework uses the work in two related areas — regular tree
languages [CDG197] and ambiguity in regular expressions [BEGO71, BKW98]. Using these
work as well as the content in two classical references [HUT9, AU79], we present the follow-
ing results: (1) a normal form representation for regular tree grammars, (2) a framework of
marked regular expressions and model groups, and their ambiguities, (3) five subclasses of regu-
lar tree grammars and their corresponding languages to describe XML content models: regular
tree languages, TD(1) (top-down input scan with 1-vertical lookahead), single-type constraint
languages, TDLL(1) (top-down and left-right input scan with 1-vertical and 1-horizontal looka-
heads), and local tree languages, (4) the closure properties of the five language classes under
boolean set operations, (5) a classification and comparison of a few XML schema proposals and
type systems: DTD, XML-Schema, DSD, XDuce, RELAX, and (6) properties of the grammar
classes under two common operations: XML document validity checking and type resolution
(i.e., XML document interpretation).

1 Introduction

As the popularity of XML increases substantially, the importance of XML schema language to
describe the structure and semantics of XML documents also increases. Although there have been
about a dozen XML schema language proposals made recently [LC00], no comprehensive mathemat-
ical analysis of such schema proposals has been available. We believe that providing a framework in
abstract mathematical terms is important to understand various aspects of XML schema languages
and to facilitate their efficient implementations. Towards this goal, in this paper, we propose to
use formal language theory, especially regular tree grammar theory, as such a framework. Let us
first consider a motivating example.

* Available at http://www.cs.ucla.edu/~dongwon/paper/



Example 1: Consider a collection of XML documents, where each document is associated with
a different schema. One may want to find an union of two or more schemas (or even union of two
“types” defined in one or more schema). Suppose a user wants to obtain a schema that is the union
of two schemas. Then, the user would wish that a document that is “valid” with respect to either
of the schemas be valid with the union schema, and any document that is “invalid” with respect to
both the schemas remain invalid even with respect to the union schema. If a schema evolves into
a new version, one may want to take the intersection of the old and the new schemas to determine
the documents that still remain valid. Also one may want to take the difference of the new schema
from the old schema to determine the semantics and constraints that were supported by the old
schema, but not by the new schema. O

Example 1 illustrates the usefulness of the closure properties of XML schema languages under
boolean operations (i.e., union, intersection, difference). Such operations are common in real ap-
plications, yet they have not been fully investigated in the context of XML schema languages. For
instance, heterogeneous XML data integration system extensively uses a union or intersection oper-
ator to create a canonical view of underlying sources. In XML query processing, computing answers
from multiple documents (or even from a single document) may require to compute union as well.
Mathematical framework will help to study these properties of various XML schema languages in
a precise way. Let us consider another motivating example.

Example 2: Given an XML document and its schema, suppose one wants to verify if the
document is valid against the schema and further find out the types (or non-terminals) associated
with each element in the document. Such operation requires the entire document in memory for a
regular tree grammar. There is no such requirement for a restricted form of regular tree grammar
called TDLL(1) grammar. O

Example 2 reveals the importance of complexity aspects of some operations performed on XML
schema and document. Such issues are directly related with the efficient implementation of XML
schema language proposals as well as the popular SAX [Meg00] and DOM [WHA™00] interfaces.
We believe it is important to have a mathematical framework to study when an efficient operation
is possible and when it is not. This paper is thus our attempt to answer those questions.

Our contributions are, in short, as follows: (1) we propose a mathematical framework using
formal language theory; we define ambiguities in marked regular expressions and model groups, (2)
we define five subclasses of the regular tree grammars and their corresponding languages to describe
XML content models precisely, (3) we study the closure properties of the five subclasses under
boolean set operations, (4) based on the framework, we present a detailed analysis and comparison
of a few XML schema proposals and type systems; in our framework, it is straightforward to specify,
say, an XML schema proposal A is more powerful than an XML schema proposal B with respect
to its expressive power of content models, and (5) we present results on the complexity of two
important schema operations — membership checking and type resolution (i.e., XML document
interpretation).

1.1 Conventions

Historically, there are multiple equivalent terms used by different research sub-communities within
XML. Three of the research sub-communities that are working on XML research and the terms
used by them are listed below:



<l29ggﬁ%ﬁ°gk£ (auth blisher)> <bgok>
: ook (author+, publisher <author>J. E. Hopcroft</author>
<!ELEMENT author (#PCDATA§> <author>J. D. U1€man</a{1thor>
<!ELEMENT publisher (EMPTY)> <publisher Name="Addison-Wesley"/>
<!ATTLIST publisher Name CDATA #IMPLIED> </book>
1>
(a) book.xsd (b) book.xml

Table 1: A DTD and XML document fragment for book example.

N = {Book, Author, Publisher, Pcdata} bl
T = {book,author,publisher,pcdata}
S = {Book}
P:
Book —  book(Author™, Publisher) al a2 Pl
Author —  author(Pcdata)
Publisher —  publisher(e)
Pcdata  —  pcdata(e) pcdatal pcdata2
(a) grammar (b) instance tree

Table 2: A grammar and instance tree representation corresponding to XML schema and document
in Table 1.

e The database and web community use terms such as schema and XML document. Schema is
considered to be an abstract definition of the set of conforming XML documents [TBMEOQO].
Example is shown in Table 1.

e The formal language community (the oldest community to have studied trees as defined
in XML) uses terms such as grammars, instance tree, automata, and language. A grammar
defines an abstract set of trees (i.e., instance trees), language denotes the set of trees accepted
by a grammar, an automaton is used to check whether a given instance tree belongs to a
language [CDG197]. We use G to denote the grammar, L(G) to denote the language, and
T(V,E) (V is the set of nodes and E is the set of edges in 7) to denote an instance tree.
Example is shown in Table 2.

e The type theorists use terms such as type definitions, variables, and values. A set of type
definitions is equivalent to a schema or grammar. An XML document is said to be a set of
values, where each value can be considered as being assigned to a variable [HVP00]. Example
is shown in Table 3.

We use three more terms to describe the information in an XML document: wvalue-content®,
structure and element-structure. An XML document is viewed as value-content embedded within
structure. Value-content of an XML document refers to text values and attribute values. Structure
refers to the tree structure and attribute names. Element-structure refers to the element tag names
arranged as a tree (i.e., structure without attribute names). For defining the element-structure,
we replace every text value in the XML document by a node called (pcdata). Table 4 shows the
example of structure and element-structure. Note that the element-structure of the XML document
does not include any text or attribute values.

!We define the value-content of an XML document, not to be confused with the content of an element typically
used with respect to XML. Also we do not use value-content afterwards, we use it here for the sole purpose of



_ - bl = book [al, a2, pll]
type Book = book [Author+, Publisher] s ’
tgge Author = author I;Strin ] Zé : Zﬁzﬁgi E::j g gi{’;;g.f&:"]
type Publisher = publisher [ ] pl = publisher [ ]

(a) type definitions (b) variables and values

Table 3: A type definitions and variables representation corresponding to XML schema and docu-
ment in Table 1.

<book> <book>
<author><pcdata/></author> <author><pcdata/></author>
<author><pcdata/></author> <author><pcdata/></author>
<publisher Name=/> <publisher/>
</book> <book/>
(a) structure (b) element-structure

Table 4: A structure and element-structure representation of the book.xml XML document in
Table 1.

1.2 Related Work

As mentioned before, our work relies largely on work in two related areas - regular tree languages
and ambiguous regular expressions. Tree languages and regular tree languages have a long history
dating back to the late 1950’s. One of the main reasons for the study in this period was because
of their relationship to derivation trees of context-free grammars. A description of tree languages,
and their closure properties can be obtained from the book available online [CDG'97]. Our
contributions to this field consist of defining a normalized grammar representation for regular tree
languages and subclasses of regular tree languages based on the features of most of the XML schema,
proposals.

A field related to regular tree languages is regular hedge languages studied in [Tak75, Mur00a].
A regular hedge language defines a set of hedges, where a hedge is an ordered list of trees. A
regular hedge language is essentially similar to a regular tree language because we need to only
add a special root symbol to every hedge in a regular hedge language to make it a regular tree
language. In other words, if L(H) is a regular hedge language, then {$(w) | w € L(H)} is a regular
tree language, where $§ is a special symbol denoting the root of the tree.

Ambiguity in regular expressions is described in [BEGOT71]. Here, the authors give several
results relevant to our paper: (1) every regular language has a corresponding unambiguous regular
expression, (2) we can construct an automaton called Glushkov automaton in [BKW98] correspond-
ing to a given regular expression that preserves the ambiguities, and (3) given a non-deterministic
finite state automaton, we can obtain a corresponding regular expression with the same ambiguities.

Ambiguous regular expressions and model groups are studied in the context of SGML content
models in [BKW98]. Here the authors describe the concept of fully marked regular expressions,
and 1-ambiguous regular expressions and languages. Further, they construct Glushkov automaton
that preserves the 1-ambiguity in regular expressions.

Our work includes several extensions to the existing work on ambiguity in regular expressions:
(1) we extend the notion of a marked regular expression to allow two or more symbols in a marked
regular expression to have the same subscript, (2) we define ambiguities in such marked regular
expressions and model groups, (3) we extend Glushkov automaton to our marked regular expres-
sions, and (4) we define prefix and suffix regular expressions or model groups, that can be used to

introducing element-structure of a document which is the topic of this paper.



check whether a given marked expression or model group is ambiguous or 1-ambiguous; this is to
be compared against the typical definition of successor sets as the set of symbols that can occur as
the successor of a symbol in a regular expression [BEGOT71].

1.3 Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we define regular tree languages,
regular tree grammars, and NF1, the normalized representation of regular tree grammars. In
Section 3, we study regular expressions, marked regular expressions and the ambiguities in marked
regular expressions. After this, we introduce subclasses of regular tree languages in Section 4
and study the closure properties of the different language classes under boolean set operations
in Section 5. This is followed by an evaluation of the different XML schema language proposals
in Section 6, an overview of complexity analysis of document validity checking and document
interpretation in Section 7 and then our concluding remarks.

2 Regular Tree Languages and Grammars

Traditional regular string languages or regular string grammars [HU79] are not suitable to describe
permissible element content in DTD and other XML schema languages since they are originally
designed to describe permissible strings, not element trees [Mur99a). Instead these element trees
form regular tree languages. In this section, we define regular tree grammars and languages, and
some terms that we will use for the remainder of the paper. We borrow some definitions from
[CDGT97]. Context-free tree grammars also have been studied in the past [CDG197], but we
restrict ourselves to regular tree grammars.

The definitions of regular tree languages and tree automata are given in [CDG797]. The book
defines a regular tree grammar as follows. (We slightly modify the definition to allow trees with
“infinite arity”, and allow a model group [BKW98] in the production rules. We also use a notation
that we presume more readers are familiar with.)?

Definition 1. (Regular Tree Grammar) [CDG97] A regular tree grammar (RTG) is denoted
by a 4-tuple G = (N, T, P, S) where:

e N is the set of non-terminal symbols,
e T is the set of terminal symbols,

e P is the set of production rules of the form “X — a Expression”, where X € N, a € T, and
Ezpression is a model group over N.

e S is the set of start symbols, where S C N. O

For instance, the regular tree grammar representation of the book.xsd DTD is the same as the
grammar representation in Table 2 (a). The above definition is called a normalized regular tree
grammar in [CDG'97]. The equivalence of regular tree languages and the grammars as defined in
Definition 1 is shown in [CDG197].

In this context, we would like to mention the difference between a tree-set and a string set: a
regular tree grammar can be said to define either a tree-set or a string set. In other words, we can

*We give another equivalent definition for a regular tree grammar when we study the different schema proposals
in Section 6.



consider the language defined by a regular tree grammar to define either a set of trees, or a set of
serialized strings. Hence, the production rules for a grammar in Table 2 (a) can be re-written as
follows.

Book -> <book>Author+, Publisher</book>
Author -> <author/>
Publisher -> <publisher/>

The reader can observe that there are two orthogonal sub-rules in every production rule of a
regular tree grammar. For example, consider a production rule Book — book(Author™, Publisher).

e The first sub-rule says that a tree with root symbol book can be derived from Book.

e The second sub-rule says that such a tree has children as specified by (Author™, Publisher).

Based on these observations, we define a normal form for regular tree grammars in the next
subsection.

2.1 Normal Form for Regular Tree Grammars

The normal form definition is intended to give a concise, syntactical representation for the schemas
for easier understanding and analysis. Normal forms for regular and context-free string grammars
are studied in [HU79]. Regular string grammars have two normal forms: right linear and left linear
grammars. Context free grammars also have two normal forms: Chomsky and Greibach normal
forms. We define the normal form for regular tree grammars based on the following observations
and Lemmas 1 and 2.

e There is an increased interest to separate the two parts in a production rule of a tree-regular
grammar in schema proposals. Hedge rules in RELAX [Mur0Ob], regular expression types in
XDuce [HVP00], and complex type definitions in XML-Schema [TBMEQ0] are examples.

o After we separate the two subparts, we should ensure that the content of an element describes
a regular string language and not a context-free language. RELAX ensures this by disallowing
recursion in hedgeRules, and XDuce allows only right linear grammars.

e Orthogonal restrictions can be placed on the two subparts of a production rule to define
subclasses of regular tree languages.

Lemma 1: For a regular tree grammar, if we have two rules of the form “A — a X” and
“A—>bY”, where A€ N, a,be T, and X and Y are model groups over N, then we can rewrite
the regular tree grammar in such a way that for every non-terminal, say C' € N, we have only one
rule of the form “C — ¢ Z”. |

The proof is by construction: We rewrite A - bY as A1 - bY and keep A — a X as it is.
Wherever A appears on the RHS of a rule, we replace it by (A + Al).

Lemma 2: For a regular tree grammar, if we have two rules of the form “A — a X” and
“A— aY”, then we can rewrite it as “4 —a (X +7Y)". [ |

The proof is that X and Y are model groups, and therefore X +Y is a model group by definition.



Definition 2. (Normal Form 1) A grammar G in Normal Form 1 (NF1) is defined as

G = (N1,N2,T, P1,P2,5)

where

N1 is a set of non-terminal symbols used for deriving trees (We use capitals for the first letter
for a symbol in N1. e.g., Book).

N2 is a set of non-terminal symbols used for content model specification (We use capitals for
all letters for a symbol in N2. e.g., BOOK).

T is a set of terminal symbols.

P1 is a set of production rules of the form “A — a X”, where A € N1, a € T and X € N2.
There is a restriction that there is at most one rule in P1 corresponding to a non-terminal
symbol in N1.

P2 is a set of production rules of the form “X — FExpression”, where X € N2, and
Ezxpression is a model group over non-terminal symbols in N1. There is a restriction that
there is at most one rule in P2 corresponding to a non-terminal symbol in N2.

S is a set of start symbols, where S C N1. O

We can convert any regular tree grammar in Definition 1 to NF1 based on the constructions
described in Lemmas 1 and 2, and then separating the two subparts in every production rule.
Sometimes for ease of explanation, we combine a P1 rule such as A — a X, with a P2 rule such as
X — Ezxpression, and say that the production rule for A is A — a Expression.

Theorem 1:  FEvery reqular tree language can be derived from a regular tree grammar in NF1. B

Example 3: Consider the grammar G in Table 2 (a). If we convert G to NF1, then we get
Gy = (N1,N2,T, P1, P2, S), where

N1 = {Book, Author, Publisher, Pcdata}
N2 = {BOOK,AUTHOR,PUBLISHER,PCDATA}
T = {book,author,publisher,pcdata}

P1 = {Book — book BOOK, Author — author AUTHOR,
Publisher — publisher PUBLISHER, Pcdata — pedata PCDAT A}
P2 = {BOOK — (Author™, Publisher),
AUTHOR — Pcdata, PUBLISHER — ¢, PCDATA — €}
S = {Book}

0

For a regular tree grammar, G in NF1, and an instance tree 7 (V, E) € L(G) as given in Table 2
(b) we define the following.

root(A), A € N1: This defines the root of the tree produced by A. In other words, root(A) = t,
if there is a production rule in P1 such as A — ¢t X, X € N2. For a regular tree grammar in
NF1, root(A) is unique for any A € N1.



e unmarkedContentModel(A), A € N1: This is the model group over T' denoting the content
of A. For instance, unmarkedContentModel (Book) = (author™, publisher).

e contentModel(A),A € N1: This denotes the model group over N1 denoting the content of
A. For instance, contentModel(Book) = (Author™, Publisher).

e assignmentTree(T (V,E)): The assignment tree gives the tree of non-terminal symbols in
N1 denoting a valid assignment for 7. In an assignment tree, there is one non-terminal
assignment corresponding to each v € V. An instance tree can have multiple assignment
trees for a given regular tree grammar. For the grammar in Example 3, the tree in Table 2
(b) has only one assignment tree, and the assignment for the node b1 in this assignment tree
is {Book}.

We can define all these terms (with slight variations) for a regular tree grammar as given in
Definition 1. Because all the interesting properties of a regular tree grammar are maintained during
normalization, and for convenience, we define the above terms for a regular tree grammar in NF1.

In Section 4, we study the subclasses of regular tree languages, but before that we introduce
ambiguities in string regular expressions in the next section.

3 Ambiguities in Regular String Expressions

The content model of a non-terminal symbol A € N1 as defined in the previous section is given by
a model group. In the next section, we will describe properties of regular tree languages based on
the ambiguities in the content models. As a preparation, we study ambiguities in model groups in
this section.

We borrow and extend some definitions from [BEGO71]. We also use definitions from [BKW98|,
where the authors study l-ambiguous model groups and languages. For the remainder of this
section, we will use the model group F = (a*,b7,a*) as an illustrative example. We give the
following basic definitions for a model group. (Since all the definitions, theorems and lemmas for
model groups apply to regular expressions as well, we do not explicitly consider regular expressions.)

e Alphabet is the set of symbols used in the model group. For example, Alphabet(F) = {a,b}.

e Letter is a term in the model group [BEGOT1]. Further, the ordered list of letters in a model
group, E, is denoted as Letters(E). For example, Letters(F) = (z,y,z). For a model group
E, each letter, [ € Letters(E)3 has a corresponding symbol a € Alphabet(E), we denote this
as sym(l) = a. In the above example, sym(z) = a, sym(y) = b, sym(z) = a. The relationship
|Letters(E)| > | Alphabet(E)| holds for every model group.

e For a symbol a;, we call a the base, and i its subscript.

e Marking [BKW98] is a process of adding a subscript to each letter in a model group. We
denote marking of a model group by m, for example, we can define m(F) = (a7, b17,a}). The
result of marking a model group is a marked model group defined below.

o A Marked Model Group is a model group that consists of only letters with subscripts [BKW98].
We typically use E', F', and G’ to denote a marked model group. For example, F' =
(a3,017,a}) and G' = (a},b1?,a%) are both marked model groups for E. Since any marked

3We use € to denote element membership for a list also.



model group F' is also a model group, we can define Letters(E') and Alphabet(E') accordingly,
where |Letters(E')| > |Alphabet(E")|.

A marked regular expression is defined similar to a marked model group. (Note that our
marked model group (or regular expression) is an extension of the marked regular expression
defined in [BKW98], where they require that no two letters in the marked regular expression
be same.)

e Unmarking is the inverse of marking. In unmarking, we drop subscripts from a marked
model group (or regular expression). The result of unmarking a marked model group E’ is
a model group E. We denote the unmarking function by h. For example, h(F') = h(G') =
(a*,b?,a*) [BKWYS]. We also define h(w') where w' € L(E'), as well as h(a'), where d’ €
Alphabet(E'"). For example, h(a1,a1,a2) = (a,a,a), and h(a1) = a.

e Two symbols, z,y € Alphabet(E') are called competing symbols if z # y, and h(z) = h(y).
In other words x and y have the same base but different subscript. For example, the two
symbols a; and as in G’ are competing, whereas there are no competing symbols in F”.

e Two letters, I,m € Letters(E') are called competing letters if sym(l) = z,sym(m) = y, and
z and y are competing symbols. For example, the first and third letters in E’ are competing
letters, whereas there are no competing letters in F”.

o A Fully Marked Model Group is a marked model group that has no two letters [, m such that
sym(l) = sym(m). For example, F"" = G' = (a},b17,a3) is a fully marked model group,
whereas F' = (af,b17,a}) is not. We typically use E”, F" and G” to denote fully marked
model groups. For a fully marked model group E”, |Letters(E")| = | Alphabet(E")|.

A fully marked regular expression is defined similar to a fully marked model group. (Note
that the marked regular expression as defined in [BKW98] corresponds to our fully marked
regular expressions.)

e We use fm to denote conversion of a model group or a marked model group to a fully marked
model group. From our previous examples, fm(F) = fm(F') = fm(G') = fm(F") = F".

e We use h' to denote conversion a fully marked model group to a marked model group. For
example, h'(F") can be defined as either F' or G'. Like unmarking, we define ' for w € L(E")
as well as for a”’ € Alphabet(E"). For example, h'(a1,a1,as) can be (ai,a1,a1) or (a1, a1,a)*
Similarly h'(ag) can be either a; or as.

Note that if two letters =,y € Letters(E') are competing, then the corresponding letters in
Letters(E") must be competing, where fm(E') = E".

e We denote a model group (marked or unmarked) over the alphabet ¥ as MG(X). Similarly
we use RE(X) to denote a regular expression (marked or unmarked) over 3.

The use of subscripted symbols is only for easier explanation, and holds no significance what-
soever. We can define a function A for any model group E, and obtain a model group F = h(E).
In our framework, E corresponds to a marked model group, and F' corresponds to the unmarked
model group.

‘Remember that (a1, a1, az2) is a string in the fully marked regular expression (a},b1?,a3).



We give two more definitions - prefiz model group and suffix model group before we define
ambiguities in model groups. These definitions illustrate how we can obtain a prefix or suffix model
group given a model group, E, and a letter, a € Letters(E).>

Definition 3. (Prefix Model Group) For any marked or unmarked model group E and a letter
a € Letters(E), the prefix model group of a, denoted by prefitMG(E, a), is defined constructively
as follows.

If E=a, then prefixMG(E,a) =€
If E=(X), then prefiztMG(E,a) = prefitMG(X,a)
If E=(X)?, then prefixMG(E,a) = prefictMG(X,a)
If E=(X)*, then prefictMG(E,a) = X*,prefizMG(X,a)
If E=(X)", then prefixMG(E,a) = X*,prefizMG(X,a)
_ . (X,prefixMG(Y,a)) if a € Letters(Y)
If BE=(X.Y), then prefizMG(E,a)= { preficMG(X, a) if a € Letters(X)
_ preficMG(Y,a) if a € Letters(Y)
If BE=(X+Y), then prefizMG(E,a)= { prefitMG(X,a) if a € Letters(X)
_ . (X7, prefitMG(Y,a)) if a € Letters(Y)
If E=(X&Y), then prefizMG(E,a) = { (Y2, prefitMG(X,a)) if a € Letters(X)

O

Definition 4. (Suffix Model Group) For any marked or unmarked model group E and a letter
a € Letters(E), the suffix model group of a, denoted by suffitMG(E,a), is defined constructively
as follows.

If E=a, then suffitMG(E, a) =

If E=(X), then suffitMG(E,a) = uffza:MG(X,a)

If E=(X)?, then suffitMG(E,a) = suffixMG(X,a)

If E=(X)*, then suffitMG(E,a) = suffitMG(X,a), X*

If E=(X)", then sufficMG(E,a) = suffixMG(X,a), X*
_ . | suffizMG(Y,a)) if a € Letters(Y)

If B=XY), then suffizMG(E,a)= { (suf fixMG(X,a),Y) if a € Letters(X)
_ . | suffizMG(Y,a) if a € Letters(Y)

If B=X+Y), then suffizMG(F,a)= { suf fixtMG(X,a) if a € Letters(X)

(suffixMG(Y,a),X?) if a € Letters(Y)

If E=(X&Y), then suffizMG(E,a)= { (suf firtMG(X,a),Y?) if a € Letters(X)

O

Now we are ready to define ambiguous marked model groups as well as 1-ambiguous marked
model groups. In our framework, the ambiguous and 1-ambiguous regular expression definitions
in [BEGOT71, BKW98] are translated to ambiguous and 1-ambiguous fully marked regular expres-
sions.

Definition 5. (Ambiguous Marked Model Group) [BEGOT71] A marked model group E' is
ambiguous if L(E') contains two words uzv and u'yv', where u, u', v, v’ are words over Alphabet(E'),
and z,y € Alphabet(E"), such that h(u) = h(u'), h(v) = h(v'),  # y and h(z) = h(y). O

Defining prefix and suffix model groups as opposed to the much easier prefix and suffix languages based on the
well-established notions of left and right quotients is purely a matter of taste and judgement.
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Example 4: The marked model group G’ = (a},b1?,a}) is ambiguous. For example, consider
u=u =al, v =1 =df, and z = a1,y = as. O

Definition 6. (1-Ambiguous Marked Model Group) [BKW98] A marked model group E’ is 1-
ambiguous if L(E'") contains two words uzv and u'yw, where u,u', v, w are words over Alphabet(E'),
and ,y € Alphabet(E'), such that h(u) = h(u'), z # y and h(z) = h(y) S. O

Example 5: The marked model group G' = (a},b17,a) is 1-ambiguous, if you consider u = u' =
a™ v =a?,w = db and = a1,y = ag. On the other hand, E' = (a},b1?,as) is a 1-ambiguous
marked regular expression, but not ambiguous. O

We can define ambiguous and 1-ambiguous marked regular expressions similar to ambiguous
and 1-ambiguous model group. Now we show how we can determine whether a given model group
(or regular expression) is ambiguous or 1-ambiguous.

Theorem 2: A marked model group E' is ambiguous if and only if there exist two competing
letters, l,m € Letters(E"), such that

o L (h (prefizMG (E',1)))NL (h (prefizMG (E',m))) # ¢, and
o L (h (suffizMG (E',1)))NL (h (suf fizMG (E',m))) # ¢.

Proof: We prove both directions.

“— direction”: From the definition, there exist two strings uzv,u'yv’ € L(E'). If x # y, and
h(z) = h(y), then z and y are competing symbols in Alphabet(E'). Let | and m be two letters in
E' that correspond to z and y for the strings uzv and u'yv’. Because z and y are competing symbols,
I # m. Further, we have h(u) = h(u') € L (h (prefizMG (E',1))) N L (h (prefizMG (E',m))),
and h(v) = h(v') € L (h (suffizMG (E';m))) N L (h (suf fizMG (E',m))).

“+ direction”: Let s1 be a string in L (h (prefizMG (E',1))) N L (h (prefizMG (E',m))), and
so be a string in L (h (suffizMG (E',1))) N L (h (suf fitMG (E',m))). Let u be a string in
L (prefizMG (E',1)), and ' be a string in L (prefizMG (E',m)), such that h(u) = h(u') = s;.
Similarly let v be a string in L (suf fizMG (E',l)), and v’ be a string in L (suf fizMG (E',m)),
such that h(v) = h(v') = s2. The existence of u,u’,v,v" follow from the definitions. Let z = sym(l)
and y = sym(m), now uzv,u'yv’ € L(E"). ¢

Theorem 3: A marked model group E' is 1-ambiguous if and only if there exist two competing
letters, l,m € Letters(E"), such that

o L (h (prefizMG (E',1)))NL (h (prefizMG (E',m))) # ¢

Proof: We prove both directions.

“— direction”: From the definition, there exist two strings uzv,u'yw € L(E'). As before, we know
that z and y are competing symbols in Alphabet(E"), also let [,m € Letters(E') correspond to x and
y respectively for the strings uzv and u'yw. We also have h(u) = h(u') € L (h (prefizMG (E',1))) N

5Actually the definition in [BKW98] requires u = . It is easy to show that the two definitions are equivalent.
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Figure 1: The relationships among different model groups: (a) marked model group, (b) unam-
biguous marked model group, and (c) 1-unambiguous marked model group.

L (h (prefizMG (E',m))).

“+ direction”: Let s; be a string in L (h (prefizMG (E',l))) NL (h (prefizMG (E',m))).
Let u be a string in L (prefizxMG (E',l)), and u' be a string in L (prefizxMG (E',m)) such
that h(u) = h(u') = s;. Let v be any string in L (suffizMG (E',l)), and w be any string in
L (suf fiztMG (E',m)) From the definitions u,u', v,w exist. Let z = sym(l) and y = sym(m),
now uzv, uyw € L(E"). ¢

We have so far defined ambiguous and 1-ambiguous marked model groups and regular expres-
sions. Figure 1 illustrates the relationships among different model groups. The following theorem
shows that the ambiguities in marked model groups can be defined using ambiguities in marked
regular expressions.

Theorem 4: A marked or fully marked model group is ambiguous or 1-ambiguous if and only if
the “corresponding” marked reqular expression is ambiguous or 1-ambiguous. |

Proof: The “corresponding” regular expression (marked or unmarked) for a model group (marked
or unmarked) is obtained by writing the model group using the regular expression operators as
described in [BKW98]. Showing that the ambiguities are preserved is straightforward. ¢

The reader should observe that the conversion mentioned in Theorem 4 can produce a non
fully marked regular expression corresponding to a fully marked model group. Actually there might
not exist a fully marked regular expression with the same 1-ambiguity. For example, consider the
example from [BKW98], where E' = (a1? & b1). This translates to F' = (a1, b1 + b1 + b1, a1), which
does not have a corresponding 1-ambiguous fully marked regular expression.

In the next section, we will see how the ambiguities in model groups relate to regular tree
grammars. The astute reader will be able to predict the relationship - for a symbol A € N1,
unmarkedContentModel(A) = h(contentModel(A)).

4 Subclasses of Regular Tree Grammars

In this section, we first show the relationship between the marked model groups which we studied in
the last section and regular tree grammars. After this we define subclasses of regular tree languages
which can be defined based on ambiguities in marked model groups. At the end of this section, we
show the relationship between the various language classes.
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4.1 Regular Tree Grammars and Ambiguous Regular Expressions

The relationship between regular tree grammars and ambiguous model groups is because the content
model of a non-terminal symbol is a model group. We will consider a regular tree grammar in
NF1, for convenience. The reader will be able to observe by the end of this section that the
transformation of a regular tree grammar as given in Definition 1 to a regular tree grammar in
NF1 preserves ambiguities. We again start with a list of basic definitions for a regular tree grammar
G = (N1,N2,T,P1,P2,5).

e TreeLanguage: We define TreeLanguage of a symbol A € N1, denoted T'L(A) as the
language obtained from G' = (N1,N2,T,P1,P2,{A}), ie., the language obtained when
S ={A}.

e We define an unmarked model group corresponding to contentModel(C), where C € N1 as
the unmarked content model of C. For example, the unmarked model group corresponding
to contentModel(Book) is (author™, publisher).

e We say that two symbols A, B € N1 are competing if A # B, and TL(A) N TL(B) # ¢.

For three symbols A, B,C € N1, if A competes with B and A competes with C, then B
need not compete with C. For example, consider A,B,C € N1, and t,a,d € T such that
TL(A) = t{a*,d*), TL(B) = t(a") and TL(C) = t(d*). Now A,B compete and A,C
compete, but B, C' do not.

e We say that two symbols A, B € N1 are 1-lookahead competing if A # B and root(A) =
root(B). (We will use competing symbols to denote 1-lookahead competing symbols.)

It is easy to observe the following: for three symbols A, B,C € N1, if A, B are 1-lookahead
competing, and A, C are 1-lookahead competing, then B, C necessarily need to be 1-lookahead
competing.

o We define a marked model group that corresponds to the 1-lookahead competing relationship
for a content model as follows: Let MG = contentModel(C), where C € N1. For any two
1-lookahead competing symbols in MG, introduce two competing symbols for the marked
model group. For example, a marked model group corresponding to content M odel(Book) is
E' = (author{ , publisher).

We often call the marked model group corresponding to the 1-lookahead competing relation-
ship for C as simply the marked model group for C.

e We define a fully marked model group corresponding to any MG = contentModel(C) as any
fully marked model group corresponding to unmarkedContentModel(C). For example, E' is
also a fully marked model group corresponding to content M odel(Book).

With this introduction, we are ready to define subclasses of regular tree languages. We will
assume without loss of generality that the regular tree grammar is in NF1. We show that this
assumption is without loss of generality towards the end of this section.

4.2 Local Tree Languages and Grammars

Local tree grammars impose restrictions on the rules of P1. Local tree languages and grammars
have also been studied in the past [Tak75, Mur99a, Mur99b]. Another commonly used term for
tree-locality constraint in recent times is context independent types.
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Definition 7. (Tree-Locality Constraint) Tree-locality constraint imposes the restriction on
the production rules P1 of a regular tree grammar: there is at most one rule in P1 of the form
“A — a X7 for every terminal symbol a € T O

This constraint ensures the following. Suppose, we have a regular tree grammar, say G =
(N1,N2,T,P1,P2,S), that satisfies the tree-locality constraint. Let 7 € L(G) be a tree. Now,
given a terminal symbol a € T (i.e., a is a node in T'), there is exactly one non-terminal symbol,
A € N1, that has a production rule in P1 of the form “A — a X, where X € N2”, (i.e., there is
only one rule in P1 that has a in the RHS).

Definition 8. (Local Tree Grammar) A local tree grammar (LTG) is a regular tree grammar
that satisfies the tree-locality constraint. O

Example 6: The following grammar G¢ = (N1, N2,T, P1,P2,S) is a local tree grammar.

N1 = {Book, Authorl, Son, Pcdata}
N2 = {BOOK,AUTHOR1,SON,PCDATA}
T {book, author, son, pcdata}
S {Book}
P1 = {Book — book BOOK, Authorl — author AUTHOR]1, Son — son SON,
Pcdata — pedata PCDAT A}
P2 = {BOOK — (Authorl), AUTHOR1 — (Son),SON — Pcdata, PCDATA — €}

0

Theorem 5: The marked model group corresponding to MG = contentModel(C), for any
C € N1 in a local-tree grammar is unambiguous and 1-unambiguous. |

Proof: From the definition it follows that there are no competing symbols in the marked model

group corresponding to MG. ¢

Definition 9. (Local Tree Language) A language is a local tree language if and only if it can
be generated by a local tree grammar. O

4.3 TD(1) Languages and Grammars

TD(1) languages correspond to languages that are deterministic with 1-vertical lookahead of the
input tree. In the last section, we introduced the marked model group corresponding to 1-vertical
lookahead. We use that for defining TD(1) grammars.

Definition 10. (1-vertical Lookahead Constraint) The I-vertical lookahead constraint imposes
the following condition on the P2 rules: the marked model group corresponding to contentModel(C),
for any C' € N1 is not ambiguous. O

Definition 11. (TD(1) Grammar) A TD(1) grammar is a regular tree grammar that satisfies
the 1-vertical lookahead constraint. O

Theorem 6: If G is a TD(1) grammar, and T € L(G), then there is a unique assignment tree
for T. [ |
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<!DOCTYPE book [ l
<VELEMENT book  (author)> <bQok>, or Name="A'"> al
<!ELEMENT author (son)> <son> aa </son> |
<IATTLIST author Name CDATA> </author> 1

] <IELEMENT son #PCDATA) > </book> S

>
pcdat al
(a) book2.xsd (b) book2.xml (c) instance tree Tg

Table 5: A DTD, XML file and instance tree for book2.

Example 7: Consider the local tree grammar Gg in Example 6 again. Further, suppose Gg is
a grammar representation of book2.xsd in Table 5. The example XML document book2.xml and
its instance tree are also shown in Table 5. There is a single assignment tree corresponding to g,
and the assignments for the various nodes in this assignment tree are as follows: assignment(bl) =
{Book}, assignment(al) = {Author}, assignment(sl) = {Son}, and assignment(pcdatal) =
{Pcdata}. O

Definition 12. (TD(1) language) A language is a TD(1) language if and only if it can be generated
by a TD(1) grammar. O
4.4 Single-Type Constraint Languages and Grammars

We introduce the single-type constraint which is a stricter condition than the 1-vertical lookahead
constraint.

Definition 13. (Single-Type Constraint) The single-type constraint imposes the following re-
striction on the rules in P2: there are no competing symbols in the marked model group corre-
sponding to contentModel(C), for any C € N1. O

Definition 14. (Single-Type Constraint Grammar) A regular tree grammar is said to be a
single-type constraint grammar if and only if it satisfies the single-type constraint. O

Example 8: Consider a regular tree grammar Gg = (N1, N2,T, P1, P2, S), where

N1 = {Book, Authorl, Son, Article, Author2, Daughter}
N2 = {BOOK,AUTHOR1,SON,ARTICLE,AUTHOR2, DAUGHTER}
T = {book,author,son,daughter}

S = {Book, Article}
P1 = {Book — book BOOK, Authorl — author AUTHOR]1, Son — son SON,
Article — article ARTICLE, Author2 — author AUTHOR?2,
Daughter — daughter DAUGHTER}
P2 = {BOOK — (Authorl), AUTHOR1 — (Son),SON — ¢,
ARTICLE — (Author2), AUTHOR2 — (Daughter), DAUGHTER — €}

G's satisfies the single-type constraint since all rules in P2 have single symbol in their RHS. How-
ever, Gg does not satisfy the tree-locality constraint since there are two rules in P1, “Authorl —
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author AUTHOR1” and “Author2 — author AUT HOR?2” that produce the same terminal symbol
author. O

Definition 15. (Single-Type Constraint Language) A language is a single-type constraint
language if and only if it can be generated by a single-type constraint grammar. O

4.5 TDLL(1) Languages and Grammars

Because trees have vertical and horizontal navigation, we can impose restrictions on the horizontal
lookahead also. This is based on the l-ambiguity definitions. In this paper, we restrict ourselves
to deterministic content model definition as in XML 1.0. In other words we study 1-ambiguity in
fully marked model groups as in [BKW98]. However, one need not be restricted to deterministic
content models and one can define 1-ambiguity for general marked model groups also.”

Definition 16. (TDLL(1) Grammar) A TDLL(1) grammar is a regular tree grammar that satisfies
the following condition: the fully marked model group corresponding to a contentModel(C'), where
C is any symbol in N1 is 1-unambiguous. O

Example 9: Consider a grammar Gg that has a rule in P2 of the form “X — (A4*, B*, A, D)”
and rules in P1 of the form “A4 — a L”, “B — b M”, and “D — d N”. Gy is not TDLL(1) as
defined in Definition 16 (The astute reader might observe that the P2 rule is 1-unambiguous if we
do not enforce the deterministic constraint). ¢

Definition 17. (TDLL(1) Language) A language is a TDLL(1) language if and only if it can be
generated by a TDLL(1) grammar. O

4.6 Relationship between the Language Classes

In this subsection, we examine the relationship between the various language classes we introduced
earlier in this section. These relationships are shown in Figure 3 in Section 6, where we compare the
expressive power of the different XML Schema proposals. But first, we show that our assumption
that the regular tree grammar is in NF1 is without loss of generality.

Lemma 3: The assumption that the regular tree grammar is in NF1 is without loss of generality.
[ |

Proof: We prove this by defining content model for a regular tree grammar as in Definition 1.
Let G = (N, T, P,S) be a regular tree grammar as in Definition 1. Consider A € N,¢ € T, such
that all the rules that produce t as the root symbol from A be A -t E1,A >t Es,... ,A —t E,,
where F1, Es, ..., E, are model groups over N. Now for such a regular tree grammar, we would
define contentModel(A,t) = (E1+ E2+ ...+ E,). We define ambiguities using such content model
definitions. It is easy to verify based on our normalization steps in Lemmas 1 and 2 that the
ambiguities are preserved in the normalized regular tree grammar. ¢

Now we show the relationship between the various language classes we studied. The proof for
these relationships is based on the definition of a non-redundant regular tree grammar. A non-

"One reason for defining TDLL(1) grammars only for deterministic content models is that we have not come across
any schema proposal which does not use the deterministic content model. This is surprising given that most schema
authors are unhappy with this constraint. Also we find TDLL(1) grammars without the deterministic constraint to
be a very useful class of grammars, refer Section 8.
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redundant regular tree grammar is a regular tree grammar in NF1 which is reduced [CDG97],
that has no two symbols, A, B € N1 such that TL(A) = TL(B), and for which the marked model
group corresponding to contentModel(C), where C is any symbol in N1 is a reduced marked model
group.

We first define a reduced marked model group. A reduced marked model group is a marked
model group which cannot be rewritten with lesser ambiguities in XML. Now a marked model group
in XML corresponds to contentModel(A), for a symbol A € N1. Therefore combining letters is
slightly different, for example, you can rewrite (a; + a2) as (a3), but you cannot rewrite (aj,a).
The scenarios when the letters in a marked model group can be rewritten in XML with fewer
ambiguities are as follows:

e We have a + or equivalent operator (7, &). For example,

— The marked model group E' = (a; + a2) can be rewritten as F' = (a3). Now E' is
ambiguous, but F’ is not.

— The marked model group E' = (af,b1?,a}) can be written as F' = (a} + af, b1, a}).
Now the fully marked regular expression corresponding to E’ is ambiguous, and the one
corresponding to F' is not.

— The marked model group E' = (a1&a1) can be written as F' = (a1,a1). The fully
marked model group corresponding to E’ is ambiguous, and the one corresponding to
F' is not.

e We have parantheses in the marked model group. For example, the marked model group
E' = ((a},a%)*) can be rewritten as ((a1 + a2)*), which can be rewritten as F' = (a}). Now
E' is ambiguous, but F’ is not.

e We have two consecutive letters z,y € Letters(E'), such that sym(z) = sym(y). For example,
the marked model group E' = (a1, a}) can be rewritten as F’ = (a;). Now the fully marked
model group corresponding to E’' is 1-ambiguous, but the one corresponding to F' is not.

Definition 18. (Reduced Marked Model Group) A reduced marked model group, E', is a
marked model group if it has the following properties.

e E' has no parantheses.
e E' does not have the operators +, ? or &.

e There are no two consecutive letters, z,y € Letters(E'), such that sym(z) = sym(y).

O

Definition 19. (Non-redundant Regular Tree Grammar) A non-redundant reqular tree gram-
mar is a regular tree grammar G = (N1, N2, T, P1, P2, S) which satisfies the following conditions.

1. There is no symbol in N1 U N2 that cannot be reached from a symbol in S.
2. There is no symbol A € N1 such that TL(A) = ¢ or e.

3. There are no two symbols A, B € N1 such that TL(A) = TL(B).
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4. The marked model group corresponding to contentModel(A), for any A € N1 is a reduced
marked model group.

O

Lemma 4: For any regular tree language that has a non-redundant regular tree grammar repre-
sentation, the ambiguities for the language are those given by this non-redundant grammar repre-
sentation. |

Proof: The proof is that any other regular tree grammar representation will have the same
ambiguities in the non-redundant grammar representation. Based on properties 1-3, we cannot
reduce the number of symbols in N1 U N2 without changing the language. Property 4 and the
definition of a reduced marked model group ensures that we cannot rewrite a model group so that
the resulting model group will have less ambiguities. ¢

Theorem 7: TD(1) languages is properly contained in regular tree languages. |

Proof: By definition, we know that a TD(1) language is a regular tree language. We need to show
that there exists a regular tree language that is not a TD(1) language. For this we show that there
exists a non-redundant regular tree grammar G, which is not a TD(1) grammar. This shows that
L(G) is a regular tree language, which is not a TD(1) language. Consider a non-redundant regular
tree grammar with a content model, whose corresponding marked model group is (a}, b}, a3). &

Theorem 8:  Single-type constraint languages form a proper subclass of TD(1) languages. |

Proof: A single-type constraint language is a TD(1) language by definition. Now consider a
non-redundant regular tree grammar with a content model, whose corresponding marked model
group is (a}, by, a}). ¢

Theorem 9: TDLL(1) languages form a proper subclass of TD(1) languages. [ |

Proof: A TDLL(1) language is a TD(1) language by definition. Now consider a non-redundant
regular tree grammar with a content model, whose corresponding marked model group is (a}, as)

¢

Theorem 10:  Local tree languages form a proper subclass of single-type constraint languages.

Proof: From definition, a local tree language is also a single-type constraint language. Proving
the proper inclusion is straight forward, consider any non-redundant regular tree grammar with
two symbols A, B € N1, such that A # B, and root(A) = root(B). Such a grammar is given in
Example 8. ¢

Theorem 11: TDLL(1) languages are not a proper subclass of single-type constraint languages.
|

Proof: Consider the non-redundant regular tree grammar with a content model, whose corre-
sponding marked model group is (a, b1, a’). ¢

Theorem 12:  Single-type constraint languages are not a proper subclass of TDLL(1) languages.
|
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Proof: Consider the non-redundant regular tree grammar with a content model, whose corre-
sponding marked model group is (a,b},a}).? ¢

5 Boolean Set Operations on Tree Languages

In this section, we study the closure properties of the different language classes under boolean
set operations: union, intersection and difference. Regular tree languages are closed under all the
boolean set operations [CDG97]. We show that all the other language subclasses - TD(1), single-
type constraint, TDLL(1) and local tree languages are closed under intersection, and not closed
under union and difference.

To show closure under intersection, we introduce automata for regular tree languages. Because
of the vertical and horizontal navigation for trees, we have to study two different automata - finite
tree automata [CDG™97] for the vertical navigation, and Glushkov automata [BKW98, BEGO71]
for the horizontal navigation and ambiguities in model groups. We first give an introduction to
these automata, define the automaton for the intersection language, and then proceed to study the
closure properties.

5.1 Finite Tree Automata

For our requirements, we will use non-deterministic top-down tree automata, which we define below.
We will define the automaton for a language with a normalized regular tree grammar representation
G = (N1,N2,T,P1,P2,S).(We will revisist tree automata in Section 7.)

Definition 20. (Non-deterministic Top-Down Finite Tree Automaton) [CDG'97] A non-
determinisitic top-down finite tree automaton 7'y is defined by a 4-tuple, T4 = (Q, 2, g1, ), where

e () is the set of states. There is a state corresponding to every symbol in N1. We denote each
state by the corresponding symbol in N1. Therefore Q = N1. (Note that root(q) is defined
for every state ¢ € Q.)

e X=T
e g; C (@ is the set of initial states, there is a state in g7 for each symbol in §. Therefore g; = S.

e §:¥ X Q — MG(Q) is the transition function. In other words, the transition function gives
a model group over ) given a symbol in ¥ and a state in (). We have a transition function
corresponding to each production rule in P1. For example, for the rule B — b (A1*, A2*),
the corresponding transition will be §(b, B) = (A1*, A2*). O

Note that the top-down finite tree automaton corresponds directly to a regular tree grammar.
Also the automaton does not define final states. The above automaton is non-deterministic. For
example, consider the production rule B — b(A1*, A2*), where root(Al) = root(A2) = a. Let b(a)
be a tree fragment that satisfies the above production rule. Now §(b(a), B) can be either b(A1(a))
or b(A2(a)).

The tree-locality constraint for regular tree grammars is translated to tree automaton as follows:
for any symbol t € X, there is at most one state ¢ € Q, such that root(q) = t. Regular tree

8TDLL(1) languages without the deterministic content model constraint are actually a superclass of single-type
constraint languages.
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languages are closed under intersection [CDG97]. Below we give the construction of the top-down
tree automaton representing the intersection of two regular tree languages that are accepted by the
two automata A; and As respectively.

Definition 21. (Intersection Automaton for Regular Tree Languages) Let 41 = (Q1,%1,491,,01)
and Ay = (Q2,X2,9r1,,02) be the two top-down non-deterministic finite tree automata represent-
ing the two languages. Let A3 = (Q3,X3,4q1,,93) be the automaton that accepts the intersection
language, in other words L(A3) = L(A;) N L(Az). We define A3 as follows.

e Q3 is defined as (q1,¢2), for all ¢1 € Q1,92 € @2, and root(q1) = root(qz). We define
root({q1,qz)) = root(q1) = root(qz).

e Y3 =31NXo.
e g1, is the set of states (q1,q2), for all ¢1 € qr,, and g2 € qr,, and root(q1) = root(gs).

e 03(t,(q1,q2)) is defined for all 1 € Q1,92 € Q2, where root(q1) = root(g2) =t € X3 as follows:
Let 61(t,q1) = E1, and d2(t,q2) = Es. Now 03({g1,q2)) = E3, where E35 = E; N E5. Note
that E; and Es are marked model groups. In the next subsection, we show how to obtain
the marked regular expression E3 whose alphabet consists of all symbols of the form (aq, as),
where a; € Alphabet(E;),a, € Alphabet(Es), and h(a;) = h(az), Therefore E3 will be a
model group over (Js. O

One can obtain a regular tree grammar in NF1 from the intersection automaton. This is done
by just reversing the steps in Definition 20, and then separating out the P1 and P2 rules.

5.2 Glushkov Automata for Marked Model Groups

In this subsection, we define Glushkov automata for general marked model groups. From [BKW98,
BEGOT1], we have one state in a Glushkov automaton that corresponds to one letter in the model
group and we have a start state. The input alphabet of the automaton is the alphabet in the
corresponding fully marked model group. We call this as a Glushkov automaton corresponding to
a fully marked model group. For a general marked model group, we define a. Glushkov automaton
as follows (The only difference between the two Glushkov automata is in the input alphabet):

Definition 22. (Glushkov Automaton for a Marked Model Group) [BKW98] Consider
a marked model group, E’, whose corresponding fully marked model group is E”, and unmarked
model group is E. In other words, fm(E') = fm(E) = E", h(E') = h(E") = E, and h'(E") = E'.
The Glushkov automaton for E’ is defined as A’ = (Qg, X', 051, q1, Frr ), where

e QQp is the set of states. There is one state corresponding to a letter in E/. We denote each
state by the corresponding symbol in E”. In other words, Qg = Alphabet(E") U q;. Note
that h' : Qg — Alphabet(E'"), and h : Qg — Alphabet(E) are defined for every state in Qgr.

%' = Alphabet(E'"). Note that h : X' — Alphabet(E) is defined for every symbol in 3.

qr is the start state.

Fpr is the set of final states, obtained as defined in [BKW98|.

dp : Qp * X' — 298 is the transition function. For ¢ € Qpr,a; € ¥/, we define 651 (q,a;) =
{y | y € follow(E",a;), and K'(y) = as}. O
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Figure 2: Glushkov automaton for the marked model group E' = (a},017,a}), where E" =
(a7,017,a3), and E = (a*,b?,a")

An example Glushkov automaton for the marked model group E' = (a},b1?,a3) is shown in
Figure 2. It is easy to observe the following for a Glushkov automaton.

e Just like the top-down finite tree automaton corresponds directly to a regular tree grammar
in NF1, the Glushkov automaton corresponds directly to a model group.

e Consider a path (with possibly repeating edges) of states from ¢; to a final state. This gives
a string s"” € L(E"). For example, for the Glushkov automaton in Figure 2, there is a path
of states from gz, (a1, b1, a2), where (ay,b1,a2) € L(E").

e A string s is accepted by A’ if and only if s € L(E"). Now s corresponds to a path of input
symbols from ¢; to a final state. A path of input symbols in the Glushkov automaton in
Figure 2 is (a1,b1,a1) and (a1,b1,a1) € L(E').

Note that the unmarking function h is defined for the path of input symbols as well as the
path of states. The function A’ is defined for the path of states. For a path of states, say p, h'(p)
gives the corresponding path of input symbols. For example, p = (a1,b1,a2) is a path of states
and h'(p) = (a1,b1,a1) is the corresponding path of input symbols. We define ambiguities in A’
using L(A'), the language accepted by A’. Now L(A') = L(E'). Therefore ambiguities in E' are
preserved in A’.

Definition 23. (Intersection Automaton for Marked Model Groups) Let 4; = (QEQ, X1, 0. qn, FEi)
and A = (Qgy, X2, 6py, q15, Fpy) be the Glushkov automaton representing the two model groups.
We define the intersection Glushkov automaton, As = (Q Bl PITVIN) Bl 43 FEé) as follows:

* Qp, is defined as (q1,q2), for all g1 € Qr, 92 € Qg and h(q1) = h(g2). We define
W ({1, 2)) = (W'(q1), W' (q2)), and h({q1,q2)) = (h(q1), h(q2))-

o X3 = (ay,as), for all a1 € ¥y/,a9 € o, and h(a1) = h(az). We define h({a1,a2)) = h(a1) =
h(ag).

® g, = <CII1aCII2>-
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® Fiy =(q1,q2), for all g1 € Fig;, g2 € Fpy, and h(q1) = h(g2).

o 0 ({q1,92), (a1, a2)), where (q1,q2) € Qp, and (a1, a2) € Ty ) is defined as follows: (ry,rs) €
6m; ({91, 92), (a1, a2)), where (r1,72) € Qg if and only if r1 € 0y (q1,a1), and 12 € dp; (g2, a2)-

O

Given the intersection Glushkov automaton, we can obtain the marked regular expression using
the flow-graph algorithm [BEGOT1].

We define the intersection model group E3 = FE; N Es, where E;, E5 are model groups, as the
marked regular expression corresponding to the Glushkov automaton Az which represents the inter-
section of the two Glushkov automaton A, = (Alphabet(fm(E1))Uqr,, Alphabet(E1),qr,, Fi,, 08, )
and As = (Alphabet(fm(Ey))Uqr,, Alphabet(E»), q1,, Fg,,dE,), where Fg,, Fg,,0g, , 0, are defined
appropriately.

We use the above step for taking intersection of two model groups while taking intersection
of two tree automata. With this understanding of tree automata and Glushkov automata, we are
ready to examine the closure properties of the various language classes which we introduced in
Section 4.

5.3 Closure Properties

As mentioned before, regular tree languages are closed under union, intersection and difference.
We show that all the subclasses of regular tree languages are not closed under union and difference.
For showing that these languages are not closed, we give an example of two languages that are
local tree as well as TDLL(1), such that the union (or difference) language can be captured by a
non-reducible regular tree grammar, which is not a TD(1) grammar. (Note that this is not a non-
redundant regular tree grammar, but it is easy to verify that the resulting language has no TD(1)
grammar representation.) Finally we show that each language subclass is closed under intersection.

Lemma 5: There exist two grammars, G1,Go that are both a local tree grammar as well as
a TDLL(1) grammar, such that L(G1) U L(G2) can be derived from a non-reducible regular tree
grammar that is not TD(1). [ |

Proof: Let G1 and Gy be regular tree grammars Let G; have the production rules {Doc —
doc (Para*), Para — para (€)}. Let G2 have the production rules {Doc — doc (Para*), Para —
para (Fig)}. The union L(G1) U L(G2) can be represented by the regular tree grammar G3 with
production rules {Doc — doc (Para} + Para}), Para; — para (€), Parag — para (Fig)}. Gs is
not a TD(1) grammar. It is easy to verify that there is no TD(1) grammar that derives L(G3). 4

Theorem 13:  TD(1), single-type constraint, TDLL(1), and local tree languages are not closed
under union. |

Lemma 6: There exist two grammars, G1,Go that are both a local tree grammar as well as
a TDLL(1) grammar, such that L(G7) — L(G3) can be derived by a non-reducible regular tree
grammar that is not TD(1). [ |

Proof: Let G; have the production rules {Doc — doc (Para*), Para — para (Fig?)}. Let Go
have the production rules {Doc — doc (Para*), Para — para (€)}. The difference L(G1) — L(G2)
is the the set of documents with at least one para with figures. This can be represented by the
regular tree grammar G3 with production rules {Doc — doc (Paraj, Parag, Para}), Para; —
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para (Fig?), Paras — para (Fig)}. Gs is not a TD(1) grammar. It is easy to verify that there is
no TD(1) grammar that derives L(G3). ¢

Theorem 14:  TD(1), single-type constraint, TDLL(1), and local tree languages are not closed
under difference. [ |

Now we are ready to show the closure under intersection of local tree, single-type constraint,
TD(1) and TDLL(1) languages. We will assume the following: L; and Ly are the two regular
tree languages, whose intersection is the regular tree language L3. Let A = (Q1,%1,q1,,01)
and Ay = (Q2,%92,491,,02) be the top-down non-deterministic tree automata obtained from the
normalized regular tree grammar representation of L; and Ls respectively, that is, L(A4;) = L,
and L(A2) = Lo. Let A3 = (Q3,X3,4q1,,03) represent the intersection tree automaton obtained
from the construction as in Definition 21, such that L(A3) = Ls.

Theorem 15:  Local tree languages are closed under intersection. |

Proof: L; and Lg are local tree languages. Therefore, from definitions of the intersection tree
automaton, and local tree languages, there is at most one state g3 = (q1,¢2) € Q3 such that
root(qs) = root(q1) = root(qz). Therefore L3 is a local tree language. ¢

For the remaining closure proofs, we have to consider the intersection of two marked model
groups. We will assume the following: Let E; and E5 be the two marked model groups, and we want
to find the marked model group Ej3 representing the intersection. Let By = (Q1, X1, 41,41, F1) and
By = (Q2, %9, 02,91,, F») be the Glushkov automata for F; and F5 respectively. Let the intersection
Glushkov automaton be B3 = (Q3, X3, 3, qr5, F3), such that E5 can be obtained from Bj using the
flow-graph algorithm.

Theorem 16:  Single-type constraint languages are closed under intersection. |

Proof: We have to show that when E; and Ej satisfy the single-type type constraint, F3 also
satisfies the single-type constraint. We know from definitions of single-type constraint languages
and intersection Glushkov automaton that there is at most one symbol a3 = (ai,a2) € X3, such
that h(ag) = h(a1) = h(a2). ¢

Theorem 17:  TD(1) languages are closed under intersection. n

Proof: We show that if 7 and E5 are unambiguous, then E3 is unambiguous. Assume the
contradiction, that is, let E3 be ambiguous. We show that either E; or E5 is ambiguous.

As Ej5 is ambiguous, there exist two paths of input symbols, pi,ps € L(E3), where p; =
(<a11,a21>, <a12,a22), ey (aln,a2n>) and P2 = (<b11,b21>, <b12,b22>, ey <b1n,b2n>), and there exist
two symbols <a1i,a2i) and <b1i’b2¢)’ such that <a11,a2i) 75 <b1i’b2i>’ h((ali,agi)) = h((bli,bgi)),
h’(<a11aa21>7 <a127a22>a SRR <a1¢—17a2i—1>) = h(<b11ab21>7 <blzab22>a SRR <b1i—1’b2i—1>)’ and
h(<a’1i+1 3 a’2i+1>’ <a’11'+2’ a2i+2)’ HREES) <a’1n’ a’2n>) = h(<b1i+1 3 b21’+1>’ <b1i+2’b2i+2>’ LR <b1n’ b2n>)'

From definition of intersection automaton, we know that p1, = (a1,,a1,,...,01,), P2, =
(b1y,b15,--- ,b1,) € L(E1), and p1, = (a2,,a2,,-.. ,02,), P2, = (b2;,b2,,... ,b2,) € L(Ep). From
definition of X3, this implies that either F; or Fs is ambiguous. ¢
Theorem 18: TDLL(1) languages are closed under intersection. |

Proof: We show that if F; and E5 are 1-unambiguous, then Fj3 is 1-unambiguous. Assume the
contradiction, that is, let E3 be 1-ambiguous. We show that either F; or Es is 1-ambiguous.
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As Ej5 is 1-ambiguous, there exist two paths of input symbols, p1,p2 € L(E3), where p; =
(<G11,a21), <a123a22)a LR <a1n’a’2n>) and b2 = (<b11’b21>a <b125 b22)a ey <b1p7b2p>)7 and there exist
two symbols (ai,,a2,) and (by,,be,), such that (ai,,as;) # (b1,,b2,), h({a1,,a2,)) = h({(bi,,bs,)),
h(<a117a21)a <a127a22>’ SRR <a’17;—1’a’2i—1>) = h(<b11ab21)a <b12ab22>a LR <b1i—1’b2i—1))'

From definition of intersection automaton, we know that p1, = (a1,,a1,,...,a01,), P2, =
(bll, b12, - ,blp) S L(El), and P1, = (agl,a22, - ,GQn), b2, = (b21, bgz, - ,bgp) € L(EQ). From
definitions of X3, this implies that either F; or Es is 1-ambiguous. ¢

6 Evaluating Different XML Schema Language Proposals

In this section, we compare five representative XML schema language proposals: DTD, DSD, XML-
Schema, XDuce, and RELAX. All these five schema proposals define a regular tree grammar. Con-
verting the rules in these schema proposals to a regular tree grammar as in Definition 1 is not
straighforward. Therefore we first give an equivalent definition of a regular tree grammar, and then
explain the features in the schema proposals with respect to this regular tree grammar definition.

Definition 24. (Regular Tree Grammar) A regular tree grammar G is defined by a 6-tuple,
G = (N1,N2,T,P1,P2,S), where N1, N2 are non-terminal symbols, 7" is the set of terminal
symbols, and § C N1 is the set of start symbols. P1 defines a set of production rules of the
form A — aX, where A € N1, a € T and X € N2. P2 defines a set of production rules of the
form X — Ezxpression where Ezxpression is a regular expression (model group) over symbols in
N1 U N2. There can be multiple P1 or P2 rules for a symbol in N1 or N2, respectively. However,
there is a restriction on P2 rules that the language defined by contentModel(A), where A is any
symbol in N1 is a regular language. O

A grammar as defined in the above section can be expressed as a grammar in Definition 1. The
conversion requires that we identify a model group representing the content model of a non-terminal
symbol. Such a model group exists because the content model of any symbol is a regular language.

6.1 DTD

DTD as defined in [BPE98] is a TDLL(1) and a local tree grammar. The tree-locality constraint is
enforced by not distinguishing between terminal symbols and non-terminal symbols. The horizon-

tal look ahead constraint is enforced during validating the DTD by constructing followsets, as
mentioned in Appendix E of [BPE9S].

6.2 DSD

Since DSD [KMS00] does not impose any constraint on the production rules, we can express any
regular tree grammar in DSD. For example, E = (a}, p}, a3) is a valid content model in DSD. But
the parsing in DSD uses a greedy technique with one vertical and horizontal lookaheads. Therefore
DSD does not accept all regular tree languages. For example, DSD cannot accept a string of the
form (aT*,a%) which conforms to E.°

Element definitions in DSD have the form

<ElementDef ID="book-title" Name="title">
SomeContentSpecification
</ElementDef>

9We conjecture that DSD accepts all and only TDLL(1) languages.
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This can be converted into the grammar notation as

P1 = {book._title — title Book _title}
P2 = {Book_title -+ Expression}

Here, Expression is equivalent to SomeContentSpecification. Content patterns in DSD allow
specifying content of an element, say A, based on even attribute values of A as well as those of its
ancestors.

6.3 XML-Schema

XML-Schema represents TDLL(1) grammars that satisfy the single-type constraint. We define the
different concepts in XML-Schema as follows.

1. A complex type definition defines a production rule in P2. For instance,

<xsd:complexType name="Book">
<xsd:sequence>
<xsd:element name="title" minOccurs="1" maxOccurs="1"/>
<xsd:element name="author" minOccurs="1" max0Occurs="unbounded"/>
<xsd:element name="publisher" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

This can be converted into a grammar rule Book — (title,author™,publisher?), where
Book € N2 and {title, author, publisher} C N1.

2. A group definition defines a new non-terminal in N2 as follows ([Fal00] Section 2.7):

<xsd:group name="shipAndBill">
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress" />
<xsd:element name="billTo" type="USAddress" />
</xsd:sequence>
</xsd:group>

This group definition is equivalent to the following grammar rules.

P1 = {ShipTo — shipTo USAddress,BillTo — billTo USAddress}
P2 = {shipAndBill — (ShipTo, BillTo)}

XML-Schema allows a group definition to contain other group definitions without any restric-
tion. Therefore, XML-Schema allows a context free language for the content model for an
element as shown below:

X — (A4Y,B)+e

Yy - X

We believe that making content model description a context-free language was never the
intention, but it was overlooked in [TBME00].1°

9Tt is worth mentioning that the candidate recommendation for XML-Schema is believed to restrict the language
defined by a content model to a regular language.
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3. From object oriented programming, XML-Schema borrows the concepts of sub-typing. This is
achieved through extension or restriction. An example of derived types by extension (slightly
modified from [Fal00] Section 4.2) is given below.

<complexType name="Address">
<sequence>
<element name='"name"/>
<element name="street"/>
<element name="city"/>
</sequence>
</complexType>

<complexType name="UKAddress'>
<complexContent>
<extension base="Address">
<sequence>
<element name="postcode"/>
</sequence>
</extension>
</complexContent>
</complexType>

The above type definitions for Address and UK Address is equivalent to the rules
P2 = {Address — (name, street, city), U K Address — (name, street, city, postcode)}

Now suppose there was an element declaration such as
<element name="shipTo" type="Address"/>

This is equivalent to the following two rules in P1 as shown below.

P1 = {ShipTo — shipTo Address, ShipTo — shipTo UK Address}

Note that the rule ShipTo — shipTo UK Address is automatically inserted, true to the
object-oriented programming paradigm. But this can be considered as a “side-effect” in
formal language theory. XML-Schema provides an attribute called block to prevent such side-
effects. For example, if Address had defined block=#all, then we would not automatically
insert the rule.

XML-Schema also provides an attribute called final which prevents derived types by exten-
sion or restriction or both. For example, if Address had defined final=#all, then we cannot
derive a type called UK Address from it.

4. XML-Schema provides a mechanism called xsi:type which does not allow to satisfy the
horizontal and vertical lookahead constraints of a TDLL(1) grammar. For example, it is legal
to have the following rules in XML-Schema.

P2 = {X — (Title),Y — (Title, Author1"), Z — (Title, Author2™*, Publisher)
AUTHOR1 — Son*, AUTHOR2 — Daughter*}

P1 = {Title — title TITLE, Authorl — author AUTHORI,
Author2 — author AUTHOR?2, Book — book X, Book — book Y, Book — book Z}
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The above grammar does not satisfy the vertical and the horizontal lookahead constraints.
But for checking document validity, the lookahead properties and the unique assignment tree
are maintained by requiring that the document mention explicitly the type. For example a
valid node in the instance tree would be

<book xsi:type="Y">

It should be noted that this does not make XML-Schema equivalent to a regular tree grammar,
because there is no way we can define a type such as BOOK — (Title, Authorl*, Author2*)
with Authorl — author Al, Author2 — author A2 in XML-Schema.

5. A substitution group definition (previously known as equivalence class) can be converted into
an equivalent grammar definition as follows. For example, consider the substitution group
definition ([Fal00] Section 4.6) (We modify it slightly for easy explanation):

<element name="shipComment" type="Y" substitutionGroup="Ipo:comment"/>
<element name="customerComment" type="Z" substitutionGroup="Ipo:comment"/>

This is converted into grammar rules as:

P1 = {ShipComment — shipComment Y, customerComment — cutomerComment Z

Ipo : comment — shipComment Y, Ipo : comment — shipComment Z}

where Ipo : comment, ShipComment and CustomerComment are non-terminals in N1.
Using such substitution groups require that there be a rule in P1 of the form Ipo : comment —
ipo : comment X, and that Y, Z be derived from X.

6.4 XDuce

XDuce provides type definitions equivalent to a regular tree grammar. A type definition that pro-
duces a tree is converted into a rule in P1. Consider the example from [HVPO00]: type Addrbook =
addrbook[Person*] is written as Addrbook — addrbook(Person*). Any type definition that does
not produce a tree is written as P2 rules. For example, type X =T, X | () represents the P2 rules
X — (T, X + ¢€). Note that XDuce writes the above type rules in a right-linear form, which makes
every content model definition equivalent to a regular string language.

XDuce provides a mechanism called subtagging. This is slightly difficult to convert into grammar,
because it is based on terminal symbols in 7', and not on non-terminal symbols in N1. Below, we
explain how we can convert the subtagging declarations into grammar rules. For example, consider
the subtagging declaration

subtag i <: fontstyle

Consider all P1 rules that produce fontstyle as the root of the production rule. Let these rules
be {A — fontstyle A1, B — fontstyle B1,... ,N — fontstyle N1}. Now introducing the subtag
declaration adds the following additional rules to P1: {A — 4 A1,B — i B1,... ,N — 1 N1}
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6.5 RELAX

Any regular tree grammar can be expressed in RELAX [Mur00b, ISO00]. Let us first consider only
elementRule and hedgeRule in RELAX. In other words we assume no tag names. This makes the
role attribute in RELAX elementRules equal to the tag name.

1. An elementRule defines a rule in P1 and a rule in P2. For example consider the elementRule,
slightly modified from the one in [Mur00b).

<elementRule role='"section" label="Section">
<ref label="paraWithFNotes" occurs="x*"/>
</elementRule>

This can be converted into the production rules

P1 = {Section — section SECTION}
P2 = {SECTION — (paraWithF Notes*)}

2. A hedgeRule defines a rule in P2. For example, consider the hedgeRule taken from [MurQOb]

<hedgeRule label="blockElem">
<ref label="para"/>
</hedgeRule>

The above hedgeRule can be converted into grammar as

P2 = {blockElem — (para)}

RELAX allows a hedgeRule to contain other hedgeRules. But it requires that there be no
recursion in the hedgeRules; this ensures that the grammar remains regular.

3. RELAX allows 2 hedgeRules to share the same label. For example, we can specify in RELAX
two hedgeRules as

<hedgeRule label="blockElem">
<ref label="para"/>

</hedgeRule>

<hedgeRule label="blockElem">
<ref label="itemizedList"/>

</hedgeRule>

This can be converted into P2 rules as

P2 = {blockElem — (para),blockElem — (itemizedList)}

4. RELAX allows multiple elementRules to share the same label as follows. For example, we
can have
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<elementRule role="a'" label="A">
<ref label="X"/>

</elementRule>

<elementRule role="a'" label="A">
<ref label="Y"/>

</elementRule>

<elementRule role="b" label="A">
<ref label="Z"/>

</elementRule>

These three elementRules can be converted into three rules in P1 as

Pl = {A-aX,A—aY,A—>bZ}

5. Tag is used to typically specify attributes. In effect it adds an additional level of indirection
in rule specification. To convert into the grammar representation, we need to collapse the
role attributes. This will be clear from the following example [Mur0Ob].

<tag name="val" role="val-integer"/>

<elementRule role="val-integer" label="Val">
<ref label="X"/>

</elementRule>

<tag name="val" role="val-string"/>

<elementRule role="val-string" label="Val">
<ref label="Y"/>

</elementRule>

They can be converted into grammar rules as

P1 = {Val - wal X,Val - val Y}

Figure 3 compares the expressive power of the different grammar classes and XML schema
language proposals.

7 Membership Checking and Type Assignment

In this section, we study two operations performed given a grammar (as defined in Definition 2)
and a tree:

e Membership checking (Document validity checking): determines whether the tree is permitted
by the grammar.

e Type or non-terminal assignment (Document interpretation): determines an assignment tree
for the tree.

It is necessary to distinguish between the tree model and event model. Both models work fine
for small documents. When documents are significantly large, the tree model has performance
problems while the event model scales well.
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Figure 3: The expressive power of the different regular tree grammars: (a) regular tree grammars
(RELAX, XDuce), (b) TD(1) grammars, (c) single-type constraint grammars, (d) local tree gram-
mars, (e) TDLL(1) grammars, (f) TDLL(1) grammars with single-type constraint (XML-Schema),
(g) TDLL(1) grammars with tree-locality constraint (DTD)

In the tree model, application programs have access to the tree in memory, and can traverse the
tree any number of times. The tree may be created by the XML parser and accessed via some API
such as DOM [WHA00]. Alternatively, the tree may be created by application programs from the
output of the XML parser. In the event model, application programs are notified of the start or
end element event via some API such as SAX [Meg00]. A start or end element event is raised when
the XML parser encounters a start or end tag, respectively. In other words, application programs
visit and leave elements in the document in the depth-first manner. Therefore once an application
program visits an element in the document, it will not be able to visit the element again. We
will assume that application programs will not attempt to reconstruct the document in memory or
buffer events in memory.

Automata for regular tree grammars have been studied in the past and present [CDGT97,
Mur00a]. Four automata are known for checking tree membership: deterministic top-down, non-
deterministic top-down, deterministic bottom-up, and non-deterministic bottom-up. Top-down
automata assign states to superior elements and then subordinate elements; bottom-up automata
assign states to subordinate elements and then superior elements. Deterministic automata assign
a state to each element, while non-deterministic automata assign any number of states to each
element.

We do not provide formal definitions of these tree automata, but would instead like to men-
tion an important observation: non-deterministic top-down, deterministic bottom-up and non-
deterministic bottom-up tree automata are equivalent and accept all regular tree languages, but
deterministic top-down tree automata accept only a subset of regular tree languages. Deterministic
top-down tree automata assign a state to an element without examining that element; they only
examine the parent element and the state assigned to it. Because of this restriction, deterministic
top-down tree automata are almost useless for XML. However, they become a lot more useful for
XML, if they are allowed to examine an element before assigning a state to it. To refer to such
automata, we use the phrase “with one lookahead”.

We do not consider complexity with respect to the size of XML schemas, but consider complexity
with respect to the size of XML documents. The size of documents may be significantly large (e.g.,
16 MB), but the size of schemas is rather limited. In fact, DTDs are considered large when they
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have more than 200 element types.

7.1 Membership Checking

First, we consider membership checking. We show that there is an efficient algorithm that is
applicable to any regular tree grammar.

Theorem 19: Membership checking for any regqular tree grammar can be created in the event
model, and the time required is linear to the number of nodes in the document. |

This algorithm simulates non-deterministic bottom-up tree automata. It assigns (zero, one, or
possibly multiple) non-terminals in N1 to each element, after assigning non-terminals in N1 to each
of the child elements (if any). Let ep be an element and eq,es,... ,e; be its child elements. A non-
terminal, say Ay (€ N1), is assigned to eg if there exists a N1 non-terminal sequence A;As... A;
such that

e for some production rule 4g — a Xy in P1, g is the terminal symbol of ey,
e for some production rule Xyo — Ezpression in P2, A1 A, ... A; matches Expression, and

e for every j (1 < j <1i), Aj is one of the non-terminals assigned to e;.

We assume that a deterministic string automaton has been already constructed from the content
model of each production rule. Given a non-terminal (in N1) of the regular tree grammar and a
state of this deterministic string automaton, the transition function returns a new state. We show
that this algorithm can be implemented in the event model. The key idea is to maintain a set of
states for each string automaton. Sets of states are pushed into and popped from a stack when the
XML parser raises a begin element or end element event, respectively. The idea is illustrated in
Algorithm Membership. Obviously, the time complexity of this algorithm is linear to the number
of nodes in the document.

Algorithm 1: Membership

begin element When a start tag is encountered, those production rules for the terminal symbol
of this tag are identified. Note that more than one production rule may be found. Then,
for each of these production rules, an empty set of states of the corresponding deterministic
string automaton is created. The sets of states for the parent element are pushed into the
stack.

end element When an end tag is encountered, each set of states is examined. If it contains a
final state, the non-terminal of the corresponding production rule is assigned to this element.
After assigning (zero, one, or multiple) non-terminals to this element, the sets of states for
the parent element are popped from the stack. For each of these non-terminals and each
current state in each set, the next state is computed by applying the transition function of
the corresponding string automaton.

This algorithm can be applied to TD(1), TDLL(1), single-type constraint, and local tree gram-

mars. Thus, membership checking is always efficient. However, as we see in the next subsection,
there are other algorithms for such restricted grammars. These algorithms perform membership
checking as well as type assignment, and they are arguably more straightforward.
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7.2 Type Assignment

We first consider type assignment for local tree grammars, single-type constraint grammars, and
TDLL(1) grammars. If and only if an assignment tree can be constructed for a given document and
grammar, the document is permitted by the grammar. Thus, algorithms for type assignment can
be used for membership checking.

Theorem 20: Type assignment for a local tree grammar, single-type constraint grammar, or
TDLL(1) grammar can be built in the event model, as a deterministic top-down tree automaton with
one lookahead. The time required is linear to the number of nodes in the document. |

Our type assignment algorithms for these three classes of grammars are very similar. These
algorithms simulate deterministic top-down tree automata with one lookahead. They assign a non-
terminal to each element, after assigning a non-terminal to its parent element and elder sibling
elements. Let ey be an element and eq,eq,... ,e; be its child elements. Suppose that the non-
terminal assigned to e is Ay (€ N1), and that the non-terminals assigned to e, es,... ,ej_1 are
Aq,Ay,... ,Aj_1 (€ N1), respectively. Then, non-terminal A; (€ N1) is assigned to e;, if the
following conditions hold:

e for some production rule Ag — a Xy in P1, a is the terminal symbol of e,

e for some production rule Xo — Ezpressionin P2, Aj Ay ... A;_y € L(prefixMG(Ezpression, Aj)),
and

e for some production rule A; — bY in P1, b is the terminal symbol of e;.

We show that these algorithms can be implemented in the event model. That is, type assignment
programs receive events and forward them to application programs; if a begin element event is
received, the type of this element is added. We assume that a deterministic string automaton
has been already constructed from the content model of each production rule. The key idea is
to maintain a state of the deterministic string automata for the current element. The state for
the current element is pushed into and popped from a stack when the XML parser raises a begin
element or end element event, respectively. The idea is illustrated in Algorithm TypeAssignment.
Obviously, the time complexity of this algorithm is linear to the number of nodes in the document.

Theorem 21:  The type assignment for a reqular tree grammar may be ambiguous. |

Proof: A simple example for a regular tree grammar and a tree for which the type assignment is
ambiguous is the following.

Book — book(Title, Authorl®, Author2™)
Title — title(Pcdata)
Authorl — author(Son™)
Author2 —  author(Daughter®)
Pcdata —  pcdata(e)
<book>
<title><pcdata/></title>
<author/>
</book>
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Algorithm 2: TypeAssignment

begin element When a start tag is encountered, the non-terminal for this element is determined.
Depending on the class of grammars, this is done as follows:

Case 1: local tree grammars A non-terminal is determined directly from the terminal
symbol in the current start tag (see Definition 7).

Case 2: single-type constraint tree grammar From the non-terminal A (€ N1) as-
signed to the parent element, a content model, contentModel(A), is found. This content
model contains at most one non-terminal A’ such that root(A’) is the terminal symbol
of the current start tag (see Definition 13). If such a non-terminal is found, it is the
non-terminal for the current element. Otherwise, type assignment fails.

Case 3: TDLL(1) grammars We assume that deadend states (i.e., states from which final
states cannot be reached) have been removed from deterministic string automata for
content models. Now, consider the current state of the string automaton for the parent
element. Transitions from this state have associated non-terminals in N1. The TDLL(1)
constraint (Definition 16) ensures that at most one of these non-terminals, say A, has
the terminal symbol in the current start tag as root(A). If such a non-terminal is found,
it is the non-terminal for the current element. Otherwise, type assignment fails.

Then, the current state for the parent element is updated. The next state is computed by
applying the transition function of the corresponding string automaton to the non-terminal
of the current element and the current state for the parent element.

Next, the production rule for this element is identified. The initial state of the corresponding
string automaton is then created as the state of the current element. The state for the parent
element is pushed into the stack.

end element When an end tag is encountered, the state of the current element is examined. If it
is not the final state of the corresponding string automaton, type assignment fails.

Now the node represented by (author/) can be assigned to either Authorl or Author2. Note that
an ambiguous assignment is not possible for any TD(1), TDLL(1), single-type constraint, or local
tree grammar. ¢

Theorem 22:  Type assignment for a TD(1) grammar cannot be built in the event model. |

Proof: Consider a grammar as follows:

Doc — doc(Paral?, (Para2, Para2)™)
Paral — para(Pcdata)
Para2 — para(Pcdata)
Pcdata —  pcdata(e)

The type of the first paragraph can be determined only after examining the last paragraph. If
a document contains an odd number of paragraphs, the type of the first paragraph is Paral. If
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it contains an even number of paragraphs, the type is Para2. However, the event model cannot
buffer the begin element event for the first paragraph. ¢

7.3 Implementations

In this subsection, we describe status of implementations of XML schema languages.

e DTD: Membership checking against DTDs has been widely implemented. Most implementa-
tions are based on the event model, and they simulate top-down deterministic automata with
one lookahead.

e XDuce: Type assignment implemented by the designers of XDuce is based on the tree model.
This implementation simulates top-down non-deterministic automata by backtracking. Such
backtracking may require exhaustive search.

e DSD: Type assignment of DSD is similar to that of XDuce. It is based on the tree model, and
simulates top-down non-deterministic automata by backtracking. However, backtracking is
not thorough, and thus does not perform exhaustive search.

e XML-Schema: Schema-validity assessment, as defined in 7.2 of XML-Schema Part 1, performs
type assignment by using deterministic top-down tree automata with one lookahead. To the
best of our knowledge, all implementations follow this model.

Although XML-Schema allows TDLL(1) grammar satisfying the single-type constraint only,
other mechanisms of XML-Schema (key, unique, and keyref) require use of the tree model.

— XSV (XML-Schema Validator): This is based on the tree model.

— XML-Schema Processor: This implementation can be combined with a SAX parser as
well as a DOM parser. When it is combined with an event model parser it does not
support key, unique, and keyref.

— Xerces Java Parser: This implementation is based on the event model, and does not
support key, unique, and keyref.

— XML Spy and XML Instance: They are XML document editors, and thus use the tree
model. Editing of documents can be controlled by schemas in XML-Schema.

e RELAX: Four implementations of RELAX are available '!. They use different algorithms for
type assignment and membership checking.

— VBRELAX: This program is based on the tree model. It simulates top-down non-
deterministic automata by backtracking. Such backtracking may require exhaustive
search.

— RELAX Verifier for C++: This program is based on the event model. It performs mem-
bership checking, but does not perform type assignment. This program is based on
Algorithm Membership.

— RELAX Verifier for Java: This program is based on the event model. It is also based
on Algorithm Membership, but further utilizes top-down non-determinism. Intuitively

"They are available at the official site of RELAX, http://www.xml.gr.jp/relax.
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speaking, when an element is visited, possible non-terminals for this element are tem-
porarily assigned to the element. Such possible non-terminals are chosen by examining
the parent element and the non-terminals temporarily assigned to it. When an element is
left, this program examines which of the temporarily assigned non-terminals are allowed
by the subordinate elements. Advantages of combining top-down non-determinism and
bottom-up non-determinism are appropriate error messages and error recovery.

RELAX Verifier performs type assignment as well as membership checking. Two linear-
time algorithms for type assignment have been implemented. One requires two-pass
processing of XML documents, and the other is dedicated to TDLL(1) grammars without
the deterministic constraint.

— Relaxer: This is a Java class generator. Given a RELAX module, Relaxer generates
Java classes that represent XML documents permitted by the module. These Java
classes receive XML documents as DOM trees and perform type assignment. This type
assignment uses top-down non-deterministic automata by (limited) backtracking.

8 Conclusion

A mathematical framework using formal language theory to compare various XML schema lan-
guages is presented. In our framework, a normal form representation for regular tree grammars,
ambiguities in general marked regular expressions and model groups, and various subclasses of reg-
ular tree languages are defined. Further, a detailed analysis of the closure properties and expressive
power of the different subclasses is presented. Finally, results on the complexity of membership
checking and type resolution for various XML schema languages are presented.

One class of grammars which we did not describe in great detail is TDLL(1) grammars without
deterministic constraint. However, we believe that this class of grammars will play an important
role because of its several useful features — (a) membership checking and type assignment can be
done in linear time in the event model, and (b) it is strictly more expressive than TDLL(1) grammars
with deterministic constraint and single-type constraint grammars, though strictly less expressive
than TD(1) grammars.

We expect a future XML processing system will behave as follows: A server does XML pro-
cessing, and the result of XML processing is an XML document and a regular tree grammar, as in
XDuce. The server will try to evaluate if the regular tree grammar has an equivalent representation
as, say, a TDLL(1) grammar. If yes, it will convert the grammar to that form. The server will then
send the document and the grammar to the client. Now the client gets a document and a TDLL(1)
or regular tree grammar. The client might wish to do more processing, but might be limited by
memory considerations. If the grammar the client gets is a regular tree grammar, and the client
has memory limitations, it will try to convert the grammar into the “tightest” possible TDLL(1)
grammar, and then do the processing.

Though our work provides the framework for such systems, there are several problems that
are still to be answered before we can come up with good solutions — for example, what is the
“tightest”, say, TDLL(1) grammar for a given regular tree grammar? There are several other
interesting research topics, one of them is k lookaheads in the vertical and horizontal directions.
Also the algorithmic aspects of type checking still pose lot of challenges — for example, what is the
“precise” class of grammars for which we can do type assignment in the event model? Also error
recovery and error messages are important to implementations.
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