
WSBen: A Web Services Discovery and Composition Benchmark

Seog-Chan Oha, Hyunyoung Kilb, Dongwon Leec, and Soundar R. T. Kumaraa

a Department of Industrial and Manufacturing Engineering
b Department of Computer Science and Engineering
 c College of Information Sciences and Technology

Penn State University, PA 16802, USA
{seogchan, hkil, dongwon, skumara}@psu.edu

Abstract

A novel benchmark, WSBen, for testing web services
discovery and composition is presented. WSBen
includes: (1) A collection of synthetic web services
(WSDL) files with diverse characteristics and sizes;
(2) Test discovery and composition queries and
solutions; and (3) External files for statistical analysis
and AI planners. Users can fine-tune the generated
WSDL files using various parameters such as
skewness or matching type. It is our hope that WSBen
will provide useful insights for researchers evaluating
the performance of web services discovery and
composition algorithms and softwares.

1. Introduction

A web service, w, specified in WSDL files, is

similar to an API file having a list of functions with
two sets of parameters: for SOAP
request (as input) and for SOAP
response (as output). When one has a request r that
has initial input parameters and desired output
parameters , one needs to find a web service w
that can fulfill r such that (1) and (2)

. Finding a web service that can fulfill r
alone is referred to as Web Service Discovery (WSD)
problem. When it is impossible for one web service to
fully satisfy r, one the other hand, one has to compose
multiple web services , such that (1)

for all , can be grounded when

is required at a particular stage in composition,

and (2) . This problem is
often called as Web Service Composition (WSC)
problem.

,...},{ 21 IIwin =
,...},{ 21 OOwout =

inr

outr

inin wr ⊇

outout wr ⊆

},,,{ 21 nwww K

},,2 K,{ 1 ni wwww ∈

i
inw

i
outw

out
n
outoutin rwwr ⊇)(1 UKUU

As a growing number of web services are available
on the Web and in organizations, finding and
composing the right set of web services become ever
more important. As a result, in recent years, a plethora
of research work and products on WSD and WSC
problems have appeared1. In addition, the web service
research community has hosted competition programs
(e.g., EEE052, ICEBE053) to solicit algorithms and
softwares to discover pertinent web services and
compose them to make value-added functionality.
Despite all this attention, however, there have been
very few test environments available for evaluating
such algorithms and softwares.

Therefore, the need for a benchmark naturally arise
to evaluate and compare algorithms and softwares for
the WSD and WSC problems. In particular, the
benchmark must have WSDL files and test queries that
can represent diverse scenarios. Often, however, test
environments used in research and evaluation have
only skewed test cases that do not necessarily capture
real scenarios. To demonstrate our claim, let us
consider the following observation.

Observation. We first downloaded 1,544 raw WSDL
files4 that Fan et al. [5] gathered from real-world web
services registries, such as xMethod or BindingPoint.
After weeding out invalid WSDL files, we had 670

1 At the time this paper was written, there were about 900 and 80
scholarly articles mentioning “web services composition” at Google
Scholar and CiteSeer, respectively.
2 http://www.comp.hkbu.edu.hk/~eee05/contest/
3 http://www.comp.hkbu.edu.hk/~ctr/wschallenge/
4 http://rakaposhi.eas.asu.edu/PublicWebServices.zip

valid WSDL files left. Then, we measured how many
distinct parameters each WSDL file contained.
Suppose that given a parameter, p, we denote the
number of occurrences of p as #(p). That is, #(“pwd”)
indicates the number of occurrences of the parameter
“pwd”. Figure 1(a) illustrates this distribution, where
the x-axis is #(p) and the y-axis is the number of
parameters with the same #(p) value. The distribution
has no humps. We also plotted a power-function,

over the #(p) distribution and found that the
exponent

βα)/1(k
β is 1.1394. Although 1.1394 does not

suffice the requirement to be the power law [13], the
distribution is skewed enough to be seen as the Zipf-
like distribution. Indeed, the parameters such as
“license key”, “start date”, “end date,” or “password”
have a large #(p) value while most parameters appear
just once. This observation also implies the existence
of hub parameters, which appear in web services
frequently and serve important roles on the inter-
connections between web services.

y = 107.03x-1.1394

0

200

400

600

800

1000

1200

1400

0 200 400 600
#(p)

of

 p
ar

am
et

er
s

(a) Real web services

y = 66.883x-0.3954

0

50

100

150

200

250

300

0 200 400 600 800 1000
#(p)

of

 p
ar

am
et

er
s

(b) Synthetic web services from ICEBE05

Figure 1. #(p) distributions.

Similarly, we had plotted a graph using synthetic

WSDL files that were used in ICEBE05. Among the
18 test beds used in ICEBE05, in the interest of space,
we show a graph for 100-32 of Composition-2 (other
cases show a similar pattern). All ICEBE05 test beds
have 5.0≤β and four humps equally. Figure 1(b)
shows four humps at around 1, 100, 200, and 800 with
the highest value at third hump. This distribution shape
differs considerably from real public web services of
Figure 1(a). That is, the test environments of ICEBE05
do not necessarily capture characteristics of real web

services. Since diverse scenarios need to be evaluated
in testing, any benchmark for WSD and WSC
problems must be able to generate both cases shown in
Figure 1, in addition to many other cases (to be shown
in Sections 2 and 3).

To address these needs and shortcomings, we have
built WSBen 5 , a web service discovery and
composition benchmark. The WSBen has two main
characteristics: (1) flexible web services matching
framework, and (2) diverse web services network
models. In the following two sections, we describe
each characteristic in detail. Table 1 summarizes
important notations used in this paper.

Table 1. Summary of notations
Notation Meaning

P A set of parameters
W A set of web services
r A query (by users or s/w agents),

>=< outin rrr , where, is initial input

parameters and is goal parameters.

Prin ⊆
Prout ⊆

)(# p The parameter usage of . It is the total
occurrence number of the parameter in the
corresponding web service repository.

Pp∈

)(# AIn The total number of occurrences of the
parameter set A in all , , inw Ww∈ PA ⊆

)(# AOut

The total number of occurrences of the
parameter set A in all , , outw Ww∈ PA⊆

})({* pG

The minimum sum of costs to achieve Pp∈

starting from ,where costs means the number

of arcs taken to reach from in a
parameter node network

inr
p inr

2. Flexible Matching Framework

The first feature of WSBen is its flexible matching

framework. To determine when an operation Op1 in a
web service can invoke another operation Op2 in
another web service, it should be considered if their
corresponding input and output parameters are
“matching.” When all web services agree to use a
single ontology set, the matching can be easily solved
– if two parameters have the same spellings, then they
are matched. However, since individual web services
are often created in isolation, matching their
vocabularies is problematic because of different
formats, abbreviation, typo-graphical error, and/or
homonyms. For instance, different terms may be used
to refer to the same meaning (e.g., “cost” and “price”).
Therefore, using literal equality as the only way to

5 WSBen is pronounced like “wee-s-ben.”

determine “matching” is too rigid to handle current
web services environments. Possible matching
schemes are [10]:

• Exact matching: two parameters are
lexicographically the same.

• Approximate matching: two parameters match if
their similarity determined from a distance
function is beyond some threshold. For instance,
parameters “password” and “passwd” are
considered to be a match if Edit distance function
is used with the threshold of 2, or parameters
“license-Fee” and “FeeForLicense” can be a
match if, after proper token segmentation, cosine
similarity function between {licence, fee} and
{Fee, For, License} is used with TF/IDF weight.

• Semantic matching: two parameters match if their
“semantic” meaning is interchangeable. For
instance, “cost” and “fee” are synonyms according
to WordNet [18] or “4 WHL DR” and “AX56”
may refer to the same meaning according to the
provided RDF/OWL documents.

In addition, one can also consider another matching
scheme from the operation perspective – “partial” and
“full” matching. In general, given and , if

can be invoked at the current information state and
, then can “fully” match . On the

other hand, if cannot fully match but can

match a subset of , that is

, then can

“partially” match .

1w 2w
1w

21
inout ww ⊇ 1w 2w

1w 2w 1
outw

2
inw

)()(1221
outininout wwww ⊆¬∧≠∩ φ 1w

2w
When only full matching is considered in the WSC

problem, it can be seen as a single-source shortest path
problem whose computational complexity is known as
polynomial [1]. On the other hand, when both full and
partial matching must be considered concurrently, the
problem becomes a decision problem to determine the
existence of a solution of k operators or less for
propositional STRIPS planning, with restrictions on
negation in pre- and post-conditions [6]. Its
computational complexity is proved to be NP-complete
[14]. Therefore, when the number of web services to
search is not small, finding an optimal solution to the
WSC problem (i.e., a chain of web services to invoke)
is prohibitively expensive, leading to approximate
algorithms instead.

3. Diverse Web Services Network Models

A set of web services form a network (or graph).

Depending on the policy to determine nodes and edges

of the network, there are varieties: web service level
(i.e., coarse granularity), operation level, and
parameter level (i.e., fine granularity) models.

The graph at the middle of Figure 2 has a bipartite
graph structure and consists of three distinct kinds of
vertices (i.e., parameter, operation, and web-service
node) and directed arcs between bipartite nodes (i.e.,
operation nodes and parameter nodes). An edge
incident from a parameter node to an operation node
means that the parameter is one of the inputs of the
corresponding operation. Reversely, an edge incident
from an operation node to a parameter means that the
parameter is one of the outputs of the corresponding
operation. The graph has three web services, labeled
WS1 to WS3. WS1 has two operations Op11 and
Op12, and WS2 and WS3 have one operation, Op21
and Op31, respectively. It also has eleven parameters,
labeled A to K. According to the node granularity, we
can project the upper graph into three different web
service networks.

<WS3.wsdl>
<WS2.wsdl>

<?xml version="1.0"?>
<definitions name=“WS1“ …>

<message name=“WS1_Request">
<part name=“A" type= "xsd:string"/>
<part name=“B" type= "xsd:string"/>
</message>

<message name=“WS1_Op11_Response">
<part name=“C" type= "xsd:string"/>
<part name=“D" type= "xsd:string"/>
</message>

<message name=“WS1_Op12_Response">
<part name=“E" type= "xsd:string"/>
<part name=“F" type= "xsd:string"/>
</message>

<portType name=“WS1">
<operation name=“Op11">
<input message="tns:WS1_Request"/>
<output message="tns:WS1_Op11_Response"/>
</operation>

<operation name=“Op12">
<input message="tns:WS1_Request"/>
<output message="tns:WS1_Op12_Response"/>
</operation>
</portType>

</definitions>

<WS1.wsdl>

A
C

D

E F
G

H

I
J

K

B

Parameter node
network, Gp

Web service node
network, Gws

Operation node
network, Gop

Op11

Op12 Op21 Op31

WS1 WS2 WS3

WS3WS2

Operation
Node

Parameter
Node A B C D E F G H I J K

Web Service
Node

Op11 Op12 Op21 Op31

WS1

A B C D E F

Op11 Op12

WS1 WS2

A F G H I

Op21

WS3

A H I J K

Op31

Figure 2. Web service networks

• Parameter-Node Network: A graph Gp(Vp, Ep),
where Vp is a set of all parameter nodes and Ep is a
set of edges. An edge (pi, pj) is directly incident
from input parameters pi ∈Vp to output parameters
pj∈Vp, where there is an operation that has an input
parameter matching pi and an output parameter
matching pj. For example, A→Op11→C in the
upper graph is projected into A→C in the parameter
node network.

• Operation-Node Network: A graph Gop(Vop, Eop),
where Vop is a set of all operation nodes, and Eop is a
set of edges. An edge (opi, opj) is incident from
operation opi∈Vop to operation opj∈Vop, where opi
can fully or partially match opj. For example, Op12
partially matches Op21 which, in turn, partially
matches Op31 in the upper graph. Therefore,
Op12→Op21→Op31 can be shown in the operation
node network.

y = 117.14x-1.1152

0.1

1

10

100

1000

10000

1 10 100 1000

outgoing edge degree

of

 n
od

es

y = 113.17x-1.0701

0.1

1

10

100

1000

10000

1 10 100 1000

outgoing edge degree

of

 n
od

es

y = 57.022x-0.7327

0.1

1

10

100

1000

10000

1 10 100 1000

outgoing edge degree

of

 n
od

es

(a) exact matching (b) approximate matching using TF/IDF (c) semantic matching using WordNet

Figure 4. Outgoing edge distribution of operation node network

• Web-service Node Network: A graph Gws(Vws, Ews),

where Vws is a set of all web-service nodes, and Ews
is a set of edges. An edge (wsi, wsj) is incident from
web-service node wsi∈ Vws, to wsj∈ Vws, where there
is at least one edge between any operation in wsi and
any operation in wsj. For example, since WS1
possesses Op12 and WS2 possesses Op21 in the
upper graph, WS1→WS2 appears in the web
service node network.

1. Parameter node network. Figure 3(a) shows the
parameter node network for the public web services
where 1,612 nodes and 9,509 edges are discovered. Its
network diameter is 8 and average out- and in-degree
are 4.22 and 19.1, respectively. Note that the outgoing
edge distribution of the network has a similar result to
the distribution of Figure 1(a).)(# p

The study of parameter node network gives us an
implication that a WSC problem can be relaxed and
approximated by a search problem defined in a
parameter space.

(a) public web services (b) workflow web services

Figure 3. Diverse parameter networks

When it comes to workflow web service domains
(e.g., business, scientific, medical workflow), we can
conjecture that their parameter node networks are
different from public web services because the
parameters used in workflows tend to be domain-
specific or professional terms. Thus, and

 are likely to be uniformly distributed. In
other words, a web service is likely to be connected to
a few number of neighboring web services in the
succeeding stage of a workflow. As a result, a

parameter node network like Figure 3(b) can be
expected.

})({# pIn
})({# pOut

2. Operation node network. For the public web
services, the outgoing edge distribution of the
operation node network is shown in Figure 4(a), where
the x-axis represents the number of outgoing edges of
a node and the y-axis represents the number of the
node with the same outgoing edges. In this context, the
number of outgoing edges means how many times an
operation gets involved to invoke other operations.
Note that we allow an edge between operations
whenever they match partially. When we consider a
power function, the exponent β has 1.1152 which is
enough to say that it follows a Zipf-like distribution.
From this observation, we can imply that the public
web services have hub operations that can play a
critical role in finding intermediate operations in a
WSC problem.

It is possible to draw different versions of
operation node networks if one uses the diverse
parameter matching schemes suggested in Section 2.
Figure 4(b) is drawn using TF/IDF, which is an
approximate parameter matching scheme, and Figure
4(c) is drawn using WordNet which enables semantic
matching between parameters. Both graph follows
Zipf-like distribution (i.e., β of Figures 4(b) and 4(c)
are 1.07 and 0.7327, respectively). Note that in general,
approximate and semantic matching relax the
parameter matching condition so the number of edges
in the operation node network increases.

3. Web services node network. The outgoing edge
distribution of the web service node network for the
public web services is shown in Figure 5, where both x
and y axis have the same meaning as the operation
node network. In this context, the number of outgoing
edges means how many times a web service has a
relationship with other web services through their
operation matching. This network represents the
relationship between web services by
(1) unifying several edges between operations in two

different web services, and (2) wiping out all edges
between internal operations in the same web service.
By fitting it with a power function, we obtain 1.3073
as β , and again the distribution forms Zipf-like shape.

y = 75.416x-1.3073

0.1

1

10

100

1000

1 10 100

outgoing edge degree

of

 n
od

es

Figure 5. Outgoing edge distribution of the web
service node network using exact matching

4. WSBen: Web Services Benchmark

The WSBen provides a set of functions to simplify

the generation of test environments for WSD and WSC
problems. Figure 6 shows the overview of WSBen. In
detail, WSBen consists of the following
functionalities:

• Input Parameters: users specify five parameters to
control the generated synthetic WSDL files and
their characteristics. The 5-tuple input parameters
are named as xTB, which internally generate a
cluster network. xTB are discussed in more detail
below.

• Cluster network, Gcl(Vcl, Ecl): Based on the given
xTB that users provide, clusters with atomic
parameters are created as many as |J| and then the
incidence matrix Mj, to specify the directed edges
between clusters is obtained. Based on J and Mj, a
Cluster Network, Gcl(Vcl, Ecl) is defined. Each node,
cli∈ Vcl corresponds to j∈J, and each edge, <i,j>∈Ecl
is defined in Mj.

• Test-bed and sample queries: By randomly picking
a web service template implemented in arcs of the
cluster network, WSDL files are generated. The
user can generate sample test queries,

 in this step. Note that is a set of
atomic parameters contained in the first cluster and

consists of the first five largest parameters with
, which is the number of arcs needed to

reach p from in the parameter network. Simply,
parameters in are farthest away from .

>=< outin rrr , inr

outr
})({pG

inr

outr inr
• Test and evaluation: it is possible to export both the

web service WSDL files and test queries into files
in PDDL [17] and STRIPS format, enabling

concurrent comparison with state-of-the-art AI
planners. Additionally, it can export of all
parameters into external files in comma separate
file format (i.e., CSV), enabling users to analyze
the repository data statistically.

)(# p

Cluster Network
Gcl(Vcl, Ecl)

Test-bed &
Sample queries

xTB=<|J|, Co, η, Rl, |W|>

PDDL,
Strips

Input
Parameters

W: Web services
Repository

J: Clusters
consisting of
parameters

Incident matrix
between
clusters

r=(rin,rout):
Sample
queries

PDDL,
Strips

Web service
composers

General AI planners
Test &

Evaluation

Solution
to r

WSPR

Figure 6. Overview of WSBen

Input Parameters. The 5-tuple input parameters
consist of: >=< ||,,,, WRlCoJxTB η . Provided that
the first four tuple is grounded, one can build a cluster
network like Figure 7 where clusters are nodes and
web service templates are directed edges. At a higher
level, web services can be assumed to be built on their
application domains (e.g., travel, reservation,
entertainment, and look-up services for diverse areas).
One application domain can be projected into a
parameter cluster, which contains a set of atomic
parameters that occur together with similar frequency
[4]. More precisely, two parameters Ppp ∈21, in one
cluster have the same co-occurrence probability such
that)|Pr()|Pr(2112 pppp = where,

})]({#})({[#
})],({#}),({[#)|Pr(

11

2121
12 pOutpIn

ppOutppInpp
+
+

=

In this context, web services are defined as
transformations between two different clusters. That is,
<i,j>∈Ecl in Gcl(Vcl, Ecl) becomes web service
templates. In detail, each tuple of xTB is explained as
follows:

(1) is the set of clusters and denotes the total
number of clusters of a test bed.

J || J
Jj∈ and

||,,2,1 Jj K=
(2) is the co-occurrence probability of

parameters in a cluster . is grounded
with one distribution selected from following
alternatives:

)(jCo
Jj∈)(jCo

• skewed : jejskew αββα −=),;(

• bell:))2/||((exp),;(jjABSOLUTEjbell −×−= αββα
• uniform: αα =);(juni

 Where, α and β are constants given by users such
that the value of the distribution must be between 0
and 1.

(3)η is the parameter condense rate. This value is used
to specify the size of a cluster. That is, the total
number of parameters in cluster is j)(/ jCoη .

(4) is the association distribution of a cluster
and is used to represent the outgoing edge

degree of . shares the alternative
distributions of . For example,

= means that each cluster in a
cluster network has outgoing edges incident to 20%
of other clusters.

)(jRl
Jj∈

j)(jRl
)(jCo

)(jRl)2.0,(jUni

(5) denotes the total number of web services of a
test bed.

||W

For example, Figure 7 shows a cluster network
specified by . Based on
the network, we can generate |W| size of web services
by (1) randomly choosing <i,j>∈E

>< ||),1.0(,3),6.0(,100 Wuniuni

cl; and (2) generating
input parameters from cluster i according to ,
and output parameters from cluster j according to

. In the case that no parameter is generated,
dummy parameters ‘S’ and ‘T’ are filled in the input
and output parameters, respectively. Note that each
parameter in one cluster can map into either an input
parameter or an output parameter.

)(iCo

)(jCo

Both and are paramount factors to determine
the topology of a cluster network. By specifying both

and with skewed distributions, we can
obtain a test bed which has a scale-free shaped
parameter node network as shown Figure 8(a). We
name this kind of test bed a skew-skew test bed.
Similarly, a test bed characterized by a random-
network shaped network can be obtained by specifying
both and with uniform distributions as
shown in Figure 8(c). We name this type of test bed as
uni-uni test bed. It is possible that the skew-skew and
uni-uni test bed can approximate “public web services”
and “workflow web services” respectively, based on
the arguments in Section 3.

Co Rl

)(jCo)(jRl

)(jCo)(jRl

5. Illustrative Example

In this section, we demonstrate how to generate the
benchmark using WSBen and how to run WSC

products over the generated benchmark. In this paper,
we use general AI planners in place of WSC products.

a1 a5
a2 a3

a4

d1 d5
d2 d3

d4

b1 b5
b2 b3

b4 c1 c5
c2 c3

c4

e1 e5
e2 e3

e4 f1 f5
f2 f3

f4

h1 h5
h2 h3

h4 i1 i5
i2 i3

i4 j1 j5
j2 j3

j4

g1 g5
g2 g3

g4

Cluster Parameter Web service
template S1

S1

S2

S3

S4

S7S6

S8

S9

S5

S10

Figure 7. A cluster network example

Figure 8. Synthetic parameter node networks

First, we defined two benchmark input parameters:
(1) aTB: >< ||),2.0(,1),2.0(,100 Wuniuni ; and (2) cTB:

>< ||),5.0,5.0(,1),5.0,5.0(,100 Wskewskew . aTB is a
kind of uni-uni test bed while cTB is classified as a
skew-skew test bed.

Second, we created a cluster network for each aTB
and cTB. Since the networks were too complex due to
their large number of clusters and atomic parameters,
we omit drawing the networks such as Figure 7 and
their topologies such as Figure 8.

Table 2. A sample query and its solution
inr outr Solution

{par1,
par2,
par3,
par4,
par5}

{par483,
par485,
par134,
par137,
par 136}

Fully Matching

rin

ws8

ws
2002

ws
2011

ws
2606

ws
1170

ws
1548

ws
2100

rout

Partially Matching

Third, for each aTB and cTB, 6 test beds are

prepared by varying |W| as 1,000, 3,000, 5,000, 7,000,
9,000, and 11,000, respectively. For each of the 12 test
beds, we prepared one test query by using the test
query generation option of WSBen. The solutions to
the test queries are obtained by WSPR [11]. Table 2

shows an example query and its solution
for . >< 3000),2.0(,1),2.0(,100 uniuni

Figure 9(a) shows #(p) distribution of aTB with
|W|=11,000, which forms a bell curve. It coincides with
the expected distribution since both Co and have
the same uniform distribution and therefore,
theoretically all parameters have the same chance of
occurring. Furthermore, since |W| is 11,000, the test-
bed obeys the law of large numbers statistically, and
the shape of the distribution converges to a bell or
normal curve.

Rl

Meanwhile, Figure 9(b) shows #(p) distribution of
cTB, which follows a Zipf-like distribution. It is also
an expected result because both Co and have the
same skewed distribution and therefore, most
parameters have a very low chance of occurring, but a
very small number of parameters contained in hub
clusters have high possibility of occurring. Note that in
a cluster network, if a cluster has very large number of
outgoing or incoming edges compared with other
clusters, it is called a hub-cluster. When the power
function is fitted, the exponent

Rl

β is 1.5442, meaning
that #(p) distribution is close to the power-law
distribution.

Last, in the experiments described below, we
evaluated the performance of three prominent AI
planners – Graphplan [2], Blackbox [7], and IPP.
Blackbox and IPP are extended planning systems that
originated from Graphplan. In particular, Blackbox is
extended to be able to map a plan graph into a set of
clauses for checking the satisfiability problem.
Consequently, it can run even in large number of
operators. For comparing the performance of three
planners, we used the following two evaluation
metrics:

• #W: the number of web services in a solution
• Time: the time (in millisecond or minute) taken to
 compose a solution

Note that all planners are an optimal parallel planner
that minimizes the number of time steps but not
necessarily the number of actions. All planners run
with their default options, except that the maximum
number of nodes for Blackbox and Graphplan was set
to 32,768 and 10,000, respectively. Commonly, the
time to read operator and fact files is not included in
their Time measure. The experiments were performed
on Linux with three Intel® Xeon™ CPU running at
2.4GHz with 8Gb RAM. Note that Blackbox and IPP
(resp. Graphplan) accept the PDDL format (resp.
STRIPS). Those files were generated by the auxiliary
file generation option of WSBen.

The results of the first experiment dealing with
aTB are shown in Table 3. As featured with the
satisfiability solver, Blackbox generated all solutions,
while IPP and Graphplan failed in many cases due to
their internally confined array size problem.

As shown in Table 4, the second experiment using
cTB shows that IPP and Graphplan failed to find
solutions for all queries due to the complex network
topology of cTB. Blackbox also failed in some cases.
The complete solutions to aTB and cTB by WSPR are
shown in Table 5.

y = 0.0046x1.3429

0

5

10

15

20

0 50 100 150 200 250

#p

of

 p
ar

am
et

er
s

(a) aTB

y = 48845x-1.5442

0

100

200

300

400

500

600

700

800

0 500 1000 1500
#p

of

 p
ar

am
et

er
s

(b) cTB

Figure 9. #(p) distributions

Table 3. aTB: Time(seconds) and #W
Blackbox IPP Graphplan Size

(1,000) Time #W Time #W Time #W
1 0.26 16 1.5 16 0.04 17
3 0.32 13 6.75 13 0.03 9
5 0.44 8 15.16 8 0.04 4
7 0.55 4 27.46 4 - -
9 0.211 7 2.86 7 - -

11 3.215 17 - - - -

Table 4. cTB: Time(seconds) and #W of Blackbox
Size

(1,000) 1 3 5 7 9 11

Time 170 407 805 672 - 1,541
#W 17 16 11 12 - 10

Summary: From the experiments using WSBen, it
is found that cTB is much harder to solve than aTB (e.g,
in Table 4, the minimum Time exceeded two minutes).
This implies that the queries in the uni-uni test bed can

be solved mainly using the full matching operation.
However, the service composition in the skew-skew
test bed requires both matching operations, resulting in
planners having to spend more computational resource.

Table 5. #W of WSPR
Size(1,000) 1 3 5 7 9 11

aTB 19 7 6 3 4 12
cTB 14 9 11 9 23 12

6. Related Work

Constantinescu et al. [3] proposed a scalable
syntactic test bed. Compared to [3], our WSBen is
inspired by extensive studies on real web services and
therefore, is designed to support various web service
network topologies and distributions (unlike [3]). In
addition, WSBen provides benchmarks that consist of
various supports to simplify the testing process. We
used XMark [12], an XML benchmark suite, as a
reference model that can help identify the list of
functions which an ideal benchmark should support.

As an independent research branch, web service
quality testing has been established where quality and
trustworthiness of web services are considered [8]. It is
very unlikely that a business organization will
dynamically select a partner from the Internet merely
based upon the information found from some public
registry without being highly confident. Our WSBen
can be used to evaluate the quality and trustworthiness
of web services in question.

There are two main approaches for WSC
depending on the use of domain knowledge. First, the
template-workflow based approach is to use software
programs and domain experts to bind manually-
generated workflows to the corresponding concrete
web services. METEOR-S [15] is an example of this
approach. Second, various AI planning techniques
have been applied to the WSC problem, ranging from
simple classical STRIPS-style planning to an extended
estimated regression planning [16]. We believe that
our WSBen is complementary for METEOR-S or AI
Planning based tools for the WSC problem.

7. Conclusion

A novel web service benchmark, WSBen 6 , is
presented. Based on the snapshots of real-world web

6 Current implementation of WSBen is limited as follows: (1) it
supports only the exact matching without type compatibility check,
and (2) each web service contains only one operation so that a web
service can be viewed as equivalent to an operation. We are currently
working to extend it to fully support features described in Sections 2
and 3.

services and the assumption of workflow applications,
WSBen is designed to test web service discovery and
composition problems for diverse characteristics and
sizes. Further research is needed to extend WSBen to
support approximate and semantic matching among
web services. WSBen is available for download at:
http://www2.ie.psu.edu/Kumara/Research/lisq/inde
x_files/wsben/WSBen.htm

8. References

[1] D. Bertsekas, “Dynamic Programming and Optimal
Control”, Vol 1, 2nd edn. Athena Scientific, 2000.
[2] A. Blum, and M. Furst, “Fast planning through planning
graph analysis”, Proceeding of IJCAI, 1995.
[3] I. Constantinescu, B. Faltings, and W. Binder, “Large
scale testbed for type compatible service composition”,
Proceeding of ICAPS, 2004.
[4] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J.
Zhang, “Similarity search for web services”, Proceeding of
VLDB, 2004.
[5] J. Fan and S. Kambhampati, “A snapshot of public web
services”, SIGMOD Record, 34(1), 2005.
[6] R. E. Fikes, and N. Nilsson, “STRIPS: A new approach to
the application of theorem proving to problem solving”,
Artificial Intelligence, 5(2), 1971.
[7] H. Kautz, and B. Selman, “Unifying SAT-based and
Graph-based planning”, Proceeding of IJCAI, 1999.
[8] J. Zhang, and L.-J. Zhang, “Web services quality testing”,
Int’l J. of Web Services Research, 2(2), 2005
[9] M. E. J. Newman, S. H. Strogatz, and D. J. Watts,
“Random graphs with arbitrary degree distributions and their
applications”, Phys. Rev. E 64, 026118, 2001.
[10] S.-C. Oh, D. Lee, and S. Kumara, “A comparative
illustration of AI planning-based web services composition”,
ACM SIGecom Exchanges, 5(5), 2005.
[11] S.-C. Oh, D. Lee, and S. Kumara, “WSPR: An effective
web service composition algorithm”, Submitted to Int’l J. of
Web Services Research, Special issue on web service
discovery and composition, 2006.
[12] Xmark XML Benchmark, http://monetdb.cwi.nl/xml/
[13] J. P. Denning, “Network Laws”, Communications of the
ACM, 47(11), 2004.
[14] T. Bylander, “The computational complexity of
propositional STRIPS planning”, Artificial Intelligence,
69(1-2), 1994.
[15] K. Sivashanmugam, J. A. Miller, A. Sheth, and K.
Verma, “Framework for semantic web process composition”,
Int’l J. of Electronic Commerce, 9(2), 2004.
[16] D. McDermott, “Estimated-regression planning for
interactions with web services”, Proceeding of AIPS, 2002.
[17] D. McDermott, “A heuristic estimator for means-ends
analysis in planning”. Proceeding of AIPS, 1996.
[18] Cognitive Science Laboratory in Princeton University,
http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

	1. Introduction
	2. Flexible Matching Framework
	3. Diverse Web Services Network Models
	4. WSBen: Web Services Benchmark
	5. Illustrative Example
	6. Related Work
	7. Conclusion
	8. References

