
Continuous Query for QoS-Aware Automatic Service Composition

Wei Jiang1,2, Songlin Hu1, Dongwon Lee3, Shuai Gong1,2, Zhiyong Liu1

1Institute of Computing Technology, Chinese Academy of Sciences, China
2Graduate University of the Chinese Academy of Sciences, China

3The Pennsylvania State University, USA
{jiangwei,husonglin,gonfshuai,zyliu}@ict.ac.cn, dongwon@psu.edu

Abstract—Current QoS-aware automatic service composition
queries over a network of Web services are often one-time in
nature. After a network of Web services is built, such queries
are issued once, and answers are found from the scratch. The
underlying assumption is that the participating Web services
are rather static so that their functional and non-functional
parameters seldom change. However, such an assumption is
often baseless. New services come and go, service APIs change
gradually, and QoS values fluctuate. Therefore, a support for
efficiently handling “continuous” service composition queries is
desired. In this paper, we propose an event driven continuous
query algorithm for QoS-aware automatic service composition
problem to cope with different types of dynamic services. More-
over, we integrated this algorithm in our service composition
system, QSynth. Finally, we evaluate our proposal using both
real QoS data and synthetic Web service data and show the
superior performance of ours, compared to the state-of-the-
art solution which won the performance championship of Web
Service Challenge in 2009 and 2010.

I. INTRODUCTION

The number and diversity of Web-accessible services have
been increasing rapidly, and are expected to keep growing
in the near future [1]. Although so many services can
provide more choices for SOA-based applications, they also
bring about a heavy burden on modeling and verification
of service composition that plays a very important role
in SOA methodology. To meet this challenge, Automatic
Service Composition (ASC) problem [2] has been proposed
to automatically discover and compose multiple services to
satisfy a given query with a pair of inputs and outputs. No
predefined process template is needed in this problem. Fur-
thermore, to guarantee the overall Quality-of-Service (QoS)
of composite services, different composition techniques have
been studied in [3], [4], [5], [6] to generate composition
service with favorite QoS as well as correct function. By
and large, all of the aforementioned approaches share a
common assumption such that characteristics and behaviors
of existing Web services seldom change.

However, in real settings, such a rigid assumption on the
static characteristics of Web services often fails. New Web
services are introduced and unpopular ones are discontinued
daily. Working Web services can become invalid temporarily
or indefinitely due to problems like unforseen network
errors. Interfaces and QoS values of existing services may

change at any time. In order to recognize the dynamic
nature of Web services, we conduct eleven week-long survey
of Web services on Internet, which are collected from
seekda.com, webservicelist.com, and xmethods.net. Table I
presents the different values of our collected Web service
data for every two continue weeks by several criteria.

Therefore, we emphasize that Web services are not static
but dynamic. In such a dynamic environment, a composition
of services found to satisfy a request r at time t1 can easily
become an invalid answer if part of the composition becomes
unresponsive or some QoS values change. To be able to
cope with such a situation, in this paper, we claim that
the continuous support for automatic service composition
requests is greatly desired, regardless of the changes in the
underlying service network and/or components therein.

In general, we can divide the queries of service composi-
tion into two types: (1) the one-time query is handled only
once over a snapshot of available services at time t; and
(2) the continuous query is to run continuously over the
service network and produce new service composition as
the network changes dynamically.

Example 1. Let us illustrate the problem with Fig.1(a), where a
company provides a one-stop service for travelers using three Web
services (i.e., address, weather, and hotel services) together. Table II
shows the details of these services. When some component services
in Fig.1(a) become invalid (e.g., W31), the service composition can
be maintained via service replacement (top of Fig.1(b)). In other
words, we keep the logic structure of this process and replace
the unavailable services by other services whose functions are
equivalent to the unavailable ones. However, in order to cope with
service changes, we sometimes have to reschedule the composition
logic rather than only replacing some nodes, as shown in the
bottom of Fig.1(b). Furthermore, the new composition may even
use a completely different set of services. Thus, n-m replacement
is usually needed besides the simple 1-1 replacement [7]. 2

Although adaptive service selection for dynamic services
is discussed in [8], [9], [10], [11], [12], few work has
done on dynamic QoS-aware automatic service composition
problem. Thus, we propose a novel event driven continuous
query mechanism for it. Service selection usually requires
composition template as predefined process, which contains
abstract service classes and each of them need to be bound to
a concrete service at runtime. While this requirement is not
necessary in QoS-aware ASC problem, which can generate

Table I
THE CHANGE OF PUBLIC WEB SERVICES FROM INTERNET

Criteria Week1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11
of Common URL 11370 11823 11255 11306 10240 10355 11786 11697 11635 11518
of unchanged WSDL 10888 11321 10404 10623 9675 9863 11239 11122 11104 10889
% of changed WSDL 4.24% 4.25% 7.56% 6.04% 5.52% 4.75% 4.64% 4.92% 4.56% 5.98%
of delete operation 61 11 179 380 60 52 109 13 94 24
of new operation 0 65 555 35 145 25 66 55 62 342
of inputs/outputs
changed operation 78 29 271 143 88 90 91 49 40 144

A,B C,D

IR
OR1

31

2

(a) A service composition example

A,B C,D

IR OR

4

5

A,B C,D

IR
OR1

32

2

(b) Two new service composition examples

Figure 1. Service Composition Example

Table II
THE SERVICES AND REQUEST IN FIGURE 1

Web Service
& Request Inputs Outputs Description

Request(R) Tourist Site(A)
Date(B)

Weather(C)
Hotels(D)

The request provides
tourist site, date and
needs the weather and
hotels of the city.

Address
Search(W1) Tourist Site(A) City(E) It finds the city which

the tourist site in.

Weather
Forecast(W2)

City(E)
Date(B) Weather(C)

It returns the
weather of the city
on the date.

HotelSearch
(W31, W32) City(E) Hotels(D) It finds hotels in

the city.

Weather
Forecast(W4)

Tourist Site(A)
Date(B) Weather(C)

It returns the
weather of the tourist
site on the date.

Hotel
Locate(W5) Tourist Site(A) Hotels(D) It finds hotels near

the tourist site.

the composition automatically. In fact, our approach can
also be used to support the adaptive selection when certain
branches of the process need to be rescheduled. In addition,
our approach can be aware of both the changes of the
“internal” services of a certain service composition and the
“external” services that might affect it. Note that the changes
of “external” services might result in a new composition
result with better overall quality. Moreover, unlike most
current service selection approaches that support adaptation
of service compositions in a reactive way, we tackle dynamic
service in an event driven way. Finally our continuous query
can handle multiple dynamic services together and update
all affected service composition results in a batch processing
way.

The general idea of our continuous query supported QoS-
aware ASC approach is: First, we build a dependency graph
among available services and store the graph efficiently by
two inverted index tables. Second, we start a forward search
to find the enabled services whose inputs have been fully
satisfied and obtain the optimal service composition result
by a backward search then. Third, whenever underlying
services change, we update the dependency graph and the
status of affected services therein. Finally, we obtain the
new optimal service composition result if the original one
becomes invalid or sub-optimal. The first two steps are
presented in our previous one time query algorithm [3]. This
paper focuses on the last two steps which are used to support
continuous query.

Because our approach avoids requery of service com-
position from scratch and only searches a small set of
affected services, it yields better performance. Besides, the
requery approach does not know directly which services and
composition results will be affected after dynamic service
occur, so it is impossible for the requery approach to decide
which query should be re-executed once again. This shows
additional advantages of our approach.

The main contributions of this paper are as follows:
(1) We first introduce continuous query mechanism into

QoS-aware automatic service composition problem, which
effectively handles dynamic services in an event driven way.
It can not only support replacement of services or branches
of the affected compositions, but also enables rescheduling
of the composition logic if needed.

(2) We present an efficient algorithm to support contin-

uous queries. It is not only awareness of new and invalid
services, but also sensitive to QoS and interface changes.

(3) We implement the continuous query algorithm in our
system, QSynth, and validate it using both real and synthetic
QoS data.

II. BACKGROUND

This section describes QoS-aware automatic service com-
position problem and our one time query solution briefly.

A. Notations

Definition 1 (Optimal QoS-Aware ASC Problem) Given
a set of services and a query or request R, find a
specific service composition SC that defines an invoking
structure (not only sequence) over a set of Web services
(W1, W2, . . . ,WN) by satisfying the following conditions
(Let I, O be the inputs and outputs of request and Web
services):

(1){IR ∪OW1 ∪ . . . ∪OWi
} ⊇ IWi+1 (1 ≤ i ≤ N − 1);

(2){OW1 ∪OW2 ∪ . . . ∪OWN
} ⊇ OR;

(3) The overall QoS of SC is optimal among all the
service compositions that can enable R;

In brief, given a set of services and a query R, our one-
time query aims at finding the optimal service composition
result for R. To make it simple for us to illustrate our
approach, we assume that each service has one dimension
of QoS value in this paper, e.g., response time. If there
exists multiple QoS measurements, one approach is using
Multiple Attribute Decision Making approach, i.e., simple
additive weighting, to transform all the QoS values into
one aggregated QoS score before conducting our algorithm.
Another approach is to use skyline [13] to handle multiple
dimensions of QoS values as we have done in [14].

B. One-Time Query

In this part, we describe how to handle one-time query by
QSynth. QSynth is our system for semantic optimal QoS-
aware ASC problem [3], [15], which is also the champi-
onship of Web Service Challenge 2009, 2010 [16]. Given
a query, it extracts Web services information from WSDL,
OWL-S, WSLA files and returns the answers with optimal
response time and throughput in the format of BPEL file.

Graph Construction: QSynth first collects the interfaces
of Web services and builds a dependency graph for them
like Fig.2, where we connect WA to WB if one of WA’s
outputs matches one of WB’s inputs. Every node in the
graph represent a service with an unique id. Inputs, outputs
of the service are shown above and below its id respectively.
Every edge has an attached parameter that indicates the
match parameter between a service and its successor service.
Meanwhile, every service as a node in the dependency graph
has a QoS value, response time. The IR and OR of R are
inserted into the dependency graph as two virtual nodes,

R

6 7

8

2 9 5
R

1 3 4

new

Figure 2. Dependency Graph

……

……

……

……

……

……

……

……

Figure 3. Data Structure

Start and End. A candidate service composition result is
essentially a connected sub-graph in this dependency graph
satisfying the basic condition that the union of inputs of
the direct successors of Start is a subset of R’s inputs (IR)
and the union of the outputs is a superset of R’s outputs
(OR). The final solution of one time query is to find such a
sub-graph that gives the optimal overall QoS value.

Data Structure: Our data structure is presented in Fig.3.
We use two inverted index tables to represent the graph.
Every entry in the input inverted index table is a tuple,
(parameter, services list), where services list includes
those services whose inputs contain parameter. Similarly,
we build the output inverted index table.

Each service Wi in the dependency graph is represented
as Wi = {IWi , OWi , selfQoS, allQoS, count,Enabled}.
selfQoS is its own QoS value of Wi. count is assigned
to the size of IWi

initially. We say the service Wi is
enabled if its count goes to zero. Whenever a new enabled
services (Start is the first enabled service) can match one
input of Wi (that input is not matched/enabled before),
count of Wi decreases one. Enabled value will be set to
TRUE when count is 0. allQoS records the optimal1 overall
QoS from Start to current service. A hash table, Reachable
Preconditions Table (RPT) is designed to store the optimal
overall QoS (optQoS) for each enabled input and its optimal
predecessor (parent).

1There may be several candidate DAGs from Start to current service,
which results in different overall QoS values for the current service. Only
the best one is assigned to allQoS.

Figure 4. Architecture of QSynth that supports CQ

Solution: We exploit the algorithm in [3], [15] to find the
optimal service composition result. It contains two steps. The
first step is conducting a forward search from Start node and
recording enabled services, enable inputs and their parents.
The second step is executing a backward search from End
to generate the optimal composition result guided by the
enabled inputs and their parents, which are recorded in
RPT. An example of one time query is described in the
appendixes of this paper [17].

III. DYNAMIC SERVICES AND THEIR AFFECTIONS

A. Dynamic Services

In this paper, Dynamic services refer to the following four
categories of services : new services, unavailable services,
services whose interfaces change, other services which are
available but their selfQoS change.

The current architecture of QSynth is shown in Fig.4.
QSynth receives events about dynamic services from the
pub/sub network by the approaches in [18]. For example,
when response time of service Wi is bigger than a threshold
(e.g., 3s) or a new operation is added, an event will be
triggered and sent to QSynth by pub/sub network, containing
information about this dynamic service.

B. Dynamic Services Affections

Dynamic services will influence on: dependency graph,
affected services and composition results. Let’s discuss them
respectively.

First, dynamic services may change the structure of de-
pendency graph. As we represent the graph by two inverted
index tables, it’s easy to update dependency graph by
deleting the corresponding items or adding new items in the
invert index tables. For example, if Wnew with input g and
output b is added into Fig.2, we can update the original
graph by finding key g in input inverted index table and
adding Wnew to the corresponding list. In a similar way, we
can update the output inverted index table as well.

Second, dynamic services may affect status values (values
of allQoS and Enabled) of some related services, e.g.,
some enabled services may become unabled. We call them
“affected services”. Affected services refer to these services

whose new allQoS are different from the original ones
because of dynamic services and their propagative effects. To
cope with affected services, we update the status of them by
a forward traverse which starts from dynamic services until
the current services in all branches are not affected. Note
that this is not a trivial task. Take Fig.2 as an example, we
assume that the selfQoS of W1 and W2 are changed and
they both are dynamic services. If we update W1 first and
update W3, W4, W5 after that, we have to update W3, W4,
W5 again when we handle W2. A more efficient way is: we
update W1, W2 first and update W3, W4, W5 after that. So
it is important to avoid this kind of reductant updates and
renew the status of affected services in an efficient way. This
is an important problem for continuous query.

At last, the dynamic services may result in that the
original optimal service composition becomes invalid or sub-
optimal. In this case, we need to generate a new composition
result. But it is too costly to generated new result whenever
dynamic services occur like requery approach, we need to
judge whether the new optimal composition result should
be generated or not by an effective method. We will discuss
how to address the above problems in the following section.

IV. CONTINUOUS QUERY ALGORITHM

We first introduce the categories of affected services and
discuss their handling order then. Finally, we give the details
of our continuous query algorithm.

A. Categories of Affected Services

Concretely, the influence of dynamic services are: Type 1:
some services are changed from enabled to unabled; Type
2: some services are changed from unabled to enabled; Type
3: the overall QoS of some services become better; Type 4:
the overall QoS of some services become worse. In fact, we
can divide all the above ones into only two categories. In
the following, the left of arrow is the old allQoS, the right
is the new one.

First category: the affected services whose allQoS be-
come better. It contains two situations: X → X−L(type 3)
and +∞2 → X (type 2) (0 < L < X < +∞).

Second category: the affected services whose allQoS
become worse. It contains two situations: X → X +L (type
4) and X → +∞ (type 1) (0 < L,X < +∞).

B. Algorithm

General Idea: Given a continuous query, we firstly tackle
it by our previous approach for one time query in [3], [15].
Meanwhile, enabled services and RPT are stored. When
dynamic services are notified to QSynth, we first determine
whether they will affect the status of other services. If not,
we only need to update the graph structure and dynamic
services’ status. Otherwise, we conduct a forward search

2When an available service is unabled, its allQoS is +∞. When a
service is unavailable, its allQoS is +∞ too.

starting from dynamic services and only update its succes-
sors that become affected services. This process continues
until all current successors are unaffected. An update order
that avoids re-processing of affected services is adopted.
Finally, we judge if it is necessary to generate a new service
composition result by a simple rule: whether the original
service composition contain final affected service3 .

Update Order: We give a simple intitule explanation
for it. Inspired by Dijkstra algorithm [19], we make use
of a similar order to update the status of affected services.
The distance changes4 in Dijkstra algorithm are +∞ → X
(0 < X < +∞). In our problem, for the first category
of affected services whose allQoS got improved, we can
handle it like Dijkstra algorithm; For the second category, we
transform it into the first category by assigning the original
allQoS of these services to +∞, while its new allQoS is
not reassigned. Note that the original allQoS is not valid for
the generation of new service composition. Only the new
status of these services with new allQoS will decide the
new composition result. The proof is skipped because of
page limitation.

The Details of Algorithm: Our algorithm is presented in
Algorithm 1. Concretely, two new members, newAllQoS
and pqQoS, are added to our data structure first. allQoS
of Wi records the original overall QoS from Start to Wi

in last service composition search. newAllQoS is the new
overall QoS of Wi after dynamic services are processed. If
newAllQoS 6= allQoS, this service is an affected service.
We will push it into a priority queue and handle it later.
The pqQoS (pqQoS = min(newAllQoS, allQoS)) decides
priorities of the items in the priority queue.

Step 1: Handle all dynamic services and put the affected
services of them into the priority queue (line 1-14 in
Algorithm 1): Concretely, for each service whose interface is
changed, it is coped as a combination of service deletion and
service adding. Besides, we handles the remaining dynamic
services in step 1.1-1.3 respectively. All the affected services
among them will be inserted into priority queue, whose
allQoS 6= newAllQoS.

Step 2: Update the status of affected services (line 15-26
in Algorithm 1): We handle each item in the priority queue
iteratively until it is empty. At each loop, the item with the
smallest pqQoS in current priority queue is popped and is
handled by the following two ways:

3Our approach can handle several dynamic services together. Thus, a
service may become affected service because of some dynamic services and
then become unaffected service because of others. A final affected service
means its allQoS is different from the original value after all affections
are processed.

4Let Vs be the start node, the distance of every node is the distance from
Vs to it. Then, a forward search is conducted from Vs, all the reachable
nodes are inserted into a priority queue with their distances. Every time,
the node with the smallest distance in the current queue is removed first.
The Dijkstra algorithm handles its successors and updates their distances
until the queue is empty.

(1) If the popped item belongs to the first category of
affected services, we will update its direct successors. The
successors whose newAllQoS are different from allQoS
will be pushed into priority queue too (lines 19-22).

(2) If the popped item belongs to the second category of
affected services, we will assign its allQoS to +∞. If its
newAllQoS is not equal to +∞, we will push it into priority
queue again (In fact, this item becomes the first category of
affected services). Otherwise, if its newAllQoS is +∞ and
it is an unavailable service, we remove it from graph (lines
24-26).

Step 3: After the priority queue is empty, we generate the
new composition result if necessary (lines 27-30).

(1) If the request’s overall QoS equals +∞, it means that
no service composition can satisfy the request.

(2) Otherwise, we judge whether the original optimal
service composition result contains final affected service. If
so, a backward search is conducted to obtain new result. If
not, the original optimal composition result is kept.

A case study of continuous query algorithm in presented
in the appendixes[17].

Algorithm 1: Continuous Query Algorithm
Input: Interface changed Services: InterS , New Services: NewS ,

Unavailable Services: UnS , Others Dynamic Services: otherDS ,
Priority Queue: PQ

For each Services iS ∈ InterS , put the original one to UnS and the1
new one to NewS ;

//Step1.1: unavailable services
foreach Service delS ∈ UnS do2

delS.newAllQoS ← +∞;3
if delS.allQoS == +∞ then remove it from graph;4
else PQ.add(delS);5

//Step1.2: new services
foreach Service addS ∈ NewS do6

add addS into graph;7
addS.allQoS ← +∞;8
if addS.newAllQoS==+∞ then Continue;9
else PQ.add(addS);10

//Step1.3: dynamic services whose QoS are changed
foreach Service othS ∈ OtherDS do11

if PQ.find(othS)== true then adapt(othS);12
else if othS.allQoS 6= +∞ then PQ.add(addS);13
else Continue;14

//Step2: handle Priority Queue
while PQ 6= ∅ do15

first← PQ.pop();16
if first==OR then17

first.allQoS ← first.newAllQoS; Continue;18

if first.newAllQoS < first.allQoS then19
first.allQoS ← first.newAllQoS;20
foreach par ∈ Ofirst do21

adapt(services whose allQoS are changed because of22
par);

else23
first.allQoS ← +∞; update first’s direct successors;24
if first.newAllQoS6= +∞ then PQ.add(first);25
else remove first from graph if it is unavailable;26

//Step3: generate composition result
if OR.allQoS == +∞ then27

return no result;28
else if Stored service result contains final affected services then29

return new result by backward search;30

C. Discussion

We elaborate our discussion to the following questions.
Q1: How does our continuous query algorithm guarantee

that it can get the optimal service composition result?
Q2: How does our algorithm avoid redundant renewal of

affected services?
Q3: What’s the cost of our continuous query algorithm?

Is there any side effect?
Q4: What’s the time complexity of continuous query

algorithm?
Because of page limitation, the discussion about these four

questions can be found in the appendixes [17] .

V. EVALUATION

In this section, we present an experimental evaluation
on three approaches: our continuous query algorithm (CQ-
Order), unordered continuous query algorithm (CQ-No or-
der) that update affected services in a random order, and
re-query approach (Re-Query) that we re-execute one-time
query whenever a dynamic service is reported. We will
measure (a) efficiency, in terms of the cost time which
covers from the time that QSynth receives the events of dy-
namic services to the time that current service composition
is updated, and (b) sensitivity, which means whether these
three approaches are sensitive to the degree of QoS value
change, and (c) accuracy, which means whether the updated
service composition result generated by our algorithms are
still have the same overall QoS to the result returned by
Re-Query approach. These approaches are compared on a
2.4GHz machine with 2 GB RAM running Windows 7. We
conduct these experiments on both real and synthetic QoS
data.

A. Data Set

Our synthetic data set is generated by public WS-
Challenge Testset Generator [16]. We compare the three
approaches under different service number and different
dynamic service number. Dynamic services are generated
randomly. For our real QoS data set, the response time of
about 8000 real Web services at different timestamps are
collected5. Then, we replace the synthetic response time with
real response time for the generated Web services6.

B. Different Number of Registered Services

This experiment aims to evaluate the efficiency of three
approaches with respect to different number of registered
services that ranges from 1000 to 8000. The number of
dynamic service is 100. The total cost time of handling all
the dynamic services one by one are presented in Figure

5It is available at http://debs.ict.ac.cn/realqosdata.rar.
6We do not use real Web services in the experiment. Because there is still

not enough semantic information for their WSDL documents now. Different
services may describe the same thing with various words, it is not trivial to
do Web service match accurately without semantic information, so we have
to use generated WSDL documents which contain semantic information.

5(1). Note that all the figures use a logarithmic scale. The
result shows that CQ-order yields the best performance. With
the growing of services, re-query approach costs more time
since it needs to search a bigger search space. While cq
(cq-order, cq-no order) algorithms depend on the number of
dynamic services and affected services, not the registered
services, so they show a fairly stable performance. Mean-
while, cq-order is better than cq-no order by 4%∼30%, this
is because the redundant update of affected services in cq-
no order algorithm. The result of real QoS data is shown
in Fig.5(3) with a similar trend. Moreover, the composition
results returned by cq-order, cq-no order have the same
overall QoS as that of re-query. This convinces the accuracy
of continuous query algorithms. Other experiments in the
following show the same conclusion as well.

C. Different Number of Dynamic Services

This experiment aims to evaluate the efficiency of three
approaches under different number of dynamic services.
The registered service number is 6000, while the dynamic
services range from 50 to 250. As illustrated in Fig.5(2), the
cost time of re-query approach grows nearly linearly with
the increment of the number of dynamic services. That’s
because the re-query of each dynamic service costs almost
the same time under the same test set. While the cost time of
continuous query algorithms are growing not linearly since
their cost time depend on both dynamic services and affected
services. While the affected services are various with regard
to different dynamic services. The result for real QoS data
is shown in Fig.5(4) with a similar trend.

D. Different QoS Change

This experiment aims to evaluate the sensitivity of three
approaches to the degree of QoS value change. Fig.6(1)
presents the result of test set whose registered service
number is 6000 and dynamic service number is 100. These
dynamic services’ selfQoS are added 10ms, 50ms, 100ms,
200ms, and 300 ms respectively. But their original selfQoS
are different. The result shows that these three approaches
are not sensitive to the degree of QoS change. That’s because
the time complexity of continuous query algorithms do not
depend on the degree of QoS change, so does re-query
approach.

E. Cost Time of Each Dynamic Service

This experiment aims to compare the cost time of handling
each dynamic service. Fig.6(2) shows the result of test set
with 6000 registered services and 100 dynamic services.
The other cases are similar and skipped. The same to
our expectation, the cost time of each dynamic service
by re-query approach is greater than that of continuous
query algorithms, because continuous query only processes
dynamic services and affected services which are only a
small part of the entire service space. The cost time of

Figure 5. (1) Total cost time(# of services) (2) Total cost time(# of dynamic services) (3) Total cost time(# of services) (Real QoS) (4) Total cost time(#
of dynamic service)(Real QoS)

Figure 6. (1) Different QoS changes (2) Cost time for each dynamic service (3) Special Case

each dynamic service by re-query approach is stable because
of the same test set. However, the cost time of continuous
query algorithms are different, for the affected scope of each
dynamic service is various.

F. Special Case

There may be special case where we need to handle huge
dynamic services in one update progress. Although this is
not very practical in real scenario, we may still handle
many dynamic services together to reduce the cost time with
the loss of real-time update (e.g., periodic update). Fig.6(3)
shows the cost time of cq-order approach when the number
of dynamic services ranges from 50 to 600 in one update
progress. The cost time is between 16 and 32ms, which is
better than 600*2.7 = 1620ms largely if we handle these
dynamic services one by one (the average cost time of each
dynamic service of CQ-Order is 2.7ms as shown in Fig.6(2)).
However, the average cost time of re-query is 28.9ms. Thus,
in this test set, when the number of dynamic service is over
500 in one update process, it is better to use re-query.

From the above analysis, we can come to a conclusion
that our continuous query algorithms exhibit stable perfor-
mance with the variable factors including service number,
dynamic service number, and the degree of QoS change. Our
continuous query algorithms are also optimal just like the
re-query approach. It beats the re-query approach of current
Web Service Challenge champion by 10 times except special
case.

VI. RELATED WORK

Research in [8], [10], [11] discusses how to replan or
rebind in service selection problem when some services
are different from the declared QoS or become invalid.
Mixed integer programming approach [8], region-based ser-
vice reconfiguration approach [9], IP approach [10] and
Markov decision process solution [11] have been proposed.
The work in [12] first selects multiple services for every
abstract service class of a complex process template by
a heuristic algorithm, which aims at determining a set of
near-optimal service compositions. At runtime, if a specific
service composition is no longer possible or its QoS de-
creases, an alternative composition will be executed. On
the whole, these approaches always assume the existence
of a predefined abstract process, a set of ”abstract” tasks
or service classes, and the service instances with same
functionality for each task. This assumption is not needed
in our approach. Besides, these approaches take action at
runtime in a reactive way and does not discuss much about
rescheduling the composition logic. While our approach
takes action as early as dynamic services are monitored in
an event driven way. Our approach can also reschedule the
composition logic if necessary.

With the consideration of non-functional preferences of
users and mass services available nowadays, QoS-aware
automatic service composition has attracted a lot of attrac-
tion [3], [4], [5], [6]. Web service research community has
hosted Web Service Challenge [16] to solicit software for the
problem. However, they merely focus on how to efficiently

retrieve the optimal or near-optimal service composition
results on the assumption of static services. A naive approach
to handle dynamic services is to reqeury from scratch
whenever a change occurs. But it has several limitations
as we declared in the section of introduction. Although
research in [20], [7] show how to address dynamic services
for automatic service composition problem in AI planning
context, it does not consider QoS criteria, which simplifies
the problem. Research in [21] shows how to address service
composition efficiently with the consideration of QoS in
dynamic environment by treating the problem as the shortest
path problem. However, service composition tends to find
DAG-like results containing sequence, split and join patterns
and so on, rather than paths or chains.

In DBMS field, in order to support continuous query, a lot
of database management systems [22], [23], [24] have been
proposed. But they usually make tradeoff among efficiency,
accuracy, and storage. Data stream are usually considered
as append-only and approximate algorithms are adopted in
most cases. The related technologies of it contains: sliding
window, batch processing, sampling and synopsis structure.
However, many events about dynamic services are about up-
date which will modify the status of registered services. The
sampling and synopsis structure can not adopted, because
only the state of art status of services will influence new
service composition and the history changes of Web services
are not concerned. However, the history information is also
necessary in DBMS. For example, a query in DBMS field
may find how many times the price of a stock is above a
certain price from two months ago.

VII. CONCLUSION

Existing QoS-aware automatic service composition ap-
proaches are usually based on the assumption of static
Web services, but this is not true in real scenarios. In
order to get rid of this strict assumption, we make use of
continuous query mechanism and propose an event driven
solution to handle different types of dynamic services. In
this solution, only the region of affected services are updated
instead of the whole Web service space. N-m substitution is
supported instead of 1-1 substitution. Moreover, it avoids
redundant updates of affected services. The evaluation also
suggests that our continuous algorithm has good scalability
and efficiency with respect to different test sets. It achieves
much higher performance than re-query approach.

ACKNOWLEDGEMENT

Dongwon Lee is in part supported by NSF DUE-0817376
and DUE-0937891 awards. Wei Jiang and Songlin Hu are sup-
ported by the National NaturalScience Foundation of China under
Grant No.61070027, the Beijing NaturalScience Foundation project
under Grant No.4092043, the Science and Technology Project
of State Grid Information & Telecommunication Company Ltd.
under Grant No.SGIT[2011]567 and the Planned Science and

Technology Project of Guangdong Province, China under Grant
No.2010B050100009.

REFERENCES
[1] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web

services on the world wide web. In WWW ’08, pages 795–
804, NY, USA, 2008. ACM.

[2] Annapaola Marconi and Marco Pistore. In ICSOC, pages
89–157. Springer-Verlag, Berlin, Heidelberg, 2009.

[3] Wei Jiang, Charles Zhang, Zhenqiu Huang, Mingwen Chen,
Songlin Hu, and Zhiyong Liu. Qsynth: A tool for qos-aware
automatic service composition. In ICWS’10, pages 42–49.

[4] Peter Bartalos and Maria Bielikova. Qos aware semantic web
service composition approach considering pre/postconditions.
ICWS’10, pages 345–352, 2010.

[5] F. Wagner, F. Ishikawa, and S. Honiden. Qos-aware automatic
service composition by applying functional clustering. In
ICWS 2011, pages 89 –96, july 2011.

[6] Ying Ma, Liang Chen, Jian Hui, and Jian Wu. Cbbcm:
Clustering based automatic service composition. In SCC
2011, pages 354 –361, july 2011.

[7] Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Repair vs.
recomposition for broken service compositions. In ICSOC,
pages 152–166, 2010.

[8] Danilo Ardagna and Barbara Pernici. Adaptive service com-
position in flexible processes. IEEE Transactions on Software
Engineering, 33:369–384, 2007.

[9] Yanlong Zhai, Jing Zhang, and Kwei-Jay Lin. Soa middle-
ware support for service process reconfiguration with end-to-
end qos constraints. ICWS’09, 0:815–822, 2009.

[10] Girish Chafle, Koustuv Dasgupta, Arun Kumar, Sumit Mittal,
and Biplav Srivastava. Adaptation in web service composition
and execution. ICWS’06, 0:549–557, 2006.

[11] Kunal Verma, Prashant Doshi, Karthik Gomadam, John
Miller, and Amit Sheth. Optimal adaptation in web processes
with coordination constraints. ICWS’06, 0:257–264, 2006.

[12] Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova,
Nikolaos Georgantas, and Valérie Issarny. Qos-aware service
composition in dynamic service oriented environments. In
Middleware ’09, pages 7:1–7:20, New York, NY, USA, 2009.
Springer-Verlag New York, Inc.

[13] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker.
The skyline operator. In Proceedings of the 17th International
Conference on Data Engineering, pages 421–430, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[14] Wei Jiang, Songlin Hu, and Zhiyong Liu. Top k query in
qos-aware automatic service composition. technical report.
http://debs.ict.ac.cn/topk.pdf.

[15] Wei Jiang, Songlin Hu, and Zhiyong Liu. Qos-aware au-
tomatic service composition: A graph view. Journal of
Computer Science and Technology., 26(5):837–853, 2011.

[16] Web service challenge 2009. [online] http://ws-
challenge.georgetown.edu/wsc09/.

[17] Wei Jiang, Songlin Hu, Dongwon Lee, Shuai Gong, and Zhiy-
ong Liu. Continuous query for qos-aware automatic service
composition [extended]. http://debs.ict.ac.cn/cq-extended.pdf.

[18] Wei Yan, Songlin Hu, Vinod Muthusamy, Hans-Arno Jacob-
sen, and Li Zha. Efficient event-based resource discovery. In
DEBS, 2009.

[19] Edsger W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271, 1959.

[20] Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Self-adaptive
service composition through graphplan repair. ICWS’10,
0:624–627, 2010.

[21] Swaroop Kalasapur, Mohan Kumar, and Behrooz A. Shirazi.
Dynamic service composition in pervasive computing. IEEE
Trans. Parallel Distrib. Syst., 18:907–918, July 2007.

[22] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Mot-
wani, and Jennifer Widom. Models and issues in data stream
systems. In PODS ’02, pages 1–16, NY, USA, 2002. ACM.

[23] Arvind, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur
Datar, Keith Ito, Itaru Nishizawa, Justin Rosenstein, and
Jennifer Widom. Stream: The stanford stream data manager.
IEEE Data Engineering Bulletin, 26:2003, 2003.

[24] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang.
Niagaracq: a scalable continuous query system for internet
databases. SIGMOD Rec., 29(2):379–390, 2000.

