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ABSTRACT

In this article, a novel benchmark toolkit, WSBen, for testing web services discovery and composition 
algorithms is presented. The WSBen includes: (1) a collection of synthetically generated web services 
files in WSDL format with diverse data and model characteristics; (2) queries for testing discovery and 
composition algorithms; (3) auxiliary files to do statistical analysis on the WSDL test sets; (4) converted 
WSDL test sets that conventional AI planners can read; and (5) a graphical interface to control all these 
behaviors. Users can fine-tune the generated WSDL test files by varying underlying network models. To 
illustrate the application of the WSBen, in addition, we present case studies from three domains: (1) web 
service composition; (2) AI planning; and (3) the laws of networks in Physics community. It is our hope that 
WSBen will provide useful insights in evaluating the performance of web services discovery and composi-
tion algorithms. The WSBen toolkit is available at: http://pike.psu.edu/sw/wsben/.
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InTRoDuCTIon

A Web Service is a set of related functionalities 
that can be loosely coupled with other services 
programmatically through the Web. Examples 
of web applications using Web services include 
weather forecasting, credit check, and travel 
agency programs. As a growing number of Web 
services are available on the Web and in organi-
zations, finding and composing the right set of 
Web services become ever more important. As 
a result, in recent years, a plethora of research 

work and products on Web-service discovery 
and composition problems have appeared2. In 
addition, the Web service research community 
has hosted open competition programs (e.g., 
ICEBE053, EEE064) to solicit algorithms and 
software to discover pertinent Web services and 
compose them to make value-added function-
ality. Despite all this attention, however, there 
have been very few test environments available 
for evaluating such algorithms and software. 
The lack of such a testing environment with 
flexible features hinders the development of 
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new composition algorithms and validation 
of the proposed ones. Therefore, the need for 
a benchmark arises naturally to evaluate and 
compare algorithms and software for the Web-
service discovery and composition problems. 
As desiderata for such a benchmark, it must 
have (a large number of) web services in the 
standard-based WSDL files and test queries that 
can represent diverse scenarios and situations 
that emphasize different aspects of various 
Web-service application domains. Often, 
however, test environments used in research 
and evaluation have skewed test cases that do 
not necessarily capture real scenarios. Consider 
the following example.

Example 1 (Motivating) Let us use the follow-
ing notations: A Web service w ∈ W, specified 
in a WSDL file, can be viewed as a collection 
of operations, each of which in turn consists of 
input and output parameters. When an operation 
op has input parameters  opi = {p1,...,pn} and 
output parameters opo = {q1,...,qn}, we denote 
the operation by op(opi, opo). Furthermore, each 
parameter is viewed as a pair of (name, type). 
We denote the name and type of a parameter p by 
p.name and p.type, respectively. For the motivat-
ing observation, we first downloaded 1,544 raw 
WSDL files that Fan and Kambhampati (2005) 
gathered from real-world Web services regis-
tries such as XMethods or BindingPoint. We 
refer to the data set as PUB06. For the purpose 
of preprocessing PUB06, first, we conducted 
WSDL validation according to WSDL standard, 
where 874 invalid WSDL files are removed and 
670 files are left out. Second, we removed 101 
duplicated WSDL files at operation level, yield-
ing 569 valid WSDL files. Finally, we conducted 
type flattening and data cleaning processes 
subsequently. The type flattening process is to 
extract atomic types from user-defined complex 
types using type hierarchy of XML schema. This 
process helps find more compatible parameter 
faster. Details are found in (Kil, Oh, & Lee, 
2006). The final step is the data cleansing to 
improve the quality of parameters. For instance, 
substantial number of output parameters (16%) 
was named “return”, “result”, or “response” 

which is too ambiguous for clients. However, 
often, their more precise underline meaning 
can be derived from contexts. For instance, if 
the output parameter named “result” belongs 
to the operation named “getAddress'”, then 
the “result” is in fact “Address”. In addition, 
often, naming follows apparent pattern such as 
getFooFromBar or searchFooByBar. Therefore, 
to replace names of parameters or operations by 
more meaningful ones, we removed spam tokens 
like “get” or “by” as much as we could.

We measured how many distinct parameters 
each WSDL file contained. Suppose that given 
a parameter p ∈ P, we denote the number of 
occurrences of p.name as #(p.name). That 
is, #("pwd") indicates the number of occur-
rences of the parameter with name of “pwd”.  
Figure 1 illustrates #(p.name) distributions of 
PUB06 and the ICEBE05 test set, where the x-
axis is #(p.name) and the y-axis is the number 
of parameters with the same #(p.name) value. 
The distribution of PUB06 has no humps. We 
also plotted a power-function, over the #(p.
name) distribution, and found that the exponent 
is 1.1394. Although 1.1394 does not suffice the 
requirement to be the power law (Denning, 
2004), the distribution is skewed enough to be 
seen as the Zipf-like distribution. Indeed, the 
parameters such as “license key”, “start date”, 
“end date,” or “password” have a large #(p.
name) value, while most parameters appear 
just once. This observation also implies the 
existence of hub parameters, which appear in 
Web services frequently, and serve important 
roles on the inter-connections between Web 
services. On the contrary, the distribution of 
ICEBE05 test set has four humps equally at 
around 1, 100, 200, and 800 with the highest 
value at third hump. This distribution shape 
differs considerably from PUB06, the real 
public Web services. This implies that the test 
environments of ICEBE05 do not necessarily 
capture characteristics of real Web services.

In conclusion, as demonstrated in the 
example, our claim is that any Web-services 
discovery and composition solutions must be 
evaluated under diverse configurations of Web 
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services networks including two cases of Figure 
1. However, to our best knowledge, there have 
been no publicly available benchmark tools. 
To address these needs and shortcomings, 
therefore, we developed the WSBen - a Web-
Service discovery and composition Benchmark 
tool. The main contributions of WSBen is to 
provide diverse Web service test sets based 
on three network models such as “random”, 
“small-world”, and “scale-free” types. These 
three network models have been shown to model 
many real-world networks sufficiently (Albert 
& Barabasi, 2002). We also present three use 
cases in different communities to demonstrate 

the application of WSBen. In addition, we 
propose a flexible framework, by which we can 
study real Web service networks, and establish 
the design foundation of WSBen. As a whole, 
this article is based on two of our earlier works 
(Kil et al., 2006; Oh, Kil, Lee, & Kumara, 2006). 
Extended from the previous works, this article 
describes how WSBen is designed and works to 
generate test sets from the software architecture 
perspective, and furthermore introduces three 
use cases to highlight the practical benefits of 
WSBen. Table 1 summarizes important nota-
tions used in this article.

Figure 1. #(p.name) distributions. (left) PUB05. (right) ICEBE05.

Notation Meaning

w, W Web service, set of Web services

p, P Parameter, set of parameters

r, ri, ro Request, initial and goal parameter sets of r

Gp(Vp, Ep) Parameter node network

Gop(Vop, Eop) Operation node network

Gsw(Vsw, Esw) Web service node network

( , )f f f
op op opG V E Full-matching operation node network

Gc1(Vc1, Ec1) Parameter cluster network

( )ir
g p Minimum cost of achieving p ∈ P from ri in Gp

xTS WSBen’s 5-tuple input framework (e.g., baTS, erTS and nwsTS are instances)

Table 1. Summary of notation
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This article is organized as follows. 
First, in the background section, we review 
concepts and techniques required for the 
WSBen development, especially focusing 
on the complex network theory. Second, in 
the related works section, we discuss related 
studies in the literature as well as surveying 
existing world-wide challenges with regard to 
Web services and Semantic Web. Third, in the 
overview of WSBen section, we present WSBen 
with its design concept, test set generation 
mechanism, key functions and characteristics. 
Fourth, in the use cases of WSBen section, we 
illustrate how WSBen can be exploited to obtain 
research benefits, especially by demonstrating 
three use cases. We expect three use cases 
enough to provide vigorous experiments and 
evaluation of our WSBen. Finally, conclusions 
are provided.

BACkgRounD

In this section, we review prerequisite techniques 
and concepts required to build WSBen. First, we 
revisit the definition and complexity of Web-
service discovery and composition problems. 
Second, we introduce three complex network 
topologies based on which WSBen is designed to 
populate WSDL test files. Finally, we explain our 
conceptual methodology to project a bipartite 
Web-service network consisting of three distinct 
nodes (parameter, operation, and Web service) 
and heterogeneous arc types into three distinct 
Web-service networks, each of which consists 
of single node and uniform arc. The main 
benefit of projecting Web-service networks is 
that it can allow for straightforward analysis on 
referred network’s characteristics. Throughout 
this article, we will use our conceptual Web-
service network concept in order to analyze real 
public Web-service networks as well as WSDL 
test file sets generated by WSBen.

Web-Service Discovery and 
Composition

Suppose that a Web service w has one operation 
so that a Web service can be considered as an 
operation, and input and output parameter sets 
of w are denoted by wi and wo, respectively. 
When one has a request r that has initial input 
parameters ri and desired output parameters ro, 
one needs to find a Web service w that can fulfill 
such that (1) ri ⊇ wi and (2) ro ⊆ wo. Finding a Web 
service that can fulfill r alone is referred to as 
Web-service discovery (WSD) problem. When 
it is impossible for one Web service to fully 
satisfy r, on the other hand, one has to compose 
multiple Web services {w1, w2,...,wn}, such that 
(1) for all wk ∈ {w1, w2,...,wn}, i

kw  can be appli-
cable when i

kw  is required at a particular stage in 
composition, and (2) (ri ∪ 1

ow  ∪ 2
ow ∪...∪ o

nw ) ⊇ 
ro. This problem is often called as Web-service 
composition (WSC) problem. In addition, one 
can also consider different matching schemes 
from the operation perspective – “partial” and 
“full” matching. In general, given w1 and w2, 
if w1 can be invoked at the current information 
state and 1

ow  ⊇ 2
iw , then w1 can “fully” match w2. 

On the other hand, if w1 cannot fully match w2, 
but w1 can match a subset of w2, then w1 can 
“partially” match w2. When only full matching 
is considered in the WSC problem, it can be 
seen as a single-source shortest path problem 
whose computational complexity is known as 
polynomial (Bertsekas, 2000). On the other 
hand, when both full and partial matching 
must be considered concurrently, the problem 
becomes a decision problem to determine the 
existence of a solution of k operators or less for 
propositional STRIPS planning, with restric-
tions on negation in pre- and post-conditions 
(Nilsson, 2001). Its computational complexity 
is proved to be NP-complete (Bylander, 1994). 
Therefore, when the number of Web services to 
search is not small, finding an optimal solution to 
the WSC problem (i.e., a chain of Web services 
to invoke) is prohibitively expensive, leading 
to approximate algorithms instead.



 International Journal of Web Services Research, 6(1), 1-19, January-March 2009   �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of  IGI Global 
is prohibited.

Complex network Models

There are many empirical systems to form com-
plex networks such as the scale-free network 
and the small-world network, in which nodes 
signify the elements of the system and edges 
represent the interactions between them.

Definition 1 (Random network) A network is 
defined as the random network on N nodes, if 
each pair of nodes is connected with probability 
p. As a result, edges are randomly placed among 
a fixed set of nodes. The random network can 
be constructed by means of the Erdos-Renyi's 
random-graph model (Erdos, Graham, & 
Nesetril, 1996).

Definition 2 (Regular network) Rg(N, k) is 
defined as the regular network on N nodes, 
if node i is adjacent to nodes [(i + j)mod N] 
and [(i - j)mod N] for 1 ≤ j ≤ k, where k is 
the number of valid edge of each node. If  k = 
N - 1, Rg(N, k) becomes the complete N-nodes 
graph, where every node is adjacent to all the 
other N - 1 nodes.

We can define some metrics to quantify 
the characteristic properties of the complex 
networks as follows:

• L: The average shortest distance between 
reachable pairs of nodes, where the distance 
between nodes refers to the number of hops 
between the nodes. L(p) is defined as L of 
the randomly rewired Watts-Strogatz graph 
(Watts & Strogatz, 1998) with probability 
p. Lrandom is identical to L(1).

• C: The average clustering coefficient. Sup-
pose that for a node i with vi neighbor, 
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 where Ei is the number of edges between 

vi neighbors of i. C is the average clus-
tering coefficient Ci for a network. C(p) 
is defined as C of the randomly rewired 
Watts-Strogatz graph with probability p. 

Crandom is identical to C(1).

Definition 3 (Small-world network) Small-
world networks are characterized by a highly 
clustered topology like regular lattices and 
the small network diameter, where the net-
work diameter suggests the longest shortest 
distance between nodes. Specifically, small-
world networks are C  Crandom and L ≈ Lrandom 
(Delgado, 2002).

By using the Watts-Strogatz model (Watts, 
1999; Watts & Strogatz, 1998), we can construct 
networks that have the small-world properties. 
The model depends on two parameters, connec-
tivity (k) and randomness (p), given the desired 
size of the graph (N). The Watts-Strogatz model 
starts with a Rg(N, k) and then every edge is rewired 
at random with probability p; for every edge 
(i, j), we decide whether we change j node (the 
destination node of (i, j)) with probability p. The 
Watts-Strogatz model leads to different graphs 
according to the different p as follows:

• When p = 0, an Rg(N, k) is built.
• When p = 1, a completely random network 

is built.

Otherwise, with 0 < p < 1, each edge (i, 
j) is reconnected with probability p to a new 
node k that is chosen at random (no self-links 
allowed). If the new edge (i, k) is added, the 
(i, j) is removed from the graph. The long-
range connections (short-cuts) generated by 
this process decrease the distance between the 
nodes. For intermediate values of p, there is the 
“small-world” region, where the graph is highly 
clustered yet has a small average path length.

Definition 4 (Scale-free network) Networks 
are called scale-free networks if the number of 
nodes that have v number of neighbor nodes is 
proportional to Pw(v)∝v(-g), where g is typically 
greater than two with no humps.

Barabasi and Albert provided several ex-
tended models (Albert, Jeong, & Barabasi, 1999; 
Delgado, 2002) to provide the scale-free proper-
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ties. The extended model uses an algorithm to 
build graphs that depend on four parameters: 
m0 (initial number of nodes), m(number of 
links added and/or rewired at every step of the 
algorithm), p (probability of adding links), q 
(probability of edge rewiring). The procedure 
starts with m0 isolated nodes and performs one 
of the following three actions at every step:

• With the probability of p, m(≤ m0) new 
links are added. The two nodes are picked 
randomly. The starting point of the link 
is chosen uniformly, and the end point of 
the new link is chosen according to the 
following probability distribution:

 1
( 1)
i

i
jj

v
v
+

Π =
+∑

  (1)

 where ∏i is the probability of selecting 
the i node, and vi is the number of edges 
of node i. 
The process is repeated m times.

• With the probability of q, m edges are 
rewired. For this purpose, i node and its 
link lij are chosen at random. The link is 
deleted. Instead, another node z is selected 
according to the probabilities of Equation 
(1), and the new link liz is added.

• With the probability of 1 - p - q, a new 
node with m links is added. These new links 
connect the new node to m other nodes 
chosen according to the probabilities of 
Equation (1).

• Once the desired number N nodes are 
obtained, the algorithm stops. The graphs 
generated by this algorithm are scale-free 
graphs, and the edges of the graphs are 
constructed such that the correlations 
among edges do not form. When p = q, the 
algorithm results in a graph, whose con-
nectivity distribution can be approximated 
by

 
2 (1 ) 1 2 1

( ) ( 1)
m p p

mP v v
- + -

- +
∝ +  (2)

 where v is the number of edges.

Diverse Web Service network 
Models

A set of Web services form a network (or graph). 
Depending on the policy to determine nodes and 
edges of the network, there are varieties:  Web 
service level (i.e., coarse granularity), operation 
level, and parameter level (i.e., fine granularity) 
models. The graph at the middle of Figure 2 has 
a bipartite graph structure and consists of three 
distinct kinds of vertices (i.e., parameter, opera-
tion, and web-service node) and directed arcs 
between bipartite nodes (i.e., operation nodes 
and parameter nodes). An edge incident from 
a parameter node to an operation node means 
that the parameter is one of the inputs of the 
corresponding operation. Reversely, an edge 
incident from an operation node to a parameter 
means that the parameter is one of the outputs 
of the corresponding operation. The graph has 
two Web services, labeled WS1 and WS2. WS1 has 
two operations Op11 and Op12, and WS2 has one 
operation, Op21, respectively. There are seven 
parameters, labeled P1 to P7. According to the 
node granularity, we can project the upper graph 
into three different Web service networks. 

• Parameter-Node Network: A graph Gp(Vp, 
Ep), where Vp is a set of all parameter nodes 
and Ep is a set of edges. An edge (pi, pj) is 
directly incident from input parameters pi ∈ 
Vp  to output parameters pj ∈ Vp, where there 
is an operation that has an input param-
eter matching pi and an output parameter 
matching pj. For example, P1→Op11→P3 
in the upper graph is projected into P1→
P3 in the parameter node network. Figure 
3 shows the parameter node network for 
PUB06 and the ICEBE05 test set.

• Operation-Node Network: A graph Gop(Vop, 
Eop), where Vop is a set of all operation 
nodes, and Eop is a set of edges. An edge 
(opi, opj) is incident from operation opi ∈ 
Vp to operation opj ∈ Vp, here opi can fully 
or partially match opj. For example, Op11 
partially matches Op12 which, in turn, 
fully matches Op21 in the upper graph. 
Therefore, Op11→Op12→Op21 can be shown 
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in the operation node network. In particular, 
the fully matching operation node network, 

f
opG  has only Op12→Op21.

• Web-service Node Network: A graph 
Gws(Vws, Ews), where Vws is a set of all web-
service nodes, and Ews is a set of edges. An 
edge (wsi, wsj) is incident from web-service 
node wsi ∈ Vws, to wsj ∈ Vws, where there is 
at least one edge between any operation in 
wsi and any operation in wsj. For example, 
since WS1 possesses Op12 and WS2 possesses 
Op21 in the upper graph, WS1→WS2 appears 
in the Web service node network.

RelATeD WoRkS

Constantinescu, Faltings, and Binder (2004) 
proposed a scalable syntactic test bed where 
Web services are generated as transforma-
tion between sets of terms in two application 
domains. For doing that, they first defined 
parameter sets corresponding to application do-
mains and then, connected those parameter sets 
randomly and constructed a service graph which 
structure (i.e., nodes and arcs) is similar to the 
parameter cluster network of WSBen. However, 
WSBen takes a significant different approach 
to construct its parameter cluster networks in 
that WSBen does not simply connect parameter 
sets at random but simulates topologies of real 
Web service networks. WSBen is inspired by 
extensive studies on real Web services, and 

Figure 2. Web services networks: (a) WSDLs, (b) Conceptual Web service network, (c) Web service 
networks from diverse models, (d) Parameter node network, Gp, (e) Operation node network, Gop, 
(f) Fully invocable operation node network, f

opG , and (g) Web service node network, Gws
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therefore is designed to support various Web 
service network topologies and distributions. 
As a result, WSBen can present more realistic 
testing situation for researchers who want to 
test their Web service discovery or composi-
tion algorithms than that of Constantinescu et 
al. (2004). 

XMark (XMark, 2006) is an XML 
benchmark suite that can help identify the list 
of functions which an ideal benchmark should 
support. WSBen uses XMark as a reference 
model to identify necessary functions to simplify 
the testing process. One feature that is offered 
by XMark but not by WSBen is the provision 
of solutions to queries. In other words, XMark 
provides queries and their corresponding solu-
tions but WSBen gives requests only because the 
optimal solution to a Web service composition 
problem may not be obtained in the reasonable 
time window due to the problem’s inherently 
high complexity.

There are three unique challenges that have 
been established to investigate research issues 
with regard to Web services and Semantic Web. 
First is the Semantic Web Services Challenge5. 
This venue invites application submissions 
for demonstrating practical progress towards 
achieving the vision of the Semantic Web. 
According to the event, it has the overall goal 
to advance our understanding of how semantic 
technologies can be exploited to produce 
useful applications for the Web. Second is 

the Web Services Challenge6. This venue 
solicits approaches, methods, and algorithms 
in the domain of Web-service discovery and 
composition. This event evaluates participants’ 
approaches based on their quantitative and 
qualitative performance results on discovery 
and composition problems. The Web Services 
Challenge is more driven by common problems, 
but the Semantic Web Challenge concentrates 
more on the environment. As such, the Semantic 
Web Challenge places more focus on semantics 
while the Web Services Challenges favors 
applied and short-term solutions (Brian, Wil-
liam, Michael, & Andreas, 2007). Third is the 
Service Oriented Architecture Contest7 which 
asks participants to openly choose particular 
domain-specific problems and show their 
best approaches for them. There are unique 
characteristics for each venue so that they 
have undoubtedly contributed to advance 
the state-of-art technologies in Web services 
and Semantic Web. Among these challenges, 
WSBen can be exploited especially for the 
Web Services Challenge to provide various 
benchmark environments, discovery and 
composition problems by varying Web-service 
network topologies.

As for WSC, there are two main approach-
es, depending on the use of domain knowledge. 
First, the template-workflow based approach is 
to use software programs and domain experts 
to bind manually-generated workflows to the 

Figure 3. Diverse parameter networks. (left) PUB05. (right) ICEBE05
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corresponding concrete Web services. ME-
TEOR-S (Sivashanmugam, Verma, Sheth, & 
Miller, 2003) is an example of this approach. 
Second, various AI planning techniques have 
been applied to the WSC problem, ranging 
from simple classical STRIPS-style planning 
to an extended estimated regression planning 
(McDermott, 2002). We believe that our WSBen 
is complementary for AI Planning based tools 
for the WSC problem. In fact, we demonstrate 
how WSBen can be used to compare the perfor-
mance of AI planners for the WSC problems in 
the illustrative use-cases section. In this article, 
meanwhile, we do not propose how METEOR-S 
can make use of WSBen for a test case generation 
tool. It is because METEOR-S consists of three 
modules such as process designer, configuration 
module, and execution environment, where the 
execution environment requires executable Web 
services but WSBen can generate only WSDL 
files without real implementation.

overview of WSBen

In this section, we present a novel benchmark 
tool titled WSBen, which provides a set of func-

tions to simplify the generation of test environ-
ments for WSD and WSC problems.

overview of WSBen

At a higher level, a Web service can be assumed 
as a transformation between two different ap-
plication domains, and each can be represented 
by a cluster. This assumption was the basis in 
developing WSBen. From the perspective of 
graph theory, WSBen builds Parameter Cluster 
Network, which consists of clusters and directed 
edges connecting two different clusters. These 
directed edges become Web service templates 
from which WSBen generates Web services as 
users specify. Formally, the parameter cluster 
network is defined as follows:

Definition 5 (Parameter Cluster Network) A 
directed graph Gcl(Vcl, Ecl), where Vcl is a set of 
clusters and Ecl is a set of directed edges that 
are incident from input clusters i ∈ Vcl to output 
clusters j ∈ Vcl. Here, cluster i and j contain 
a set of non-overlapping parameters denoted 
by Pai and Paj, respectively, where Pai ∩ Paj 
= f. Each directed edge is also called a Web 

Figure 4. Overview of WSBen
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service template, from which WSDL files are 
generated.

Figure 4 shows the overview of WSBen. 
In detail, WSBen consists of the following 
functionalities:

• Input framework: Users can specify and 
control the generated synthetic WSDL files 
and their characteristics. For this purpose, 
WSBen provides an input framework xTS 
= <|J|, Gr, h, Gp,|W|>. xTS applies existing 
complex and random network models to 
specify Gr. Each element of xTS will be 
discussed in more detail below.

• Parameter cluster network, Gcl(Vcl, Ecl): If 
xTS is given by users, based on the first 
four elements, WSBen generates Gcl. Each 
cluster of Gcl is filled with some number of 
atomic parameters. In this network, Web 
services are defined as transformations 
between two different clusters. That is, <i, 
j> ∈ Ecl becomes Web service templates. 
The role of Web service templates in the 
test set generation will be illustrated.

• Test set and sample requests: By randomly 
selecting the Web service templates (arcs of 
the parameter cluster network), WSDL files 
are generated. Once a test set is generated, 
users can generate sample test requests r 
= <ri, ro>. The generation process of test 
sets and test requests will be illustrated.

• Test and evaluation: WSBen can export 
both the Web service WSDL files and test 
requests into files in PDDL (McDermott, 
1996) and STRIPS format, enabling con-
current comparison with state-of-the-art 
AI planners.

WSBen input framework: xTS

WSBen input framework, xTS consists of 
five tuples, <|J|, Gr, h, Gp,|W|>. In detail:

1. |J| is the total number of parameter clus-
ters.

2. Gr denotes a graph model to specify the 
underlying topology of a parameter cluster 

network. Gr  can be on of the following 
three models discussed in the Background 
section:
• Erdos-Renyi(|J|, p): This model has 

such a simple generation approach 
that it chooses each of the possible 

 
| | (| | 1)

2
J J -

 

 edges in the graph with |J| nodes with 
probability p. The resulting graph 
becomes the same as the binomial 
graph.

• Newman-Watts-Strogatz(|J|, k, p): The 
initialization is a regular ring graph 
with k neighbors. During the genera-
tion process, new edges (shortcuts) 
are added randomly with probability 
p for each edge. Note that no edges 
are removed, differing from Watts-
Strogatz model.

• Barabasi-Albert(|J|, m): This graph 
model is generated by adding new 
nodes with m edges that are prefer-
entially attached to existing nodes 
with a high degree. The initialization 
is a graph with m nodes and no edges. 
Note that the current implementation 
of WSBen is limited because it can 
only generate the simplified version of 
the extended Barabai-Albert model, by 
setting p = q = 0 and m0 = m, resulting 
in graphs with g = 2.0 ± 0.1, where g is 
the exponent of a power function Pw(v) 
defined over connectivity v range in 
the form of Pw(v) ∝ v-g.

3. h denotes the parameter condense rate. 
With h, users can control the density of 
partial-matching cases in produced Web 
services.

4. Mp denotes the minimum number of param-
eters a cluster can contain. In other words, 
clusters may have a different number of 
parameters but all clusters must have at 
least Mp number of parameters.

5. |W| denotes the total number of Web services 
of a test set.
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With |J| and Gr, the first two input ele-
ments of xTS, we can build Gcl with each empty 
cluster. Thus, we need a procedure to fill each 
empty cluster with parameters. For this purpose, 
WSBen uses the following procedure:

1. A parameter cluster network Gcl with empty 
clusters is built by specifying |J| and Gr.

2. Co-occurrence probability of each cluster is 
measured by the following probability:

 max
cl

j
j

j V j

k
k∈

∆ =   (3)

 where ∆j is the co-occurrence probability 
of cluster j, and kj is the edge degree of 
cluster j. 

 h is the parameter condense rate which is 
given by users.

3. |Paj| is measured based on the following 
equation.

 | | p
j

j

M
Pa =

∆
   (4)

 where Paj is the set of parameters contained 
in cluster j.

4. For each j cluster, atomic parameters are 
generated up to |Paj|, with duplicated pa-
rameters forbidden (i.e., ∀i, j ∈ Vcl, Pai ∩ 
Paj = f).

Once a complete parameter cluster net-
work, Gcl(Vcl, Ecl) is built, WSBen repeats the 
following procedure until |W| number of Web 
services are generated:

1. A Web service template <i, j> is chosen at 
random from Ecl.

2. WSBen generates a WSDL file, in which 
each input parameter is selected from i 
cluster with probability ∆i, and each output 
parameter is selected from j cluster with 
probability ∆j.

Figure 5 illustrates how WSBen builds 
Gcl and generates WSDL files based on the Gcl. 
Suppose that xTS = <8, Barabasi - Albert (8, 

2), 0.8, 1.5, 100>  is given. Then, the generation 
steps are as follows:

1. WSBen generates a graph of Barabasi-
Albert(8,2). The direction of each edge is  
determined at random.

2. ∆j and |Paj| are specified. For example, 
Cluster 5 has nine parameters as shown 
in Figure 5. That is, |Pa5| =9, as 

 
 5

1 0.8 0.16
max 5

cl

j

j V j

k
k∈

∆ = = × = ,

  resulting in 

 
5

5

| | 9pM
Pa = ≈

∆
.

3. Paj is specified. For example Pa5={17,18,
19,20,21,22,23,24,25} as shown in Figure 
5 because |Pa5| = 9 and for ∀i, j ∈ Vcl, Pai 
∩ Paj = f. Note that the parameter names 
are automatically generated, and thus do 
not contain any semantics.

4. Finally, Gcl is built and WSBen generates 
|W| Web services. For example, in Figure 
5,  WS1 is instanced from a Web service 
template <3, 1> ∈ Ecl. Note that ∆1 = 0.16 
and ∆3 = 0.8. ∆1 = 0.16 suggests that the 
occurrence probability of each parameter 
in Cluster 1 has 0.16. Due to the low prob-
ability, only “1” and “9” are selected from 
Cluster 1. Similarly, ∆3 = 0.8 means that 
the occurrence probability of each param-
eter in Cluster 3 has 0.8. Due to the high 
probability, all parameters in Cluster 3 that 
are “13” and “14” are selected. In the case 
where no parameter is generated, dummy 
parameters “S” and “T” are filled in the in-
put and output parameters, respectively.

The state, s ∈ S is a collection of parameters 
in |P|. Therefore, ri and ro are states. The test 
request r is constructed such that ro is farthest 
away from ri in a parameter space in terms 
of ir

g (p) - the cost of achieving p ∈ P from a 
state ri. To obtain ir

g (p), we propose following 
Forward Searching algorithm.
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Figure 5. Test set generation with <8, Barabasi - Albert (8, 2), 0.8, 1.5, 100>

Input   : ri

Output: ir
g (p) for all p reachable from ri

1: s = ri; C = f; d = 1;
2: while (d ≠ f) do
3:          d = {w | w ∈ Ω(s), w ∉ C};
4:         for p in wo(w ∈ d) do
5:                       if  ir

g (p) = ∞ then
6:                                  ir

g (p) = d; s = s ∪ {p};
7:         C = C ∪ d; d++;

Algorithm 1. Forward searching algorithm of 
WSBen

Forward Searching:  ir
g (p) can be charac-

terized by the solution of a recursive equation 
as follows:

( ) '
( ) min [ ( ) max ( ')]i iir rw Ow p p w

g p c w g p
∈ ∈

= +  
    (5)

where c(w) is an invocation cost of a Web ser-
vice, w ∈ W and is assumed to be 1. Ow(p) is 

a set of Web services: Ow(p)  = {w ∈ W | p ∈ 
wo}. At first, ir

g (p) is initialized to 0 if p ∈ ri, 
and to ∞ otherwise. Then, the current informa-
tion state s is set to ri (Line 1 in Algorithm 1). 
We denote Ω(s) by a set of Web services w ∈ 
W such that wi ⊆ s. That is, w can be invoked 
or applicable in the state s.

Every time for ∀w ∈ Ω(s), each parameter 
p ∈ wo is added to s, and ir

g (p) is updated until 
Ω(s) stops to increase, meaning that this process 
ends with finding ir

g (p) for all parameters reach-
able from ri (Lines 2-6 in Algorithm 1).

We can use Equation (5) to drive the lower 
bound of the optimal cost of WSC solutions. 
Note that the invocation cost of a Web service 
is assumed to be 1. Thus, the optimal cost of 
a WSC problem coincides with the minimum 
number of Web services required to solve the 
WSC problem. For a set of parameters A, we 
can regard the following cost function:

Test Request Generation
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max ( ) max ( )i ir rp A
g A g p

∈
=   (6)

The cost of achieving a set of parameters 
cannot be lower than the cost of achieving each 
of the parameters in the set. Thus, max ( )ir

g A  is 
the lower bound of the optimal cost of achiev-
ing ro from ri.

Based on the forward searching algorithm, 
WSBen create a test request r, as follows:

1. WSBen selects a Cluster j ∈ Gcl at ran-
dom.

2. WSBen copies all parameters in the Cluster 
j (i.e., Paj) into ri, and then ro is constructed 
so that it consists of the first five largest 
parameters in terms of ir

g (p). Consequently, 
parameters in ro are farthest away from 
parameters in ri in a parameter space.

As a default, WSBen repeats the above 
procedure five times, generating five request 
sets for each test set.

Implementation

As shown in Figure 6, WSBen provides user 
interfaces to specify xTS and several parameters, 
which are required to form a parameter cluster 
network and generate WSDL files. WSBen is 
implemented in Python, and run on Python 
2.3 or later. It runs on Unix and Windows. For 
the creation, manipulation, and functions of 
complex networks, we used a Python package 
called NetworkX8. Current implementation of 
WSBen is limited as follows: (1) it supports 
only the exact matching without type compat-
ibility check, and (2) each Web service contains 
only one operation so that a Web service can be 
viewed as equivalent to an operation. Therefore, 
wi and wo indicate the input and output parameter 
set of a Web service, w.

Figure 6 also shows three sample parameter 
cluster networks, where each circular node rep-
resents a cluster and edges with heads denote the 
Web service template, from which Web services 

Figure 6. WSBen user interface
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are instanced. The size of node is proportional 
to the number of parameters in the node, while 
the transparency level of a node's color is in-
versely proportional to the degree of the node. 
For example, in the left cluster network, Cluster 
18 can be considered a hub cluster in that it has 
the high degree. Therefore, it is presented by a 
small circle with denser color.

Following the mechanism of WSBen 
explained so far, we can build three illustrative 
test set frameworks by specifying xTS as fol-
lows:

 
1. baTS = <100, Barabasi - Albert (100, 6), 

0.8, 5, |W|>
2. nwsTS = <100, Newman - Watts - Stro-

gatz(100, 6, 0.1), 0.8, 5, |W|>
3. erTS = <100, Erdos - Renyi(100, 0.006), 

0.8, 5, |W|>

Figures 7 and 8 show that there are dis-
tinctive differences between baTS, nwsTS, and 
erTS in terms of Gp and outgoing edge degree 
distribution.

IlluSTRATIve uSe CASeS of 
WSBen

In this section, we present three use cases 
to demonstrate the application of WSBen: 
(1) evaluating Web-service composition 
algorithms; (2) comparing performance of AI 
planners; and (3) estimating the size of giant 

component. These use cases are prepared to 
provide vigorous experiments and evaluation 
for assessing the usage of WSBen. For each use 
case, we will provide three Web-service test sets 
by varying xTS with three parameter cluster 
networks such as “random”, “small-world”, and 
“scale-free” types. Note that these three network 
models have the expression power enough to 
model many real-world networks sufficiently 
(Albert & Barabasi, 2002). This implies that 
our generated test cases can be appropriate for 
representing diverse real-world Web-service 
networks. Furthermore, these three Web-service 
test sets are significantly distinctive from each 
other in terms of their Web-service network 
topologies and degree distributions as we have 
shown in the previous section. This indicates 
that we have sufficient reason to analyze how 
different network topologies can affect the 
performance of Web-service applications or 
environments.

evaluating Web-Service 
Composition Algorithms

Recently, many WSC researches have been re-
ported in the Web service community. As such, 
the EEE06 Web-service composition contest 
holds as many participants as 11. Among the 11 
WSC algorithms, we choose a WSC algorithm 
named WSPR (Oh, Lee, & Kumara, 2007), 
which was proved effective and efficient in the 
contest, in order to demonstrate the application 
of WSBen.

Figure 7. Gp of baTS, erTS, and nwsTS when |W| = 1,000
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 In this case, we use three test sets 
generated by WSBen: (1) baTS with |W| 
= 5,000; (2) erTS with |W| = 5,000; and 
(3) nwsTS with |W| = 5,000. The resultant 
composed services generated by WSPR are 
shown in Figure 9, where WSPR addressed 
a request for each of the three test sets. Note 
that WSBen can automatically create sample 
requests for a given test set. In the graph, each 
composed solution has nodes such as “Ri” and 
“Ro”, which represent the initial condition and 
goal state, respectively. Other nodes represent 
Web services. The directed arcs indicate the 
invocation flow, where a solid edge means 
full-matching invocation and a dotted edge 
represents partial-matching invocation. From 
the experiments based on diverse test sets such 
as baTS, erTS, and nwsTS, we can understand 
how different network models of Gcl influences 
the performance of WSC algorithms. In general, 
given the same number of clusters, the Bara-
basi-Albert model generates Gcl with a greater 

number of parameters, and a larger variance 
of the number of parameters between clusters 
than the Newman-Watts-Strogatz and Erdos-
Renyi models do. Due to the greater number 
of parameters and larger variance, baTS needs 
more partial-matching Web services to fulfill 
the given requests than others. The increasing 
need for partial-matching Web services leads 
to increasing number of Web services in the 
composed service. This is the reason that the 
baTS case has more Web services to create a 
resultant composed service as shown in Figure 
9 (left).

Comparing Performance of AI 
Planners

We demonstrate how WSBen can be used to 
compare the performance of AI planners. For 
this purpose, we choose three prominent AI 
planners – Graphplan (Blum & Furst, 1997), 
Blackbox (Kautz & Selman,1996), and IPP9. 

Figure 8. Outgoing edge degree of baTS, erTS, and nwsTS when |W| = 1,000

Figure 9. Composed services using WSPR for three test sets. (left) baTS with |W| = 5,000. (center) 
erTS with |W| = 5,000. (right) nwsTS with |W| = 5,000
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Blackbox and IPP are extended planning 
systems that originated from Graphplan. In 
particular, Blackbox is extended to be able to 
map a plan graph into a set of clauses for check-
ing the satisfiability problem. Consequently, it 
can run even in large number of operators. For 
comparing the performance of three planners, 
we use two evaluation metrics as follows:

1. t(Time): It measures how long an algorithm 
takes to find a right solution, in seconds. 
This is a measure of computational ef-
ficiency.

2. #W: The number of Web services in a right 
solution. This is a measure of effective-
ness.

All AI planners run with their default 
options, except that the maximum number of 
nodes for Blackbox and Graphplan was set to 
32,768 and 10,000, respectively. Commonly, 
the time to read operator and fact files is not 
included in t. Blackbox and IPP accept only the 
PDDL format, while Graphplan accepts only 
the STRIPS format for their operator and fact 

files. Note that an operator file corresponds to 
a test set, and a fact file corresponds to a test 
request file. Also note that WSBen provides a 
function to convert test sets and requests into 
PDDL and STRIPS files automatically. The 
experiments were performed on Linux with 
three Intel Xeon CPU, running at 2.4GHz 
with 8GB RAM.

Tables 2, 3, and 4 shows the results of the 
five test requests for each of baTS, erTS, and 
nwsTS with |W| = 3,000. Graphplan ran out 
of memory in many cases. IPP also failed to 
solve the some requests. As a whole, Blackbox 
showed better performance than others, meaning 
that it can solve more requests than others. It 
is because Blackbox uses the local-search SAT 
solver, Walksat, for the satisfiability problem, 
so that Blackbox can run relatively well even 
with a large number of operators.

We can estimate the size of giant component 
in a service network using random graph theory. 
Often it is believed to be important to have a 
large and dense giant component in a service 
network. Otherwise, the isolated services will 
never have a chance to provide any services to 

Requests
BlackBox GraphPlan IPP

#W t #W t #W t
r1 61 478.69 - - - -

r2 - - - - - -

r3 5 5 5 0.09 5 26.22

r4 9 27.78 9 0.11 9 28.56

r5 4 1.4 4 0.04 4 23.97

Table 2. Results over baTS with |W| = 3,000

Requests
BlackBox GraphPlan IPP

#W t #W t #W t
r1 75 38.09 - - - -

r2 50 16.02 - - - -

r3 22 18.68 - - 22 24.78

r4 23 4.38 - - 23 21.06

r5 38 4.01 - - 38 21

Table 3. Results over erTS with |W| = 3,000
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clients. Newman, Strogatz, and Watts (2001) 
suggested the theoretical framework in order to 
estimate the giant component size in networks 
by using random graph theory. In order to see if 
their theoretical framework works, we generated 
the f

opg  with different network size for each of 
following cases:

1. Random model: <50, Erdos - Renyi(100, 
0.6), 0.8, 5, |W|>

2. Scale-free model: <50, Barabasi - Al-
bert(100, 6), 0.8, 5, |W|>

3. NWS model: <50, Newman - Watts - Stro-
gatz(100, 6, 0.1), 0.8, 5, |W|>

For each of these networks, we measured 
the real size of giant components. Then, we cal-
culated the theoretical size of giant components 
according to the estimation model of Newman 
et al. (2001). The comparisons between real and 
theoretical sizes are summarized in Figure 10. 
For f

opg  based on the random parameter cluster 

network in  Figure 10(A), the theoretical value 
of the giant component size is very close to the 
measured one for each synthetic network. This 
implies that even a simple random model may 
be very helpful to estimate the inter-operable 
portion of such networks with random topology 
without even analyzing the available network 
beyond its degree distribution. However, Fig-
ure 10(B) shows that the estimation model is 
not a good model for Scale-free type. There 
is a considerable gap between theory and real 
value for many of the synthetic networks in this 
type. The deviation between theory and actual 
networks becomes more dramatic for the NWS 
(small world phenomenon and highly clustered 
property) type shown in Figure 10(C). The 
results show that the random network model 
might be good generative model for such Web 
services networks if these networks are entirely 
random, which is also in accordance with the 
basic assumption by Newman et al. (2001).

Requests
BlackBox GraphPlan IPP

#W t #W t #W t
r1 48 571.63 - - 48 29.52

r2 35 114.67 - - 35 28.57

r3 24 192.99 - - 24 30.19

r4 26 11.88 - - 26 28.39

r5 31 111.21 - - - -

Table 4. Results over nwsTS with |W| = 3,000

Figure 10. Comparison of real and theoretical size of giant components: (A) random, (B) scale-
free, and (C) NWS models.

Estimating the size of giant component
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ConCluSIon

A novel Web-service benchmark toolkit, WS-
Ben, is presented with three use cases in different 
application domains. The WSBen development 
is inspired by the study on real-world Web 
services, and is designed to provide diverse 
scenarios and configurations which users can 
fine-tune easily. As a result, using WSBen, users 
can conduct extensive experimental validation 
on their Web-service discovery and composi-
tion algorithms. It is our hope that WSBen 
will provide useful insights to the design and 
development of Web-services discovery and 
composition solutions and software. The latest 
version of WSBen is available at: http://pike.
psu.edu/sw/wsben/. Further research is needed 
to extend WSBen to support approximate and 
semantic matching among Web services. Also, 
we plan to discover additional applications 
where the WSBen can be used.
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