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Abstract Metadata (i.e., data describing about data) of
digital objects plays an important role in digital libraries and
archives, and thus its quality needs to be maintained well.
However, as digital objects evolve over time, their associated
metadata evolves as well, causing a consistency issue. Since
various functionalities of applications containing digital
objects (e.g., digital library, public image repository) are
based on metadata, evolving metadata directly affects the
quality of such applications. To make matters worse, mod-
ern data applications are often large-scale (having millions
of digital objects) and are constructed by software agents or
crawlers (thus often having automatically populated and erro-
neous metadata). In such an environment, it is challenging
to quickly and accurately identify evolving metadata and fix
them (if needed) while applications keep running. Despite
the importance and implications of the problem, the con-
ventional solutions have been very limited. Most of existing
metadata-related approaches either focus on the model and
semantics of metadata, or simply keep authority file of some
sort for evolving metadata, and never fully exploit its poten-
tial usage from the system point of view. On the other hand,
the question that we raise in this paper is “when millions
of digital objects and their metadata are given, (1) how to
quickly identify evolving metadata in various context? and
(2) once the evolving metadata are identified, how to incorpo-
rate them into the system?” The significance of this paper is
that we investigate scalable algorithmic solution toward the
identification of evolving metadata and emphasize the role of
“systems” for maintenance, and argue that “systems” must
keep track of metadata changes pro-actively, and leverage on
the learned knowledge in their various services.
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1 Introduction

Various digital objects and their associated metadata (i.e.,
data describing about data) are currently stored and main-
tained in many data applications. In particular, in this paper,
we use the Digital Libraries and Archives (hereafter DL)
as the exemplar data application that stores digital objects
(e.g., bibliographic data) and their metadata. In this context,
the digital objects range from traditional digital documents
(e.g., articles, preprints, technical reports, books, thesis, web
pages) to multimedia objects (e.g., images, audio/video files,
visualization models), to miscellaneous data sets (e.g., gene
data, computer programs, learning objects, administrative
records, simulation models). Similarly, metadata ranges from
descriptive metadata (e.g., description, creator, title, sub-
ject) to administrative metadata (e.g., access control, crea-
tion/deposit date) to structural metadata (e.g., file name, type,
image resolution) [34]. Since DLs heavily use metadata for
various functionalities such as searching and browsing, their
quality is directly dependent on that of metadata. As digital
objects evolve over time, however, their associated metadata
evolves as well, and its accuracy diminishes gradually.

For instance, due to data-entry errors, a DL may con-
tain multiple instances of the same video files with slightly-
different metadata, or since a scholar changes her last name
due to marriage (e.g., name authority problem [23]), her pub-
lications may appear under multiple name variants. More-
over, metadata format (or schema) may also change over
time because the adopted metadata standards may change.
In order to achieve the long-term integrity of any DLs, there-
fore, it is important to maintain the metadata of digital objects
consistent and up-to-date. When metadata changes over time,
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often, it is not only semantically valid but also unavoidable
(e.g., author name change due to marriage). Note that the
problem of the maintenance of “evolving metadata” is an
orthogonal issue from: (1) which metadata standard to use
(e.g., Dublin Core [13] or Library of Congress core metadata
elements [34]); and (2) which persistent ID proposal to use
(e.g., DOI [37] or PURL [33]). Therefore, to facilitate the
presentation, through the rest of the paper, we will use the
notation of Dublin Core as the metadata format. In particular,
in the examples, we will focus on the descriptive metadata
of Table 1 (taken from [13]).1 Let us first informally define
the evolving metadata.

Definition 1 (Evolving Metadata) When conflicting meta-
data for a single digital objects occurs, when the value of
metadata changes over time, or when the value of metadata
becomes obsolete, such a metadata is said to be “evolving.”

1.1 Motivation

Let us demonstrate examples of evolving metadata drawn
from real DLs as the motivation.

1. Case of <creator> metadata. The <creator>
metadata describes a person, an organization, or a ser-
vice who is primarily responsible for making the content
of the digital object. For instance, in scientific publication
DLs (e.g., CiteSeer [29], e-Print arXiv [2],
eBizSearch [39] or DBLP [5]), digital objects are scien-
tific articles and <creator> metadata is the authors of
those articles. That is, the famous article “As We May
Think, V. Bush, The Atlantic Monthly,
1945” may have “V. Bush” as <creator> metadata.
Since users often browse or search articles based on the
names of <creator>, the conflicting author names
result in undesirable problems in DLs. In Fig. 1, two
such problems are illustrated. (a) is the screen-shot of
ACM Portal where articles of a renowned computer sci-
entist, Jeffrey D. Ullman, are “split” to ten name variants,
and (b) is the screen-shot of the article list of “Dong-
won Lee” in DBLP where articles of another scholar
(whose name has the same spelling) are “mixed.” The

1 Although the six descriptive metadata of Table 1 are only a small
subset of all available descriptive metadata in Dublin Core or PREMIS
data dictionary, recent study shows that majority of web and DL usage
(i.e., around 30%) are the search based on author or publisher names
(e.g., finding a person’s home page or searching articles by some pub-
lishers). Therefore, metadata such as <creator>, <publisher>,
or <title> has significant impact on the overall quality of digital
objects and the issue of digital preservation. Furthermore, automati-
cally detecting and fixing abnormality in administrative metadata (e.g.,
access control) is not only extremely difficult but also impractical. We
believe that such evolving administrative (or structural for the same
matter) metadata are best handled by human experts manually.

conflicting metadata in (a) is probably due to either errors
by software systems or various names used in different
articles.
On the other hand, the conflicting metadata in (b) is due
to legal mixture — when there are multiple <crea-
tor> (i.e., authors) with the same spelling, this problem
naturally occurs. Another example is the case of “Alon
Halevy,” a professor at U. Washington, who used to be
known as “Alon Y. Levy” before his marriage. Imag-
ine that one performs a bibliometric analysis to measure
impact factor of “Alon Halevy.” Then, she would first
try to gather all articles of “Alon Halevy” using <cre-
ator>metadata, but likely to fail to discover his articles
that had the old name “Alon Y. Levy.”

2. Case of <publisher> metadata. Another type of
evolving metadata occurs when <publisher> entity
associated with digital objects in DLs changes due to
external semantic changes. Consider a scientific article
with a conference/journal name as a publication venue.
As time passes, often, the names of such publishers
change. For instance, multiple conferences may merge
into a single conference over time (e.g., both “ACM
DL” and “IEEE ADL” merged into “ACM/IEEE JCDL”
in 2001), or conversely a single conference can split
into multiple conferences (e.g., “ACL” and “COLING”
merged into “ACL-COLING” in 1998, then separated
afterward). Furthermore, the characteristics of a venue
may change (e.g., a workshop “ML” has evolved into a
conference “ICML”). Note that if DLs have a capability
to learn the evolved <publisher> information (i.e.,
“ACM DL” and “IEEE ADL” were merged to “ACM/
IEEE JCDL” in 2001), then DLs may return articles from
all three conferences for a user’s request “find all articles
in JCDL about Digital Identity after 1995” even if the
query only asked about “JCDL.”

3. Case of<creator>,<title>,<publisher>, and
<date> combined. When the evolution of individual
metadata is aggregated, it can result in more serious prob-
lem. Ideally, DLs should contain a single instance of
a unique digital object. To achieve this, DLs often try
to find all redundant instances by using their associated
metadata and consolidate them. However, when metada-
ta has conflicting and misleading values, such a de-dupli-
cation task becomes harder. Figure 2 is the screen-shot of
CiteSeer and Google Scholar where users tried to locate
a book “Artificial Intelligence: A Modern Approach” by
Russell and Norvig. Note that both CiteSeer and Google
Scholar currently keep many “redundant” instances of
the same book, thinking that they are all different. How-
ever, all these instances actually refer to the identical
book published by the two authors.
The culprit of this phenomenon is that first, they do not
use persistent ID system, and second, each instance of the
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Table 1 Partial list of metadata
of Dublin Core Metadata Definition

<creator> An entity primarily responsible for making the content of the resource

<date> A date associated with an event in the life cycle of the resource

<description> An account of the content of the resource

<publisher> An entity responsible for making the resource available

<subject> The topic of the content of the resource

<title> A name given to the resource

Fig. 1 Conflicting
<creator> metadata in two
contexts: (left) ten split cases of
“Jeffrey D. Ullman” in ACM
Portal; and (right) Mixed case of
“Dongwon Lee” in DBLP where
boxed ones are by another
“Dongwon Lee”

book carries slightly different metadata (e.g., “S. Russel”
vs. “Russel, Stuart” for <creator> or “Artificial Intel-
ligence: A Modern Approach” vs. “A Modern Approach”
for <title>). Since two DLs are constructed by web
crawlers that automatically extract metadata from the
user-posted (thus no uniform convention to follow) cita-
tion data on the Web, the quality of the extracted meta-
data tends to be poor, making the de-duplication task
difficult, if not impossible. For DLs whose metadata are
manually selected and entered by human experts (e.g.,
DBLP, ISI/SCI [25]), the issue of evolving metadata is
less obvious, although it still exists due to data-entry
errors. However, for DLs whose digital objects are sys-
tematically gathered and whose metadata are automati-
cally generated by software agents (e.g., CiteSeer), the
problem gets worse.

In addition, when different character sets are used, foreign
languages with a variety of accents and special symbols are
used, or a language is translated to another one, evolving
(and erroneous) metadata are easily found. For instance, two
<cretor> metadata — “D. Marz” and “D. März” — may
confuse users of DLs if proper hints are not available.

1.2 Objectives

As demonstrated in the aforementioned three examples, the
evolving and evolving metadata pauses a significant chal-
lenge to the maintenance of DLs. In particular, two critical
techniques are needed to solve the evolving metadata prob-
lem: (1) Identification of evolving metadata in various con-
texts; and (2) System Incorporation of the identified evolving
metadata.

– Identification: Given millions of digital objects and their
associated metadata, finding the evolving metadata
quickly is a daunting task. Toward this objective, what
are the effective yet scalable algorithms? What are the
taxonomy of all possible scenarios that evolving meta-
data can yield? What is the relationship of the problem
to existing data integration problem (e.g., record-linkage
or citation matching)?

– System Support: Once the evolving metadata are iden-
tified, they must be somehow fixed/updated into DLs.
To support this update, what are the most basic build-
ing blocks of activities? How can they be merged or
split? What are the taxonomy of all possible update sce-
narios? If evolving metadata are fixed, how can DLs
exploit that?
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Fig. 2 Redundant instances of digital objects due to evolving metadata in CiteSeer and Google Scholar‘

Table 2 Some of the well-known scientific digital libraries

Digital library Domain # of digital objects (in millions) Automatically generated?

ISI/Science Citation Index General Sciences 25 No

CAS Chemistry 23 No

MEDLINE/PubMed Life Science 12 No

CiteSeer General Sciences/Engineerings 10 Yes

eBizSearch e-Business N/A Yes

arXiv e-Print Physics, Mathematics 0.3 No

SPIRES HEP High-energy Physics 0.5 No

DBLP Computer Science 0.5 No

CSB Computer Science 1.4 Yes

BibFinder Computer Science N/A Yes

NetBib Network 0.05 No

1.3 Significance

In recent years, we have witnessed a dramatic increase of
DLs in both the volume of data maintained in each and the
number of DLs becoming available on the Web — partly due
to governmental support (e.g., NSF Digital Library Initia-
tive), and partly due to newly available tools and standards
(e.g., crawler, automatic citation indexer, OAI protocol). For
a quick assessment, Table 2 summarizes the basic statistics
of some of the well-known scientific DLs — either manually
or automatically constructed and maintained. Note that most
of them are “large-scale”, having millions of digital objects
in them. One way or the other, all of these DLs have the
metadata-related problem. We believe that the same prob-
lem pervades in other DLs and data applications. When the
contents of DLs need to be preserved for a long period, the
problem only exacerbates.

Despite the importance of the maintenance of evolving
metadata in DLs, however, the conventional solution has been
very limited, only keeping authority file of some sort, and

never fully exploit its potential usage from the system point
of view. Similarly, there has not been much study on the sys-
tematic identification of evolving metadata for large-scale
DLs. The significance of this paper is to emphasize the auto-
matic identification of those evolving metadata cases, and the
role of “systems”, that is DLs, which must keep track of those
changes pro-actively, and leverage on the knowledge in var-
ious services of DLs (e.g., search) to give better interactions
to users. Note that the solutions that we are proposing are
very practical. Therefore, they can be adopted immediately
to many existing DLs, and thus can play a significant role in
extending current limitations.

2 Related work

To our best knowledge, there has been little work on iden-
tifying corrupted metadata and fixing them through system
support. However, a wealth of relevant works exist in slightly
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different context. Here, we review two of them — name
authority control and citation matching problems.

Name authority control. When popular descriptive
metadata such as <creator> or <publisher> of digital
objects changes in DLs, one needs to determine which of the
conflicting metadata is the authoritative one. In the traditional
DL community, to solve this problem, people often keep a
list of authority names in a file, and when conflicting names
are encountered, they consult the authority file for solution.
For instance, it is known that US Library of Congress, OCLC
and “Die Deutsche Bibliothek”, while each maintaining large
name authority databases, participate in the Virtual Interna-
tional Authority File project [46] to explore virtually combin-
ing the name authority files of both institutions into a single
name authority service [31]. Although varies in detail, in
general, a valid authority record contains a catalog heading,
cross references (if any), and its justification.

Works done in [18,47] aim at detecting name variants
automatically using data mining or heuristics techniques. Our
proposal is more general and aims at identifying an exten-
sive set of corrupted metadata (in addition to name variants).
Also, we focus on system support issues once such variants
are (semi-)automatically identified. Similarly [12] introduces
a method to find matching variants of named entity in a given
text such as project name (e.g., DBLP vs. Data Base and
Logic Programming). The proposed specification maintains
some context information and provides access to the copy
of the document that an user is authorized to when multiple
copies of the same document is maintained. Similarly [42]
discusses an effort to standardize author names using a unique
number, called INSAN. [11] is a recent implementation for
name authority control, called HoPEc, which bears some sim-
ilarity to our approach. The detailed comparison between our
proposed approach and INSAN/HoPEc can be found in our
recent work of [23].

Citation Matching. Detecting and fixing corrupted (thus
conflicting) metadata is in essence similar to the problem of
“database join” (thus finding similar tuples among many).
In DLs context, the closest problem is known as citation
matching problem (e.g., [30,38]), but it is also known as
various names in various disciplines. For instance, it bears
a great relevance to problems known as — record linkage
(e.g., [6,14,26,48]), identity uncertainty (e.g., [38]), merge-
purge (e.g., [20]), object matching (e.g., [9,44]), duplicate
detection (e.g., [1,32]), approximate string join (e.g., [10,
16]) etc. In particular, by assuming records to match are
stored in RDBMS, one can view record linkage as string
join problem, but the difficulty lies in the pre-processing
step to convert raw metadata string into an array of col-
umns to fit into relational model, and some techniques [7,43]
toward this problem have been proposed. There are some

record linkage research work applied to specifically citation
matching in DLs. For instance [27] experimented various
distance-based algorithms with a conclusion that word-based
matching performs well. Two-step citation matchings were
proposed in [24,30] where initial rough but fast clustering (or
called “Canopy”) is followed by more exhaustive citation
matching step. Although relevant, none of these concerns
issues related to “system support” once matching or conflict-
ing metadata are identified. Furthermore, these works do not
concern the evolution of metadata and their effects on DLs.

Apart from automatic citation matching techniques, there
have been a wealth of attempts to provide more fundamen-
tal solution to avoid name authority control problem. For
instance, in the Open Journal project [22], hypermedia link-
ing techniques were applied to citation linking. However,
since their test-data was from SCI/ISI (relatively clean com-
pared to ones in CiteSeer), the task of matching is arguably
easier. More recently, by extending the success of the Open
Journal project, the Open Citation Project (OpCit) [21,40]
has developed more comprehensive solutions for the refer-
ence linking in large-scale open-access archives. Similarly
[4] proposes some architectural issues and programming API
for linking references. Compared to our proposal, all these are
narrowly focused on the “reference” of articles with the goal
of designing right models first. At the other end of the spec-
trum, one may assign unique and persistent identifier to each
digital object. The examples include Digital Object Identi-
fier (DOI) [3,37] or SLinkS [19]. However, the full adoption
of those proposals is still far from the reality. The creation
and maintenance issues of identifiers are found in [8]. Some
recent work attempts to learn what can constitute unique
identifiers [44].

Note that the evolving metadata problem that we concern
in this proposal is “orthogonal” to the adoption of persistent
IDs. That is, even if two instances of digital objects have
the same DOI (thus one knows that they refer to the same
real-world objects), both instances may still have conflicting
metadata that causes problems.

3 Main proposal

In a nutshell, we consider the following question in this paper:

When the metadata of digital objects in large-scale
DLs change over time, how to quickly and accu-
rately identify those evolving metadata in various
scenarios, and fix them?

To answer this question, we explore the two inter-related
tasks next. Note that our goal in this paper is not to propose a
particular algorithm. Rather, we advocate the importance of
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the problem and the framework of algorithmic solution and
system support.

3.1 Identifying evolving metadata

When metadata is corrupted in a large-scale DL, it is chal-
lenging to automatically detect the corrupted metadata in an
effective and scalable way. To make matters worse, depend-
ing on the type of digital objects and their metadata, the iden-
tification algorithm is likely to vary. Below, let us present two
specific algorithms to identify corrupted descriptive metadata
in two different contexts. To facilitate the presentation, let us
first assume that the digital object, o, is the “citation” of an
article, and the corrupted metadata, m, is <creator>, the
author list of the article.

1. The Mixed Object (MO) Problem and Labeling
Algorithm. In Fig. 1b, due to the corrupted <creator>
metadata, digital objects (i.e., scientific articles) by different
authors are mixed — we refer to this as Mixed Object (MO)

problem. Consider a collection of digital objects, O , all with
<creator> metadata set to an author ai . Now, suppose
some of the digital objects in O have corrupted <creator>
metadata and should have been labeled to another author a j .
How can we identify (1) those objects with corrupted meta-
data? and (2) the correct value of the corrupted metadata? The
challenge here is that since two different authors, ai and a j ,
have the “same” name spellings in the<creator>metadata
(thus they are corrupted), one cannot easily differentiate one
from corrupted metadata by simply using distance between
their names (e.g., Edit distance).

One way to overcome this is to exploit additional meta-
data information. Suppose a DL has a set of citations C by
an author ai , and needs to identify citations C ′(⊆ C) that
are “not” by ai . Note that <creator> metadata of C ′ still
contains a value of ai . Here, we may use additional metadata
information such as coauthor list, common keywords used in
the titles of articles, or common publication outlets, etc. Con-
sider a citation ci with a set of coauthors A = {a1, . . . , an}, a
set of keywords from the title T = {t1, . . . , tm}, and a venue
name V . Then, after removing the i-th coauthor ai (∈ A),
we try to “guess” back the removed author using associ-
ated information. Let us call this procedure of guessing as
the Labeling algorithm. If we assume that there is a “good”
labeling function fcl : ci → a j , then, the above MO problem
can be casted as follows. Given citations C by an author a1:

for each citation ci (∈ C):
remove a1 from coauthor list of ci ;
fcl is applied to get a2 (i.e., guessed name);
if a1 �= a2, then ci has corrupted metadata;
remove ci from C ;

At the end, C is left with only citations with correct meta-
data (i.e., those written by a1) and those removed from C
are ones with corrupted metadata (e.g., citations written by
another author a2 with the same name spelling). Therefore, if
one can find a good labeling function fcl , then one can solve
the MO problem. Suppose one wants to “label” a collection
of citations, C , against a set of possible authors A. A naive
algorithm, then, is (let φ be a similarity measure2 between a
citation ci and an author a j ):

for each citation ci (∈ C):
examine all names a j (∈ A);
return a j (∈ A) with MAX φ;

This baseline approach presents two technical challenges: (1)
Since ci and a j are two different entities to compare in real
world (i.e., ci is a digital object and ai is one of its metada-
ta), the choice of good similarity measure is critical; and (2)
When a DL has a large number of citations and authors in
the collection, the baseline approach with a time complexity,
O(|C ||A|),3 is prohibitively expensive to run (e.g., the DBLP
has about 0.56 million authors). Toward these two issues, we
propose the following.

First, to measure the similarity between object and its
metadata, one can use the idea similar to that in [18,28,35,
36], representing a citation as 3-tuple of coauthors, titles,
and venues — then, the similarity between a citation c and
an author a (hereafter, sim(c, a)) can be estimated as the
similarity between a 3-tuple representation of c and that of a:

sim(c, a) = α sim(cc, ac) + β sim(ct, at) + γ sim(cv, av)

where α + β + γ = 1 (i.e., weighting factors), cc, ct, and
cv are token vectors of coauthors, paper titles, and venues,
respectively, of the citation c, and ac, at, and av are token vec-
tors of coauthors, paper titles, and venues from “all” citations
of the author a, respectively. The intuition is that if a metada-
ta is corrupted, then it is likely to contain an abnormal value
that is vastly different from the “collective” values of the nor-
mal metadata. In turn, each similarity measure between two
token vectors can be estimated using the standard IR tech-
niques such as the cosine similarity, cos(θ) = v·w

‖v‖·‖w‖ , along

with TF/IDF.4

2 In this paper, we use both terms of distance and similarity somewhat
interchangeably. We assume that there is a straightforward conversion
method between “distance” and ”similarity” of two objects (e.g., dis-
tance = 1 − similarity).
3 The Big O notation, O(), is a mathematical tool to describe the
asymptotic upper bound of functions for a large input set. For instance,
O(|C ||A|) sets the upper bound (i.e., worst case) of the algorithm.
4 The TF/IDF (term frequency/inverse document frequency) is a popu-
lar weighting scheme in Information Retrieval, where the importance
of a token increases proportionally to the frequency of a token in the
document but decreases by the frequency of the token in the entire
corpus.
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Example 1 For instance, a citation c “E. F. Codd: A Rela-
tional Model of Data for Large Shared Data Banks. Com-
mun. ACM 13(6): 377–387 (1970)” is represented as: cc =
[“E.F. Codd”], ct = [“Relational”, “Model”, “Data”, “Large”,
“Shared”, “Data”, “Banks”], and cv = [“Commun.”,
“ACM”]).5 Similarly, an author “John Doe” with two cita-
tions (“John Doe, John Smith: Data Quality Algorithm, IQIS,
2005”, and “Dongwon Lee, John Doe, Jaewoo Kang: Data
Cleaning for XML, ACM Joint C. on Digital Libraries, 2005”)
is represented as: ac=[“John Doe”, “John Smith”, “Dongwon
Lee”, “Jaewoo Kang”], at=[“Data”, “Quality”, “Algorithm”,
“Cleaning”, “XML”], and av=[“IQIS”, “ACM”, “Joint”, “C.”,
“Digital”, “Libraries”]. Then, the similarity of the citation c
and an author “John Doe” is equivalent to: sim(c, a). That
is, if sim(c, a) is beyond some threshold, we “guess” that c
is a false citation and should have been labeled under “John
Doe”, not “E. F. Codd” (false positive case). When there are
many such authors, we label c as the author with the maxi-
mum sim(c, a).

Second, to be scalable, one may adopt an approximation
algorithm in measuring the similarity. Note that for a citation
c, one does not need to check if c can be labeled as an author
a for the entire authors of A. If one can quickly determine
candidate author set from all authors (i.e., pre-filtering), then
c is better off to be tested against only the authors in candidate
set. For the pre-filtering, we may use the sampling technique
developed for approximate join algorithm [16]. Let S(⊆ A)

be the sample candidate set that is drawn probabilistically.
Then:

for each citation ci (∈ C):
draw a sample S(⊆ A);
examine all names s j (∈ S);
return s j (∈ S) with MAX φ;

Note that the complexity is reduced to O(|A| + |C ||S|), that
is typically more scalable than O(|C ||A|) since |S| � |A|.

2. The Split Object (SO) Problem and Disambiguation
Algorithm. In Fig. 1a, due to the corrupted <creator>
metadata, digital objects (i.e., scientific articles) by the same
author are split — we refer to this as Split Object (SO) prob-
lem. In the citation vs. author context, the SO problem can
be casted as follows: Given two lists of author names, X
and Y , for each author name x (∈ X), find name variants
of x : y1, y2, . . . , yn (∈ Y ). That is, all of y1 …yn are cor-
rupted metadata, and should have been set to x instead. The
baseline approach to solve the problem is to treat each value
of metadata as a “string”, and compute all pair-wise string
similarity using some function, dist (x, y):

5 We assume that all stop-words are pre-pruned from the title.

for each metadata x (∈ X):
for each metadata y (∈ Y )

if sim(x, y) > φ, x and y are variants;
Note that if x and y are variants, then one is the corrupted

form of the other (canonical one). This baseline approach
has the limitations similar to the baseline approach of the
MO problem. Since the baseline approach is prohibitively
expensive to run for large DLs (because of its quadratic time
complexity, O(|X ||Y |))), there is a need for more scalable
algorithms. Furthermore, some metadata from similar cul-
tural or national background shares similar spellings (e.g.,
<creator>), and thus those algorithms should not be too
much dependent on the syntactic similarities of metadata.
For instance, given 10 articles with <creator>metadata =
“Dongwon Lee”, and another 20 articles with <creator>
metadata = “D. Lee”, to determine if one metadata is the
corrupted of the other, one may test if there is any correla-
tion between the associated metadata (e.g., coauthor lists) of
“Dongwon Lee” and “D. Lee.” By using the same sampling
idea, this Disambiguation algorithm to identify split digital
objects can be written as follows (x , y, and z are metadata):
/* let Ca be coauthor information of author a; */
for each x (∈ X), draw a sample set Sx (∈ S);
for each y (∈ Y ): ................ /* Step 1 */

assign y to all relevant samples Si (∈ S);
for each sample Sx (∈ S): ......... /* Step 2 */

for each z (∈ Sx ):
if sim(Cx , Cz) > φ:

x and z are corrupted metadata;

Note that the time complexity after sampling becomes
O(|X | + |Y | + C|S|), where C is the average number of
metadata per sample. In general, C|S| � |X ||Y |, making
the algorithm more scalable.

Depending on the choices in both Steps 1 and 2, many
variations of the disambiguation algorithm are feasible. Let
us use the following notations: (1) 1-N is a single-step pair-
wise name matching scheme without using sampling or coau-
thor information (i.e., it uses plain pair-wise author name
comparison); (2) 2-NN uses the two-step approach, but do
not exploit “coauthor” information; (3) 2-NC is a two-step
approach using the sampling and exploiting “coauthor” infor-
mation instead of author names; and (4) 2-NH is the mod-
ification of 2-NC in that in step 2, it combines both author
and coauthor information together with proper weights (e.g.,
In experimentations, we used one-fourth and three-fourth for
author and coauthor, respectively). Although using the sam-
pling speeds up the whole processing significantly, another
important issues is to find out the right distance metric to use
in Step 2. Since each metadata (e.g., author) is represented as
a potentially very long list of associated metadata (e.g., coau-
thor list), different distance metrics tend to show different
accuracy/performance trade-off. Our preliminary results for
all these variations are to follow in Sect. 4.
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Fig. 3 One possible ER
diagram for simple
bibliographic digital libraries

What we have presented so far is two common (mixed
and split object) problems and corresponding algorithmic
framework. Specific implementation under the proposed
framework will vary. In Sect. 4, for instance, a few choices
of implementations are explored for validating the proposed
ideas.

3.2 Fixing and using evolving metadata

Once evolving metadata is identified (manually by a librar-
ian/author or automatically by the algorithms of Sect. 3.1),
the findings must be updated into DLs to solve the evolving
metadata. When two metadata are evolving and conflicting
each other, three simple patterns are plausible:6

1. Linear change (A → B). A metadata A is changed
to B. For instance, a <creator> or <publisher>
metadata is changed over the years.

2. Split (A → {A1, A2}). A value of metadata is split into
multiple ones. For instance, a conference C can be bro-
ken into two C1 and C2. Then, the metadata of C appears
to be broken to that of C1 and C2.

3. Merge ({A1, A2} → A). Conversely, multiple metada-
ta can be merged into one. For instance, two variants of
a person’s name may be merged into one authoritative
one.

In order to demonstrate our idea, let us imagine a bib-
liographic DL built on RDBMS with a simple7 ER diagram
shown in Fig. 3: (1) Publications table contains cita-
tions of each publication, except their author names, (2)
Persons table contains author-related information, and (3)
PubPer(pubID, perID, ...) tells which publication
is authored by which person (by two foreign keys). Since a
publication can be authored by many co-authors together,
to avoid 1NF violation, separate Persons table is needed.
Also, note that there are placeholders to store the “alias”

6 More variety of evolving metadata patterns for book-like publications
are possible. For instance, Functional Requirements for Bibliographic
Records (FRBR) [45] provides a conceptual model and means to spec-
ify various patterns such as 3rd edition of a book or German translation
of an English book “X”. Since the focus of this article is to demonstrate
system support to handle such evolving metadata pattern, however, we
only focus on the rather simple three patterns.
7 Note that this ER diagram is too simple to handle the preservation of
various metadata in real applications. We simply use the current form
to facilitate the presentation.

Work Persons

Manifestation

Group 1 Entities
Group 2 Entities

Is produced by

Is created by

Fig. 4 Another possible ER diagram in FRBR [45] that is equivalent
to that in Fig. 3

name variants, for both author name (authorAlias) and
publication venue (venueAlias). Now, using this sim-
ple structure, let us discuss how three patterns of evolving
metadata can be “fixed”. Here, two metadata, <creator>
and <publisher>, are captured as author and venue.
The ER diagram shown in Fig. 4 is another possible one
in FRBR model [45], and conceptually equivalent to that in
Fig. 3. Subsequent discussion is based on the ER design in
Fig. 3.

1. Linear change. When a metadata A is changed to B,
the system sets A as an alias (either in the author-
Alias or venueAlias column), and sets B as the
current name (either in the author or venue column).
Further, A’s publications are moved to B by changing
(pubID,perID) pair in PurPer table.

2. Split. Suppose a metadata A needs to be split into B and
C . Then, the system needs to know not only new names
of A, (i.e., B and C), but also which of the A’s publica-
tions belong to either B or C . Then, the system creates
a new unique ID, perID, for both B and C and moves
their corresponding publications accordingly. Note that
B and C can be the same name. For instance, when
the publications of two “Wei Wang”s were incorrectly
mixed, separating them out is the case of split as in “Wei
Wang” → {“Wei Wang1”, “Wei Wang2”}.

3. Merge. When two metadata, A and B, are conflicting
and need to be merged into C , the system sets both A
and B as aliases of C . Since all of A, B, C still have
unique ID, perID, in the system, if a user wants, she
can still search using old metadata A and B.

By combining the three core elements as basic building
blocks, one can cover various patterns of evolving metada-
ta found. Some of our preliminary taxonomy can be found
in [23].
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Once evolving metadata is identified and updated into the
system, those knowledge can be exploited further in various
functionalities of DLs. Suppose a user is searching for all
publications about XML by “Alon Halevy.” When she sub-
mits two keywords “Alon Halevy” in the search box of DLs,
internally, an SQL query similar to the following (assuming
the physical schema of underlying database is created based
on Fig. 3) will be issued:

SELECT P1.*
FROM Publications P1, PubPer P2, Persons P3
WHERE P1.pubID=P2.pubID AND P2.perID=P3.perID AND

P3.author = ’Alon Halevy’ AND
P1.title LIKE ’%XML%’

However, what this user did not know is that DL keeps
a separate list of publications by the same physical per-
son, but under different name “Alon Levy” (i.e., different
<creator>metadata). When such related information was
updated by the aforementioned steps, however, the DL can
exploit the knowledge — e.g., alert warning message to users,
return merged list, or display a link to publication lists under
related name variants, etc. For instance, the following SQL
query would return a merged list using “alias” columns:

(SELECT P1.*
FROM Publications P1, PubPer P2, Persons P3
WHERE P1.pubID=P2.pubID AND P2.perID=P3.perID

AND P3.author = ’Alon Halevy’
AND P1.title LIKE ’%XML%’)

UNION
(SELECT P1.*
FROM Publications P1, PubPer P2, Persons P3,

Persons P4
WHERE P1.pubID=P2.pubID AND P2.perID=P4.perID

AND P3.author = ’Alon Levy’ AND
P1.title LIKE ’%XML%’ AND
P3.authorAlias = P4.author)

That is, when corrupted metadata are identified and cor-
rected by the system, in this scenario, that knowledge was
captured in thealias column. Therefore, as shown, by sim-
ple equi-join of SQL, the DL can support such a tracking
easily.

According to three patterns of linear, split, and merge, over
the time dimension, there are various strategies as to how DLs
can react to such a search function. Suppose conferences (i.e.,
<publisher>metadata), c1 to c8, have evolved as follows:
(1) c1 → c2 (i.e., linear name change); (2) c3 → c4, c5

(i.e., conference split); and (3) c6, c7 → c8 (i.e., conference
merge). Then, three possible search strategies that can exploit
the fact that corrupted metadata was fixed are illustrated in
Table 3.

Both “backward” and “forward” schemes are temporal
strategies where the system searches related conferences
toward backward or forward on a temporal dimension. For
instance, in the backward strategy, when a user searches for
c2, system shows c2 as well as all its predecessors, c1, as

Table 3 Various search strategies. Q and A refer to “query” and
“answer,” respectively

Backward Forward Semantic

Q A Q A Q A

c1 c1 c1 c1, c2 c1 c1, c2

c2 c1, c2 c2 c2 c2 c1, c2

c3 c3 c3 c3, c4, c5 c3 c3, c4, c5

c4 c3, c4 c4 c4 c4 c3, c4

c5 c3, c5 c5 c5 c5 c3, c5

c6 c6 c6 c6, c8 c6 c6, c8

c7 c7 c7 c7, c8 c7 c7, c8

c8 c6, c7, c8 c8 c8 c8 c6, c7, c8

answers (i.e., all digital objects with conflicting metadata
in past). Another possible strategy is the “semantic” search,
where all semantically related results are returned, regardless
of the temporal aspect (i.e., show all digital objects with con-
flicting metadata). Note that the semantic strategy is equiv-
alent to the union of both backward and forward strategies.
For instance, since c3 is broken into c4 and c5, whenever
browsing c3 occurs, it is expanded to all conferences related
to c3, thus c4 and c5. Note, however, that browsing c4 is not
expanded to c5.

In addition to using temporal aspect, other search strate-
gies can be devised. Similarly, other functionalities of DLs
(e.g., browsing, publish/subscribe, or registration) may adopt
to exploit the new knowledge.

4 Experimental result and prototype

The aforementioned labeling and disambiguation algorithms
of Sect. 3.1 have been implemented using bibliographic DLs,
and various configurations were examined. The target meta-
data that we tried to identify was<creator>, and the digital
object was citations of the four DLs.

Set-up. We have gathered real citation data from four differ-
ent domains, as summarized in Table 4. These are substan-
tially “large-scale” DLs (e.g., DBLP has 360 K authors and
560 K citations in it). Different disciplines appear to have
slightly different citation policies and conventions. For
instance, Physics and Medical communities seem to have
more number of coauthors per article than Economics com-
munity. Furthermore, the conventions of citation also vary.
For instance, citations in e-Print use the first name of authors
as only initial, while ones in DBLP use full names. All
four data sets are pre-segmented (i.e., each field of coau-
thors, title, and venue are already known to us). For the sam-
pling technique, we used the implementation of [17] with a
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Table 4 Summary of data sets
Data set Domain # of authors/ # of coauthors per author # of tokens in coauthors per author

# of citations (avg/med/std-dev) (avg/med/std-dev)

DBLP CompSci 364,377/562,978 4.9/2/7.8 11.5/6/18

e-Print Physics 94,172/156,627 12.9/4/33.9 33.4/12/98.3

BioMed Medical 24,098/6,169 6.1/4/4.8 13.7/12/11.0

EconPapers Economics 18,399/20,486 1.5/1/1.6 3.7/3/4.1

Fig. 5 Scalability (EconPapers)

sample S = 64 and a threshold θ = 0.1. For the distance
metrics, we have considered two supervised methods (i.e.,
Naive Bayes Model and Support Vector Machine) and five
unsupervised methods (i.e., cosine, TF/IDF, Jaccard, Jaro,
and Jaro Winkler). For supervised learning methods, citations
per author are randomly split, with half of them used for train-
ing, and the other half for testing. For the implementation of
Support Vector Machines, LIBSVM [15] was used. For the
string-based distance functions of the unsupervised learning
methods, we used the implementations of TF/IDF, Jaccard,
Jaro, and JaroWinkler from SecondString [41]. Other remain-
ing methods were implemented by us in Java. All experi-
mentation was done using Microsoft SQL Server 2000 on
Pentium III 3 GHZ/512MB.

Results of the MO Problem. For the MO problem, we
used two DLs out of four as test-beds: DBLP and Econ-
Papers. For DBLP (which the author is familiar with), we
collected real examples exhibiting the MO problem: e.g.,
“Dongwon Lee”, “Chen Li”, “Wei Liu”, “Prasenjit Mitra”,
and “Wei Wang”, etc, and for EconPapers (which the author
is not familiar with), we injected artificial “false citations”
into each author’s citation collection (thus creating corrupted
metadata). For both data sets, we tested how to find the “false
citations” from an author’s citations (that is, we had a solu-
tion set for both cases). In constructing token vectors, we
used two models, Set and Bag, depending on the preser-
vation of the multiple occurrences of the same token. For
testing, we used the weights, α = 0.5, β = 0.3, and γ = 0.2.
As evaluation metrics, we used time for scalability, and
percentage/rank ratio for accuracy (i.e., A false citation c f

must be ranked low in sim(c f , a). Thus, we measured how
much percentage of false citations were ranked in the bottom
10, 20%, etc).

First, Fig. 5 clearly shows the superior scalability of the
sampling-based approach over the baseline one (upto 4 times
faster), regardless of set or bag models. Since the time com-
plexity of the sampling-based approach is bounded by S,
which was set to 64, for a large C such as DBLP, the sca-
lability gap between two approaches further widens. Sec-
ond, Fig. 6(a) illustrates the accuracy of both approaches for
EconPapers. For instance, when there is a single false citation
c f hidden in the 100 citations, the sampling approach with
the bag model can identify c f with over 60% accuracy (i.e.,
rank = 0.1/% = 64). Furthremore, when it can return upto 2
citations as answers, its accuracy improves to over 80% (i.e.,
rank = 0.2/% = 82). Since many tokens in citations tend to
co-occur (e.g., same authors tend to use the same keywords
in titles), the bag model that preserves this property performs
better.

Finally, Fig. 6(b) shows results on DBLP using only the
bag model (the set model showed similar pattern as well and
is omitted). Note that some collection has a mixture of “2”
authors’ citations while others have that of “over 3” authors
(e.g., there exists more than 3 authors with the same spellings
of “Wei Liu”—three-way corruption of <creator> meta-
data). Intuitively, collections with more number of authors’
citations mixed are more difficult to handle. For instance,
when 2 authors’ citations are mixed, 100% of false citations
are always ranked in the lower 30% (i.e., rank = 0.3) using
the sampling approach. However, when more than 3 authors’
citations are mixed, the percentages drop to mere 35% — it
is very difficult to decipher a false citation when it is hidden
in a collection that contains a variety of citations from many
authors.

Results of the SO Problem. To make a solution set, for
each data set, we prepare two lists of author names, X and Y ,
where X contains randomly chosen 100 names, and Y con-
tains the entire author names (e.g., 364,377 names for DBLP).
For instance, for “Grzegorz Rozenberg” with 344 citations
and 114 coauthors in DBLP, we create a new name like
“G. Rozenberg” (abbreviation of the first name) or
“Grzegorz Rozenbergg” (typo in the last name). Then, after
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(a) Econ Papers (b) DBLP

Fig. 6 Accuracy of the labeling algorithm

splitting the original 344 citations into halves, each name
carries half of citations, 172, and is put back into X and Y ,
respectively. Then, through the proposed two-step disambi-
guation algorithm, for each name in X , we test if the algo-
rithm is able to find the corresponding artificial name variant
in Y (that we generated and thus know what they are). Note
that the way we generate artificial name variants may affect
the performance of the algorithm. In general, it is difficult to
precisely capture the right percentages of different error types
in author name variants. For the original name “Ji-Woo K.
Li”, for instance, some of possible error types are name abbre-
viation (“J. K. Li”), name alternation (“Li, Ji-Woo K.”), typo
(“Ji-Woo K. Lee” or “Jee-Woo K. Lee”), contraction (“Jiwoo
K. Li”), omission (“Ji-Woo Li”), or combinations of these.
To quantify the effect of error types on the accuracy of the
disambiguation algorithm, we first compared two cases: (1)
mixed error types of abbreviation (30%), alternation (30%),
typo (12% each in first/last name), contraction (2%), omis-
sion (4%), and combination (10%); and (2) abbreviation of
the first name (85%) and typo (15%). At the end, regardless
of the error types or their percentages, both cases showed
reasonably similar accuracies for all seven distance metrics
(i.e., 0.8–0.9 accuracy). Here, we only show the latter case
(85%/15%).

Figure 7 summarizes the experimental results of four
alternatives using three representative metrics — TF/IDF,
Jaccard, and Jaro. In terms of the processing time, 1-N is
the slowest for TF/IDF and Jaccard, as expected, due to its
quadratic time complexity (i.e., 100 × 364, 377 times of
pair-wise name comparisons). The other three show similar
performance thanks to the sampling. In terms of accuracy,
both 2-NC and 2-NH shows about 20–30% improvement,
compared to 1-N and 2-NN, validating the assumption —
exploiting additional information (i.e., coauthor) than the
simple name spelling is more beneficial. Since 2-NH shows
no noticeable improvements over 2-NC, in the remaining
experiments, we use 2-NC as a default scheme.

Next, we measured the processing time for step 2 alone
(distance measure stage) as shown in Fig. 8a. In general,
token-based distance metrics (e.g., TF/IDF, Jaccard) outper-
forms edit distance based metrics (e.g., Jaro, JaroWinkler).

This becomes clearly noticeable for DBLP, but not for Econ-
Papers for its small size. In addition, SVM tends to take more
time than the others since the hyperplane needs to be split in
succession due to SVM’s binary-classifiers. Figure 8b sum-
marizes the accuracies of our proposal for all four data sets
(with k = 5). In general, the distance metrics such as the
SVM, cosine, TF/IDF and Jaccard perform much better than
the others. For DBLP data set, most distance metrics achieved
upto 0.93 accuracy, finding most of 100 name variants out of
364,377 candidates. For e-Print data set, the accuracy drops
down, except the SVM, and for BioMed data set, it gets worse
(especially for Jaro and JaroWinkler).

The accuracies of DBLP and e-Print data sets are better
than that of BioMed data set. The poor performance of Bio-
Med case is mainly due to the small number of citations per
authors in data set. Since 2-NC scheme is exploiting coauthor
information of the author in question to find name variants,
the existence of “common” coauthor names is a must. How-
ever, in the BioMed data set, each author has only a small
number of citations, 1.18, on average, and only small num-
ber of coauthors, 6.1, on average, making a total number of
coauthors as 7.19 = 1.18 × 6.1 (assuming all coauthors are
distinct). Therefore, for two arbitrary author names x and
y, the probability of having “common” coauthors in BioMed
data set is not high. On the other hand, for the e-Print data set,
the average number of citations (resp. coauthors) per author
is higher, 4.27 (resp. 12.94), making a total number of coau-
thors as 55.25 = 4.27 × 12.94 — roughly 8 times of the
BioMed data set.

The preliminary results validate that our initial ideas are
feasible to detect evolving metadata in large-scale DLs, but
there are ample rooms for improvement.

Prototype for System Support. Authors have recently built
a prototype system, called OpenDBLP8 [23]. OpenDBLP is
a novel DL with the idea of providing advanced database fea-
tures and web services interfaces to conventional (static and
agent unfriendly) DL. OpenDBLP is (1) relatively smaller-
scaled (i.e., having only about 500,000 citations without

8 http://opendblp.psu.edu/.
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Fig. 7 Scalability and
Accuracy (DBLP when top-1 is
considered)
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Fig. 9 The OpenDBLP implementation: a OpenDBLP main, b Search result of “David Johnson”, c Publications of “David B. Johnson” among
many “Johnson’s”, and d Result after “merging” several “David B. Johnson”

having actual articles stored); (2) on Computer Science
domain only (i.e., the original data came from the well-known
DBLP in computer science); and (3) open source database
based (i.e., MySQL v 4.0.5). OpenDBLP was used as a test-
bed to experiment the evolving metadata idea. Therefore, in
OpenDBLP, we have fully implemented the algorithms and
system support proposed in Sects. 3.1 and 3.2.

Suppose a user wants to retrieve publications of “David
Johnson”. In Fig. 9a, she types “david johnson” and gets
all authors that partially match the name (Fig. 9b). Then,
she drills down to “David B. Johnson” by clicking the link
to it (Fig. 9c). To illustrate the evolving metadata issue,
let us suppose that the user notices that some publications
of the “David B. Johnson” are mixed with name variant
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“David B. Johnson II”, etc., and report the bug to the admin-
istrator. By using the “merge” pattern of Sect. 3.2, then, the
administrator fixes the problem. After the update, the same
author’s publications are “automatically” consolidated by the
OpenDBLP and all known name variants (i.e., alias) are dis-
played together to help users as shown in Fig. 9d. Therefore,
Fig. 9a-d illustrates how to update and search evolving meta-
data in DLs by the help of the “systems”.

5 Conclusion

We have proposed practical system-oriented solutions toward
maintenance of evolving metadata that often occurs in long-
term digital libraries and archives. We have presented scal-
able algorithmic framework to identify evolving metadata
quickly, and argue that system support to handle evolving
metadata is much needed. By showing promising results and
prototype system, we demonstrate the feasibility of our pro-
posal.

However, needless to say, many research directions are
ahead. For instance, more scalable and versatile yet accurate
algorithms to identify evolving metadata are needed. In this
paper, we have focused on only a few descriptive metadata
that are commonly found in publication DLs. More research
is needed to cover more diverse domains and metadata types.
In addition, more extensive study as to the relationship and
taxonomy between evolving metadata and systems is needed.
The proposed simple three types of linear change, split, and
merge may not be sufficient for more complex applications.
In particular, it would be interesting to investigate how to
support all those richer patterns introduced in FRBR model
using the system-oriented approach that we are advocating
in this article.
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