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Abstract—An XML brokerage system is a distributed XML
database system that comprises data sources and brokers which,
respectively, hold XML documents and document distribution
information. Databases can be queried through brokers with
no schema-relevant or geographical difference being noticed.
However, all existing information brokerage systems view or
handle query brokering and access control as two orthogonal
issues: query brokering is a system issue that concerns costs
and performance, while access control is a security issue that
concerns information confidentiality. As a result, access control
deployment strategies (in terms of where and when to do access
control) and the impact of such strategies on end-to-end system
performance are neglected by existing information brokerage
systems. In addition, data source side access control deployment
is taken-for-granted as the “right” thing to do. In this paper,
we challenge this traditional, taken-for-granted access control
deployment methodology, and we show that query brokering
and access control are not two orthogonal issues because access
control deployment strategies can have significant impact on
the “whole” system’s end-to-end performance. We propose the
first in-broker access control deployment strategy where access
control is “pushed” from the boundary into the “heart” of the
information brokerage system. We design and evaluate the in-
broker access control scheme for information brokerage systems.
Our experimental results indicate that information brokerage
system builders should treat access control as a system issue as
well.

Index Terms—Information Brokerage System, Role Based
Access Control, XML

I. INTRODUCTION

Information sharing is becoming increasingly important in
recent years, not only among organizations with common or
complementary interests, but also within large organizations
and enterprise that are becoming ever more globalized and
distributed. Multiple divisions cooperate within large multi-
national enterprise as well. For example, in GM, to maintain
a proper stock level of parts, people in supply management
division need to check the sale information (of car models)
gathered and managed by sales people world-wide. In such
information sharing systems, the data gathered by a specific
division are typically stored and maintained in a database local
to the division, but the needs to access the data may potentially
come from any remote division.

Although the Internet and various virtual private networks
provide good data communication links, there are major chal-
lenges in (a) achieving scalable, agile and secure remote access
of distributed data; (b) handling the heterogeneity among data
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management systems and data formats which are not always
structured and may be incompatible with each other; (c)
handling the dynamics of modern business applications (where
new schema elements may emerge everyday); and (d) loca-
tion discovery. Classic distributed database cannot meet the
challenges, for example, they require a static fully structured
“global” database schema that may not exist in most cases.
While the globalization has brought intrinsic and increasing
needs to data sharing, access to presents complications such
as query brokering under heterogeneity, location discovery and
secure information access.

To tackle these challenges, mediation and federation based
information brokering technologies have been proposed. In
particular, recent eXtensible Markup Language (XML) has
become a promising solution [1] by integrating incompatible
data while preserving semantics. An XML-based information
brokerage system comprises data sources and brokers which,
respectively, hold XML documents and document distribution
information. In such systems, databases can be queried through
brokers with no schema-relevant or geographical difference
being noticed.

However, from the security, especially access control, point
of view, existing information brokerage systems have a funda-
mental misconception. That is, they view or handle query bro-
kering and access control as two orthogonal issues: query bro-
kering is a system issue that concerns costs and performance,
while access control is a security issue that concerns data con-
fidentiality. As a result, access control deployment strategies
(in terms of where and when to do access control) and the
impact of such strategies on end-to-end system performance
are neglected by existing systems. In addition, data source
side access control deployment is taken-for-granted as the
“right” thing to do. In this paper, we challenge this traditional,
taken-for-granted access control deployment methodology, and
show that query brokering and access control are not two
orthogonal issues because access control deployment strategies
can have significant impact on the “whole” system’s end-to-
end performance.

Our contributions are: (1) we propose the first in-broker
access control deployment strategy where access control is
“pushed” to the brokers; (2) we design three specific in-broker
approaches to implement the “pushing” idea; (3) experiments
are taken to show that in-broker access control can signifi-
cantly improve the performance of memory consumption, end-
to-end query directing time and network occupancy without
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hurting the system-wide security1.
The rest of this paper is organized as follows. In Section IV,

we examine the existing architecture of brokerage systems and
propose a new one called in-broker architecture. In Section III,
we give a brief description on access control model and one
specific enforcement called QFilter. In Section V, we extend
QFilter and propose three new techniques which combine data
locating and access control inside brokers. In Section VI,
we do performance evaluation and show that our proposal is
better than existing ones in virous aspects. Related work and
conclusion are given in Sections II and VIII respectively.

II. RELATED WORK

Publish/Subscribe systems (e.g., [3], [4]) are event-based
and provide many-to-many communication between event
publishers and subscribers. On the other hand, on demand
information distribution systems deliver information upon user
queries. Our approach is an information distribution system
for its spontaneous query answering capability. As an XML-
based overlay network, [5] proposed a mesh-based overlay
network that supports XML queries. In [6] XML content-based
routing is addressed using the query aggregation scheme given
in [7]. In [8], content-based routing of XPath queries in P2P
systems is studied. However, none of these work addresses
the integration of information brokerage and access control,
which is one of our main emphases. The Content Distribution
Networks (CDN) provide an infrastructure that delivers static
or dynamic Web objects to clients from cache or replicas to
off-load the main site [6], [9]. This differs from our approach
in that it does not give users a powerful query language. Also,
our focus is how to distributes access controls, not data, among
brokers. [10] gives a good overview on access control in
collaborative systems. Although many, existing “distributed”
access control theories and techniques focus on the policy,
modeling, and flexibility aspects. However, our work focuses
on performance-optimizing enforcement strategies using in-
broker access controls.

We adopt the access control model proposed by [11], [12]
in the brokerage system. However, our system is not tightly
coupled with one specific model, and the proposed techniques
can be applied to other AC models (e.g., [13], [14], [15], [16]).
As to enforcing XML access controls, by and large, existing
approaches either use “views” (e.g., compressed accessibility
map of [17]) or rely on the underlying XML engine (e.g.,
[18]). Our proposal is based on the QFilter [19] – query re-
writing access controls – that does not use views nor require
any support from XML databases. Finally, compared with
various researches on the equivalence/containment/re-writing
of XML queries [20], our approach is NFA-based and security-
driven. In this paper, we extend the idea of QFilter further to
the context of in-broker access controls. Therefore, our access
controls can occur anywhere in the network freely – at client,
server, and in-between.

1An earlier version of this paper has been published in [2]

R2: (role, /people//address//*, read/update, +, RC) 
R3: (role, /regions/namerica/item/name, read, +, LC) 
Q1: /people/person/address/street 
Q2:/people/person/creditcard 
Q3:/regions//* 

Then, Q1 is accepted by both R1 and R2, denied by R3. Similarly, 
Q2 is accepted by R1, denied by both R2 and R3; and Q3 is accepted 
by R1, denied by R2, and rewritten to /regions/namerica/item/name 
by R3.  In sections 4.2 and 4.3, we show how QFilter is constructed 
and executed for the rules with “+” sign and “LC” types, and later 
in sections 4.4, 4.5 and 4.6, we extend this basic QFilter to cover 
more complex cases.  

4.2   QFilter Construction 
We consider XPath expressions of ACR as compositions of “four” 
basic building blocks: /x, /*, //x, and //*. Complex XPath 
expressions with predicates (e.g., /x[y=’c’]) can also be handled 
and are further described in Section 4.4. The NFA fragment 
construction for each building block is illustrated below: 

Element State transition NFA construct 

/x 
  

/*   

//x 
  

//* 
  

For a complete XPath expression, NFA fragments are constructed 
upon path elements and then linked in sequence. For a set of rules 
that form the ACR, NFA for each rule is constructed and all the 
NFAs are combined in the way that identical states are merged. 
The processing is similar to regular NFA construction. We now 
give an example to illustrate the process. Consider the following 
eight XPath expressions that are the object parts of access control 
rules (now we ignore their type or action parts for simplicity):  

R1: /site/categories//* 
R2: /site/regions/*/item/location 
R3: /site/regions/*/item/quantity 
R4: /site/regions/*/item/name 
R5: /site /regions/*/item/description 
R6: /site /people/person/name 
R7: /site /people/person/address//* 
R8: /site /people/person/emailaddress 

We construct the QFilter starting from R1. For element /site, we 
create state 0 and a transition on token “site” to state 1. Then a 
transition on token “categories” is created on element /categories. 
For element //*, transition from state 2 to 3 and then 4 is created as 
shown in Figure 2 (left). Transition from state 3 to 4 requires at 
least 1 token after the ε transition. We use the “next-token-driven ε 
transition” in the NFA execution, thus state 3 and 4 could be 
merged in the NFA and set as acceptable state. The remaining 
access control rules are processed accordingly. Finally, the state 
transition map and the NFA corresponding to the above eight 
access control rules are shown in Figure 2. 

BuildNFA, the algorithm to construct an NFA from ACR, as 
illustrated above, is straightforward and omitted. It is not difficult 
to see that the time complexity of this algorithm is O(n), where n is 
the size of ACR (i.e., the number of rules). Both of Q and R consist 
of the four basic elements as described above. Next we provide 
detailed discussion of the NFA execution in those four cases: (1) 
only /x in both Q and NFA; (2) only /x in Q while /*, //x, and //* 
exist in NFA; (3) /* exists in Q; and (4) //x and //* exist in Q. 
4.3   QFilter Execution  
Given a query Q as input to the QFilter constructed as above, the 
output is a filtered query Q’. The filtering principle consists of: (1) 
if ACR allows all data that Q requests, keep Q as it is; (2) if what 
Q asks for is entirely prohibited by ACR, then reject Q; and (3) 
otherwise, modify Q such that Q’ returns a precise “intersection” 
of Q and ACR (or precise “difference” for − sign). The filtering 
process becomes complicated when either Q or ACR has non-
deterministic operators such as “//” and “*”, which can match 
multiple branches in the NFA.   
1. Deterministic transitions: There is only one deterministic 
transition, “/x”, among four basic elements. In this case, the 
QFilter works exactly like regular NFA; an incoming query is 
either accepted or denied by the automaton, and the output of 
filtering is either the incoming query itself (if accepted) or empty 
string (if denied). For instance, when a query 
/site/people/person/name is executed, it passes through state 0→1
→12→13 of the state transition diagram in Figure 2 and is finally 
accepted at state 14. Similarly, a query 
/site/people/person/creditcard passes through state 0→1→12 and 
rejected. 
2. Non-deterministic transitions: This occurs when there is only 
direct child expressions (/x) in Q but more than one possible 
outgoing transitions (i.e., * and ε transitions) exist besides 
deterministic ones. We follow all possible transition paths through 
the NFA. Particularly, the //x and //* states are recursively 
processed (e.g., the underlined states 3/4 and 17/18 shown in 
Figure 2, right). If any of the paths ends at an accept state (i.e., the 
query is acceptable by at least one of ACR), the original query is 
passed through the NFA. For example, a query 
/site/regions/namerica/item/name passes through state 1→5 to state 
6 since wildcard “*” accepts token “namerica”.  
3. Query rewriting at wildcard *: A query with wildcard “*” 
normally matches more than one state transitions. Taking Q:/site/* 
as an example, it moves from state 1 (/site) to state 2 
(/site/categories), state 5 (/site/regions), and state 12 (/site/people). 
Here wildcard “*” means it can transit from the current state to any 
of its directly subsequent states. At any state, if the next input 
token in the query is “/*”, we break the query into several branches 
in accordance with all the direct children of the current state. In 
each branch, we rewrite the “*” operator in Q with the 
corresponding path transition token, e.g., the /site/* is broken into 
three branches at state 1, and for instance, the branch transiting to 
state 2 is rewritten into /site/categories. “*” operator is kept only if 
a corresponding “*” transition exists, thus we mark this branch as 
the original query. We go on executing each branch of the query. If 
a branch of the original query exists and ends at an accepted state, 
the output of QFilter is the Q itself. Otherwise, the output is the 
union of all the accepted branches of the Q. 
4. Query rewriting at “//” state: Both “//x” and “//*” in Q mean 
the state transition from the current state to all its subsequent states. 
In this case, the query is broken into branches that continue at each 
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Fig. 1. Building blocks for NFA construction

III. BACKGROUND

A. XML Access Control Model

In this paper, we adopt the fine-grained XML access control
model similar to [11], and incorporate Role Based Access
Control [12]. In our model, administrators assign roles to
users. Each role is given a set of access rights to data
(XML nodes). The authorization is specified via 5-tuple access
control rules (ACR): R = {subject, object, action, sign, type},
where (1) subject is to whom an authorization is granted (i.e.,
role); (2) object is a set of XML nodes specified by XPath;
(3) action is one of “read,” “write,” and “update”; (4) sign
∈ {+,−} refers to access “granted” or “denied,” respectively;
and (5) type ∈ {LC, RC} refers to either “Local Check” (i.e.,
authorization is only applied to attributes or textual data of
context nodes), or “Recursive Check” (i.e., authorization is
applied to context nodes and propagated to all descendants).
By default, access is denied to all nodes whose authorizations
are not specified. When a node has more than one relevant
rule, the negative rules take precedence upon positive rules.

B. Introduction to QFilter

One of the recent developments of XML access control is to
enforce access control on input queries [21], [19], [22], [23],
[24]. In this section, we introduce a state-of-the-art technique,
called QFilter [19], that we recently proposed. QFilter captures
a set of access control rules using a Non-deterministic Finite
Automata (NFA), and re-writes parts of incoming query Q that
violate the access rights, to yield a safe query Q′.

1) QFilter Construction: QFilter construction process is
very similar to regular NFA construction. It takes XPath
expressions from access control rules to build NFA. We accept
a subset of XPath – parent-child (/x), ancestor-descendant (//x),
and wildcard (/*, //*). Figure 1 illustrates how NFA state
transitions are constructed from these four basic XPath steps.
The NFA for a complete set of ACR is formed by linking the
states in sequence. Let us use ACR of Figure 2 as an example
(to simplify the presentation, let us focus only the object part
of ACR, ignoring the rest). The QFilter construction starts
from R1: we create states 0 and 1 for XPath step /site;
then a transition on token categories is created to state
3 for XPath step /categories; and so on. Finally, the
constructed QFilter is shown in Figure 2(b).

2) QFilter Execution: In the context of access controls,
QFilter captures ACR+ and ACR−. For an input query Q,
QFilter has three types of operations: (1) Accept: If answers
of Q are contained by ACR+ (i.e., Q asks for answers granted
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R1: /site/categories//*

R2: /site/regions/*/item/location

R3: /site/regions/*/item/quantity

R4: /site/regions/*/item/name

R5: /site /regions/*/item/description

2

categories

3ε *

*

4

item

*

1site0

5

regions

6

7

8

9

10

11

location
quantity
name

description

“site”
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“regions”

ε

*

ε

“item”

“location”

“quantity”

“name”

“description”

ε

ε

ε

ε

0
1

2 3/4

5 6

7 8

9

10

11

(a) (b)

(c)

Fig. 2. An example to construct a QFilter: (a) Sample ACRs (object part
only); (b) State transition map; (c) NFA transition.

by ACR+) and disjoint from ACR− (i.e., Q does not ask for
answers blocked by ACR−), then QFilter accepts the query
as is: Q′ = Q; (2) Deny: If answers of Q are disjoint from
ACR+ or contained by ACR−, QFilter rejects the query
outright: Q′ = ∅; (3) Rewrite: if only a partial answer is
granted by ACR+ or blocked by ACR−, QFilter rewrites Q
into the ACR-obeying output Q′. Finally, Q′ is guaranteed
to be: (i) contained in Q, (ii) contained in ACR+ and (iii)
disjoint with ACR−. Note that, for rewritten queries, the
output could be “UNION” of several XPath queries (To be
more strict, “DEEP UNION” should be used [25]).

QFilter executes a filtering process for the input query Q
and returns the safe one Q′ as output. The filtering operations
are accept, deny and rewrite where Q′ equals to Q, {}, and
Q ∩ ACR respectively. For deterministic transitions, QFilter
works the same way as a regular NFA does – an incoming
query is either “accepted” or “denied” by the automaton. The
execution of the QFilter gets more complicated when non-
deterministic operators (“*” and “//”) and predicates occur in
either input query Q or ACR. For instance, if Q contains
a wildcard “*” but NFA only accepts a certain token “x”,
the wildcard is accepted and rewritten into “x”. Due to space
constraints, we will refer the details to [19].

Instead of simply filtering out queries that do not satisfy
access control policy as in [21], QFilter takes extra steps
to rewrite queries based on AC policy and passes revised
queries to underlying DBMS. In doing so, QFilter not only
achieves security for (almost) free, but also enjoys a faster
query evaluation time through query re-writing.

For instance, if we only have ACR+: {user,
/site/regions/*/item/name, +, read, LC} and {user,
/site/regions/*/item/location, +, read, LC} (user can only read
name and location nodes under item). For the input
query “//item/∗”, the QFilter would yield the following
re-written query “/site/regions/ ∗ /item/name UNION
/site/regions/ ∗ /item/location”.

IV. INFORMATION BROKERAGE SYSTEM ARCHITECTURE

Consider an information brokerage system where sensitive
information is shared among geographically distributed partici-
pants (e.g., users and data sources). In general information bro-
kering process, XML queries created by a user are forwarded
to data sources by intermediate brokers. Since multiple data
sources may be relevant to one XML query, replies from all
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Fig. 3. Three architectures of information brokerage systems.

relevant data sources will be merged to provide an aggregate
view to the user.In this process, brokers perform as a bridge
connecting users and data sources, so they are necessary to
know who holds the required data and where they are located.
To make the exposition simple, we assume that each broker
has a full knowledge of whereabouts of stored data. Therefore,
each broker may direct an inquiry to relevant data sources
without consulting others (i.e., single-hop brokering). Since
query brokering is not the focus of this paper, we will limit our
investigation to the case of single-hop brokering. Nevertheless,
supporting multi-hop brokering is part of our future work.

Besides query brokering, access control is another important
issue in information brokering. Accessibility of the requested
data are based on access control policy. However, most existing
information brokerage systems handle query brokering and
access control as two orthogonal issues and adopt the take-
for-granted access control deployment where access control
enforcement is embedded in DBMS. To challenge this tradi-
tional viewpoint, we describe two alternative architectures in
which access control enforcement is pulled out of DBMS.

A. Embedded Access Control Architecture (EAC)

In the traditional brokerage systems, the job of security
enforcement is solely left upon the shoulder of DBMS. For
instance, administrators define access controls inside DBMS;
any query needs to pass access controls before it is processed.
In a sense, the enforcement of access controls is “embedded”
into DBMS. Figure 3(a) illustrates this architecture, named as
Embedded Access Controls (EAC).

Since this security enforcement is highly depended on
DBMS, it puts much burden in choosing a proper DBMS. Con-
sidering our large-scale, heterogenous data source assumption,
it is not an appropriate solution. Moreover, most embedded
access control adopt the view-based enforcement mechanism,
to the best of our knowledge. Logical or physical views are
created over the roles, and each role is granted full access
to his own view. However, view construction consumes large
storage space, especially when the number of roles scales.

B. Source-Side Access Control Architecture (SAC)

Since XML query, data and access control enforcement are
independent building blocks in an XML database system, it
is possible to pull access control enforcement out of DBMS.
For instance, in [19], we show that access controls can be
supported via query rewriting outside of DBMS, thereby de-
coupling the tie between access controls and DBMS. One of
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the many benefits of this architecture is that access controls can
be enforced without the support from underlying DBMS. For
instance, none of the commercially available XML databases
is capable of supporting access controls. Figure 3(b) illustrates
this architecture, named as Source-side Access Controls (SAC).

[19] claimed a superior performance compared with em-
bedded access control approaches. However, access control
mechanism is still deployed at data source, which is the
boundary of information brokerage systems. Queries without
right accessibility are still routed through the system and
get denied at data source, resulting in poor performance and
network resources waste.

C. In-Broker Access Control Architecture (IAC)

Intrigued by the SAC scenario, we pull the access controls
further to the brokers: from the boundary into the “heart” of
information brokerage systems. In this way, security check is
enforced when users access the network. Figure 4 illustrates
this architecture, namely In-broker Access Controls (IAC).
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Fig. 4. In-broker Access Controls(IAC) information brokerage architecture

We claim that query brokering and access controls are not
orthogonal issues. By integrating them properly, the whole
system benefits from this integrated design and end-to-end
performance improves without hurting system-wide security.
For instance, a query that cannot access its requested data will
be rejected at very early steps at the brokers and never have a
chance to reach any data source. In one way, overall processing
time is dramatically shortened and network communication is
greatly lessened; in another way, system-wide security benefits
from the early denial of potential suspicious actions. Early
denial of the queries not only shortens the end-to-end query
response time of the initiating user in average, but also save
the network resources by not dispatching them to the oriented
data sources. The system-wide security benefits from the early
denial of suspicious actions and intrinsic replication among
brokers. In our in-broker architecture, suspicious actions are
denied in the middle (at brokers) instead of at the far-end (at
DBMS), thus avoiding potential misfeasance. For instance, a
lower-level user or even an unauthorized user could send a
kind of “snooping query” to trace the denial from sensitive
databases or even explore the distribution of the whole system
under the traditional architecture. On the other hand, replica-
tion is far easier at the broker level, for only access control
and location information needs to be replicated instead of the
whole databases. A good number of replicated brokers, and
possible dual access control (i.e., double-check or validate if
an access control policy is correctly enforced at the data source
side) help detecting and recovering from malicious attacks
such as DoS. The only concern of pushing access control to

the brokers is their trust level. Since our brokerage system is
used in intra-organizations and inter-organizations, we assume
certain level of trust in brokers. In more severe cases, we can
use dual access control and ene-to-end auditing systems to help
monitoring brokers’ behavior. We will discuss this in more
detail in Section VII.

V. APPROACHES FOR IN-BROKER ACCESS CONTROL

In this section, we introduce new index and access control
approaches, the brokering indexer and the Multi-role QFilter,
and show how we combine both to create an Indexed Multi-
role QFilter. In the previous sections, we analyze the complica-
tions of the large-scale distributed nature and these approaches
fulfil the requirements well.

A. Brokering Indexer

In XML brokerage systems, users send queries without
knowing the data location. Brokers have physical distribution
information of XML documents. In our setting, a query is
routed using single-hop brokering, i.e., any broker is able to
determine the data location of any query. Note that multi-hop
routing might be used in lower layers, e.g., if the destination
is identified by its IP, IP layer routing is multi-hop.

An index rule is described as Rind={obj, des(s)} where
“des” is a network address, and “obj” is an XPath expres-
sion, as shown in Figure 5(a). The index table look-up is
essentially one-to-many XPath matching. We design a QFilter-
like NFA (Indexer) to handle it. As shown in Figure 5, the
Indexer is constructed with XPath expressions from index
rules (Rind.obj). At each accept state, Rind.des is attached.
Destination lookup is like any NFA execution, which is to
match user queries with routing rules captured in the Indexer.
During execution, Rind.des is attached to the query when
appropriate. Finally, accepted queries are forwarded to the list
of destinations attached to it. When a query does not match any
index rule, it means no known data source has the requested
data, thus the query is dropped. A query could also match
several accept states, thus all the destinations are attached.
E.g. query “//items” sent to Indexer shown in Figure 5
matches accept states 5 and 7, thus will be forwarded to both
destinations. In our approach, users take the responsibility of
joining answers from different data sources.

Since the indexing table look-up process is essentially one-
to-many XPath matching, we designed a QFilter-like extended
NFA to handle the problem. Our system constructs an NFA
Query Indexer using the XPath expressions of the indexing
rules in the same way as a QFilter. At each accept state, the
destination address is attached. The execution is very similar to
QFilter execution (Query filtering). However, the destination
information is processed in the following cases: (1) when a
query passes an accept state while brokering in the NFA, the
destination address stored at that state is attached to the query;
(2) if a query stops at a middle or accept state of the NFA,
the state (if it is an accept state) and all its descendant accept
states are traversed and all the stored destination states are
attached to the query. The query is accepted; (3) if a query
is routed to an accept state and the incoming token (element
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name of next step) is not found in the state transition table,
the destinations that are stored at the current accept state is
attached to the query. The query is accepted; and (4) if a query
is routed to a non-accept state and the incoming token is not
found in the state transition table, the query will be rejected
since no information on the location of the requested content
is available. An accepted query is forwarded to the list of
destination addresses attached to the query.
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Fig. 5. An example of NFA-based Indexer

B. The Multi-Role QFilter Approach

1) QFilter Array (QA): The QFilter approach described
earlier is designed for single role. In a network setting, access
control for multiple roles with individual ACR is needed. To
address this need, a straightforward extension to QFilter is
to use an array of QFilters (called QFilter Array), where
each QFilter is constructed, stored and executed independently.
When a query is submitted, the role of user is identified and
the corresponding QFilter is located from the array to process
the query.

One serious drawback of QFilter Array approach is that
its memory usage grows linearly with the number of roles
in the system. When large number of roles exists, it soon
grow beyond size of main memory, therefore, the system
performance dramatically degrades . To tackle this problem,
we introduce Multi-Role QFilter.

2) Multi-Role QFilter (MRQ): We observe that access
control rule sets for different roles are often similar, therefore
their QFilters are also similar. The idea of Multi-Role QFilter
(MRQ) is to merge similar QFilters into one uniform data
structure instead of storing them in an array. Since each QFilter
is constructed for one particular role, this merging method
should identify access control rules to the roles. In our design,
we use an Boolean array (bitmap) for its constant lookup cost.

MRQ Construction. We construct MRQ by annotating
each QFilter state with two bitmaps: access list and ac-
cept list, where each bit represents a Boolean value for a
role. Thus a corresponding pair (access value, accept value)
is assigned to each role. The access value indicates whether
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Fig. 6. Merge QFilters to Multi-role QFilter.

the role has access right to this state and the accept value
indicates whether the state is an accept state for this role.
Figure 6 shows an example: there are two roles with individual
ACR; a QFilter Array consisting of two individual QFilters
is shown first, and the MRQ that serves both roles is shown
underneath. The MRQ (labeled “Merged” in Figure 6) contains
two bitmaps at each state to indicate the accessibility of each
role, e.g. the first three states are accessible by both roles
(the access values are 1) but no one is an accept state (the
accept values are 0). State 3 is the accept state for role 1 only,
while 4 is accessible and accept state for role 2 only.

MRQ Execution. Similar to a single QFilter, for an input
query {Q, role id}, MRQ has three types of outputs: Accept,
Deny, or Rewrite. During the execution, at each MRQ state,
the access right of the role is first checked with access list
based on the role id. Only when the access value is 1,
the execution proceeds to subsequent states. In this manner,
the access value restricts the region, in which a query may
traverse in a MRQ.

C. Indexed Multi-Role QFilter Approach

1) Implementation: In above approaches, access control
enforcement is moved from data sources to the center of
the network – the brokers. Therefore, brokers hold both
indexing and access control mechanisms. When user query
Q is submitted, MRQ processes it to safe query Q′, then
Indexer locates the data source. Since two mechanisms with
similar structure reside at the same place, it is natural to merge
them to improve efficiency. Therefore, we propose “Indexed
Multi-Role QFilter” (IMQ), which captures both indexing and
access control rules in one NFA structure. A query Q sent to
IMQ yields the output of {Q′, {des(s)}}, where Q′ is the safe
query.
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Fig. 7. IMQ Construction.

IMQ Construction. As described in Section V-A, an index
rule (IR) is: Rindex={obj, des}. The IMQ construction consists
of three steps: (1) MRQ Construct: construct a MRQ using
ACR; (2) IR Filtering: executing the XPath of Rindex.obj
in MRQ; and (3) Attaching: attach Rindex.des to the current
and descendent accept states.

Instead of giving the exhausted algorithm, we use an
example to show IMQ construction. As shown in Fig-
ure 7 (we assume that MRQ is already constructed):
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Fig. 8. Three brokering approaches, where tn1,n2,n3, ti, tf and tp represent
time for network latency, query indexing, filtering and processing respectively.

(a) IR {/site/categories//*, 192.168.0.10} reaches state 4,
indicating “categories” nodes are accessible and are lo-
cated at 192.168.0.10; (b) IR {/site/regions/item/payment,
192.168.0.5} does not reach any accept state, indicating no
user is allowed to access the nodes although they are lo-
cated at 192.168.0.5 (as a result, this rule is not included
in the final IMQ); (c) and (d): XPath of IR {/site/regions,
192.169.0.13} stops at state 5, then we attach its destination
to all the descendant accept states, i.e., 8, 9, 10 and 11. This
means, 192.169.0.13 holds “regions” nodes, but only some
descendants are accessible according to ACR.

IMQ Execution. For a user query (Q, role id), IMQ
execution is almost identical to MRQ execution, except that the
appropriate des addresses are attached to accept and rewritten
queries. Finally those queries are forwarded to all the attached
destinations.

VI. EXPERIMENTAL VALIDATION

We have implemented the three brokering approaches
(shown in Figure 8) proposed in Section V. In this section, we
present experiments based on this implementation. In the first
experiment, we investigate how memory and query filtering
time change with parameters (the number of roles and the
number of rules per role) in QA and MRQ approaches. A
reasonable setting is then chosen for the second experiment,
where we measure the memory consumption and the end-to-
end query brokering time for MRQ and IMQ approaches and
show the IMQ approach performs best.

A. Query filtering

Settings. We use the well-known XML benchmark
XMark [26] DTD. It defines 77 elements and 16 attributes for
an on-line auction scenario. In rule XPath generation, maximal
depth of the XPath expressions is set to 6 [27]. Synthetic
rules are randomly generated: (1) with 10% wildcard (* or
//) probability at each step, and (2) without wildcard. Then
we vary number of roles from 10 to 500, and number of rules
per role from 5 to 300. To evaluate the query filtering time,
we generate 500 synthetic queries, each with one predicate,
and 10% wildcard probability at each step.

Memory Cost. Memory consumption of QA approach and
MRQ approach is shown in Figure 9: rules in Figure 9(a)
and (b) has wildcards, while rules in (c) and (d) has no
wildcard. As expected, memory consumption in QA approach
is proportion to the number of roles, which is same as number
of QFilters in the Array. But memory usage increases below-
linear with the number of rules per role, since rules in the
same QFilter shares NFA states. Especially, when there are
more rules for each role, there is higher possibility for states
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Fig. 9. Memory usage of QA and MRQ.

sharing. In Figure 9(b), we can see a significant saving in
memory comparing with (a). Because, in MRQ, all rules are
contained in a big QFilter-structure, rules from different roles
are able to share NFA states. Next, rules with no wildcard
is used, with experiment results shown in Figure 9 (c) and
(d). Under this setting, only 105 distinct XPath expression are
generated for ACRs, and the percentage of state sharing is
extremely high. In both settings, the memory usage for MRQ
is one order of magnitude smaller than that of QA. Similar
result is obtained for the ACR set with predicates. We do not
list the result here due to space constrains.

Query Filtering Time There are three possible results
when queries are processed, in QA or MRQ: denied, ac-
cepted, or rewritten. Accepted queries take more time to be
processed, while rewritten queries take the longest. In our
experiments, 198 queries are rejected and 302 queries are
accepted/rewritten.

Figure 10(a) and (b) show the average query processing
(filtering) time for all queries. It is clear that MRQ approach is
about four times slower than the QA approach for all queries.
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Fig. 10. (a) and (b) show the absolute filtering time under two approaches
respectively.

Analysis. There is a tradeoff between memory consumption
and query filtering time. The query filtering time is in the scale
of milliseconds, much smaller than the network latency (in the
scale of hundreds of milliseconds). Thus, its impact is not as
significant as memory consumption, which is a major concern
for brokers. We conclude that Multi-Role QFilter is a better
solution than QFilter Array.
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TABLE I
COMPARE THE MEMORY AND QUERY BROKERING TIME OF THREE

IN-BROKER APPROACHES.

Approaches (with 1000 indexes) QA+I MRQ+I IMQ
Memory for Index (KB) 418 418 -
Memory for access control (KB) 2934 969 -
Memory for in-broker total (KB) 3352 1387 1094
Time for Index (ms) 402 1131 -
Time for access control (ms) 105 482 -
Time for in-broker total (ms) 507 884 447
Time for in-broker average (ms) 1.014 1.768 0.895
Approaches (with 4000 indexes) QA+I MRQ+I IMQ
Memory for Index (KB) 1027 1027 -
Memory for access control (KB) 2934 969 -
Memory for in-broker total (KB) 3961 1996 1119
Time for Index (ms) 1131 1131 -
Time for access control (ms) 105 482 -
Time for in-broker total (ms) 1638 2015 459.3
Time for in-broker average (ms) 3.276 4.030 0.919

B. Query filtering and indexing

In this experiment, we compare the three in-broker ac-
cess control approaches, as shown in Figure 8: QA+Indexer,
MRQ+Indexer, and IMQ (Indexed MRQ).

Settings. We fix the number of roles to 80 and the number
of rules per role to 50, and randomly generate synthetic access
control rules, with 10% wildcard probability at each XPath
step and one predicate for each rule. We also generate syn-
thetic XPath expressions for indexing rules at 10% wildcard
probability at each step. Since predicate parsing in indexing
is not supported in our index scheme, the index paths are
generated without predicate. Two sets of indexing rules are
built: (1) with 1000 indexing rules (SP1), and (2) with 4000
indexing rules (SP2). The same synthetic query set as in the
first experiment is used. Since access control rules, index paths
and the queries are all randomly generated synthetic rules,
which offset the impact of rule pattern, there is no need to
repeat the experiments at the same setting. We do take a set
of experiments which result in similar outputs. In the following
discussion, we only list the result of one experiment.

Memory Cost. Memory cost for brokering includes the
consumption for both access control and indexing. The in-
dexer with 1000 and 4000 index paths consumes about
418KB and 1027KB memory respectively. Overall memory
consumption of three mechanisms is summarized in Table I.
It is clear that IMQ requires the least amount of memory,
while MRQ+Indexer consumes much less than the naive
QA+Indexer approach. By merging the index with the existing
MRQ, IMQ (with 1000 index rules) only requires an additional
memory (compare with MRQ) of 125KB instead of the
original 418KB used by the Indexer. When the amount of
index paths increase to 4000, the saving is more significant.

Query Brokering Time. The brokering time includes query
filtering time (tf ) and query index time (ti). The time for
directing all 500 queries though SP1 and SP2 is 402ms and
1131ms respectively, and the average is 0.804ms and 2.262ms
respectively. The overall brokering time in three mechanisms
are listed in Table I. Since the Indexer is not as efficient as the
security check process, it dominates the overall performance
especially when the amount of index paths goes large. The

 

Fig. 11. Analysis of memory usage of MRQ approach

QFilter Array approach is tailed by the Indexer even though
it performs fifth times better than the Multi-Role QFilter
approach. The Indexed Multi-Role QFilter approach performs
best because the index process is embedded into its security
check.

C. Memory usage - revisited

The most distinct feature of Multi-Role QFilter and Indexed
Multi-Role QFilter is that they merge QFilters of different
roles in order to save memory. Here we give some more
insights about the memory usage of MRQ.

For a single QFilter, the required memory is determined
mainly by the number of NFA states, which is decided by
access control policies. In general, each XPath step generates
one NFA state and each descendant-or-self (//) step gener-
ates two NFA states. Identical XPath fragments share NFA
states.Moreover, since the schema is given, the number of
distinct XPath expressions allowed by the schema is bounded
(we do not consider value based predicates at this moment).
Therefore, both PC(ACR) and DS(ACR) are bounded. In
this way, the schema determines a universal set, which contains
all the valid XPath expressions under this schema. We call
the superset “rule space” (U ). If we enumerate all the XPath
expressions in the rule space and construct a QFilter, its the
largest QFilter (QFMax) under the given schema.

Now let us consider the multi role scenario. Each role has
its own ACR, which takes a subset of XPath expressions from
the rule space. However, the total number of distinct rules
cannot exceed the rule space, i.e.

ACR1 ∪ACR2 ∪ ... ∪ACRn ∈ U

If we construct a QFilter for each ACR (QFilter array
approach), the memory consumption is linear to number of
QFilters. However, if we create one QFilter for all the rules
(MRQ approach without access list and accept list), it cannot
grow beyond QFMax. In Figure 11 (a), the grey line represents
the estimation of memory usage of QFilter Array, the dashed
line represents the size of QFMax, and the black curve shows
the desired memory usage of MRQ.

However, in MRQ, we have an access list and an ac-
cept list (both implemented with Bitmap) attached to each
NFA state. Therefore, the upper bound of MRQ size is
size(QFMax) + size(AccessList) + size(AcceptList). The
size of the two bitmaps grows linearly with the increase of
number of roles. However, comparing with the size of QFilter,
size(AccessList) and size(AcceptList) are both very small.
In Figure 11 (b), the dashed line represents the upper bound
of the MRQ size, i.e. size(QFMax) + size(AccessList) +
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size(AcceptList), while the black curve shows how the actual
size of MRQ grows with number of roles.

As a conclusion, the size of MRQ is upper bounded by the
rule space (or QFMax), which is determined by the schema.
The above analysis is validated by the experiments (Figure 9).

VII. ARCHITECTURE LEVEL ANALYSIS

In this section, we analyze the advantage of In-Broker
Access Control architecture in both qualitative and quantitative
manners. We present our analysis in the aspects of system
performance and security.

A. Performance Improvement

In the IAC architecture, if access control rules allow a
query to access all or part of the requested content (ac-
cepted/rewritten query), the original or rewritten query will be
forwarded to the query indexer. Otherwise, if the access control
rules rejects the query from accessing any requested content,
the query is dropped at the broker and/or a error message is
returned to the user. In this way, users get faster response when
the query is denied. At the same time, less network resources
is consumed by only directing accepted and rewritten queries
to the data sources.

Murata et al have conducted experiments to investigate the
accepted and denied queries [21]. They show that 40% of the
queries are type ‘G’, where all XPath expressions in the query
are always granted; 25% queries are type ‘D’, where at least
one of the XPath expressions is always denied; and 35% of the
queries are type ‘-’, where at least one XPath expression in the
query should be rewritten. We assume a similar distribution in
our analysis accordingly.

The system performance is analyzed in two aspects: query
processing performance (end-to-end query processing time),
and network occupancy.

1) End-to-End Query Directing Time.: The efficiency of
query processing is evaluated as the time elapsed from user
submits the query until he/she receives the answer. As shown
in Figure 12, query processing time is calculated as:
• In embedded access control: tn1 + ti + tn2 + tfp + tn3

• In Source side access control: tn1+ti+tn2+tf +tp+tn3

• In In-broker access control: tn1 + tfi + tn2 + tp + tn3

Note that, different information brokerage architectures dif-
fer in the way they forward queries to the data source and
conduct security check. The backward answer transmission
mechanisms (transfer the answer from data source back to the
user) remain the same. Therefore, for the same data, access
control policies and query, backward answer transmission time
tn3 remains constant in all architectures, and we thus focus
on query forwarding phase. Moreover, for query processing
time, tp in source side access control and in-broker access
control are identical, while tfp in embedded access control is
significantly larger because of the node-level security check
process. Now, we focus on the query forwarding phase, where
all the differences reside.

We define the end-to-end query directing time as the time
elapsed from user submits the query until it reaches the
database, i.e. the summation of query filtering time (tf ) (except
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TABLE II
END-TO-END QUERY FORWARDING TIME.

Approach/Time(ms) tn1 tf +ti tn2 overall
EAC 100 <1 100 ∼ 200

SAC with QA 100 1.014 100 201.014
SAC with MRQ 100 1.768 100 201.768

IAC with QA 100 1.014 75 176.014
IAC with MRQ 100 1.768 75 176.768
IAC with IMQ 100 1.004 75 176.004

for embedded access control architecture), indexing time (ti),
and network latency (tn), as shown in Figure 12. General
network latency is 200ms 2, thus we assume tn1 and tn2

for a single query are both 100ms. Since 25% of the queries
fail the security check and get rejected at the brokers in IAC
architecture, the average time of tn2 is reduced to 75ms for
IAC. Moreover, for each architecture, we obtain average tf
and ti via experiments, and summarize the results in Table II.
From the results, we can clearly see that the network latency
dominates the whole process, and thus the performance under
IAC architecture is much better than approaches of EAC or
SAC architectures.

2) Network Occupancy: We define the network occupancy
in information brokerage systems as total traffic demand over
total link capacity. We calculate the network occupancy of a
link l as latency(l) × TotalTraffic. As we described, in
the backward answer forwarding phase, there is no difference
among different architectures, as long as the data, access
control policies and queries remain the same. Therefore, we
focus on query forwarding phase.

First of all, we compute the average size of queries through
500 queries and obtain the average length as 30 Bytes per
query. Next, we assume all queries are enclosed in TCP
packets, which brings an header of 40 Bytes. Then, we
calculate the network occupancy as:

NetworkOccupancy = latency(l)× TotalTraffic

= latency(l)×QueryLength×QueryFrequency

= 100ms× (30 + 40)Bytes×QueryFrequency

As shown in Figure 12, query forwarding consists two
network transition phases: (1) from user to broker and (2)
from broker to data source. Since 25% of the queries are
denied by access control policy and dropped at brokers,
the overall network occupancy of IAC forwarding phase is:
100× 70× (QueryFrequency + QueryFrequency× 75%).
While the overall network occupancy of SAC and EAC for-
warding phase is: 100×70×QueryFrequency×2. Comparing

2http://www.internettrafficreport.com/samerica.htm#graphs.
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the two results above, we can see that the IAC architecture
saves 12.5% of overall network occupancy.

B. System-wide Security

In information brokerage systems, security is not only a
database concern as in the traditional DBMS system, but also a
system concern. The overall security of information brokerage
systems is not limited to prohibiting users from accessing
unauthorized data, rather, it provides a broader concept as
the security of the whole system, where DBMS lies at the
boundary. The system-wide security benefits from the early
denial of suspicious actions and intrinsic replication among
brokers.

1) Prohibition of Unauthorized Users: As whole system,
suspicious actions should be detected and denied as early
as possible; i.e., at the entrance of the system, instead of
letting it walk around the core system (brokerage network)
and reach the far boundary (designated data server) to be
rejected there. However, in traditional information brokerage
networks, brokers do not carry any access control function.
By sending fake queries to the system, any user (unauthorized
or even unregistered user) could bring in risk. For instance,
let us assume data source DSA holds sensitive information
(e.g., //creditcard nodes) and data source DSB holds
public data (e.g., //person nodes, but not //creditcard
node). In a traditional brokerage system, a low-level user or
an attacker could send a “snooping query” (say //creditcard)
to trace and locate DSA, where the query reaches and gets
rejected. In this way, one can get a whole picture of the
system such as where the servers are and what data they have
by keep sending these snooping queries, and do further after
successfully finding out the locations of sensitive information.

On the contrary, our in-network access control approach
conceals servers that may carry sensitive data (such as DSA)
and blocks potential misfeasance at the brokers. Unauthorized
users are isolated from entering the system, therefore signifi-
cantly reduce their possibility of conducting harmful activities.
Thus, it brings more overall system security.

2) Resistance against DoS Attacks: Moreover, our in-
broker brokerage system provides a full replication of access
control and location information among all the brokers, which
brings higher robustness to the whole system. In traditional
information brokerage systems, attackers could block a portion
of data sources by DoS attacks. Since the security check is at
the DBMS end, the attackers could exhaust the network access
and the system resource of the target data server by sending
a huge number of identical (or similar) queries which have
no access right to the requested data. In our in-broker access
control approach, not only the DoS attacking data cannot
reach the data server but also the broker can easily recovery
with the help of other brokers. However, compared with
databases (relational tables or XML trees), the size of access
control rules is minimum. In our in-network access control
system, it is practically applicable to maintain a full version
of access control rules at each broker, i.e. access control
function components are fully replicated at each broker. In
this way, attackers are not able to block-out a portion of data,

since their fake queries are mostly closed-out at the brokers.
The brokers endure the incoming attacks, while the brokerage
network and data sources are successfully protected. To turn
down the system, attackers need to successfully DoS all the
brokers. This is practically impossible considering the number
of brokers in the system. Since the broker only holds the access
control and location information, replication at the broker level
is not as expensive as the data level replication in other two
architectures. However, the concern of the replication cost is
one reason of the multi-hop brokering exploration in our future
work.

3) Trust of brokers.: Another concern of pushing access
control to the brokers is the trust level of the brokers. It
is reasonable to assume the brokers have a certain level of
trust in intra-organizations brokerage systems, and are only
partially trusted in inter-organizations brokerage systems. For
the latter circumstance, we should notice that the brokers
could be hacked (by outsiders) or abused (by insiders) even
without access control enforcement mechanism. In respond
to this, we can use dual access control (i.e., double-check
or validate if an access control policy is correctly enforced
at the data source side) and ene-to-end auditing systems to
help monitoring brokers’ behavior. Since the in-broker access
control is a bonus of the query forwarding process considering
the performance which we will discuss later and only the
passed queries experience the second security check at the
data source side, the dual access control does not greatly hurt
the overall query response performance and is an acceptable
solution.

VIII. CONCLUSION

In this paper, we focus on access control issues in XML in-
formation brokerage systems, where end-users send in queries
without knowing where data is actually stored, and brokers
take the responsibility to locate the data sources and forward
the queries. We propose a general framework that categories
access control approaches into three architectures, namely
SAC, EAC and IAC. We show that IAC architecture is desired
in terms of network efficiency and robustness. However, due
to limitations of access control enforcement mechanisms,
none of existing takes IAC architecture. In this paper, we
adopt an access control mechanism named QFilter, which was
previously proposed by us. By constructing a QFilter for each
role and sit it in the brokers, we developed the first In-Network
Access Control approach, which pulls access control out of
data sources towards the users to enjoy all the benefits of
IAC architecture. Observing the great extent of similarities
existing between access control policies of different roles, we
further optimize the first approach by merging QFilters of
different roles into one. Moreover, we propose and NFA based
Indexer for brokers to efficiently locate data sources for user
queries. We finally merge NFA based Indexer into Multi-Role
QFilter to obtain Indexed Multi-Role QFilter. Through detailed
experiments, we demonstrate and compare the performance of
all structures and approaches.
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