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Abstract 
 
A novel benchmark, WSBen, for testing web services 
discovery and composition is presented. WSBen 
includes: (1) A collection of synthetic web services 
(WSDL) files with diverse characteristics and sizes; 
(2) Test discovery and composition queries and 
solutions; and (3) External files for statistical analysis 
and AI planners. Users can fine-tune the generated 
WSDL files using various parameters such as 
skewness or matching type. It is our hope that WSBen 
will provide useful insights for researchers evaluating 
the performance of web services discovery and 
composition algorithms and softwares.  
 
1. Introduction 

 
A web service, w, specified in WSDL files, is 

similar to an API file having a list of functions with 
two sets of parameters:  for SOAP 
request (as input) and  for SOAP 
response (as output). When one has a request r  that 
has initial input parameters  and desired output 
parameters , one needs to find a web service w  
that can fulfill r  such that (1)  and (2) 

. Finding a web service that can fulfill r 
alone is referred to as Web Service Discovery (WSD) 
problem. When it is impossible for one web service to 
fully satisfy r, one the other hand, one has to compose 
multiple web services , such that (1) 

for all ,  can be grounded when 

is required at a particular stage in composition, 

and (2) . This problem is 
often called as Web Service Composition (WSC) 
problem.  
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As a growing number of web services are available 
on the Web and in organizations, finding and 
composing the right set of web services become ever 
more important. As a result, in recent years, a plethora 
of research work and products on WSD and WSC 
problems have appeared1. In addition, the web service 
research community has hosted competition programs 
(e.g., EEE052, ICEBE053) to solicit algorithms and 
softwares to discover pertinent web services and 
compose them to make value-added functionality. 
Despite all this attention, however, there have been 
very few test environments available for evaluating 
such algorithms and softwares.  

Therefore, the need for a benchmark naturally arise 
to evaluate and compare algorithms and softwares for 
the WSD and WSC problems. In particular, the 
benchmark must have WSDL files and test queries that 
can represent diverse scenarios. Often, however, test 
environments used in research and evaluation have 
only skewed test cases that do not necessarily capture 
real scenarios. To demonstrate our claim, let us 
consider the following observation. 

Observation. We first downloaded 1,544 raw WSDL 
files4 that Fan et al. [5] gathered from real-world web 
services registries, such as xMethod or BindingPoint. 
After weeding out invalid WSDL files, we had 670 

 
1 At the time this paper was written, there were about 900 and 80 
scholarly articles mentioning “web services composition” at Google 
Scholar and CiteSeer, respectively. 
2 http://www.comp.hkbu.edu.hk/~eee05/contest/ 
3 http://www.comp.hkbu.edu.hk/~ctr/wschallenge/ 
4 http://rakaposhi.eas.asu.edu/PublicWebServices.zip 



valid WSDL files left. Then, we measured how many 
distinct parameters each WSDL file contained. 
Suppose that given a parameter, p, we denote the 
number of occurrences of p as #(p). That is, #(“pwd”) 
indicates the number of occurrences of the parameter 
“pwd”. Figure 1(a) illustrates this distribution, where 
the x-axis is #(p) and the y-axis is the number of 
parameters with the same #(p) value.  The distribution 
has no humps. We also plotted a power-function, 

over the #(p) distribution and found that the 
exponent

βα )/1( k
β is 1.1394. Although 1.1394 does not 

suffice the requirement to be the power law [13], the 
distribution is skewed enough to be seen as the Zipf-
like distribution. Indeed, the parameters such as 
“license key”, “start date”, “end date,” or “password” 
have a large #(p) value while most parameters appear 
just once. This observation also implies the existence 
of hub parameters, which appear in web services 
frequently and serve important roles on the inter-
connections between web services. 
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(a) Real web services 

y = 66.883x-0.3954
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(b) Synthetic web services from ICEBE05 

Figure 1. #(p) distributions. 
 
Similarly, we had plotted a graph using synthetic 

WSDL files that were used in ICEBE05. Among the 
18 test beds used in ICEBE05, in the interest of space, 
we show a graph for 100-32 of Composition-2 (other 
cases show a similar pattern). All ICEBE05 test beds 
have 5.0≤β  and four humps equally. Figure 1(b) 
shows four humps at around 1, 100, 200, and 800 with 
the highest value at third hump. This distribution shape 
differs considerably from real public web services of 
Figure 1(a). That is, the test environments of ICEBE05 
do not necessarily capture characteristics of real web 

services. Since diverse scenarios need to be evaluated 
in testing, any benchmark for WSD and WSC 
problems must be able to generate both cases shown in 
Figure 1, in addition to many other cases (to be shown 
in Sections 2 and 3). 

To address these needs and shortcomings, we have 
built WSBen 5 , a web service discovery and 
composition benchmark. The WSBen has two main 
characteristics: (1) flexible web services matching 
framework, and (2) diverse web services network 
models. In the following two sections, we describe 
each characteristic in detail. Table 1 summarizes 
important notations used in this paper. 

Table 1. Summary of notations  
Notation Meaning 

P  A set of parameters 
W  A set of web services 
r  A query (by users or s/w agents), 

>=< outin rrr , where, is initial input 

parameters and is goal parameters. 

Prin ⊆
Prout ⊆

)(# p  The parameter usage of . It is the total 
occurrence number of the parameter in the 
corresponding web service repository. 

Pp∈

)(# AIn  The total number of occurrences of the 
parameter set A  in all , ,  inw Ww∈ PA ⊆

)(# AOut
 

The total number of occurrences of the 
parameter set A in all , ,  outw Ww∈ PA⊆

})({* pG
 

The minimum sum of costs to achieve Pp∈  

starting from ,where costs means the number 

of arcs taken to reach  from in a 
parameter node network 

inr
p inr

 
2. Flexible Matching Framework 

 
The first feature of WSBen is its flexible matching 

framework. To determine when an operation Op1 in a 
web service can invoke another operation Op2 in 
another web service, it should be considered if their 
corresponding input and output parameters are 
“matching.” When all web services agree to use a 
single ontology set, the matching can be easily solved 
– if two parameters have the same spellings, then they 
are matched. However, since individual web services 
are often created in isolation, matching their 
vocabularies is problematic because of different 
formats, abbreviation, typo-graphical error, and/or 
homonyms. For instance, different terms may be used 
to refer to the same meaning (e.g., “cost” and “price”). 
Therefore, using literal equality as the only way to 
                                                           
5 WSBen is pronounced like “wee-s-ben.”  
 



determine “matching” is too rigid to handle current 
web services environments. Possible matching 
schemes are [10]: 

• Exact matching: two parameters are 
lexicographically the same. 

• Approximate matching: two parameters match if 
their similarity determined from a distance 
function is beyond some threshold. For instance, 
parameters “password” and “passwd” are 
considered to be a match if Edit distance function 
is used with the threshold of 2, or parameters 
“license-Fee” and “FeeForLicense” can be a 
match if, after proper token segmentation, cosine 
similarity function between {licence, fee} and 
{Fee, For, License} is used with TF/IDF weight. 

• Semantic matching: two parameters match if their 
“semantic” meaning is interchangeable. For 
instance, “cost” and “fee” are synonyms according 
to WordNet [18] or “4 WHL DR” and “AX56” 
may refer to the same meaning according to the 
provided RDF/OWL documents. 

In addition, one can also consider another matching 
scheme from the operation perspective – “partial” and 
“full” matching. In general, given  and , if 

can be invoked at the current information state and 
, then  can “fully” match . On the 

other hand, if cannot fully match but can 

match a subset of , that is 

, then  can 

“partially” match .  
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When only full matching is considered in the WSC 

problem, it can be seen as a single-source shortest path 
problem whose computational complexity is known as 
polynomial [1]. On the other hand, when both full and 
partial matching must be considered concurrently, the 
problem becomes a decision problem to determine the 
existence of a solution of k operators or less for 
propositional STRIPS planning, with restrictions on 
negation in pre- and post-conditions [6]. Its 
computational complexity is proved to be NP-complete 
[14]. Therefore, when the number of web services to 
search is not small, finding an optimal solution to the 
WSC problem (i.e., a chain of web services to invoke) 
is prohibitively expensive, leading to approximate 
algorithms instead.  

 
3. Diverse Web Services Network Models 

 
A set of web services form a network (or graph). 

Depending on the policy to determine nodes and edges 

of the network, there are varieties:  web service level 
(i.e., coarse granularity), operation level, and 
parameter level (i.e., fine granularity) models.  

The graph at the middle of Figure 2 has a bipartite 
graph structure and consists of three distinct kinds of 
vertices (i.e., parameter, operation, and web-service 
node) and directed arcs between bipartite nodes (i.e., 
operation nodes and parameter nodes). An edge 
incident from a parameter node to an operation node 
means that the parameter is one of the inputs of the 
corresponding operation. Reversely, an edge incident 
from an operation node to a parameter means that the 
parameter is one of the outputs of the corresponding 
operation. The graph has three web services, labeled 
WS1 to WS3. WS1 has two operations Op11 and 
Op12, and WS2 and WS3 have one operation, Op21 
and Op31, respectively. It also has eleven parameters, 
labeled A to K. According to the node granularity, we 
can project the upper graph into three different web 
service networks. 

<WS3.wsdl>
<WS2.wsdl>

<?xml version="1.0"?>
<definitions name=“WS1“ …>

<message name=“WS1_Request">
<part name=“A" type= "xsd:string"/>
<part name=“B" type= "xsd:string"/>
</message>

<message name=“WS1_Op11_Response">
<part name=“C" type= "xsd:string"/>
<part name=“D" type= "xsd:string"/>
</message>

<message name=“WS1_Op12_Response">
<part name=“E" type= "xsd:string"/>
<part name=“F" type= "xsd:string"/>
</message>

<portType name=“WS1">
<operation name=“Op11">
<input message="tns:WS1_Request"/>
<output message="tns:WS1_Op11_Response"/>
</operation>

<operation name=“Op12">
<input message="tns:WS1_Request"/>
<output message="tns:WS1_Op12_Response"/>
</operation>
</portType>

</definitions>

<WS1.wsdl>
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Figure 2. Web service networks 

• Parameter-Node Network: A graph Gp(Vp, Ep), 
where Vp is a set of all parameter nodes and Ep is a 
set of edges. An edge (pi, pj) is directly incident 
from input parameters pi ∈Vp to output parameters 
pj∈Vp, where there is an operation that has an input 
parameter matching pi and an output parameter 
matching pj. For example, A→Op11→C in the 
upper graph is projected into A→C in the parameter 
node network. 

• Operation-Node Network: A graph Gop(Vop, Eop), 
where Vop is a set of all operation nodes, and Eop is a 
set of edges. An edge (opi, opj) is incident from 
operation opi∈Vop to operation opj∈Vop, where opi 
can fully or partially match opj. For example, Op12 
partially matches Op21 which, in turn, partially 
matches Op31 in the upper graph. Therefore, 
Op12→Op21→Op31 can be shown in the operation 
node network. 



y = 117.14x-1.1152

0.1

1

10

100

1000

10000

1 10 100 1000

outgoing edge degree

# 
of

 n
od

es

 

y = 113.17x-1.0701

0.1

1

10

100

1000

10000

1 10 100 1000

outgoing edge degree

# 
of

 n
od

es

 

y = 57.022x-0.7327

0.1

1

10

100

1000

10000

1 10 100 1000

outgoing edge degree

# 
of

 n
od

es

 
(a) exact matching (b) approximate matching using TF/IDF (c) semantic matching using WordNet 

Figure 4. Outgoing edge distribution of operation node network 
 
• Web-service Node Network: A graph Gws(Vws, Ews), 

where Vws is a set of all web-service nodes, and Ews 
is a set of edges. An edge (wsi, wsj) is incident from 
web-service node wsi∈ Vws, to wsj∈ Vws, where there 
is at least one edge between any operation in wsi and 
any operation in wsj. For example, since WS1 
possesses Op12 and WS2 possesses Op21 in the 
upper graph, WS1→WS2 appears in the web 
service node network. 

1. Parameter node network. Figure 3(a) shows the 
parameter node network for the public web services 
where 1,612 nodes and 9,509 edges are discovered. Its 
network diameter is 8 and average out- and in-degree 
are 4.22 and 19.1, respectively. Note that the outgoing 
edge distribution of the network has a similar result to 
the  distribution of Figure 1(a).  )(# p

The study of parameter node network gives us an 
implication that a WSC problem can be relaxed and 
approximated by a search problem defined in a 
parameter space. 

  
(a) public web services (b) workflow web services 

Figure 3. Diverse parameter networks 

When it comes to workflow web service domains 
(e.g., business, scientific, medical workflow), we can 
conjecture that their parameter node networks are 
different from public web services because the 
parameters used in workflows tend to be domain-
specific or professional terms. Thus,  and 

 are likely to be uniformly distributed. In 
other words, a web service is likely to be connected to 
a few number of neighboring web services in the 
succeeding stage of a workflow. As a result, a 

parameter node network like Figure 3(b) can be 
expected. 

})({# pIn
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2. Operation node network. For the public web 
services, the outgoing edge distribution of the 
operation node network is shown in Figure 4(a), where 
the x-axis represents the number of outgoing edges of 
a node and the y-axis represents the number of the 
node with the same outgoing edges. In this context, the 
number of outgoing edges means how many times an 
operation gets involved to invoke other operations. 
Note that we allow an edge between operations 
whenever they match partially. When we consider a 
power function, the exponent β has 1.1152 which is 
enough to say that it follows a Zipf-like distribution. 
From this observation, we can imply that the public 
web services have hub operations that can play a 
critical role in finding intermediate operations in a 
WSC problem.  

It is possible to draw different versions of 
operation node networks if one uses the diverse 
parameter matching schemes suggested in Section 2. 
Figure 4(b) is drawn using TF/IDF, which is an 
approximate parameter matching scheme, and Figure 
4(c) is drawn using WordNet which enables semantic 
matching between parameters. Both graph follows 
Zipf-like distribution (i.e., β of Figures 4(b) and 4(c) 
are 1.07 and 0.7327, respectively). Note that in general, 
approximate and semantic matching relax the 
parameter matching condition so the number of edges 
in the operation node network increases.  

3. Web services node network. The outgoing edge 
distribution of the web service node network for the 
public web services is shown in Figure 5, where both x 
and y axis have the same meaning as the operation 
node network.  In this context, the number of outgoing 
edges means how many times a web service has a 
relationship with other web services through their 
operation matching. This network represents the 
relationship between web services by  
(1) unifying several edges between operations in two 



different web services, and (2) wiping out all edges 
between internal operations in the same web service. 
By fitting it with a power function, we obtain 1.3073 
as β , and again the distribution forms Zipf-like shape. 
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Figure 5. Outgoing edge distribution of the web 
service node network using exact matching 
 
4. WSBen: Web Services Benchmark 

 
The WSBen provides a set of functions to simplify 

the generation of test environments for WSD and WSC 
problems. Figure 6 shows the overview of WSBen. In 
detail, WSBen consists of the following 
functionalities: 

• Input Parameters: users specify five parameters to 
control the generated synthetic WSDL files and 
their characteristics. The 5-tuple input parameters 
are named as xTB, which internally generate a 
cluster network. xTB are discussed in more detail 
below.  

• Cluster network, Gcl(Vcl, Ecl): Based on the given 
xTB that users provide, clusters with atomic 
parameters are created as many as |J| and then the 
incidence matrix Mj, to specify the directed edges 
between clusters is obtained. Based on J and Mj, a 
Cluster Network, Gcl(Vcl, Ecl) is defined. Each node, 
cli∈ Vcl corresponds to j∈J, and each edge, <i,j>∈Ecl 
is defined in Mj. 

• Test-bed and sample queries: By randomly picking 
a web service template implemented in arcs of the 
cluster network, WSDL files are generated. The 
user can generate sample test queries, 

 in this step. Note that is a set of 
atomic parameters contained in the first cluster and 

consists of the first five largest parameters with 
, which is the number of arcs needed to 

reach p from in the parameter network. Simply, 
parameters in are farthest away from . 

>=< outin rrr , inr
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• Test and evaluation: it is possible to export both the 

web service WSDL files and test queries into files 
in PDDL [17] and STRIPS format, enabling 

concurrent comparison with state-of-the-art AI 
planners. Additionally, it can export of all 
parameters into external files in comma separate 
file format (i.e., CSV), enabling users to analyze 
the repository data statistically. 
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Figure 6. Overview of WSBen 

Input Parameters. The 5-tuple input parameters 
consist of:  >=< ||,,,, WRlCoJxTB η . Provided that 
the first four tuple is grounded, one can build a cluster 
network like Figure 7 where clusters are nodes and 
web service templates are directed edges. At a higher 
level, web services can be assumed to be built on their 
application domains (e.g., travel, reservation, 
entertainment, and look-up services for diverse areas). 
One application domain can be projected into a 
parameter cluster, which contains a set of atomic 
parameters that occur together with similar frequency 
[4]. More precisely, two parameters Ppp ∈21,  in one 
cluster have the same co-occurrence probability such 
that )|Pr()|Pr( 2112 pppp = where, 

})]({#})({[#
})],({#}),({[#)|Pr(

11

2121
12 pOutpIn

ppOutppInpp
+
+
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In this context, web services are defined as 
transformations between two different clusters. That is, 
<i,j>∈Ecl in Gcl(Vcl, Ecl) becomes web service 
templates. In detail, each tuple of  xTB is explained as 
follows: 

(1)  is the set of clusters and denotes the total 
number of clusters of a test bed. 

J || J
Jj∈ and 

||,,2,1 Jj K=  
(2) is the co-occurrence probability of 

parameters in a cluster . is grounded 
with one distribution selected from following 
alternatives: 

)( jCo
Jj∈ )( jCo

• skewed :  jejskew αββα −=),;(



• bell:  ))2/||((exp),;( jjABSOLUTEjbell −×−= αββα
• uniform: αα =);( juni  

    Where, α and β are constants given by users such 
that the value of the distribution must be between 0 
and 1. 

(3)η is the parameter condense rate. This value is used 
to specify the size of a cluster. That is, the total 
number of parameters in cluster is j )(/ jCoη . 

(4) is the association distribution of a cluster 
and is used to represent the outgoing edge 

degree of .  shares the alternative 
distributions of . For example, 

=  means that each cluster in a 
cluster network has outgoing edges incident to 20% 
of other clusters. 

)( jRl
Jj∈

j )( jRl
)( jCo

)( jRl )2.0,( jUni

(5) denotes the total number of web services of a 
test bed. 

||W

For example, Figure 7 shows a cluster network 
specified by . Based on 
the network, we can generate |W| size of web services 
by (1) randomly choosing <i,j>∈E

>< ||),1.0(,3),6.0(,100 Wuniuni

cl; and (2) generating 
input parameters from cluster i according to , 
and output parameters from cluster j according to 

. In the case that no parameter is generated, 
dummy parameters ‘S’ and ‘T’ are filled in the input 
and output parameters, respectively. Note that each 
parameter in one cluster can map into either an input 
parameter or an output parameter. 

)(iCo

)( jCo

Both and are paramount factors to determine 
the topology of a cluster network. By specifying both 

and with skewed distributions, we can 
obtain a test bed which has a scale-free shaped 
parameter node network as shown Figure 8(a). We 
name this kind of test bed a skew-skew test bed. 
Similarly, a test bed characterized by a random-
network shaped network can be obtained by specifying 
both and with uniform distributions as 
shown in Figure 8(c). We name this type of test bed as 
uni-uni test bed. It is possible that the skew-skew and 
uni-uni test bed can approximate “public web services” 
and “workflow web services” respectively, based on 
the arguments in Section 3. 

Co Rl

)( jCo )( jRl

)( jCo )( jRl

 
5. Illustrative Example 
 

In this section, we demonstrate how to generate the 
benchmark using WSBen and how to run WSC 

products over the generated benchmark. In this paper, 
we use general AI planners in place of WSC products. 
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Figure 7. A cluster network example 

 

 
Figure 8. Synthetic parameter node networks 

First, we defined two benchmark input parameters: 
(1) aTB: >< ||),2.0(,1),2.0(,100 Wuniuni ; and (2) cTB: 

>< ||),5.0,5.0(,1),5.0,5.0(,100 Wskewskew . aTB is a 
kind of uni-uni test bed  while cTB is classified as a 
skew-skew test bed.  

Second, we created a cluster network for each aTB 
and cTB. Since the networks were too complex due to 
their large number of clusters and atomic parameters, 
we omit drawing the networks such as Figure 7 and 
their topologies such as Figure 8. 

Table 2. A sample query and its solution 
inr  outr  Solution 

{par1, 
par2, 
par3, 
par4, 
par5} 

{par483, 
par485, 
par134, 
par137, 
par 136} 

Fully Matching

rin

ws8

ws
2002

ws
2011

ws
2606

ws
1170

ws
1548

ws
2100

rout

Partially Matching  
 
Third, for each aTB and cTB, 6 test beds are 

prepared by varying |W| as 1,000, 3,000, 5,000, 7,000, 
9,000, and 11,000, respectively. For each of the 12 test 
beds, we prepared one test query by using the test 
query generation option of WSBen. The solutions to 
the test queries are obtained by WSPR [11]. Table 2 



shows an example query and its solution 
for .  >< 3000),2.0(,1),2.0(,100 uniuni

Figure 9(a) shows #(p) distribution of aTB with 
|W|=11,000, which forms a bell curve. It coincides with 
the expected distribution since both Co and have 
the same uniform distribution and therefore, 
theoretically all parameters have the same chance of 
occurring. Furthermore, since |W| is 11,000, the test-
bed obeys the law of large numbers statistically, and 
the shape of the distribution converges to a bell or 
normal curve.  

Rl

Meanwhile, Figure 9(b) shows #(p) distribution of 
cTB, which follows a Zipf-like distribution. It is also 
an expected result because both Co and have the 
same skewed distribution and therefore, most 
parameters have a very low chance of occurring, but a 
very small number of parameters contained in hub 
clusters have high possibility of occurring. Note that in 
a cluster network, if a cluster has very large number of 
outgoing or incoming edges compared with other 
clusters, it is called a hub-cluster. When the power 
function is fitted, the exponent 

Rl

β is 1.5442, meaning 
that #(p) distribution is close to the power-law 
distribution. 

Last, in the experiments described below, we 
evaluated the performance of three prominent AI 
planners – Graphplan [2], Blackbox [7], and IPP. 
Blackbox and IPP are extended planning systems that 
originated from Graphplan. In particular, Blackbox is 
extended to be able to map a plan graph into a set of 
clauses for checking the satisfiability problem. 
Consequently, it can run even in large number of 
operators.  For comparing the performance of three 
planners, we used the following two evaluation 
metrics: 

• #W: the number of web services in a solution  
• Time: the time (in millisecond or minute) taken to 
 compose a solution 

Note that all planners are an optimal parallel planner 
that minimizes the number of time steps but not 
necessarily the number of actions. All planners run 
with their default options, except that the maximum 
number of nodes for Blackbox and Graphplan was set 
to 32,768 and 10,000, respectively. Commonly, the 
time to read operator and fact files is not included in 
their Time measure. The experiments were performed 
on Linux with three Intel® Xeon™ CPU running at 
2.4GHz with 8Gb RAM. Note that Blackbox and IPP 
(resp. Graphplan) accept the PDDL format (resp. 
STRIPS). Those files were generated by the auxiliary 
file generation option of WSBen. 

The results of the first experiment dealing with 
aTB are shown in Table 3. As featured with the 
satisfiability solver, Blackbox generated all solutions, 
while IPP and Graphplan failed in many cases due to 
their internally confined array size problem. 

As shown in Table 4, the second experiment using 
cTB shows that IPP and Graphplan failed to find 
solutions for all queries due to the complex network 
topology of cTB. Blackbox also failed in some cases. 
The complete solutions to aTB and cTB by WSPR are 
shown in Table 5. 
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Figure 9. #(p) distributions 
 

Table 3. aTB: Time(seconds) and #W  
Blackbox IPP Graphplan Size 

(1,000) Time #W Time #W Time #W 
1 0.26 16 1.5 16 0.04 17 
3 0.32 13 6.75 13 0.03 9 
5 0.44 8 15.16 8 0.04 4 
7 0.55 4 27.46 4 - - 
9 0.211 7 2.86 7 - - 

11 3.215 17 - - - - 

Table 4. cTB: Time(seconds) and #W of Blackbox  
Size 

(1,000) 1 3 5 7 9 11 

Time 170 407 805 672 - 1,541 
#W 17 16 11 12 - 10 

Summary: From the experiments using WSBen, it 
is found that cTB is much harder to solve than aTB (e.g, 
in Table 4, the minimum Time exceeded two minutes). 
This implies that the queries in the uni-uni test bed can 



be solved mainly using the full matching operation. 
However, the service composition in the skew-skew 
test bed requires both matching operations, resulting in 
planners having to spend more computational resource. 

Table 5. #W of WSPR 
Size(1,000) 1 3 5 7 9 11 

aTB 19 7 6 3 4 12 
cTB 14 9 11 9 23 12 

 
6. Related Work 
 

Constantinescu et al. [3] proposed a scalable 
syntactic test bed. Compared to [3], our WSBen is 
inspired by extensive studies on real web services and 
therefore, is designed to support various web service 
network topologies and distributions (unlike [3]). In 
addition, WSBen provides benchmarks that consist of 
various supports to simplify the testing process. We 
used XMark [12], an XML benchmark suite, as a 
reference model that can help identify the list of 
functions which an ideal benchmark should support.  

As an independent research branch, web service 
quality testing has been established where quality and 
trustworthiness of web services are considered [8]. It is 
very unlikely that a business organization will 
dynamically select a partner from the Internet merely 
based upon the information found from some public 
registry without being highly confident. Our WSBen 
can be used to evaluate the quality and trustworthiness 
of web services in question. 

There are two main approaches for WSC 
depending on the use of domain knowledge. First, the 
template-workflow based approach is to use software 
programs and domain experts to bind manually-
generated workflows to the corresponding concrete 
web services. METEOR-S [15] is an example of this 
approach. Second, various AI planning techniques 
have been applied to the WSC problem, ranging from 
simple classical STRIPS-style planning to an extended 
estimated regression planning [16]. We believe that 
our WSBen is complementary for METEOR-S or AI 
Planning based tools for the WSC problem. 

 
7. Conclusion 
 

A novel web service benchmark, WSBen 6 , is 
presented. Based on the snapshots of real-world web 

                                                           

                                                                                         

6 Current implementation of WSBen is limited as follows: (1) it 
supports only the exact matching without type compatibility check, 
and (2) each web service contains only one operation so that a web 
service can be viewed as equivalent to an operation. We are currently 
working to extend it to fully support features described in Sections 2 
and 3.   

services and the assumption of workflow applications, 
WSBen is designed to test web service discovery and 
composition problems for diverse characteristics and 
sizes. Further research is needed to extend WSBen to 
support approximate and semantic matching among 
web services. WSBen is available for download at:     
http://www2.ie.psu.edu/Kumara/Research/lisq/inde
x_files/wsben/WSBen.htm 
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