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a b s t r a c t 

In recent years, crowdsourcing has emerged as a new computing paradigm for bridging 

the gap between human- and machine-based computation. As one of the core operations 

in data retrieval, we study top- k queries with crowdsourcing, namely crowd-enabled top- 

k queries . This problem is formulated with three key factors, latency, monetary cost , and 

quality of answers . We first aim to design a novel framework that minimizes monetary 

cost when latency is constrained. Toward this goal, we employ a two-phase parameter- 

ized framework with two parameters, called buckets and ranges . On top of this framework, 

we develop three methods: greedy, equi-sized , and dynamic programming , to determine the 

buckets and ranges. By combining the three methods at each phase, we propose four al- 

gorithms: GdyBucket , EquiBucket , EquiRange , and CrowdK . When the crowd answers 

are imprecise, we also address improving the accuracy of the top- k answers. Lastly, us- 

ing both simulated crowds and real crowds at Amazon Mechanical Turk, we evaluate the 

trade-off between our proposals with respect to monetary cost, accuracy of answers, and 

running time. Compared to other competitive algorithms, it is found that CrowdK reduces 

monetary cost up to 20 times, without sacrificing the accuracy of the top- k answers. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Crowdsourcing has emerged as a new computing paradigm for human computation and has been widely used for bridg-

ing the gap between machine- and human-based computation. Humans can realize considerably improved results compared

to computers when performing intelligent tasks such as answering users’ semantic search queries [6] , understanding topics

in microblogs [19] , image tagging for subjective topics [43] , editing a document as natural language understanding [4] , and

choosing a representative frame that summarizes a video [3] . Furthermore, crowdsourcing can also be used to collect labels

for machine learning [31] and to perform tasks in human-computer interaction [9,36] . 

Databases are another field where crowdsourcing can contribute. Well-known crowd-enabled databases include Deco 

[33] , CrowdDB [16] , Qurk [28] , CDAS [26] , CyLog/Crowd4U [30] , and AskIt! [5] . At a micro level, existing work has extended

machine-based operations into crowd-enabled operators, e.g. , selection [17,32,37] , join [29,41,42] , group by [12] , sorting [29] ,

max [21,38,39] , and skyline queries [25,27] . It is particularly effective for addressing semantic and subjective concepts in

query operations. 
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Fig. 1. Building tournament, taking 11 questions to find top-1 item. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As one of core the operations in data retrieval, this paper studies top- k queries with crowdsourcing, namely crowd-

enabled top- k queries . By extending the traditional exact match query model in databases, we retrieve a ranked list of the

seemingly-best k items. In this paper, our main question is: “How do we leverage the power of crowdsourcing to find mean-

ingful answers for top- k queries? ” To illustrate this, we describe the following example. 

Example 1 (Crowd-enabled top- k query) . A user may formulate a top- k query to find the most relevant photos of “New

York City” from 20 0 0 to 2015: 

SELECT * FROM photo_db

WHERE location = ‘New York City’

and year >= 2000 and year <= 2015

ORDER BY relevance LIMIT 5

To achieve high accuracy in machine-based systems, the user should define an appropriate notion of “relevance.” How-

ever, it is not trivial to specify the scoring function for relevance to “New York City”. In clear contrast, one can ask a large

number of human workers what photos are relevant to “New York City”. Using the crowd, we can retrieve the most mean-

ingful top-5 photos without specifying a complicated scoring function. In particular, when the crowd-enabled query is ex-

ecuted on mobile devices ( e.g. , [43] ) or requires fast query processing time ( e.g. , [41] ), it is important to minimize the cost

for crowds under a constraint for response time. 

In practice, we envision that crowd-enabled top- k queries are likely to be used in a hybrid fashion. That is, machine-

based computation is first applied for hard Boolean constraints to remove unnecessary items ( e.g. , finding photos pictured

in 20 0 0–2015) and then crowdsourcing can be used to prioritize the remaining items ( e.g. , finding the most relevant top-5

photos). In this sense, the number of items used in crowdsourcing can significantly reduced, e.g. , less than 10,0 0 0 items. 

To address crowd-enabled top- k queries, we consider three key factors used in crowdsourcing systems: (1) latency : how

to control the inherent delay of collecting answers from crowds (or workers), (2) monetary cost : how much to pay crowds,

and (3) quality of answers : how to manage erroneous answers returned by crowds. Existing work has developed various

crowd-enabled algorithms with the three factors. Venetis et al. [38] studied max queries for optimizing the accuracy of

the top-1 answer when both monetary cost and latency were constrained. Davidson et al. [12] addressed the problem of

crowd-enabled top- k queries without considering a latency constraint. Without considering the constraint for latency, Poly-

chronopoulos et al. [35] focused on retrieving a top- k set , where the ordering of top- k items was ignored. 

In this paper, we aim to develop a crowd-enabled top- k algorithm with the three factors. (In Section 6 , we elaborate

on the differences between the proposed algorithms and existing work.) First, assuming that the answers of workers are

always precise, we propose a crowd-enabled top- k algorithm that minimizes monetary cost, when latency is constrained.

For simplicity, we exchangeably use the task and the question asked to the crowd. This scenario is particularly effective

for supporting real-time query computation [2,22] . As the simple model for latency, existing work [21,38,39] assumes that

workers return their answers within a specific response time, e.g. , 30 min. This time range is referred to as a round . Because

multiple questions can be asked to crowds within the response time, they can be viewed as parallelizing questions in the

round. Note that, because a crowd-enabled algorithm aims to minimize the number of questions under the given rounds, it

is clearly different from traditional optimization that maximizes CPU efficiency [24] . 

To minimize the number of questions, we employ a parameterized framework with two parameters, inspired by tourna-

ment sort ( Fig. 1 ). Buckets and ranges are used in the following phases. 
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Table 1 

List of notations. 

Notation Definition 

E Set of n items, i.e. , { e 1 , . . . , e n } 
n Number of items in E, i.e. , n = | E | 
k Retrieval size, k ≤ n 

π ( e i ) Latent scoring function 

≺� Indifference on E
� Precedence on E
� Equivalence on E
A Execution plan for top- k queries 

τ Number of rounds 

γ Monetary cost per question 

ω Number of workers per question 

Q Total set of questions, { Q 1 , . . . , Q τ } 
Q i Set of questions at i th round 

B Total sequence of bucket sizes, 〈 B 1 , . . . , B τB 
〉 

R Sequence of ranges, 〈 r 0 , . . . , r τU 
〉 

B i Sequence of bucket sizes at i th round 

| B i | Number of buckets for B i 
b ij j th bucket size in B i ˜ B Sequence of vertical bucket sizes 

T Transformed tree for A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Building a tree: We partition an item set into disjoint subsets of items, called buckets. At each bucket, the questions

for items are asked to crowds, and the precedence of items is determined. For the sake of representation, the items

and precedences between items can be represented by nodes and directed edges, respectively. By iteratively asking the

precedences between items at each round, a tree is built, where the root implies the top-1 item. 

2. Updating a tree: After building a tree, a set of retrieval sizes, called a range, is used to identify the top- k answers. The

retrieval size is the number of best items requested by the user, e.g. , retrieving the top-5 items in Example 1 . Given a

range, the questions for the top- k candidates are asked and the tree is updated incrementally. We can also avoid asking

unnecessary questions using the pre-obtained precedences between items. 

Because the number of questions highly depends on buckets and ranges under the latency constraint, our goal is to

determine the optimal values for buckets and ranges that minimize the number of questions. To determine buckets and

ranges, we develop three methods on top of the parameterized framework: greedy, equi-sized , and dynamic programming . We

then propose four algorithms: GdyBucket , EquiBucket , EquiRange , and CrowdK by combining the three methods at each

phase. 

We then address the scenario where the crowd answers are imprecise. There are two approaches for improving the

accuracy of the top- k answers. As a query-independent approach, it is possible to improve the accuracy per question as in

[17,26,32] . As a query-dependent approach, when computing crowd-enabled top- k queries, specific questions can be more

important for achieving accurate top- k answers. That is, we can assign a different number of workers per question depending

on query execution plans. We thus develop how to distinguish the importance of questions. 

To summarize, the main contributions of this paper are as follows: 

• We formulate the problem of crowd-enabled top- k queries ( Section 2 ) and model a two-phase framework with two

parameters ( Section 3 ). 

• We develop three methods on top of the parameterized framework: greedy, equi-sized , and dynamic programming

( Section 4 ). 

• We propose four algorithms: GdyBucket , EquiBucket , EquiRange , and CrowdK , by combining the three methods

( Section 4 ). 

• We discuss how to improve the accuracy of answers using static and dynamic worker assignment methods ( Section 4 ). 

• We validate the trade-off between the proposed algorithms using both a simulated crowdsourcing and a real environ-

ment at Amazon Mechanical Turk ( Section 5 ). 

2. Preliminaries 

In this section, we first introduce the basic notation used to formulate the crowd-enabled top- k query problem. Let

E = { e 1 , . . . , e n } denote a finite set of n items with no duplicates. When the scoring function of the top- k query is unspecified,

we adopt crowdsourcing to assess a latent scoring function π ( e i ) of item e i . If the precedence between e i and e j is not yet

determined, e i and e j are said to be indifferent , denoted by e i ≺�e j . If π ( e i ) > π ( e j ), e i is said to be better than e j , denoted

by e i �e j . If π(e i ) = π(e j ) , e i and e j are equivalent , denoted by e i � e j . Further, if π ( e i ) ≥ π ( e j ), it is denoted by e i 	e j . For

∀ e i , e j , e k ∈ E , if e i 	e j and e j 	e k , then e i 	e k holds by transitivity . Table 1 summarizes the notations used in this paper. 
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2.1. Problem definition 

Given an item set E and a retrieval size k ( ≤ n ), the crowd-enabled top- k query returns an ordered set of k items K =
{ e 1 , . . . , e k } such that e 1 	 . . . 	 e k and ∀ e i ∈ K , e j ∈ E \ K : e i 	 e j . We stress that crowds determine all precedences between

items for the latent scoring function. The latent scores of items are thus consistently qualified by the crowd. (In a real

scenario, the answers of the crowd can conflict. In that case, we borrow the voting method in [21] to resolve the conflict.) 

The first step in crowd-enabled queries is to design the format of the micro-tasks. Depending on the characteristics of the

crowd-enabled queries, we can create different formats, e.g. , true-false, binary-choice, or multiple-choice. As a simple format,

in this paper, we adopt a pair-wise question ( e i , e j ) with a binary answer, as widely used in existing work [12,21,35,38,39] .

Given ( e i , e j ), crowds (or workers ) are asked to choose the better one of the two items. When the crowd determine that the

two items are equivalent, it is broken arbitrarily. For the sake of representation, we interchangeably use both micro-tasks

and questions asked to the crowd. 

Before performing crowd-enabled queries, it is also necessary to build a schedule for asking questions to crowds under

the given constraint. We call this execution plan A . This can be used to estimate the total monetary cost, as discussed in

[38] . Specifically, we address the following three factors in designing the execution plan. 

(1) Latency: When A is created for E, the latency can be measured by the response time required to run A , denoted by

T (A, E ) . Based on the notion of rounds (or iterations ) [21,38,39] , the questions can be asked to crowds in parallel. 1

T (A, E ) can be measured by the number τ of rounds. We can consider two strategies [21] depending on the values of

τ : (i) one-shot strategy ( τ = 1) submits all possible questions at one time, and (ii) adaptive strategy ( τ ≥ 2) submits

initial questions, receives their answers, submits more questions, continuing. The one-shot strategy can be faster than

the adaptive strategy; however it can incur all possible questions in the worst case. (Using the pair-wise question, 
(

n 
2 

)
can be asked to crowds in the worst case.) The adaptive strategy requires more rounds than the one-shot strategy.

However, the questions are asked selectively using the pre-obtained precedences of the items at the previous rounds.

(2) Monetary cost: When questions are asked to crowds, we should pay a certain reward. When A is performed for E, let

C(A, E ) denote an estimated total monetary cost of A . When other factors are constrained, it is critical to minimize

the monetary cost. (We will later explain how to calculate C(A, E ) for a given execution plan.) 

(3) Quality of answers: To quantify the accuracy of crowd-enabled queries, denoted by Q(A, E ) , existing metrics, e.g. , pre-

cision and recall, can be used. When crowds always return precise answers, Q(A, E ) is 1.0. In reality, because some

answers can be erroneous, Q(A, E ) can be less than 1.0. To address this problem, existing work [17,26,32] developed

various models by assigning multiple workers per question. Let ω denote the number of workers to be assigned per

question. For simplicity, ω workers are equally allocated per question and ω answers can be aggregated using majority

voting . 

Assuming that the answers to the questions are always correct, we first aim to minimize the monetary cost when latency

is constrained. This scenario is particularly useful for supporting real-time environments [2,22] . Formally, it is formulated as

follows: 

Definition 1 (Crowd-enabled top- k query) . Given a set of items E, a retrieval size k , and a round bound τ , we aim to identify

a cost-optimal execution plan A 

opt that returns the top- k answers such that: 

A 

opt = argmin 

A ∈ A 

C(A, E ) subject to T (A, E ) ≤ τ. 

We build an execution plan A that consists of a sequence of question sets Q = { Q 1 , . . . , Q τ } through τ rounds such that

T (A, E ) ≤ τ . Let Q i be a set of questions at the i th round, and | Q i | be the number of questions for Q i . Let γ denote a fixed

cost per question, e.g. , $ 0.05. C(A, E ) can thus be computed: 

C(A, E ) = γ · ω ·
τ∑ 

i =1 

| Q i | . (1)

Assuming that the answers to the questions are always correct, ω is equally set as 1. (In Section 4.4 we will relax this

assumption and discuss a method for assigning a different number of workers per question.) Therefore, it is essential to

minimize the total number | Q | of questions in C(A, E ) . 

2.2. Tournament sort 

As a baseline method, we adopt tournament sort [11] , which can be easily extended for crowd-enabled settings. Basically,

pair-wise comparisons are replaced by the pair-wise questions asked to the crowd. When executing the tournament sort, the

precedence between items can be visualized by a tree T . That is, nodes are items and directed edges are the precedences

between the items. Based on the tree, we explain how to build and update the tree for identifying the top- k answers. 
1 The latency can be modeled as the response time of workers. For simplicity, in this paper, the latency is measured by the number of rounds. 
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Fig. 2. Updating tournament trees to retrieve top-2 and top-3 items. 

Table 2 

Analysis of tournament sort. 

k = 1 k ≥ 2 

# of questions O ( n ) O (n + k � log 2 n 
 ) 
# of rounds O ( � log 2 n 
 ) O ( k � log 2 n 
 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) Building a tree: An item set E is partitioned into � n /2 
 subsets. At the bottom level, two consecutive items are com-

pared. In this process, multiple questions are asked together in this one round. Then, the better item (called the

winner ) is promoted to the upper level. This process iterates at each level until one item remains. This process yields

n − 1 questions during � log 2 n 
 rounds. After building a tree, the root node is the top-1 item. 

(2) Updating a tree: To determine the top- k answers ( k ≥ 2), the tree is incrementally updated. When the top-1 item is

removed from the tree, the top-2 candidates are considered the items that were compared with and lost to the top-1

item. That is, the height � log 2 n 
 of the tree implies the number of top-2 candidates. Among top-2 candidates, the two

items at the bottom level are compared, and the winner is compared with another item at the upper level. Because

the questions have a dependency, a single question is performed for each round. Therefore, � log 2 n 
 − 1 questions

are asked during � log 2 n 
 − 1 in the worst case. 2 The updating process is repeated k − 1 times to identify the top- k

answers. 

Example 2 (Tournament sort) . Suppose that we have a set of 12 items and retrieval size k = 3 . For brevity, we assume

that an item with a smaller script number is preferred, e.g., e 1 �e 2 , and items are randomly distributed. Fig. 1 (a) depicts a

tournament for a given toy dataset. At the first round, six questions {( e 1 , e 5 ), ( e 4 , e 9 ), ( e 2 , e 6 ), ( e 8 , e 10 ), ( e 3 , e 7 ), ( e 11 , e 12 )} are

asked. The winners { e 1 , e 4 , e 2 , e 8 , e 3 , e 11 } are promoted to the upper level, and three questions {( e 1 , e 4 ), ( e 2 , e 8 ), ( e 3 , e 11 )}

are asked at the next round. Similarly, {( e 1 , e 2 )} and {( e 1 , e 3 )} are asked serially. In this process, 11 questions are generated

during four rounds, and e 1 is identified as the top-1 item. Fig. 1 (b) depicts a tree that corresponds to the tournament in

Fig. 1 (a). 

To identify the top-2 item (second item), the tree is updated incrementally. The root item e 1 is removed from the tree;

{ e 5 , e 4 , e 2 , e 3 } are the top-2 candidates that lost to e 1 . For these items, three questions, ( e 5 , e 4 ), ( e 4 , e 2 ), and ( e 2 , e 3 ) are

asked serially. (For the items connected to item e 1 , the questions are generated from the left to right direction.) At the end,

e 2 is determined as the top-2 item. In this process, because three questions are asked serially, three rounds are required.

Fig. 2 (a) describes the updated tree after identifying the top-2 item. 

Similarly, { e 6 , e 8 , e 4 , e 3 } are top-3 candidates that have lost to e 2 . After asking three questions ( e 6 , e 8 ), ( e 6 , e 4 ), and ( e 4 ,

e 3 ) during three rounds, e 3 is determined as the top-3 item as shown in Fig. 2 (b). In summary, { e 1 , e 2 , e 3 } are identified as

the top-3 answers, yielding 17 questions over ten rounds. 

Table 2 presents the informal analysis of the tournament sort in terms of the number of questions and number of rounds.

If the number of rounds is not constrained, the tournament sort can be used to build an execution plan that minimizes the

number of questions. (This is because the tournament sort is optimal in terms of the number of pair-wise comparisons.)
2 Although it is possible to ask some questions together, e.g. , ( e 5 , e 4 ) and ( e 2 , e 3 ) in Fig. 1 (b), traditional tournament sort does not handle the optimization 

for latency. 
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Fig. 3. Tournament with different bucket sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the number of rounds is constrained, we should develop an alternative execution plan. Therefore, our goal is to

design a generalized framework to develop an execution plan that minimizes the number of questions under an arbitrary

latency constraint. 

3. Parameterized framework 

We first present two key principles used to design the proposed model for computing crowd-enabled top- k queries. 

1. Validity of top- k answers: assuming that crowds always provide correct answers, execution plan A returns valid top-

k answers with no wild guesses. That is, after plan A is executed, A should guarantee to determine an ordered set

K = { e 1 , . . . , e k } of top- k items such that e 1 	 · · · 	 e k and ∀ e i ∈ K , e j ∈ E \ K : e i 	 e j . 

2. Minimality of questions: assuming that no pre-defined preferences between items exist, all questions made by A should

contribute to deciding the valid top- k answers under a given latency constraint. That is, all questions should be related

to identify top- k items. 

Based on these two principles, we model a parameterized framework A ( B , R ) with two parameters, inspired by tourna-

ment sort ( Section 2.2 ). Depending on the values of B and R , different execution plans can be performed. Each parameter

is involved in building and updating a tree as in tournament sort. The total cost C(A, E ) can thus be calculated by summing

two costs: (i) the cost C B (A, E ) of building a tree and (ii) the cost C U (A, E ) of updating a tree. Let τ B (0 < τ B ≤ τ ) and τU

( τU = τ − τB ) denote the number of rounds used in building and updating a tree, respectively. 

Specifically, we explain how B and R are used in computing C B (A, E ) and C U (A, E ) , respectively. 

(1) How to determine B: While executing tournament sort, two consecutive items are compared in parallel. In Fig. 1 , an

item set E is partitioned into six subsets at the bottom level, i.e. , { e 1 , e 5 }, { e 4 , e 9 }, { e 2 , e 6 }, { e 8 , e 10 }, { e 3 , e 7 }, and { e 11 ,

e 12 }. Each subset is called a bucket . If one wants to reduce the number of rounds, one may increase the size of buckets

from two to three. That is, the size of the buckets can be different from the latency constraint. 

Given τ B , B = 〈 B 1 , . . . , B τB 
〉 refers to a sequence of bucket sizes in building a tree. When partitioning an item set E

into disjoint buckets, B i = 〈 b i 1 , . . . , b i | B i | 〉 is a list of bucket sizes partitioned at the i th round. Let b ij be the j th bucket

size at the i th round. Given b i j ∈ B i , all pair-wise questions ( 
b i j 

2 ) are necessary to determine the valid top- k items. For

example, given B 1 = 〈 4 , 4 , 2 , 2 〉 , the items can be partitioned into { e 1 , e 5 , e 4 , e 9 }, { e 2 , e 6 , e 8 , e 10 }, { e 3 , e 7 }, and { e 11 , e 12 }

at the first round. In that case, 14 questions are asked ( Fig. 4 a). We can obtain an ordered list of items at each bucket,

i.e., e 1 �e 4 �e 5 �e 9 , e 2 �e 6 �e 8 �e 10 , e 3 �e 7 and e 11 �e 12 . For each subset, the winners { e 1 , e 2 , e 3 , e 11 } are promoted to the

next round. 

(2) How to determine R : The top- k answers are obtained by incrementally updating a tree. To satisfy a latency constraint,

we can perform more questions when updating a tree. In Fig. 2 , three questions ( e 5 , e 4 ), ( e 4 , e 2 ), and ( e 2 , e 3 ) are

asked to the crowds during three rounds. However, given only one round, we should ask all pair-wise comparisons

for { e 5 , e 4 , e 2 , e 3 } to identify the top-2 item. Similarly, all pair-wise comparisons for { e 9 , e 6 , e 8 , e 7 , e 11 } are appended

to retrieve the top-3 item over one round. 

Given the number τU of rounds and a retrieval size k , R = 〈 r 0 , . . . , r τU 
〉 refers to a sequence of retrieval sizes such

that ∀ r i ∈ R : r i ≤ k and r 0 < r 1 ≤ . . . ≤ r τU 
. Let r i denote the retrieval size at the i th round. As a special case, let r 0

(1 ≤ r 0 ≤ k ) denote the retrieval size used in building the tree. Given r i , the top- r i answers are identified at the i th

round. When τU > k − r 0 , two or more rounds can be assigned, as in tournament sort. However, if τU ≤ k − r 0 , the

top- r i answers can be identified at the i th round. Because τU is usually small, we mainly consider the second case,
τU ≤ k − r 0 . 
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Fig. 4. Two tournaments with different buckets ( n = 12 , τ = 4 , k = 2 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3 (Parameterized framework) . Continuing from Example 2 , we are given n = 12, τ = 4, and k = 2. Depend-

ing on B and R , various execution plans can exist and their costs can vary. Fig. 3 (a) depicts an execution plan with

B = 〈〈 4 , 3 , 3 , 2 〉 , 〈 3 , 1 〉 , 〈 2 〉〉 . Given 〈 4, 3, 3, 2 〉 , E is divided into four buckets and the winners { e 1 , e 2 , e 3 , e 11 } are used in

the next round. Given B 2 = 〈 3 , 1 〉 , { e 1 , e 2 , e 3 , e 11 } is divided into two buckets { e 1 , e 2 , e 3 } and { e 11 }, and then { e 1 , e 11 } is

promoted to the next round. Finally, e 1 is identified as the top-1 answer. Fig. 3 (b) depicts a tree that corresponds to the

tournament in Fig. 3 (a). For the tree to be built up, 17 questions are required over three rounds. 

Next, the tree is incrementally updated with R = 〈 1 , 2 〉 . Given r 1 = 2 , { e 4 , e 2 , e 11 } (that have lost to e 1 ) are identified as

top-2 candidates. For { e 4 , e 2 , e 11 }, three questions ( e 4 , e 2 ), ( e 4 , e 11 ), and ( e 2 , e 11 ) are asked. Finally, the top-2 answers are

identified as { e 1 , e 2 }. In total, the execution plan generates 20 questions during four rounds. Similarly, given R = 〈 1 , 3 〉 , { e 4 ,
e 2 , e 11 , e 9 , e 6 , e 3 } are considered top-3 candidates, and 15 questions are asked to the crowds. Compared to tournament sort,

this requires more questions; however it reduces the number of rounds from seven to four. 

To identify a cost-minimal execution plan, it is essential to select an optimal B and R that minimize the number of

questions. The brute-force method is to enumerate all possible combinations for B and R , and to select the optimal values.

Because the search space is exponential, this is prohibitively expensive. In the next section, we explain how to efficiently

select B and R . 

4. Crowd-enabled algorithm 

In this section, we first present three methods to determine B and R : greedy, equi-sized , and dynamic programming .

We then propose four algorithms: GdyBucket , EquiBucket , EquiRange , and CrowdK , by selectively combining the three

methods at each phase. When the answers of the crowd are imprecise, we also discuss a method to improve the accuracy

of the top- k answers for a given execution plan. 

4.1. Determining a sequence of bucket sizes 

The number of questions in building a tree can differ from B. Given B i = (b i 1 , . . . , b i | B i | ) , the number of questions is

calculated as | Q i | = 

∑ | B i | 
j=1 

(b i j 

2 

)
. Given B = 〈 B 1 , . . . , B τB 

〉 , the total number of questions is thus calculated as 
∑ τB 

i =1 

∑ | B i | 
j=1 

(b i j 

2 

)
. 

Example 4 (Cost of building a tree) . We continue to illustrate Example 3 . Given n = 12 and τ B = 3, Fig. 4 depicts two

tournaments with different buckets. For each tournament, the number of questions is calculated as 15 and 14, respectively.

Compared to the tournament in Fig. 3 , we can further reduce the number of questions. 

To minimize the number of questions, it is essential to select B. The brute-force method is to exhaustively enumerate all

possible values for B. In that case, the time complexity increases exponentially with n . To address this problem, we develop

two optimization methods: horizontal partitioning and vertical partitioning . 

4.1.1. Determining horizontal bucket sizes 

Suppose that an item set E is partitioned into m buckets, B i = 〈 b i 1 , . . . b im 

〉 , at the i th round. We call this horizontal

partitioning . Two conditions hold for b ij : (i) 1 ≤ b ij ≤ | E | and (ii) 
∑ m 

j=1 b i j = | E | . All possible cases of horizontal partitioning

are 
(| E ′ |−1 

m −1 , 

)
which is overly costly to enumerate. 

It is observed that the number of questions increases quadratically with b ij . That is, the number of questions for B i de-

creases as the sizes of the buckets are distributed as evenly as possible. Given B i = 〈 b i 1 , . . . b im 

〉 , let b min 
i ∗ = min (b i 1 , . . . , b im 

)

and b max 
i ∗ = max (b i 1 , . . . , b im 

) denote the minimum and the maximum value on B i , respectively. We formally state a key

property for horizontal partitioning. (See proof in the Appendix .) 
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Theorem 1 (Horizontal optimization) . An item set E is partitioned into m buckets, B i = 〈 b i 1 , . . . b im 

〉 . If b min 
i ∗ = �| E | /m � and

b max 
i ∗ = �| E | /m 
 hold, B i minimizes | Q i | . 

Based on Theorem 1 , we develop a horizontal partitioning method. Given E , it is evenly distributed to m buckets and

b max 
i ∗ is computed by �| E ′ | /m 
 . When b max 

i ∗ > | E | , some buckets can have surplus items. Let x denote the number of surplus

items, i.e. , x = mb max 
i ∗ − n . In this case, x buckets have b min 

i ∗ items, and | Q i | is computed by: 

| Q i | = 

(
b max 

i ∗
2 

)
× (m − x ) + 

(
b min 

i ∗
2 

)
× x, (2)

where the time complexity is O ( m ) because the number of buckets is m . ( Algorithm 3 describes the horizontal partitioning.)

Let Q (n, m ) denote the number of questions using the proposed horizontal partitioning method. For example, when a set E
of 12 items is evenly partitioned into 5 buckets, B i = 〈 3 , 3 , 2 , 2 , 2 〉 , Q (12 , 5) is 9. Note that Q (n, m ) is also used for vertical

partitioning. 

4.1.2. Determining vertical bucket sizes 

In addition to horizontal partitioning, B also depends on vertical partitioning . Because the winners at each bucket are

only promoted to the next round, the number of items at the (i + 1) th round is equal to the number of buckets partitioned

at the i th round. If the proposed horizontal partitioning method is used at each round, the number of items at the (i + 1) th

round can be derived from the maximum bucket size at the i th round. That is, vertical partitioning can be used to compress

a whole sequence of B. Let ˜ B denote a sequence of vertical partitioning, implying a sequence of maximum bucket sizes at

each round, i.e. , ˜ B = 〈 ̃  B 1 , . . . , ̃  B τB 
〉 such that ˜ B i = b max 

i ∗ . For example, given B = 〈〈 4 , 4 , 4 〉 , 〈 2, 1 〉 , 〈 2 〉〉 , ˜ B is represented by 〈 4,

2, 2 〉 . 
We now discuss how to determine ̃  B . Let E i denote a set of items to be partitioned at the i th round, e.g. , E 1 = E . Basically,

two conditions hold for ̃  B i : (i) 2 ≤ ˜ B i < | E i | and (ii) n ≤ ∏ τB 
i =1 ̃

 B i . Initially, | E 1 | is set by n . Because the winners at each bucket

are only promoted to the next round, | E i +1 | (1 ≤ i < τ B ) is calculated as: 

| E i +1 | = � | E i | ˜ B i 


 . (3)

Based on this equation, we first develop two heuristic methods to determine ̃  B : greedy and equi-sized . The greedy method

is described as follows. For 2 ≤ ˜ B i < | E i | , the number of questions is calculated by Q (| E i | , �| E i | / ̃  B i 
 ) at the i th round. That is,

| E i | items are partitioned by �| E i | / ̃  B i 
 buckets. Because the greedy method focuses on minimizing the number of questions

at the i th round, it is simple and fast. The time complexity is O ( τ B ). 

The equi-sized method assigns the same bucket sizes except for the last round. When 

˜ B i = b, ˜ B is represented by

〈 b, . . . , b, � n/b τB −1 
〉 , where b τB −1 < n holds. After generating all possible equi-sized buckets, the number of questions is

calculated by 
∑ τB −1 

i =1 
Q (� n/b i −1 
 , �� n/b i −1 
 /b
 ) + Q (� n/b τB −1 
 , 1) . Then, it selects b that minimizes the number of questions.

The time complexity is thus O ( τ B n ). Although the two methods can determine vertical buckets, they do not guarantee find-

ing ̃  B that minimizes the number of questions. 

Alternatively, we propose a method using dynamic programming . Because the process of identifying ˜ B can be divided to

sub-problems, ˜ B can be computed in a recursive manner. When a sequence of vertical partitioning is performed, it can be

used to build another vertical partitioning. That is, it is possible to reuse pre-computed vertical partitioning. 

Specifically, let B and V denote two matrices for storing a sequence of vertical bucket sizes and the number of questions,

respectively. Given B, B [ i, j ] represents an entry that stores a sequence of bucket sizes with respect to i rounds and j items.

Given B [ i, j ], the current bucket sizes are derived from the previous round. If B [ i, j ] is feasible, V [ i, j ] stores the total number

of questions for B [ i, j ]. Given B [ i, j ], V [ i, j ] is computed by the following recursive equation. (In Example 5 , we will explain a

detailed example of how to compute B and V .) 

• Initial step ( i = 1 ): | E i | and ̃

 B i are set by n and j such that 2 ≤ j ≤ n , and V [ i, j ] is computed by Q (n, � n 
j 

 ) . 

• Recursive step (2 ≤ i ≤ τ B ): | E i | and 

˜ B i are derived from the previous round. At the i th round, the feasible range of

| E i | is [2 i −1 + 1 , n 

2 τB −i ] under the condition for ˜ B . Given | E i | = j, the range of bucket sizes is [2 , j − 1] . Therefore, V [ i, j ]

is computed by min b∈ [2 , j−1] V [ i − 1 , � j 
b 

 ] + Q ( j, � j 

b 

 ) . For B [ i, j ], the current bucket size is appended to the previous

sequence of vertical bucket sizes. Therefore, B [ i, j ] is set by concatenating b to B [ i − 1 , � j 
b 

 ] . 

In the recursive step, we prove that the principle of optimality holds. Using this property, we can choose ̃  B that minimizes

the number of questions. Formally, we state vertical optimization that minimizes the number of questions. 

Lemma 1. For 2 ≤ i ≤ τ B and 2 i −1 + 1 ≤ j ≤ n, V [ i, j] = min b∈ [2 , j−1] V [ i − 1 , � j 
b 

 ] + Q ( j, � j 

b 

 ) . 

Theorem 2 (Vertical optimization) . Given n and τ B , ̃  B minimizes | Q B | , if ̃  B is determined by B [ τ B , n ] . 

We describe the pseudo-code of the proposed dynamic programming ( Algorithm 1 ). For efficiency, it only generates

feasible values for | E i | at each round. For the i th round (1 ≤ i < τ B ), the range of | E i | is [2 i −1 + 1 , n 
τB −i ] (lines 4–7). As
2 



106 J. Lee et al. / Information Sciences 399 (2017) 98–120 

Algorithm 1: VerticalPartitioning( n, τ B , r 0 ). 

Input : the number of items n , the number of rounds τB , initial range r 0 
Output : a sequence of bucket sizes 〈 ̃  B 1 , . . . , ̃  B τB 

〉 
1 τB ← min (τB , � log 2 n 
 ) ; 
2 Let V and B be τB × n matrices; 

3 for i ← 1 to τB do 

4 min _ b ← 2 i −1 + 1 , max _ b = � n 

2 τB −i 
 
5 if i = τB then 

6 min _ b ← n /* the degenerate case when i = τB */ 

/* minimum and maximum values of | E i | */ ; 

7 for j ← min _ b to max _ b do 

8 if i = 1 then 

9 V [ i, j] ← 

(
j 
2 

)
, B [ i, j] ← j 

10 else 

11 V [ i, j] ← ∞ 

12 for b ← 2 to j − 1 do 

13 l ← � j 
b 

 /* when | E i | = j and ˜ B i = b */ ; 

14 if V [ i − 1 , l] is null then 

15 Break 

16 if i = τB and r 0 > 1 then 

/* the last round when i = τB */ 

17 Build a tree T for B [ i − 1 , l] 

18 | Q i | ← EstimateUpdateCost ( T , r 0 ) 
19 else 

20 | Q i | ← Q ( j, l) ; 

21 if V [ i − 1 , l] + | Q i | < V [ i, j] then 

22 V [ i, j] ← V [ i − 1 , l] + | Q i | 
23 B [ i, j] ← concatenate b to B [ i − 1 , l] 

24 return B [ τB , n ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the initial step, V [1, j ] and B [1, j ] are computed by 
(

j 
2 

)
and j , respectively (line 9). When 2 ≤ i ≤ τ B , | E i | and 

˜ B i are set by

j and b (lines 7 and 12). Given j = | E i | and b = ̃

 B i , l = | B i | is computed by � j 
b 

 (line 13). After Q ( j, l) is computed, V [ i, j ]

and B [ i, j ] are recursively computed (lines 21–23). (As an exceptional case, i.e., r 0 > 1, we explain how to compute | Q i | in

Section 4.2 .) Finally, it returns ˜ B = B [ τB , n ] . Because the size of the range in | E i | is at most � n 

2 τB −i 
 items at the i th round,

and only � n 

2 τB −i +1 
 items are generated at (i − 1) th round, the time complexity is bounded to O ( n 2 ). 

Example 5 (Dynamic programming) . Continuing from Example 4 , we are given n = 12 , τB = 3 , and r 0 = 1 . Fig. 5 describes

two matrices V and B at each round. When i = 1 and 2 ≤ j ≤ 3, V [1, j ] and B [1, j ] are initialized as 
(

j 
2 

)
and j . At the

next round, V [2, j ] and B [2, j ] (3 ≤ j ≤ 6) are computed. When calculating V [2, 6], it generates V [1 , 2] + Q (6 , 2) = 7 and

V [1 , 3] + Q (6 , 3) = 6 by reusing the pre-identified sequences. Because the latter is smaller than the former, V [2, 6] and B [2,

6] are set as 6 and 〈 2, 3 〉 , respectively. Similarly, when computing V [3, 12], the feasible range of b is [2, 5]. We can reuse

V [2, 3], V [2, 4], and V [2, 5] in determining b . When V [2, 3] is chosen, V [3, 12] is minimized. Fig. 6 depicts the corresponding

tree for ˜ B = 〈 2 , 2 , 3 〉 . Compared to the other tournaments in Fig. 4 , it only generates 12 questions and is comparable to the

tournament sort that builds a tournament with 11 questions in Fig. 1 . 

4.2. Determining a sequence R of retrieval sizes 

After a tree is built up, we should update the tree incrementally to identify the top- k answers. Given τ U rounds, the tree

is updated by a sequence R = 〈 r 0 , . . . , r τU 
〉 of retrieval sizes, called a range . In this process, the cost of updating the tree

highly depends on R . It is thus essential to choose R that minimizes the number of questions. Therefore, we address the

following two issues: 

1. Removing unnecessary questions: It is important to only generate necessary questions for identifying the top- r i answers.

We thus fully exploit the pre-obtained precedences between items. 
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Fig. 5. Illustration of finding vertical bucket sizes ( n = 12 , τ = 3 , r 0 = 1 ). 

Fig. 6. Tournament result for Fig. 5 . 

Fig. 7. Tree that corresponds to tournament in Fig. 6 . 

 

 

 

 

 

 

 

 

2. Predicting the answers of questions: Because the answers of questions are unpredictable, it is difficult to obtain the updated

tree deterministically. Therefore, it is non-trivial to calculate the number of questions in updating the tree. 

To address these issues, we use a tree T to identify the precedences between items. If e i �e j , a directed edge in T is

connected from e i to e j , implying a parent-child relationship . For brevity, some edges can be skipped if the precedences

between items can be inferred by transitivity. Let Ancestor ( e i ) denote a set of ancestors of e i . The number of ancestors

| Ancestor ( e i )| is thus equal to the number of more preferred items, which corresponds to the level of the node in T . There-

fore, if | Ancestor ( e i )| is smaller than retrieval size r i , e i can be in the top- r i candidates. 

Example 6 (Updating the tournament tree) . Fig. 7 depicts a tree that corresponds to the tournament in Fig. 6 . The root node

e 1 represents the top-1 item. Based on the tree, we can identify top- r i candidates according to the level of the node. For

example, when r 1 = 2 , { e 2 , e 4 , e 5 } is a set of top-2 candidates. Similarly, when r 1 = 3 , { e 3 , e 6 , e 8 , e 9 } is appended to the

top-3 candidates. 
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Fig. 8. Two possible trees updated for directed tree in Fig. 7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we explain how to generate necessary questions for the top- r i candidates. The simplest method is to enumerate

all pair-wise questions for top- r i candidates. Given r 1 = 3 in Fig. 7 , the top-3 candidates are { e 2 , e 3 , e 4 , e 5 , e 6 , e 8 , e 9 }, and(
7 
2 

)
= 21 questions are required. However, it is found that unnecessary questions can be generated in two cases: (i) ( e 4 , e 9 ),

( e 2 , e 6 ), ( e 2 , e 8 ), and ( e 2 , e 3 ) are redundant as their precedences can be obtained from the previous rounds, and (ii) ( e 6 ,

e 9 ), ( e 8 , e 9 ), and ( e 3 , e 9 ) are unnecessary, because they are irrelevant for determining the top-3 answers. Given ( e 6 , e 9 ), the

ancestor sets of e 6 and e 9 can be derived as { e 1 , e 2 } and { e 1 , e 4 }, respectively. This means that only one of e 6 and e 9 can

be in the top-3 answers as either { e 1 , e 2 } or { e 1 , e 4 } has been identified as top-2 answers. That is, ( e 6 , e 9 ), ( e 8 , e 9 ), and ( e 3 ,

e 9 ) are irrelevant for determining the top-3 answers. By removing seven questions in the two cases, it is sufficient to ask 14

questions to evaluate the top-3 answers, i.e. , 
(

7 
2 

)
− 7 . 

Lemma 2. When r i and T are given, ( e i , e j ) can be skipped, if (1) e i ∈ Ancestor ( e j ), (2) e j ∈ Ancestor ( e i ), or (3)

| Ancestor ( e i ) ∪ Ancestor ( e j )| ≥ r i . 

The next challenging issue is how to estimate the number of questions when updating a tree. Given k = 3 and τU = 2 ,

suppose that R is set as 〈 1, 2, 3 〉 in Fig. 7 . Given r 1 = 2 , three questions, ( e 2 , e 4 ), ( e 2 , e 5 ), and ( e 4 , e 5 ) are required. Because

the top-2 candidates are deterministic, it is easy to calculate the number of questions. However, the form of the updated tree

for r 2 = 3 is determined by the answers of the previous questions ( e 2 , e 4 ), ( e 2 , e 5 ), and ( e 4 , e 5 ). Therefore, it is impossible to

build a deterministic tree without knowing the precedences between items. 

One possible solution is to estimate the average number of questions by considering all updated trees. Given { e 2 , e 4 , e 5 },

the number of possible answers is six, i.e. , 3!. Depending on the answer, different trees can be updated. Fig. 8 depicts two

possible updated trees for the top-2 answers. In the best case, no questions are required for the top-3 answers because e 4 
is the only top-3 candidate. However, in the worst case, { e 3 , e 4 , e 6 , e 8 } can be the top-3 candidates, and six questions are

required. For each updated tree, the number of questions can be calculated as zero, zero, one, one, six, and six. The average

number of questions is thus 14 
6 = 2.3. 

Although it is feasible for estimating the number of questions, generating all possible updated trees is overly exhaustive.

This problem is reduced by counting the number of different ways to perform a topological sort for a set of nodes. This is

known as a # P-complete problem [7] . When the number of top- r i candidates is large, it becomes impractical. 

Alternatively, we use an approximation algorithm using random sampling . Let π rand denote a random latent scoring func-

tion for n items. When π rand is given, we can update the tree in a deterministic manner. Based on a randomized scheme,

we generate δ random functions and compute the average number of questions for updating a tree. It can be viewed as δ
iterations. 

Existing work [8] demonstrates that the randomized algorithm can be derived as a fully polynomial randomized approx-

imation scheme . That is, as δ is greater, it is closer to the average number of questions; however, this incurs more compu-

tation. In our experiments, we empirically set δ to five. Although it only covers a small part of all possible cases, from our

empirical study, the estimated number of questions is approximately close to the actual number of questions in performing

a query execution plan. 

Lastly, we explain how to determine R . Similar to building a tree, three methods can be used: greedy, equi-sized , and

dynamic programming . The key difference is that R should consider k and τU instead of n and τ B . Unlike the tree-building

step, because the tree updating procedure is not deterministic, dynamic programming does not preserve the principle of

optimality. However, it is still useful to determine R that minimizes the number of questions. 



J. Lee et al. / Information Sciences 399 (2017) 98–120 109 

Algorithm 2: BuildTournament( n, τ B , r 0 ). 

Input : the number of items n , the number of rounds τB , initial range r 0 
Output : a sequence of bucket sizes B 

1 Let B be a sequence of bucket sizes; 

2 ˜ B ← VerticalPartitioning ( n , τ , r 0 ); 

3 | E i | ← n ; 

4 for i ← 1 to τB do 

5 B i ← HorizontalPartitioning ( | E i | , �| E i | / ̃  B i 
 ); 
6 | E i | ← �| E i | / ̃  B i 
 ; 
7 return B 
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4.3. Algorithm description 

In this section, we propose a crowd-enabled top- k algorithm, called CrowdK . This algorithm consists of two steps: (i)

building a tree and (ii) updating the tree. For each step, CrowdK adopts dynamic programming. Note that, when τ ≤ 2 or

k = 1 , the second step can be skipped. 

Algorithm 2 describes the pseudocode of identifying B in building a tree. We first identify ˜ B using Algorithm 1 (line

2) and then perform horizontal partitioning for ˜ B i at each round (lines 3–6). Once B is identified, the tree can be built for

π rand and the number of questions can be calculated. Recall that when R is only represented by 〈 r 0 〉 , e.g. , max queries, the

process of updating the tree can be skipped. Therefore, it is sufficient to identify B that minimizes the number of questions

in building a tree. 

Algorithm 3 describes the pseudo-code of horizontal optimization. Given the number of items n and the number of

buckets m , | E i | is divided by m to compute an even bucket size, i.e. , b = �| E i | /m 
 (line 2). When r = m × b − n is greater than

zero, b − 1 items are distributed for r (lines 5–6). Otherwise, b items are evenly distributed (lines 7–8). For m buckets, the

items are distributed to minimize the difference between the maximum and the minimum bucket sizes. The time complexity

of horizontal optimization is O ( m ). 

Algorithm 4 presents the overall procedure of identifying B and R . Similar to B, enumerating all possible cases for R
is overly expensive, i.e. , 

(
k −1 
τU 

)
. We thus exploit dynamic programming for R , where two τ × k matrices V and T are used.

Let V [ i, j ] denote the number of questions such that τ = i and k = j. Similarly, T [ i, j ] indicates a tree such that τ = i and

k = j. This first performs Algorithm 2 to identify B (line 6). If τ ≤ 2 or k = 1 , identifying R can be skipped (line 9). Let

( T ) denote the number of estimated questions used in building T . When r i = j, the tree T [ i − 1 , l] at the previous round

( 1 ≤ l ≤ j − 1 ) is used for determining R (line 12). In this process, it chooses a tree that minimizes the number of questions

(lines 10–15). Finally, B and R can be identified by backtracking T [ τ , k ] (lines 16). Because EstimateUpdateCost () can incur

O ( n 2 ) in the worst case, the time complexity of the tree-updating step in Algorithm 4 is O ( τk 2 n 2 ). 

Algorithm 5 describes the pseudo-code for estimating the number of questions in updating a tree. As input, it takes a

tournament tree T and a range r i . We first identify a set of the top- r i candidates using the level of the tree (line 2). For each

pair-wise question, we check if pair ( e i , e j ) satisfies the three conditions: (i) e i �∈ Ancestor ( e j ), (ii) e j �∈ Ancestor ( e i ), and (iii)

| Ancestor ( e i ) ∪ Ancestor ( e j )| < u i (lines 4–6). If so, ( e i , e j ) is added to Q i (line 7). Finally, this returns the number of question

| Q i | at the i th round (line 8). The time complexity is O ( n 2 ), where the number of candidate items | C | reaches n . However,

| C | is usually smaller than n . 
Algorithm 3: HorizontalOptimization( n, m ). 

Input : the number of items n , the number of buckets m 

Output : a sequence of horizontal bucket sizes 〈 b i 1 , . . . , b im 

〉 
1 Let B i be a sequence of size m 

2 b ← � n/m 
 /* even bucket size */ ; 

3 r ← mb − n /* # of remained items */ ; 

4 for j ← 1 to m do 

5 if j ≤ r then 

6 b i j ← b − 1 /* minimum bucket size */ ; 

7 else 

8 b i j ← b /* maximum bucket size */ ; 

9 return B i 
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Algorithm 4: CrowdK ( n, τ , k ). 

Input : the number of items n , the number of rounds τ , retrieval size k 

Output : a cost-optimal execution plan A 

1 Let V and T be τ × k matrices 

2 Let πrand be a list of n items with random function scores 

3 Let C( T ) be the number of questions used in T 
4 for i ← 2 to τ do 

5 for j ← 1 to k do 

/* Build a tree for τB = i and r 0 = j */ 

6 B ← BuildTournament ( n , i , j) 

7 T ← build a tree for B and πrand 

8 V [ i, j] ← C( T ) , T [ i, j] ← T 
9 if i > 2 and j > 1 then 

10 V [ i, j] ← ∞ 

11 for l ← 1 to j − 1 do 

/* Estimate | Q i | with T [ i − 1 , l] and j */ 

12 | Q i | ← EstimateUpdateCost ( T [ i − 1 , l] , j) 

13 if C(T [ i − 1 , l]) + | Q i | ≤ V [ i, j] then 

14 V [ i, j] ← C(T [ i − 1 , l]) + | Q i | 
15 T [ i, j] ← update the tree for T [ i − 1 , l] and πrand 

16 A ← find B and R by backtracking T [ τ, k ] 

17 return A 

Algorithm 5: EstimateUpdateCost( T , r i ). 
Input : a tournament tree T , a range r i 

1 Let Q i be a set of questions at i th round 

2 C ← a set of candidates for the top- r i answers 

3 foreach (e i , e j ) ∈ C × C, i � = j do 

4 if e i ∈ Ancestor(e j ) or e j ∈ Ancestor(e i ) then 

5 Continue; 

6 else if | Ancestor(e i ) ∪ Ancestor(e j ) | < u i then 

7 Append (e i , e j ) into Q i 

8 return | Q i | 

Table 3 

CrowdK and its representative variants (DP indicates dynamic programming). 

GdyBucket EquiBucket EquiRange CrowdK 

Building method Greedy Equi-sized DP DP 

Updating method DP DP Equi-sized DP 

Time complexity for building O ( τ ) O ( τn ) O ( n 2 ) O ( n 2 ) 

Time complexity for updating O ( τk 2 n 2 ) O ( τk 2 n 2 ) O ( τkn 2 ) O ( τk 2 n 2 ) 

 

 

 

 

 

 

While Algorithm CrowdK exploits dynamic programming in both building and updating a tree, we can also use other

methods, greedy and equi-sized. Table 3 describes several notable variants and the corresponding complexity. Although

these variants incur more monetary costs than CrowdK , they tend to run faster. (In Section 5 , we evaluate the trade-off

between our proposals.) 

4.4. Improving the quality of answers 

When the answers of the crowd are imprecise, we control the number ω of workers per question to enhance the accuracy

of the top- k answers. Assuming that the accuracy of the questions is independent, improving the accuracy of the questions

is orthogonal to our original problem formulation. We can thus apply various algorithms to tune the number of workers per

question by considering the importance of the questions and the proficiency of the workers as discussed in [17,26,32] . (In a
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real crowdsourcing system such as Amazon Mechanical Turk, because it does not provide various options of selecting crowd

workers, it is only possible to consider the importance of the questions.) 

As the simplest solution, we first suppose that workers correctly respond with an equal probability p without considering

the importance of the questions. This assumption is also known as a constant error model [15] . Given a question ( s, t ), the

probability that i (0 ≤ i ≤ ω) correct answers are returned is represented by a binomial distribution, and the probability of

obtaining correct answers is calculated by majority voting . Given p , the accuracy θ of the pair-wise question is computed by:

θ = 

ω ∑ 

i = � ω 2 
 

(
ω 

i 

)
p i (1 − p) ω−i . (4)

Given θ , the precision of top- k answers can be estimated by a probabilistic model as discussed in [38] and ω can be

tuned empirically. Although this method is effective for improving the accuracy of the questions, it neglects to consider

other factors such as the importance of the questions and the difficulty of the questions. 

Alternatively, we develop a heuristic assignment method to reflect the importance of the questions for a given tourna-

ment. Specifically, because the questions at the higher levels of a tree can be more important to determine top- k answers,

the “utility” of questions can be designed by a variable error model [12] . That is, we can assign the number of workers de-

pending on the level of the tree. This means that, as the level is close to the root, the importance of the questions can be

high. Based on this observation, we allocate the number of workers per question in a dynamic manner. For instance, we

categorize all questions into three classes. Let | Q | be the total number of questions and l ( s, t ) be the position of a question

( s, t ) in a total question set Q . Given a question ( s, t ), we first allocate a less number of workers for questions located at the

lower levels, i.e. , 33% of the questions close to the leaf nodes. We then allocate a greater number of workers for questions

located at the higher levels, i.e. , 33% of the questions close to the root. That is, when the default value for ω is five, we can

dynamically assign ω as follows: 

ω = 

{ 

3 , i f l(s, t) < | Q | · 1 / 3 

5 , i f | Q | · 1 / 3 ≤ l(s, t) < | Q | · 2 / 3 

7 , i f | Q | · 2 / 3 ≤ l(s, t) 

This partitioning can be easily extended for three and more classes. 3 In Section 5.1 , we compare the accuracy of the

proposed static and dynamic methods, denoted as CrowdK (Static) and CrowdK (Dynamic) . 

Example 7 (Dynamic voting) . Fig. 6 depicts the tournament result of Algorithm CrowdK . When we assign five workers per

question with static voting, the total number of questions is 60 ( = 5 × 12 ). However, we can assign a different number of

workers per question depending on the level of the tournament. We first assign three workers per question at the lowest

level. Then, five and seven workers are assigned per question at the middle level and high level, respectively. In this case,

the total number of questions is 54 ( = 3 × 6 + 5 × 3 + 7 × 3) . Compared to the previous static voting, the total number of

questions is similar. However, because the dynamic voting distinguishes the importance of the questions, the accuracy of

the top- k queries can be improved. 

5. Experiments 

In this section, we conduct extensive experiments to validate the monetary cost, the accuracy of top- k answers, and

running time of the proposed algorithms. We first compare them with synthetic datasets with various parameter settings

( Section 5.1 ). We then evaluate the proposed algorithm with Amazon Mechanical Turk using real-life datasets ( Section 5.2 ). 

To evaluate the monetary cost, we measure the number of questions of the execution plan generated by the proposed

algorithms. To quantify the accuracy of the top- k answers, three metrics are used and cross-checked: precision at k, mean

reciprocal rank (MRR) , and normalized discounted cumulative gain (NDCG) . 4 As the scores of these metrics are closer to 1.0,

the top- k answers become more accurate. For efficiency, we also measure the running time of the algorithms. 

We compare the proposed algorithms, GdyBucket , EquiBucket , EquiRange , and CrowdK with Exhaustive . The Ex-

haustive algorithm enumerates all possible combinations of vertical bucket sizes and ranges over the parameterized frame-

work, and chooses the values of buckets and ranges that minimize the number of questions. Given a sequence of vertical

bucket sizes, this also uses the proposed horizontal partitioning. When the precedence of items is given, Exhaustive can

minimize the number of questions. However, it is excessively much slower than our proposals because the number of possi-

ble cases increases exponentially with n and k, i.e. , 
(

n 
τB 

)
and 

(
k −1 
τU 

)
( Fig. 15 ). For all algorithms, when the answers of workers

were erroneous, an iterative strategy [21] was used to resolve the conflict of answers. Being orthogonal to the proposed

algorithms, other aggregation methods could be used. 

All experiments were conducted in Windows 7 running on an Intel Core i7 950 3.07 GHz CPU with 16 GB RAM. All

algorithms were implemented in C++. We performed ten executions for each parameter setting and reported the average
values. 

3 Although it is interesting to optimize both the accuracy of top- k answers and monetary cost using a more sophisticated accuracy model, it can incur a 

more complicated problem formulation. In this paper, we thus leave the extension as our future work. 
4 As all three metrics showed similar patterns, in the interest of space, we only report NDCG in this paper. 
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Table 4 

Parameter settings for synthetic datasets. 

Parameters Range Default 

Cardinality n 2K, 4K, 6K, 8K, 10K 4K 

# of rounds τ 4, 5, 6, 7, 8 6 

Retrieval size k 2, 4, ..., 20 10 

# of workers per question ω 3, 5, 7, 9 5 

Prob. of correct answers p 0 .7, 0.8, 0.9 0 .8 

Fig. 9. Comparison of varying the number of questions in small-scale datasets. 

Fig. 10. Comparison of varying the number of questions in large-scale datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Evaluation with synthetic datasets 

We first evaluate the proposed algorithms over synthetic datasets with five parameters: the number n of items, the

number τ of rounds, retrieval size k , the number ω of workers, and the probability p of obtaining correct answers. Given

n items, the ground truth for the latent function scores was randomly generated. We assumed that large scores for items

were preferred. Table 4 summarizes the parameter values used in synthetic datasets. 

Monetary cost: When the cost per question and the number of workers are fixed, the total cost is proportional to the

number of questions asked to the crowd. When the latent function scores are known, Exhaustive minimizes the number of

questions. Because Exhaustive is overly slow for large-scale synthetic datasets, we compared all five algorithms including

Exhaustive in small-scale datasets ( i.e. , n = [20 0 , 10 0 0] , τ = [3 , 6] , k = [2 , 20] ). Then, we evaluated our four proposals in

large-scale datasets. In the crowdsourcing setting, because the number of items is closely related to the monetary cost, the

number of items is controlled using pre-processing, e.g. , using Boolean condition in Example 1 . Therefore, a set of 10,0 0 0

items was sufficiently large to evaluate the crowd-enabled algorithms. 

Fig. 9 depicts the number of questions in the small-scale datasets. The default parameter values were n = 400, τ = 5,

and k = 10. ( CrowdK is CrowdK (Static) that employs conventional assignment method with the constant error model in

Fig. 14 .) Note that CrowdK is always the best algorithm among the four proposals, being closest to the minimum bound

achieved by Exhaustive in all parameter settings. As k increases, the difference between Exhaustive and the others in-

creases, yet CrowdK remains close to Exhaustive . As τ increases, all algorithms can avoid asking unnecessary questions

by leveraging the pre-obtained precedences between items ( Fig. 9 b). Inversely, as n or k increases, the number of questions

increases ( Fig. 9 a and c). Overall, GdyBucket is the worst algorithm, generating 2–3 times more questions than CrowdK

does. This is because the building process of GdyBucket deteriorates as n or k increases. EquiBucket and EquiRange have

a comparable performance in the small-scale datasets. 
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Fig. 11. Comparison of varying the number of questions between Max and CrowdK . 

Fig. 12. Accuracy of varying number ω of workers and probability p in CrowdK . 

 

 

 

 

 

 

 

 

 

Fig. 10 depicts the number of questions in the large-scale datasets. Compared to the other algorithms, CrowdK also yields

the minimum questions . Unlike the small-scale datasets, EquiRange shows superior performance compared to EquiBucket

as n or k increases ( Fig. 10 a and c). This means that equi-sized ranges are more effective than equi-sized buckets as an

approximate method of CrowdK . GdyBucket still demonstrates the worst performance as in the small-scale datasets. 

Lastly, we compare CrowdK with Max proposed in [38] which is one of the closest existing works ( Fig. 11 ). (Note that,

although [39] addresses the max queries, the only difference between [38] and [39] is to employ the estimate function for

latency. In our problem formulation, because the latency is measured by the number of rounds, [39] is similar to [38] .) As

a more favorable setting for Max , k was set as one by default in Fig. 11 (a) and (b). Because [38] addresses the different

problem of optimizing the quality of the answers under the constraint for monetary cost and latency, it was impossible

to directly compare this with CrowdK . We thus modified Max to address our problem by removing the constraint for
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Fig. 13. Accuracy comparison of algorithms over varying number ω of workers and probability p in CrowdK . 

Fig. 14. Accuracy comparison of CrowdK (Static) and CrowdK (Dynamic) over varying number ω of workers and probability p in CrowdK . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

monetary cost. Assuming that the answer of the workers is always correct, Max only optimized the number of questions

under the latency constraint. 

Specifically, when k = 1 , Max was implemented by ConstantSequence in our problem setting. When k > 1, Max was

iteratively performed to identify the top-1 result k times. Because this extension incurs excessive latency time, it violates

the constraint for latency. As indicated in Fig. 11 (a) and (b), CrowdK has a less number of questions than Max , because

the tree building step ( k = 1 ) in CrowdK can minimize the number of questions. As k increases, the gap between Max and

CrowdK widens. For example, when k = 20 , CrowdK has seven times less questions than Max . This is because CrowdK

updates the tree selectively by using pre-obtained precedence between items; Max does not address the tree updating step.

Accuracy: We first validate the accuracy of top- k answers using a constant error model. Fig. 12 depicts the accuracy of

top- k answers with varying ω and p in CrowdK . (Similar trends were also observed using other algorithms as indicated in

Fig. 13 .) Regardless of n and τ , the accuracy of the top- k answers increases with the number ω of workers per question and

the probability p of correct answers. That is, we can improve the accuracy of the top- k answers by adjusting either ω or p . 

Furthermore, it is also found that the accuracy of the top- k answers is similar in all algorithms when ω and p are fixed

( Fig. 13 ). Although the accuracies of the top- k answers are marginally different, they indicate similar trends with varying ω
and p . This is because the different number of questions for each algorithm does not significantly affect the accuracy of the

top- k answers. In particular, because CrowdK generates questions selectively to determine the top- k answers by ignoring

unnecessary questions, the accuracy of CrowdK is similar to the other algorithms. Because CrowdK generates the least

number of answers with similar accuracy, it can be thus considered the overall winner. 

We also evaluate the accuracy of top- k answers using different assignment methods ( Fig. 14 ). Specifically, CrowdK

(Static) is the conventional assignment method using a constant error model in CrowdK ; CrowdK (Dynamic) is a heuristic

assignment method in CrowdK , where the number of workers is dynamically assigned depending on the importance of the

questions ( Section 4.4 ). 

It is consistently found that CrowdK (Dynamic) shows higher accuracy than CrowdK (Static) for all parameter settings

of ω and p . That means that the assignment of CrowdK (Dynamic) is effective for improving the accuracy of the top-

k answers by distinguishing the importance of the questions. When ω = 3 or p = 0 . 9 is given, the improvement gap is

maximized. 
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Fig. 15. Running time of five algorithms in small- and large-scale datasets. 

Fig. 16. Monetary cost and the accuracy using MTurk in real-life datasets ( n = 50 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Running time: Fig. 15 (a) compares the running time of the algorithms in the small-scale datasets. Note that the y-axis

is log-scaled. The gap between Exhaustive and the other algorithms increases as the number of items increases. This is

because the number of possible parameter combinations in Exhaustive increases exponentially, while the search space of

the other algorithms increases linearly. Fig. 15 (b) evaluates the proposed four algorithms in large-scale datasets. 

Because building a tree in GdyBucket does not affect the number of questions, it indicates a constant performance.

However, EquiBucket and EquiRange are linearly slower as the number of questions increases. GdyBucket is the fastest,

and EquiBucket is marginally faster than EquiRange . CrowdK shows the slowest running time. The trade-off between the

running time and the number of questions is consistent with the analysis in Table 3 . 

5.2. Evaluation with real-life datasets 

We evaluate CrowdK with Amazon Mechanical Turk (AMT), a well-known crowdsourcing platform. We collect four real-

life datasets: (1) Squares contain 50 images with the same color whose sizes are { (30 + 5 i ) × (30 + 5 i ) | i ∈ [0 , 50) } , (2) Rect-

angles contain 50 images with different colors whose sizes are { (30 + 3 i ) × (40 + 5 i ) | i ∈ [0 , 50) } , (3) Animals include 50

images ranging from bacteria to whale, and (4) Statue of Liberty includes 20 images, all related to the “Statue of Liberty”.

Fig. 17 represents a set of the 20 images for “Statue of Liberty”. They are collected with the Google image search engine. 

The set of 50 animals includes { ant, armadillo, bacteria, bat, bear, beaver, bee, beetle, butterfly, camel, cat, chameleon, chee-

tah, chicken, chipmunk, dolphin, dugong, elephant, fox, giraffe, gorilla, hippo, horse, komododragon, leopard, lion, lobster, louse,

manatee, meerkat, mosquito, moth, mouse, octopus, ostrich, owl, polarbear, praying mantis, rhinoceros, scorpion, shark, snake,

spider, starfish, tiger, toad, walrus, whale, wolf, worm }. It is used for evaluating adult size and the degree of danger of the

animals. 

We stress that the number n of items in real-life datasets can be set arbitrarily large as indicated in synthetic datasets.

However, as we have already experimented extensively with large n in Section 5.1 , we used a modest size n in the real-life

experiments. Because CrowdK shows the best performance for monetary cost in Section 5.1 , CrowdK is primarily evaluated

in the real-life experiments. Using the four real-life datasets, the following five top- k queries are performed: 

Q1 : Find top- k squares by area 

Q2 : Find top- k rectangles by area 

Q3 : Find top- k animals by adult size 

Q4 : Find top- k animals by degree of danger 

Q5 : Find top- k images by relevance to ‘Statue of Liberty’ 
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Fig. 17. Photos of “Statue of Liberty”. 

Table 5 

HIT statistics per top- k query ( τ = 4 ). 

Q1 Q2 Q3 Q4 Q5 

# of items 50 50 50 50 20 

Retrieval size 5 5 5 10 20 

Est. # of questions 128 128 128 214 116 

Est. cost $2 .6 $2 .6 $2 .6 $4 .3 $2 .4 

Avg. time per HIT (s) 19 22 32 26 22 

Latency (min) 65 97 106 39 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By design, Q1 –Q3 have ground truths; Q4 and Q5 do not. For Q1 and Q2 , we could intuitively obtain the ground truth

by calculating areas. For Q 3, we collect the ground truth for the top-5 answers based on animal information in Wikipedia.

For Q4 and Q5 , because there is no ground-truth, we empirically observed if the top- k answers are valid. From Q1 to Q5 , it

is increasingly more ambiguous and challenging to crowds. By comparing the top- k answers with ground truth in Q1 –Q3 ,

we measured the accuracy of the top- k answers by varying the difficulty of tasks. For these top- k queries, machine-based

algorithms have difficulty in obtaining correct answers; however, crowds can intuitively recognize correct answers. Further,

we quantified the accuracy of all the independent pair-wise answers returned by the workers, which were measured by the

normalized Kendall-tau coefficient. This is useful for measuring the agreement of the answers. A score closer to one indicates

that the answers of the workers are more correct. 

To validate top- k queries in real-life datasets from AMT, we use only human-based computation. (To further reduce

monetary cost, it is possible to combine machine- and human- computation as discussed in Section 1 .) For each dataset,

we varied τ , k , and ω. When the parameters are given, CrowdK identifies the values of the buckets and ranges. In this

process, we generate tasks, called Human Intelligence Tasks (HITs) . Given | Q i | questions at i th round, one HIT includes five

pair-wise questions. For each HIT, ω workers are assigned and monetary cost δ per HIT is set to $0.02. When ω = 5 , C(A, E )
is calculated as: 0 . 02 × 5 × ∑ τ

i =1 � | Q i | 
5 
 . To reduce spam workers, we used two qualification conditions embedded in AMT for

workers: (1) HIT approval rate ≥ 95%, and (2) # of approved HIT ≥ 100. To manage the latency, we assume that each round

has 30 min. Based on these assumptions, the response time for the top- k queries is calculated as # of rounds × 30 minutes .

Note that the response time per round can be different depending on the query. 

Monetary cost: Table 5 reports the statistics for the top- k queries in AMT. For each query, we set τ = 4 and k = 5 for Q1 –

Q3 , k = 10 for Q4 , and k = 20 for Q5 . If all pair-wise questions are asked by the one-shot strategy, it requires $24.5 for 50

items. However, we can save more than $20 by performing an iterative strategy ( τ = 4 ). From Q1 to Q3 , it is observed that

all answers are collected in 30 min per round. The response time for Q 1 and Q 2 are significantly less than the estimated

response time, i.e. , 120 min. Further, the average time per HIT and latency tends to increase. Because the questions in Q 3

are more difficult than those in Q 1, the crowd requires additional time to find answers for Q 3. 

Fig. 16 (a) depicts the costs over varying τ and k in CrowdK . As the retrieval size increases, the cost of CrowdK increases

as well. When τ = 4 and k ≤ 10 are given, the saving cost is approximately $20, compared to the one-shot strategy ( τ =
1). Most notably, when τ = 5 , CrowdK consistently saves more than $10 over all retrieval sizes (1 ≤ k ≤ 30). 

Accuracy: Fig. 16 (b) reports NDCG for the three queries Q1 –Q3 . For Q1 and Q2 , the top-5 answers are all correct when w

≥ 3. For Q3 , our top-5 answers are { whale, elephant, giraffe, hippo, rhinocerous }, whereas the ground truth is { whale, shark,

dolphin, elephant, giraffe, hippo, rhinocerous, ... }. Fig. 16 (c) reports the Kendall-tau coefficient to quantify the agreement of the

answers for all pair-wise questions. When ω = 5 , the Kendall-tau coefficient is more than 0.75 for all three queries. That is,

when majority voting is used with ω = 5 , the workers identifies the correct answers for approximately 70% of the questions.
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Fig. 18. Top-5 and bottom-5 answers for Q5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we validate the top-10 and top-20 answers for two subjective queries, Q4 and Q5 . For Q4 , the top-10 answers by

the crowd are { tiger, lion, bacteria, hippo, shark, bear, leopard, polarbear, komododragon, rhinoceros } including carnivores and

microorganisms. For Q5 , Fig. 18 displays the both top-5 and bottom-5 answers by the crowd. To evaluate Q5 , all images are

considerably related to the “Statue of Liberty”. Therefore, it is rather fuzzy and ambiguous even to humans. Although there

is no ground truth for Q5 , we believe that the top-5 answers collected from the crowd are acceptable. 

6. Related work 

Crowdsourcing has been actively used to perform intelligent tasks with large-scale human computation. It was first used

to collect human judgments for character recognition in the ESP game [40] . Later, it was applied to various research ar-

eas such as information retrieval, natural language processing, machine learning, and human-computer interaction. It can

enhance the accuracy of results in answering subjective search queries [6] , understanding topics in microblogs [19] , image

tagging [43] , editing documents as natural language understanding [4] , and choosing a representative frame to summarize a

video [3] . Further, it can be combined with active learning to identify reliable samples [31] . It has also been used for evaluat-

ing human-computer interaction [9,36] . A detailed survey of crowdsourcing can be found in [13,44] . Recently, [18] discussed

open challenges and issues addressing crowdsourcing systems. 

In this paper, we studied crowd-enabled top- k queries to support effective data retrieval. We elaborate on several cate-

gories related to the proposed work. 

Crowdsourcing systems and algorithms: Crowd-enabled database systems have been popular in the database community,

e.g. , CrowdDB [16] , Deco [33] , Qurk [28] , CDAS [26] , CyLog/Crowd4U [30] , and AskIt! [5] . These systems have extended

existing database systems to acquire missing information and to perform cognitive comparisons by crowds. Parameswaran

et al. [34] minimized the number of questions for finding a target node in a given graph, Gomes et al. [20] addressed crowd-

enabled clustering, and Amsterdamer et al. [1] integrated data mining with crowdsourcing. Moreover, some existing work

has extended machine-based operations into crowd-enabled operations, e.g. , selection [17,32,37] , join [29,41,42] , group by

[12] , and skyline queries [25,27] . 

Top- k query algorithms: Top- k queries have been widely used for retrieving the best k ordered items in many real appli-

cations. The existing works [14,23] mainly focused on minimizing the number of accessed items without a full data scan.

While optimizing the efficiency in conventional databases, they do not employ human computation in that case that it is

difficult for users to define an appropriate scoring function. Toward this goal, we formulate the crowd-enabled top- k queries

by minimizing the monetary cost while latency is constrained. 

Our work: The top- k query formulation is closely related to crowd-enabled max queries [21,38,39] , sorting [29] , top-

k queries [10,12] , and top- k set queries [35] . However, it clearly differs from them. Table 6 represents the comparisons

between existing work and our work based on key crowdsourcing factors. 

Specifically, [21] transformed max queries into the judgment problem in a graph and focused on resolving the conflicts of

answers collected from crowds. Venetis et al. [38] addressed max queries by maximizing the accuracy of the query results

while both the latency and monetary cost are constrained. Later, Verroios et al. [39] used the latency function as input

to address max queries. The latency function is used to estimate the running time to return the answers for pair-wise

comparisons. Because [38,39] addressed max queries, they did not consider an updating process for top- k queries. (The time

complexity of max queries in [38,39] is equal to building the tournaments in Table 3 .) They are thus limited in their ability

to expand into top- k queries. It is possible to iterate max queries k times to support top- k queries. 

Marcus et al. [29] addressed a sorting operation by optimizing monetary cost; however, it did not impose other con-

straints. Further, Davidson et al. [12] addressed crowd-enabled top- k queries by theoretically minimizing monetary cost

under a constraint for quality of answers. To analyze the error of the answers, Davidson et al. [12] proposed a variable er-
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Table 6 

Comparison between existing work and ours. 

Type Latency Cost Quality 

Guo et al. [21] max queries � � 

Venetis et al. [38] max queries � � � 

Verroios et al. [39] max queries � � � 

Marcus et al. [29] sorting � 

Davidson et al. [12] top- k queries � � 

Ciceri et al. [10] top- k queries � � 

Polychronopoulos et al. [35] top- k set � � 

Ours top- k queries � � � 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ror model by extending the existing constant error model [15] , neglecting the constraint for latency. Polychronopoulos et al.

[35] adopted a top- k set where the precedence among top- k items was not considered and ignored the constraint for la-

tency. Recently, Ciceri et al. [10] proposed a crowd-enabled top- k query algorithm in a probabilistic data setting. Because

assuming that the probabilities for preferences between items are given, Ciceri et al. [10] only focused on selecting more

useful questions under the cost constraint. Arguably, the proposed top- k query formulation is more difficult than [35] , more

generalized than [10,12,21,38,39] , and more practical than [12,29] in on-line environments. 

7. Discussion 

In this section, we briefly discuss possible extensions of the proposed method and interesting future work. 

Using multiple-choice questions: Although we mainly assume pair-wise questions, it is possible to apply multiple choice

questions with minor modification. First, estimating the number of questions should be modified. If the number of items

in a bucket is less than or equal to m items, the number of questions for multiple choices can be reduced to � b(b−1) 
m (m −1) 



as discussed in [29] . Further, computing the number of workers to manage the accuracy of the top- k answers should be

modified. One possible solution is to exploit the error model for multiple choices discussed in [38] . It is open to adopt a

new model to estimate the number of questions and to manage the accuracy of answers for multiple choice questions. 

Updating retrieval sizes incrementally: Once a tree is created, it can be reused to obtain additional top- k answers in an

interactive manner. In this case, because there is no constraint for latency, additional top- k answers are iteratively identified

by updating the tree. 

Integrating pre-obtained knowledge: If the precedences between items are partially pre-defined without using crowdsourc- 

ing, they can be represented by a tree or a forest, where multiple root nodes can exist. When building and updating a tree,

CrowdK can thus remove unnecessary questions using the pre-defined knowledge as discussed in Section 4.2 . 

Formulating other related problems: We focused on minimizing monetary cost while latency is constrained. However, the

proposed parameterized framework can also be utilized to address other related problems. For example, when only the

quality of answers is constrained, it can be leveraged to find a set of possible execution plans with a trade-off between

latency and monetary cost. The execution plans can be represented as a pareto-optimal set (or a skyline ). 

8. Conclusion 

In this paper, we studied the problem of answering top- k queries with crowds. This was formulated to minimize the

number of questions under the constraint of the number of rounds. To address this problem, we modeled a parameterized

framework with two parameters B and R . Based on the framework, we developed three methods: greedy, equi-sized, and

dynamic programming, and proposed four algorithms: GdyBucket , EquiBucket , EquiRange , and CrowdK , by combining

the three methods. Lastly, we empirically evaluated the trade-off between our proposals with respect to monetary cost,

accuracy of the top- k answers, and running time. We found that CrowdK required 20 times less than other algorithms in

terms of the monetary cost without sacrificing the quality of the answers. 
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Appendix A. Mathematical proofs 

We prove the following lemmas and theorems used in this paper. 

Theorem 1 (Horizontal optimization) . When an item set E is partitioned into m buckets, B i = 〈 b i 1 , . . . b im 

〉 minimizes | Q i | if

b min 
i ∗ = �| E | /m � and b max 

i ∗ = �| E | /m 
 hold. 

http://dx.doi.org/10.13039/501100003725
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Proof. Given B i = 〈 b i 1 , . . . b im 

〉 , the number | Q i | of questions is calculated as 
∑ m 

j=1 f (b i j ) such that f (b i j ) = 

(b i j 

2 

)
= 

b i j (b i j −1) 

2 .

Because f ( b ij ) is the convex function, it increases quadratically with b ij . 

Based on the property of the convex function, we prove this by contradiction. Assume that B 

′ 
i 
= 〈 b i 1 + δ, b i 2 −

δ, b i 3 , · · · , b im 

〉 such that 1 ≤ δ ≤ b min 
i ∗ − 1 minimizes | Q i | . Given an arbitrary bucket size b , 

(
b 
2 

)
= 

(
b−1 

2 

)
+ (b − 1) holds by

the formula of the binomial coefficient. In this case, 
(

b 
2 

)
−

(
b−δ

2 

)
= 

∑ δ
i =1 b − i holds. 

Using this equation, the following inequality between B i and B 

′ 
i 

also holds: 
(

b 
2 

)
+ 

(
b 
2 

)
< 

(
b−δ

2 

)
+ 

(
b+ δ

2 

)
, because 

∑ δ
i =1 b − i <∑ δ−1 

i =0 b + i . For another case such that b i 1 = b min 
i ∗ and b i 2 = b max 

i ∗ , we can also demonstrate the same inequality between B i

and B 

′ 
i 
. Because of the convex property, it is also trivial to demonstrate that B 

′ 
i 

with different values cannot minimize the

number of questions. Consequently, B 

′ 
i 

cannot minimize | Q i | , which is a contradiction. �

Lemma 1. For 2 ≤ i ≤ τ B and 2 i −1 + 1 ≤ j ≤ n, V [ i, j] = min b∈ [2 , j−1] V [ i − 1 , � j 
b 

 ] + Q ( j, � j 

b 

 ) . 

Proof. Let V denote a τ B -by- n matrix V [1 , . . . , τB , 2 , . . . , n ] . For 1 ≤ i ≤ τ B and 2 ≤ j ≤ n, V [ i, j ] stores the minimum number

of questions for τB = i rounds and | E | = j. We prove that the recursive equation minimizes the number of questions by

induction: 

1. Base case ( i = 1 ): As the initial step, V [1, j ] is set by 
(

j 
2 

)
for 2 ≤ j ≤ n . This setting minimizes the number of questions. 

2. Hypothesis ( i = m ): By inductive hypothesis, for 2 i −1 + 1 ≤ j ≤ n, V [ i, j ] minimizes the number of questions. 

3. Induction ( i = m + 1 ): For 2 i −1 + 1 ≤ j ≤ n, the possible range of bucket size b is [2 , j − 1] . Given | E i | = j and b , the num-

ber of questions is computed by Q ( j, � j 
b 

 ) , and | E i +1 | is determined by � j 

b 

 . Given | E i +1 | = � j 

b 

 , V [ i − 1 , � j 

b 

 ] minimizes

the number of questions. Therefore, when V [ i − 1 , � j 
b 

 ] is feasible, the following recursive equation minimizes the num-

ber of questions. 

V [ i, j] = min 

2 ≤b≤ j−1 
V [ i − 1 , � j 

b 

 ] + Q ( j, � j 

b 

 ) . 

By induction, this recursive equation minimizes the number of questions for 2 ≤ i ≤ τ B and 2 i −1 + 1 ≤ j ≤ n . �

Theorem 2 (Vertical optimization) . Given n and τ B , ̃  B minimizes | Q B | , if ̃  B is determined by B [ τ B , n ] . 

Proof. To prove this, we define the following recursive equation for V [ τ B , n ]: 

• As the initial setting, V [ i, j ] is set as: 

– When i = 1 , V [1 , j] = 

(
j 
2 

)
for 2 ≤ j ≤ n . 

– When 2 ≤ i ≤ τ B , V [ i, j] = ∞ for 2 ≤ j < 2 i −1 , which means infeasible cases. 

• As the recursive setting, for 2 ≤ i ≤ τ B and 2 i −1 + 1 ≤ j ≤ n, V [ i, j ] is set by the following equation: 

V [ i, j] = min 

2 ≤b≤ j−1 
V [ i − 1 , � j 

b 

 ] + Q ( j, � j 

b 

 ) . 

Because this recursive equation satisfies the principle of optimality by Lemma 1 , V [ τ B , n ] minimizes the number of ques-

tions. Because B corresponds to V, B [ τ B , n ] is a sequence of vertical bucket sizes that minimizes the number of questions. �

Lemma 2. When r i and T are given, ( e i , e j ) can be skipped, if (1) e i ∈ Ancestor ( e j ), (2) e j ∈ Ancestor ( e i ), or (3)

| Ancestor ( e i ) ∪ Ancestor ( e j )| ≥ r i . 

Proof. Let Ancestor ( e i ) denote a set of ancestors of e i in T . For the first and second case, because ( e i , e j ) can be derived by

transitivity, it does not affect determining the top- r i answers. For the third case, when | Ancestor ( e i ) ∪ Ancestor ( e j )| ≥ r i , both

e i and e j cannot be in the top- u i answers. That is, if e i is a top- u i candidate, e j is not a top- u i candidate. If e j is a top- u i
candidate, e i is not a top- u i candidate. Therefore, ( e i , e j ) does not affect determining the top- u i answers. �
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