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1. Introduction

In many applications, entities need to carry a unique identifier. This identifier can
be as simple as a primary key in relational database models or ISBN of books,
or as complex as DNA fingerprint of people. When all applications adopt an
universal identifier system such as DOI, one does not have to worry about issues
related to identifiers. However, in reality, it is common to find an application that
uses non-unique data values as an identifier. One of such identifiers used widely
is a short name description (“names” in short hereafter) of entities. Examples
include: name of persons, name of movies, name of cities, etc. Since these names
of entities are not unique, inevitably, there can be multiple entities with the
same name, causing confusion. This problem is often referred to as the Name
Disambiguation problem, where goal is to sort out the erroneous entities due
to name homonyms.

Example 1. Figure 1 illustrates three real cases where entities are mixed due to
their name homonyms. In Figure 1(a), citations of at least four “Wei Wang”s are
mixed in DBLP where full names of scholars are used as a key. In Figure 1(b),
there are at least 41 movies with the title “Love” in IMDB. Finally, Figure 1(c)
shows snippets of home pages of two different “Dongwon Lee”s retrieved from
Google. In a sense, full names of users are used as a key for home pages. 2

In general, one can model the name disambiguation problem as the k-way
clustering problem. That is, given a set of mixed n entities with the same name
description d, the goal of the problem is to group n entities into k clusters
such that entities within each cluster belong to the same real-world group (e.g.,
same author or movie). For instance, in Figure 1(a), one needs to group the
mixed citations (i.e., entities) of “Wei Wang”s into four groups. Similarly, in
Figure 1(c), one needs to group many web pages returned from Google for the
query keyword “Dongwon Lee” into two clusters – one for a faculty member
at the Pennsylvania State University and the other for a graduate student at
University of Minnesota.

In this paper, in particular, we study the scalability issue of the name dis-
ambiguation problem – to resolve when a large number of entities get undistin-
guishable due to homonyms. By and large, the scalability issue has been ignored
in previous research of the name disambiguation problem. Therefore, existing
solutions tend to work well for a handful of mixed entities in the range of 10
or so, or a large number of entities with the limited number of feature dimen-
sions (Bekkerman et al, 2005; Han et al, 2005). However, as data applications
become more complicated and users increase rapidly, new needs arise to han-
dle the more large-scale name disambiguation problem. For instance, for a given
“name” query keyword t (e.g., person, company, or movie), it is common to have
thousands of web pages returned from search engines, all of which contain the
keyword t which results in high dimensional spaces in a vector space model.
Therefore, it is important to have a scalable yet accurate name disambiguation
algorithm.

For this goal, in this paper, we carefully examine two of the state-of-the-
art solutions – k-way spectral clustering (SC) (Han et al, 2005) and multi-way
distributional clustering (MDC) (Bekkerman et al, 2005) – to the name disam-
biguation problem, and then point out their limitations with respect to their
scalability. Then, we propose a scalable name disambiguation method using the
Multi-level Graph Partitioning (MGP) algorithm to solve the large-scale
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(a) Citations of at least four “Wei Wang”s are mixed in DBLP.

(b) There are at least 41 movies with the title “Love” in IMDB.

(c) Home pages of two different “Dongwon Lee”s are retrieved from Google.

Fig. 1. Examples of mixed entities due to homonyms.
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name disambiguation problem. Our claim is empirically validated through our in-
tensive empirical study in which MGP shows orders of magnitude improvement
in terms of performance. For instance, according to our experimental results,
MGP is about 157 times faster than SC in the DBLP-m data set, and is about
383 times faster than MDC in the DBLP-l data set. Details of the results are
described in Section 5. However, the F-measure of MGP is slightly lower than
both MDC and SC. These results are quite reasonable because our solution aims
at efficiently clustering large-scale ambiguous name data with slightly lower clus-
tering results, compared to competing solutions. However, we will still be able
to improve the clustering results of MGP. In a sense, to maintain equivalent or
more reasonable clustering results but yet to handle the scalability, we propose
the Multi-level Graph Partitioning and Merging (MGPM) algorithm, in
which the merging step is added on the multi-level graph partitioning algorithm.
By approximating clusters in a scalable manner, it outperforms MDC and MGP
in the F-measures. Even it has almost similar F-measures to the k-way spectral
clustering (SC) which is an exact method. We will discuss the details in Section
4.

The contributions of this paper are the followings.

– We viewed a name disambiguation, which frequently occurs in digital libraries
and on the web, as a hard clustering problem. To apply clustering algorithm,
we categorized major clustering methods into two classes: hierarchical cluster-
ing methods and partitive clustering methods. Then, we further studied two
state-of-the-art clustering methods – Multi-way distributional clustering (a
hierarchical clustering variant) and k-way spectral clustering (a partitive clus-
tering variant). In particular, we showed that such methods are not scalable
when the size of ambiguous name data becomes very large.

– To address the scalability of the name disambiguation problem, we propose
two multi-level algorithms. One is the multi-level graph partitioning (MGP)
algorithm and the other is the multi-level graph partitioning and merging
(MGPM) algorithm. In our multi-level approaches, (1) the input data is rep-
resented as an affinity graph; (2) the graph is partitioned into smaller graphs
level by level; (3) the smallest graph is clustered in the end; and (4) partitioned
smaller graphs are restored to the size of the original graph. According to our
experimental results, MGP algorithm showed better precision, and equivalent
or slightly lower recall than those of existing clustering solutions. However, it
outperforms the others in terms of scalability by orders of magnitude (up to
383 times at best). Similarly, MGPM algorithm improves performance with
similar or better accuracy.

– In this paper, we clearly analyzed the computational complexity of the meth-
ods as well as experimental results based on our intensive empirical study
with a variety of aspects – i.e., various data sets (e.g., citation and web data
sets), different sizes of data sets, and different number (and extremely skewed
distribution) of cluster sizes.

The rest of this paper consists of the followings. In Section 2, we formally de-
fine name disambiguation problem. In Section 3, we investigate the multi-way
distributional clustering (MDC) and k-way spectral clustering methods (SC).
Section 4 describes our two multi-level algorithms: MGP and MGPM. Section
5 shows our experimental set-up and results. Section 6 discusses related work.
Concluding remarks and future works follow in Section 7.
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Term Description

k # of clusters
l # of word tokens (delimited by spaces)
m # of unique word tokens

(i.e., m-dimensional features)
n # of documents (i.e., entities)

Table 1. Notations.

2. Problem Definition

Formally, using the notations of Table 1, the name disambiguation problem in
our setting is defined as follows:

Definition 1 Given a set of mixed entities E={e1, ..., en} with the same name
description d, group E into k disjoint clusters C={c1, ..., ck} (k ≤ n ≤ m ≤ l)

such that entities {e(i)
p , ..., e

(i)
q } (1 ≤ p ≤ q ≤ n) within each cluster ci belong to

the same real-world group. 2

Clustering is the key part for name disambiguation. Consequently, we approach
our problem as a supervised clustering problem in which the number of true
clusters is known a priori in our data sets. We assume that both n and k can be
a substantially large number in this problem, and the majority of input pages
belongs to a single individual. We also consider our problem as a hard clustering
which assigns input pages to exactly one individual cluster so that the produced
clusters are not overlapped. Hard clustering can be classified as either partition-
ing or hierarchical approaches. Hierarchical clustering methods generate a series
of nested clusters by merging simple clusters into larger ones, while partitive
methods aim at finding a pre-specified number of clusters that best capture the
data.

3. Two State-of-the-art Solutions: MDC & SC

For our name disambiguation problem, we select two recent stat-of-the-art solu-
tions. One is a multi-way distributional clustering method (MDC) which is one
of hierarchical clustering methods and the other is a k-way spectral clustering
method (SC) which is one of partitive methods. In the following, we discuss the
existing methods in more depth.

3.1. Multi-way Distributional Clustering (MDC)

Bekkerman and McCallum used the multi-way distributional clustering method
to solve the name disambiguation problem in (Bekkerman et al, 2005). Given a
set of k clusters, c1, ..., ck, all word tokens of ci∈[1..k] are placed in a single cluster
(a root node) while each entity of ci∈[1..k] is placed in a singleton cluster (leaf
nodes). For instance, given a set of word tokens and documents in a collection,
all the tokens are put in a single cluster while each document in the collection is
assigned to each singleton cluster. Then, during top-down/bottom-up clustering
iterations, the top-down clustering process splits a cluster uniformly at random
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to two sub-clusters. At the same time, the bottom-up clustering process merges
each cluster with its closest neighboring cluster. The sequence of top-down and
bottom-up clustering processes is pre-determined in MDC. For example, if the
sequence is “Obama, Obama, Obama, Democratic, Democratic” three cluster-
ing iterations over “Obama” will be done first, followed by two iterations over
“Democratic”. After each iteration, each cluster are corrected based on Mutual
Information – that is, it correctly clusters a random variable X (e.g., Demo-
cratic) by a joint probability distribution between X and an observed variable Y
(e.g., Obama). The joint probability distribution is computed based on a table
summarizing # of occurrences of times x ∈ X occurred with y ∈ Y (e.g., # of
times a term y appears in a document x).

The MDC method iteratively performs an agglomerative clustering process
over terms (e.g., word tokens) and a conglomerate clustering process over doc-
uments (e.g., web pages or citations in a collection) at random, and assigns
documents to more accurate clusters based on the joint probability distribution
of terms and documents. Thus, this algorithm is significantly expensive on large-
scale data. For instance, suppose that MDC consists of two clustering approaches
X and Y . X is an agglomerative clustering method over tokens such that a clus-
ter x ∈ X and an entity ei ∈ Xi=1..l. Y is a conglomerate clustering method over
documents such that a cluster y ∈ Y and an element ei ∈ Yi=1..n. Since the MDC
method focuses on clustering documents, the maximal number of iterations to
obtain the final clusters is O(logn). During each iteration, each cluster in X is
randomly split to two equally sized sub clusters and then each element ei ∈ xi

is correctly placed into xj based on Mutual Information. Next, each cluster in
Y is randomly merged to its nearest neighbor cluster and cluster corrections are
performed to minimize the Bayes classification error. At each iteration in the
top-down step, entity ei is placed into a cluster xj such that Mutual Information
I(X, Y ) is maximal. Similarly, the same process is performed in the bottom-up
step. Therefore, the computational complexity of MDC is

O(l × n× logn). (1)

3.2. k-way Spectral Clustering (SC)

Han et al. used the k-way spectral clustering method to solve the name disam-
biguation problem in (Han et al, 2005). Consider a set of entities E. The spectral
clustering methods consider the similarity matrix S, where Si,j is a similarity
score between entities ep, eq ∈ E. As one of commonly used spectral clustering
methods, Shi-Malik algorithm (Shi et al, 2000) partitions entities into two dis-
joint sets based on eigenvector v corresponding to the second smallest eigenvalue
(i.e., Fiedler vector) of the Laplacian of S. Similarly, the Meila-Shi (Meila et
al, 2001) and Han et al. (Han et al, 2005) use the eigenvectors corresponding to
k largest eigenvalues of the matrix P = DS−1 for k, and then cluster entities
using k-means or pivoted QR decomposition by their respective k components
in the eigenvectors.

Given a similarity matrix M , ev1, ...evk eigenvectors of M are computed by
the k largest eigenvalues to create the matrix M ′ with k columns of eigenvectors
of M . Finally, the rows of M ′ are clustered. In general, the running time of these
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spectral clustering algorithms is dominated by the computation of eigenvectors of
M , and the complexity time is known as O(n3) (Pothen et al, 1990)(Hendrickson
et al, 1992)(Pothen et al, 1992)(Golub et al, 1996). More specifically, let us
explain the time complexity of spectral clustering methods. For simplicity, we
suppose a recursive spectral bisection as spectral clustering methods. At each
level, we compute an eigenvalue and a corresponding eigenvector for spectral
partitioning. Assume that we have n nodes in our initial graph. Then, for level i,
we have 2i−1 subgraphs with n

2i−1 node elements. If we assume the computation
of eigenvector takes n3 for n elements (Heath, 2002)(Golub et al, 1996), the total
computation requires

O(n3 + 2×
(n

2

)3

+ 4×
(n

4

)3

+ · · ·+ n×
(n

n

)3

) ≈ O(n3). (2)

4. Main Proposal

In the previous section, we discussed the computational complexities of MDC and
SC, and we also showed that such clustering methods are not scalable because
MDC and SC have quadratic and cubic time complexities, respectively. In this
section, we describe the details of MGP and MGPM algorithms so as to provide
a scalable name disambiguation solution.

4.1. Graph Formation

We first represent all entities and their inter-relationships as a graph G = (V,W ).
For instance, each node v ∈ V represents an entity ei ∈ E and each edge (v1, v2) ∈
W carries a non-negative weight to capture the relationship between v1 and v2.
More specifically, we convert the given n entities into a graph G = (V,W ) as
follows:

– Each entity ei is mapped to a node vi(∈ V ).
– Note that ei is the i-th document in our collection. By treating ei as a set

of word terms appearing in ei, we apply the standard vector space model to
convert ei into an m–dimensional vector (e.g., X = (α1, ..., αm))4. If the j-th
token in the entire token space appears in an entity ei, then αj is the TF/IDF5

weight value of the j–th token. Otherwise, αj = 0.
– Finally, the edge weight between two entities ei and ej is computed as fol-

lows (Cohen et al, 2003).

TFIDF (ei, ej) =
∑

t∈Tei
∩Tej

V (t, Tei
)× V (t, Tej

) (3)

4 Let us assume that a standard stemming process has been done to filter out stop
words (Howard et al, 2009).
5 By definition, a weight is a certain value normalized in terms of importance of a word token
in a document. The Term Frequency (TF) is a measure of the importance of the term t in a
particular document. Therefore, if a term t appears in a particular document frequently, the TF
weight of t will be high. On the other hand, Inverse Document frequency (IDF) is a measure
of importance across documents in a collection. If t appears infrequently in a collection, the
IDF weight will be high.
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Fig. 2. The three phases of the multi-level graph partitioning algorithm.

, where t is a term (word token); Tei
denotes a set of word tokens of ei; and

V (t, Tei) = log(TFt,Tej
+ 1)× log(IDFt)√∑

t′ (log(TFt,Tej
+ 1)× log(IDFt))

(4)

(symmetrical for V (t, Ty)). In the TFIDF similarity function, TFt,Tei
is the

frequency of t in Tei
, and IDFt is the inverse of the fraction of names in a

corpus containing t.

4.2. Multi-level Graph Partitioning (MGP)

To efficiently cluster a large-scale namesake data, in our name disambiguation so-
lution, the input data is first represented as an affinity graph G that we discussed
in Section 4.1, and then the graph is approximately partitioned to subgraphs
based on multi-level graph partitioning schemes, as elaborated in Figure 2. More
specifically, we describe the algorithm details in Algorithm 4.1.

The multi-level graph partitioning (MGP) algorithm consists of three steps:
Scaling-down, Partitioning, and Scaling-up. During the scaling-down step, the
size of the graph is repeatedly decreased; in the clustering step, the smallest
graph is partitioned; and during the scaling-up step, partitioning is successively
refined to the larger graph. During the scaling-down step, since the size of the
graph is decreased from level to level and all the vertices in the graph are visited
at each level, the complexity gets O(log n). In the clustering step, if we use one of
spectral algorithms, the complexity is O( 4

3 (20×k)2((20×k)−1)) ≈ O((20×k)3)
(Golub et al, 1996). During the scaling-up step, the running time at each level
is O(|W |), where |W | is # of non-zero entries (# of edges in a graph G) in the
kernel matrix. Overall, the computational complexity of the MGP is

O(log n + (20× k)3 + |W |) ≈ O(k3 + |W |) (6)

Note that a large graph has one million nodes and sparse edges in many
practical applications. In such an application, since k � n, the computational
complexity of the MGP is O(k3) which is the most efficient, compared to that
of MDC and of SC.
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Algorithm 4.1 Multi-level Graph Partitioning
Function MGP(G, k)

Input: An affinity graph G and # of clusters (k)

Output: A set of clusters {G1, . . . , Gk}
Scaling-down Phase: G is successively condensed into smaller graphs G1, G2, ..., GL such
that |V | > |V1| > ... > |VL|, where level i ∈ [1..L] and |Vi| is the number of nodes in graph Gi.
In Gi, visit each node randomly, and then merge a node v with a neighbor w that maximizes
the edge weight between v and w. Once all the nodes in Gi are visited, the scaling-down process
at level i is completed.

Partitioning Phase: Through the iterative scaling-down step, the smallest graph is deter-
mined such that the number of nodes is less than 20 × k. Then, we use a spectral algorithm
(Yu et al, 2003) so as to cluster the smallest graph.

Scaling-up Phase: In order to derive partitions of the original graph G, the scaling-up step is
required in which the clustered graph is repeatedly projected to a larger graph. Suppose that
the size of Gi was decreased into that of Gi+1 in the scaling-down phase. Furthermore, two
nodes v and w of Gi were bound to a single node < v, w > in Gi+1. Then, the node < v, w >
was partitioned into a cluster c in the partitioning phase. In the scaling-up phase, nodes v
and w can be grouped to the same cluster c. Then, more accurate projection to the larger
graph is performed using a weighted kernel k-means refining algorithm. According to (Dhillon
et al, 2005), graph clustering objective functions (e.g., Ratio Association) can be transformed
into weighted kernel k-means objectives, with the node weight (W) and kernel matrix (K), to
locally optimize these graph clustering objectives. Therefore, given a similarity matrix M , the
kernel matrix K of a graph clustering objective function (i.e., Ratio Association) is computed
by σI + M where σ is a real number. Subsequently, the updated clusters are computed by

argmink(Kxx −
2× Σ

y∈c
(k)
i

× Wy ×Kxy

Σ
y∈c

(k)
i

× Wy
+

Σ
y,z∈c

(k)
i

× Wy × Wz ×Kyz

(Σ
y∈c

(k)
i

× Wy)2
) (5)

where c
(k)
i is the k-th cluster in the i-th iteration.

4.3. Multi-level Graph Partitioning and Merging (MGPM)

To boost up the accuracy of the MGP algorithm, we propose our multi-level
graph partitioning and merging (MGPM) algorithm (as an alternative method)
which is fast but more accurate graph partitioning method. The MGPM al-
gorithm is based on a multi-level graph partitioning algorithm but also allows
multi-resolutions with variant levels. At each step, the algorithm decides to go
further to next level only if the partitioning step produces more inter-cluster
edges than intra-cluster edges. Otherwise, the MGPM algorithm stops at the
current level. In the end, the MGPM algorithm generates different levels for
each branch and various resolutions for each leaf node.

After dividing graphs into smaller subgraphs, we combine the subgraphs to-
gether if two subgraphs have the biggest normalized cuts. We repeatedly merge
the subgraphs until the number of subgraphs is equal to the given number of
clusters (k). Algorithm 4.2 describes the details of the MGPM algorithm. After
constructing a graph G, we use a spectral bisection algorithm to partition G
into two subgraphs G1 and G2. Once partitioning G, we compute the normal-
ized cut value between G1 and G2. If the normalized cut value is bigger than
a pre-defined threshold value, we stop the partitioning process on that branch.
Otherwise, we invoke the same process to G1 and G2 recursively. This partition-
ing step generates different levels for each branch, and the resolutions of each
branch is also different. Once we have gone through the partitioning phase, we
call Function Merge(Partition(G), k) to obtain the k clusters as outcome. The
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Algorithm 4.2 Multi-level Graph Partitioning and Merging (MGPM)
Graph Partitioning Phase:

Function Partition(G)

Input: An affinity graph G

Output: A set of clusters {G1, . . . , Gi, . . . , Gj , . . . Gs}
(1) Divide G into two subgraphs Gi and Gj using spectral bisection 6.

(2) Calculate the normalized cut value between Gi and Gj , defined as

NormCut(Gi, Gj) =
Cut(Gi, Gj)

Edge(Gi) + Edge(Gj)
(7)

where Cut(Gi, Gj) is # of edges connecting Gi and Gj and Edge(Gi) is # of edges within
Gi.

(3) if NormCut(Gi, Gj) ≤ Φ
then

Partition(Gi).
Partition(Gj).

else
Stop.

Graph Merging Phase:

Function Merge(Partition(G), k)

Input: (1) # of clusters k and (2) a set of clusters {G1, . . . , Gi, . . . , Gj , . . . Gs}
Output: A set of clusters {G1, . . . , Gk}
(1) for Gi ∈ {G1, . . . , Gs}

Compute Edge(Gi)
for Gj ∈ {G1, . . . , Gs}

Compute Edge(Gj) and Cut(Gi, Gj).

(2) while s 6= k
if argmaxNormCut(Gi, Gj) such that Gi, Gj ∈ {G1, . . . Gs} then

Merge Gi and Gj into Gi,j .

number of subgraphs (s) depends on the resolution we select during the parti-
tioning phase. During the merging phase, we construct a pairwise normalized
cut table as illustrated in Algorithm 4.2. Then, we merge two subgraphs which
have the largest normalized cut value. We repeatedly merge subgraphs until s
reaches to the given number of clusters (k).

The graph partitioning step of MGPM using the spectral bisection method
is significantly fast. In most cases of practical interest, the Laplacian is a sparse
matrix, in which the principal eigenvectors can be computed more rapidly using
the Lanczos method. The running time for the Lanczos method to find the Fiedler
vector goes approximately as O( ε

λ3−λ2
), where ε denotes the number of edges in

the graph, and hence it can be very fast (Newman, 2004). During the merging
phase, we compute a ratio between the number of edges between Gi and Gj ,
and the number of edges connecting Gi and Gj for each pair i, j = 1, . . . , and s
where s is the number of subgraphs in the partitioning phase. It requires 1

2s2

computations until s reaches to k which is a given number of clusters. Therefore,
the total computation will be O( 1

2 (s−k)×s2), where s depends on the resolution
in the partitioning phase and k is the number of clusters in the solution. Since
our partition resolution s is very close to k, the execution cost of the merging
phase becomes minimal.
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Algorithm 4.3 Approximating the number of clusters.

Input: (1) Graph an affinity graph G. Output: # of clusters.
numClus(G)

for δ = 0.01; δ ≤ 1; δ = δ + 0.01 do
Generate a subgraph Gi by removing links such that link weights ≤ δ
L(δ) = # of disconnected graph segments in Gi

Project the L values to the coordinate system (x-axis: δ and y-axis: L(δ))
if the L values are on concave then

Return L(δ) such that argmax|L(δ)− L(δ + 0.01)|
if the L values are on convex then

Return L(δ + 0.01) such that argmin|L(δ)− L(δ + 0.01)|
if the L values are on linear then

Return
L(δ)+L(δ+0.01)

2

4.4. Discussion

Our proposed approach is based on the assumption that the number of clusters
is known in advance. However, this is not available in many applications. To
surmount this challenging issue, in our recent paper (On et al, 2009), we proposed
a novel unsupervised method of which goal is to approximately estimate the
number of possible clusters a priori based on Algorithm 4.3. In this section, we
summarize the key concept of our solution. For details, please refer to (On et
al, 2009).

The main idea of the algorithm is to gradually disconnect several edges
based on the connectivity between nodes and to analyze the patterns of seg-
mented subgraph sequences. Assume L(δ) and L(δ + 0.01) are number of sub-
graphs with δ and δ + 0.01, respectively. Then, we assume that the number
of clusters are approximately located when the difference between L(δ) and
L(δ + 0.01) is drastically changed. We observe three different types of graph
segment sequences with an incremental threshold value δ: gradually increasing,
gradually decreasing, and staying approximately as a constant. In the gradu-
ally increasing sequence (convex), the sequence reaches the maximum difference
when the difference starts to decrease. For the gradually decreasing sequence
(concave), the sequence reaches the minimum difference when the difference
starts to increase. Based on this property, our algorithm assumes that the num-
ber of cluster will be close to the maximum difference in the number of sub-
graph sequences when it shows concave function, the minimum difference when
it shows convex function, and the average of these two when it stays approx-
imately as a constant (linear function). In this section, we also show in Table
2 that the relative error between numClus and ground truth which is defined
as |# of clusters estimated by numClus−# of clusters in ground truth

# of clusters in ground truth | is ten times smaller
than that of between hierarchical clustering and ground truth.

5. Experimental Validation

For the MDC, SC, and MGP methods, we used the implementation of (Bekkerman
et al, 2005), (Verma et al, 2003), and (Dhillon et al, 2005), respectively. For the
implementation of TF/IDF cosine similarity, we used SecondString (SecondString,
2003). All experimentation were done on 4 × 2.6Ghz Opteron processors with
32GB of RAM.
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Hierarchical clustering numClus

Adam Cheyer 18.5 3.5
William Cohen 4.9 0.4
Steve Hardt 6.5 0.5
David Israel 1.63 0.37

Leslie Pack Kaelbling 28.5 0
Bill Mark 6.25 0.13

Andrew McCallum 3.19 0.25
Tom Mitchell 0.78 0.27
David Mulford 3 1.38

Andrew Ng 0.23 0.19
Fernando Pereira 0.74 0.21

Lynn Voss 0.54 0

Average 6.23 0.6

Table 2. Relative error between each method and ground truth of WWW-s.

Fig. 3. Overview of statistics of data sets: (a) average k (b)
average n (c) average m.

5.1. Experimental Set-up

For evaluation, we have used four data sets – two small and two large data sets
from real examples. Figure 3 illustrates the overall statistics of the data sets and
Table 3 shows the details of the data set.

– First, DBLP-s is a real test case that we have gathered from the DBLP digital
library. When two scholars have the same name spellings, their citation data
are mistakenly merged into a single collection, leading to an incorrect citation
analysis result. For instance, Figure 1(a) illustrates a collection of mixed cita-
tion by four “Wei Wang”s in DBLP. We collected 24 real examples as shown
in Table 3, and manually checked their correctness.

– WWW-s is a small-sized test case using the 1,085 web pages that (Bekkerman et
al, 2005) used. In 2004, the authors extracted 12 person names from Melinda
Gervasio’s email directory. Then, 100 top-ranked web pages ((Wu et al, 2008))
of each person name were retrieved from Google, cleaned, and manually la-
beled by the authors. The resulting data set consists of 1,085 web pages, 187
different persons, and 420 relevant pages. Table 3 shows the statistics of the
data set. For instance, when “Tom Mitchell” is searched as a query to Google,
top-92 web pages are retrieved. Among these 92, there are 37 namesakes to
“Tom Mitchell”. For example, among 92 web pages, “Tom Mitchell”s appear
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as musicians, executive managers, an astrologist, a hacker, and a rabbi – 37
different kinds. That is, the 92 web pages, which should truly be categorized
into 37 groups of web pages, are mixed since they all have the same name
description of “Tom Mitchell”. Like DBLP-s, WWW-s is a small but challenging
test case with more number of clusters per case.

– Next, DBLP-m is a medium-sized citation test case generated from DBLP digital
library. To generate an ambiguous name data set, we clustered author names
from the entire DBLP citation data if two authors share the same first name
initial and full last name. Then, we sorted the formed name clusters by the
number of name variants. Finally, we obtained top-10 ambiguous names. For
instance, # of “J. Lee” variants is 421 (top ranked), # of “S. Lee” variants is
391 (2nd ranked), # of “J. Kim” variants is 377 (3rd ranked) and so forth.

– Finally, DBLP-l is a large-scale citation test case, similar to DBLP-m, except that
only the full last name is used in the blocking. Appendix shows the statistics
of the data set.

5.2. Evaluation Metrics

To evaluate competitive clustering methods, each cluster ci ∈ Ci=1,..,k is assigned
with the most dominant label in ci. Then, we measure the precision and recall
for ci as follows (Slonim et al, 2002):

Precision =
Σk

i=1α(ci)
Σk

i=1(α(ci) + β(ci))

Recall =
Σk

i=1α(ci)
Σk

i=1(α(ci) + γ(ci))
where α(ci) denotes # of entities correctly assigned to ci, β(ci) denotes # of
entities incorrectly assigned to ci, and γ(ci) denotes # of entities incorrectly not
assigned to ci.

Example 2. Table 4 illustrates an example of clustered documents. In “Cluster
2”, since the most dominant label is SriEng , “SriEng” is assigned as the class
label of the second cluster. α(c2) = 3, β(c2) = 2, and γ(c2) = 1. Therefore, the
precision of Cluster 2 is α(c2)

{α(c2)+β(c2)} = 3
{3+2} = 0.6, and the recall of Cluster 2

is α(c2)
{α(c2)+γ(c2)} = 3

{3+1} = 0.75. 2

5.3. Experimental Results

5.3.1. Scalability

Table 5 shows the running time of three methods for four test cases. It is clear
that MGP is always winner, as we have predicted in Section 3.3. Note that both
DBLP-m and DBLP-l are large-scale test cases. In DBLP-m, MGP is 157 times faster
than SC, and in DBLP-l 383 times faster than MDC. Even if WWW-s is a small
sized data set, the running time of SC is significantly large – 4,274 sec. This is
because # of dimension per vector in WWW-s is considerably large. For instance,
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Name data set k n m

DBLP-s H Cai 2 5 89
Wei Cai 2 7 120

John M. Carroll 2 92 673
Li Chen 2 60 718
Yu Chen 2 46 594
Hui Han 2 15 184

Youngjae Kim 2 3 62
Dongwon Lee 2 30 322

Chen Li 2 31 343
Jia Li 2 27 276
Jian Li 2 21 284
Lin Li 2 11 145

Peng Liu 2 32 344
Wei Liu 2 43 530

Zhenyu Liu 2 8 139
Jiebo Lou 2 34 311

Murali Mani 2 11 131
Prasenjit Mitra 2 11 115
Sanghyun Park 2 18 201

Hui Song 2 6 79
James Ze Wang 2 33 310

Wei Wang 4 143 1,264
Yuan Xie 2 20 210
Wei Xu 2 17 230

Average 2 30 320

WWW-s Adam Cheyer 2 97 12,146
William Cohen 10 88 9,036
Steve Hardt 6 81 14,088
David Israel 19 92 11,739

Leslie Pack Kaelbling 2 89 12,153
Bill Mark 8 94 10,720

Andrew McCallum 16 94 11,166
Tom Mitchell 37 92 10,356
David Mulford 13 94 16,286

Andrew Ng 29 87 10,441
Fernando Pereira 19 88 10,999

Lynn Voss 26 89 22,706

Average 16 90 12,653

DBLP-m C. Chen 220 787 4,129
Y. Chen 238 853 4,689
H. Kim 290 713 3,931
J. Kim 377 1,104 5,567
S. Kim 302 847 4,469
Y. Kim 240 559 3,376
C. Lee 234 676 3,842
H. Lee 242 557 3,509
J. Lee 421 1,281 6,234
S. Lee 391 1,320 6,011

Average 296 870 4,576

DBLP-l Brown 416 1,233 6,611
Chan 478 1,310 6,225
Cheng 451 1,508 6,936

Johnson 437 1,630 7,604
Jones 398 1,561 6,869
Lu 471 1,581 7,071

Martin 398 1,400 7,489
Wong 450 1,730 7,022
Xu 485 1,799 7,494

Zhou 441 1,532 6,824

Average 443 1,528 7,015

Table 3. Statistics of our four data sets.
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Cluster 1:
ID#1_Other.html

Cluster 2:
ID#63_SriEng.html
ID#85_SriEng.html
ID#39_Player.html
ID#1_Lawyer.html
ID#40_SriEng.html

Cluster 3:
ID#6_PSUProf.html
ID#8_SriEng.html

Table 4. An example of clustered web documents (i.e., entities)(i) each file
denotes a web page; (ii) the filename of each web page is ID#document
ID document label.html ; and (iii) html tags and stop words are removed in each
web page.

Data set MDC SC MGP

DBLP-s 0.12 2.2 0.0
WWW-s 2.3 4,274 0.0
DBLP-m 74 77 0.49
DBLP-l 609 169 1.59

Table 5. Summary of running times.

the average # of dimensions a vector in WWW-s is about 13K while in DBLP-l,
the largest data set, there is on average 7K dimensions per vector. Note that,
unlike MDC and MGP, k-way SC method compute k eigenvectors of a matrix.
Thus, as the number of the matrix dimensions increases, SC takes considerably
more time to identify and categorize name variants. Unexpectedly, MDC is the
slowest method, even worse than SC in DBLP-l. This is because MDC considers
# of words as its input data while SC and MGP use # of documents. Thus, the
input size of MDC is significantly larger than those of SC and MGP.

5.3.2. Effectiveness of MGP

Table 6 shows the precisions of MDC, SC, and MGP in four test cases. MGP
shows better average precisions than both SC and MDC in three cases. On the
other hand, SC is not a straightforward method as shown in Table 6. Overall,
the larger the data size gets, the poorer the precision becomes. This is because
the name data sets of these three methods are clustered into multi classes. Note
the precision of MGP in the WWW-s test case and that of MDC in the DBLP-s test
case. According to Table 6, MDC is a better name disambiguation method than
MGP for web page data sets, but it becomes the opposite case for citation data
sets. This indicates that using TF/IDF cosine similarity to obtain edge weights
between nodes (e.g., web pages or citations) is more effective in the citation data
sets. Intuitively, there is likely to be the stronger relationships between an author
and the variants than those of web page data sets. That is, a document contains
a number of terms only a few of which can be considered to be important to
identify variants.
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(a) DBLP-s

(b) WWW-s

(c) DBLP-m

(d) DBLP-l

Fig. 4. F-measures of our various data sets.
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Data set MDC SC MGP

Average precision DBLP-s 0.84 0.82 0.86
WWW-s 0.73 0.59 0.65
DBLP-m 0.43 0.06 0.54
DBLP-l 0.4 0.05 0.44

Average recall DBLP-s 0.57 0.82 0.64
WWW-s 0.36 0.57 0.36
DBLP-m 0.35 0.06 0.34
DBLP-l 0.3 0.05 0.24

Average F-measure DBLP-s 0.68 0.82 0.73
WWW-s 0.48 0.58 0.46
DBLP-m 0.39 0.06 0.42
DBLP-l 0.34 0.05 0.31

Table 6. Summary of results.

Table 6 illustrates the average recall of the three methods. For the small data
sets, SC shows better performance but MDC outperforms for large data sets –
MGP is always the second one. While MGP performs scaling-down and scaling-
up steps for partitioning a given graph, the graph is approximately transformed
to smaller sized one. These steps can decrease the recall of MGP in the large-scale
test cases. Please note that MGP outperforms MDC in precision but MDC shows
better recall than MGP. This indicates that there exists a trade-off between MGP
and MDC in clustering. In conclusion, although MGP is not the clear winner
for all test cases in both precision and recall, it appears to show pros of both
approaches. This can be clear in Figure 4 showing F-measure (i.e., a harmonic
mean of a precision and a recall) of small and large test cases.

Figure 5 (a)-(c) illustrate F-measure changes with the variation of n in three
test cases, DBLP-s, DBLP-m, and DBLP-l, respectively. Similarly, Figure 5 (d)-(f)
show F-measure changes with the variation of m in the test cases. Note that as
# of citations and # of dimensions of a vector are increased, F-measures are
decreased considerably. For instance, Figure 5 (b), in case of n = 500, MGP
shows about 0.6 as the F-measure. On the other hand, when n = 900, F-measure
is less than 0.4. Figure 5 (c) shows the similar pattern to (b). In addition, as
shown in Figure 5 (d) and (e), when # of dimensions of a vector is increased, the
F-measures are reduced. In particular, according to Figure 5, the SC method is
the worst, compared to MDC and MGP.

5.3.3. Effectiveness of MGPM

To evaluate our proposed MGPM method, we used the WWW-s data set. Since
all name data sets in DBLP-s have only two true clusters (k=2) except the
“Wei Wang” name data set, all clustering methods such as MDC, SC, MGP, and
MGPM are likely to cluster entities well, compared to DBLP-m, DBLP-l, and
WWW-s. In contrast, since DBLP-m and DBLP-l have a number of true clusters
(k ≥ a few hundreds), the accuracies of all the methods are poor. In Section 5, our
experimental results supported this expectation. In this section, we mainly have
the interest in the improvement of the accuracy of our MGPM algorithm. Thus
the three DBLP data sets are not challenging to evaluate the MGPM method.
Thus we focus on WWW-s for our experiments. In particular, each name data set
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(a) (b) (c)

(c) (d) (e)

Fig. 5. (a-c) F-measure changes with the variation of n in DBLP-s, DBLP-m, and
DBLP-l; (d-f) F-measure changes with the variation of m in DBLP-s, DBLP-m, and
DBLP-l.

Fig. 6. Average precisions, recalls, and F-measures of the four methods.

in WWW-s has a small number of entities (but more than 2) with large contents.
For instance, each web document is likely to have a number of word terms as
features. In addition, the size of clusters is often skewed in each name data set.
For example, the “Cohen” name data set has 10 clusters, where one cluster has
67 web documents but the other 7 clusters have only one web document in each.
Due to these characteristics, WWW-s 7 is a challenging data set in order to
evaluate the accuracy of the clustering methods. Thus we experimented the four

7 According to our intensive inspection to the clustering results, rather than the small sample
population of each name data set, it turned out that the clustering result becomes poor if the
name data set has a large number of clusters in the ground truth and also has the skewed
distribution of cluster sizes. For instance, there exist 94 web pages and 13 true clusters in the
“Davaid Mulford” name data set. The largest cluster has 56 web pages, while each of the other
clusters has a few web pages. As shown in Figure 4, the F-measures of all three methods in
the name data set are poor.
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methods such as MDC, SC, MGP, and MGPM with WWW-s and measured
average precisions, recalls, and F-measures used in Section 5.2.

Figure 6 shows the average precisions, recalls, and F-measures of MDC, SC,
MGP, and MGPM. Overall, average precisions are higher than average recalls.
This is due to the existence of small-sized clusters in the clustering result. For
instance, suppose there are two entities e1 and e2 with which the ground truth
is {e1, e2}. Now suppose that a certain clustering method provides us with
the clustering result: cluster c1={e1} and cluster c2={e2}. In this example, the
precision of c1 and c2 is 1 in both. On the other hand, their recalls are 0.5. In
this case, small-sized clusters are likely to promote higher precisions.

In the figure, please note the results of the MGPM algorithm. MGPM shows
higher recall and precision than those of the MGP algorithm. This is because
of the effectiveness of the merging phase in MGPM. For example, after the
partitioning step of MGPM, we suppose there are two clusters c1={e1, e3} and
c2={e2, e4} in which the ground truth sets are {e1, e2, e4} and {e3}. In this
example, the precision of c1 and c2 is 1

2 = 0.5 and 2
2 = 1, and the recall of c1

and c2 is 1
3 = 0.34 and 2

3 = 0.67. Now suppose that the merging phase of the
MGPM method combines c1 and c2 to the same cluster c3. In this example, the
precision and recall of c3 are 3

4 = 0.75 and 3
3 = 1. In this case, the merging step

tends to boost up the accuracy of the MGPM algorithm.
Figure 6 also shows the F-measure scores. Our proposed MGPM algorithm

shows the same F-measure score as the k-way spectral clustering method which
outperforms both MDC and MGP. The MGPM algorithm improves about 26%
over the MGP algorithm.

6. Related Work

Our problem is associated with the Entity Resolution (ER) problem which has
been known as various names – record linkage (Halbert, 2008)(Hammouda et
al, 2004), citation matching (Pasula et al, 2003)(Lu et al, 2006), identity uncer-
tainty (Pasula et al, 2003), merge/purge (Hernandez et al, 1995), object matching
(Doan et al, 2003)(Aygun, 2008)(Li et al, 2005)(Wan, 2008), duplicate detection
(Ye et al, 2007), group linkage (On et al, 2007)(On et al, 2006) and so on. Re-
cently, as one of specialized ER problems, (Lee et al, 2005) introduced the mixed
entity resolution problem in which instances of different entities appear together
because of their homonymous names in digital libraries. For instance, there is a
collection of mixed citations of two “Lin Li”s at the Pennsylvania State Univer-
sity and University of Nebraska in DBLP. The mixed entity resolution problem is
the same as the name disambiguation problem in this paper. However, we focus
more on resolving mixed entities in various applications – i.e., citation and web
data sets.

To separate different groups from mixed entities, clustering methods have
widely been used as solutions. So far, a variety of clustering methods such as hi-
erarchical clustering, k-means, spectral clustering, similarity propagation (Frey
et al, 2008), particle swarm optimization (Cui et al, 2003), latent dirichlet allo-
cation, etc. have been proposed to address various clustering problems in many
applications. By and large, we can categorize a majority of clustering methods
into two classes. One class includes hierarchical clustering methods and the other
has partitive clustering variants. For example, single-linkage, complete-linkage,
average-linkage, hierarchical agglomerative and conglomerative clustering meth-
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Feature SC MDC MGP/MGPM

Affinity graph Yes No Yes
Approximation No Yes Yes

Efficiency Slow Moderate Fast
Global connectivity Yes No Yes
Mutual information No Yes No

Parameter k Cut-off k
Quality High Low High

Scalability No No Yes
User feedback No No No

Table 7. Comparison of four clustering methods (Each entry indicates that a
method is relatively higher or lower than the others.).

ods belong to the class with respect to the former. From these hierarchical
clustering methods, (Bekkerman et al, 2005) proposed an agglomerative and
conglomerative double clustering technique in order to disambiguate namesakes
appearing on the web. In their approach, the authors used link structure of web
pages and a multi-way distributional clustering method. (Banerjee et al, 2007)
also proposed a multi-way clustering method in relational graphs. Different types
of entities are simultaneously clustered, based not only on their intrinsic attribute
values but also on the multiple relations between entities. As partitive clustering
methods, there are k-means, spectral clustering variants, similarity propagation,
particle swam optimization, and latent dirichlet allocation, etc. From these par-
titive clustering methods, to solve the name disambiguation problem, (Han et
al, 2005) presented a k-way spectral clustering method which groups different ci-
tations into different clusters, using three types of citation attributes (i.e., author
names, paper titles, and publication venue names).

However, all of these existing name disambiguation solutions are not scal-
able. On the other hand, in this paper, we focus on developing scalable name
disambiguation solutions based on multi-level graph partitioning schemes such
as METIS (Karypis et al, 1996) and Chaco (Hendrickson et al, 1994) which are
well-known solutions for the load balancing problem in the distributed and par-
allel computing community. METIS aims at approximately clustering a given
graph into equally sized subgraphs among which the number of edges is op-
timized. However, such a method often suffers from poor qualities because it
divides a graph into similar-sized subgraphs (Note that all of the name data sets
(e.g., WWW-s) are likely to have extremely skewed distribution of cluster sizes). In
contrast, our proposed solutions such as MGP (see the scaling-up step based on
(Dhillon et al, 2005)) and MGPM (see the graph merging step) divide a graph
into various-sized subgraphs which are desired in the name disambiguation prob-
lem. In Table 7, we compare three different types of clustering methods that are
considered to be name disambiguation solutions in this paper.

Nowadays, there are a few trials to develop practical systems in which search
results are often mixed web pages of different entities with the same name
spellings (e.g., apple companies or apple fruits). The focus of the systems is
to correctly cluster web pages and to display groups of web pages. Examples of
such systems are (Yippy.com, 2009) and eigenCluster (Cheng et al, 2005) based
on modularity for measuring the quality of combining subgraphs to a single
graph. (Hong et al, 2004) presented the construction of a prototype system to
support the name disambiguation problem in a proactive way. In particular, note
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that unlike our solutions, these techniques are unsupervised clustering methods
because the number of true clusters is not known in advance.

7. Conclusion

In this paper, we view the name disambiguation problem as the supervised hard
clustering problem in digital libraries and on the web. To address this problem,
we categorized most of main clustering methods into two groups of clustering
methods. One group includes various hierarchical clustering methods and parti-
tive variants belong to the other group. For each group, we selected a state-of-
the-art method to investigate whether or not such a method can indeed solve
the large-scale name disambiguation problem effectively and efficiently. More
specifically, we discussed the multi-way distributional clustering (a hierarchical
clustering variant) and the k-spectral clustering (a partitive method based on
spectral analysis) methods. According to our discussions with respect to compu-
tational complexity and experimental results with various data sets, the running
time of the existing clustering solutions is prohibitively expensive. It will be
deteriorated when the size of data sets is very large. To improve the efficiency
of clustering methods but yet optimize clusters, we propose a multi-level graph
partitioning algorithm in our preliminary work (On et al, 2007). Based on an ef-
ficient graph partitioning strategy, our early proposed clustering method showed
orders of magnitude improvement in terms of performance. Furthermore, during
the multi-level graph partitioning, to maintain equivalent or more reasonable
clustering results, compared to competing solutions, we extend the multi-level
graph partitioning algorithm to which the graph merge step is added. Our pro-
posal is empirically validated at the end. In particular, we present the multi-level
graph partitioning and merging algorithm as a main contribution in this paper.

For our future direction, we will develop a prototype system of an advanced
search (named as Google namesake search) for resolving mixed entities on the
web. For this system, we need unsupervised methods to estimate the number of
plausible clusters in advance. In fact, scalability is considerably important in such
a system because search results contain a large number of web pages retrieved
from Google. To address the problem, we will plan to extend our proposed al-
gorithms in the parallel manner. In practical systems, it is infeasible for every
clustering method to correctly (or perfectly) cluster web pages at all. To obtain
better clustering results, we will use the concept of feedback and investigate
semi-clustering problem (induced by users’ feedback) in our future framework.
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